Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network [OSTI]

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

2

EPA and the Federal Technology Transfer Act: Opportunity knocks  

SciTech Connect (OSTI)

In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

3

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

4

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

5

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

6

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

7

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

8

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

9

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

10

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

11

Technology transfer 1994  

SciTech Connect (OSTI)

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

Not Available

1994-01-01T23:59:59.000Z

12

NIST Organic Act National Institute of Standards and Technology Act  

E-Print Network [OSTI]

NIST Organic Act National Institute of Standards and Technology Act SECTION 1. FINDINGS in manufacturing technology, quality control, and techniques for ensuring product reliability and cost concerns compete strongly in world markets. (3) Improvements in manufacturing and product technology depend

Magee, Joseph W.

13

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

14

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

15

Federal Technology Transfer Data 1987-2009 Gary Anderson  

E-Print Network [OSTI]

Federal Technology Transfer Data 1987-2009 Gary Anderson Economist National Institute of Standards. Among other things, this Act explicitly incorporated technology transfer into the mission of all federal departments and agencies. More recently, the Technology Transfer Commercialization Act of 2000 revised

Perkins, Richard A.

16

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

17

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

18

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

19

Ames Lab 101: Technology Transfer  

ScienceCinema (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2012-08-29T23:59:59.000Z

20

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

22

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

23

Technology transfer 1995  

SciTech Connect (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

24

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer Ombuds

25

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

26

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

27

Faces of the Recovery Act: 1366 Technologies  

Broader source: Energy.gov [DOE]

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production.

28

Technology Transfer Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

29

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

30

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

31

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

33

USDOE Technology Transfer, Working with DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment SBIRSTTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer...

34

Technology Transfer for Brownfields Redevelopment Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to...

35

Entrepreneurial separation to transfer technology.  

SciTech Connect (OSTI)

Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

Fairbanks, Richard R.

2010-09-01T23:59:59.000Z

36

Successfully transfer HPI proprietary technology  

SciTech Connect (OSTI)

Intellectual property such as petrochemical/refining licensed technologies are revenue generators for many operating and E/C companies. Successful transfers of available technologies involve many critical elements beyond the basic design engineering stages. Buyers and sellers both have obligations to the licensing agreements. These obligations will vary widely as to the clients` needs and strengths, especially for facilities to be constructed in developing areas. Using the author`s guidelines can streamline new technology evaluations and acquisitions.

Hassan, N. [BE and K, Newark, DE (United States)

1997-02-01T23:59:59.000Z

37

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the universityĂ? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

38

Technology Transfer office 2008 Annual Report  

E-Print Network [OSTI]

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

39

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

40

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Faces of the Recovery Act: 1366 Technologies  

SciTech Connect (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2010-01-01T23:59:59.000Z

42

Faces of the Recovery Act: 1366 Technologies  

ScienceCinema (OSTI)

LEXINGTON, MA - At 1366 Technologies, Ely Sachs and Frank van Mierlo are using ARPA-E Recovery Act funding to dramatically reduce the costs of solar panel production. To read more about the project: http://arpa-e.energy.gov/FundedProjects.aspx#1366 To see more projects funded by the Recovery Act through ARPA-E: http://arpa-e.energy.gov/FundedProjects.aspx

Sachs, Ely; Mierlo, Frank van; Obama, Barack

2013-05-29T23:59:59.000Z

43

Technology Transfer Plan  

SciTech Connect (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

44

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

45

An Inventor's Guide to Technology Transfer  

E-Print Network [OSTI]

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

46

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network [OSTI]

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

47

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

48

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities--Institute for Telecommunication Sciences In response to the: Technology Transfer and Commercialization Act of 2000 (P.L. 106 (FY) 2008. At the Department of Commerce, technology transfer is a significant part of the mission

Perkins, Richard A.

49

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities Pursuant to the Technology Transfer Commercialization Act of 2000 (Pub. L. 106-404) January 2012 #12;ii This page is intentionally left blank FOREWORD This report summarizes technology transfer activities

Perkins, Richard A.

50

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

51

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

52

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

53

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

54

Technology Transfer at Penn State University  

E-Print Network [OSTI]

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

55

Technology Transfer from the University of Oxford  

E-Print Network [OSTI]

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

56

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

57

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech, where technology transfer and knowledge-bridging will play a pivotal role in the industrial dynamics of the microelectronics sector. Keywords. Nanotechnology ­ biotechnology ­ microelectronics ­ technology transfer

Paris-Sud XI, Université de

58

Trinity Technology Transfer News December 2012  

E-Print Network [OSTI]

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

59

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer

60

Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)  

SciTech Connect (OSTI)

The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

Graham, G.G.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network [OSTI]

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

62

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network [OSTI]

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

63

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

64

The Institutes of Technology [as amended by Institutes of Technology,] (Amendment, Act, 1963.  

E-Print Network [OSTI]

The Institutes of Technology Act, 1961 [as amended by Institutes of Technology,] (Amendment, Act, 1963.] Indian Institute of Technology, Powai, Bombay ­ 400 076 #12;THE INSTITUTES OF TECHNOLOGY ACT. THE SCHEDULE #12;THE INSTITUTES OF TECHNOLOGY, ACT, 1961 No. 59 of 1961 [as amended by Institutes of Technology

Sivalingam, Krishna M.

65

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It… (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

66

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

67

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

68

Evolution of technology transfer in Latin America  

SciTech Connect (OSTI)

The author discusses how Latin American countries have grown up buying technology, transferring technology from more developed nations, and attempting to adapt it to their own countries for their own environment. Although this is the approach that was and is necessary, there are still some shortfalls that have occurred in the process of licensing and acquisition of technology. Governments around the world also have had powerful impacts on technology transfer. Those in Latin America are no exception.

Kahl, L.F. (Carborundum Co., Niagara Falls, NY (USA))

1989-07-01T23:59:59.000Z

69

Contacts for the Assistant General Counsel for Technology Transfer...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

70

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerateAccelerating the

71

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

72

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

73

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

74

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

75

Business Plan Competitions and Technology Transfer  

SciTech Connect (OSTI)

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

76

[Technology transfer of building materials by ECOMAT  

SciTech Connect (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

77

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

78

Office of the Assistant General Counsel for Technology Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for...

79

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

80

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network [OSTI]

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de InvestigaciĂłn for Research Management & Technology Transfer #12;

Escolano, Francisco

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

82

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews AprilTechnology

83

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network [OSTI]

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

84

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process SignL. PaulTechnology

85

Browser-based Software for Technology Transfer Judith Bishop  

E-Print Network [OSTI]

1 Browser-based Software for Technology Transfer Judith Bishop Jonathan de Halleux Nikolai Tillmann Technology transfer is typically viewed as being from academia to industry but it can indeed go in either Keywords Technology transfer, browser-based software, F#, Pex4Fun INTRODUCTION Technology transfer is most

Xie, Tao

86

Technology Transfer and Commercialization Annual Report 2008  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

Michelle R. Blacker

2008-12-01T23:59:59.000Z

87

Technology transfer in the petrochemical industry  

SciTech Connect (OSTI)

The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

Tanaka, M.

1994-01-01T23:59:59.000Z

88

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-01-01T23:59:59.000Z

89

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-05-01T23:59:59.000Z

90

NREL: Technology Transfer - Commercialization Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState andPrograms

91

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New(19):4355-4364 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

92

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;

de Lange, Titia

93

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

94

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,049,814 · US Patent 8,553,143 Nidhi Sabharwal, Ph.D. Technology Manager Technology Transfer (212) 327

95

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

96

CIOSS Five Year Review 5. Technology Transfer  

E-Print Network [OSTI]

SST fields will be documented in a peer-reviewed paper, as will the wind climatologies of CheltonCIOSS Five Year Review 5. Technology Transfer 10-11-06 A. How are research results from and the nature of the collaboration. As an example, the collaboration between Richard Reynolds and Dudley Chelton

Kurapov, Alexander

97

Dartmouth College Technology Transfer Office Annual Report  

E-Print Network [OSTI]

and public service missions of Dartmouth College. 1 #12;Invention Disclosures Research Enterprise Support, such as Small Business Innovation Research (SBIR), Small Business Technology Transfer (STTR), and New Hampshire of the sluggish economy, we were able to secure 6 new licenses, including one to local start-up ImmuNext, Inc

Myers, Lawrence C.

98

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network [OSTI]

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

99

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://newswire.rockefeller.edu/?page=engine&id=939 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

100

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

102

The Picatinny Technology Transfer Innovation Center: A business incubator concept adapted to federal laboratory technology transfer  

SciTech Connect (OSTI)

In recent years, the US defense industrial base spawned the aerospace industry, among other successes, and served as the nation`s technology seed bed. However, as the defense industrial base shrinks and public and private resources become scarcer, the merging of the commercial and defense communities becomes necessary to maintain national technological competencies. Cooperative efforts such as technology transfer provide an attractive, cost-effective, well-leveraged alternative to independently funded research and development (R and D). The sharing of knowledge, resources, and innovation among defense contractors and other public sector firms, academia, and other organizations has become exceedingly attractive. Recent legislation involving technology transfer provides for the sharing of federal laboratory resources with the private sector. The Army Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, NJ, a designer of weapons systems, is one of the nation`s major laboratories with this requirement. To achieve its important technology transfer mission, ARDEC reviewed its capabilities, resources, intellectual property, and products with commercial potential. The purpose of the review was to develop a viable plan for effecting a technology transfer cultural change within the ARDEC, Picatinny Arsenal and with the private sector. This report highlights the issues identified, discussed, and resolved prior to the transformation of a temporarily vacant federal building on the Picatinny installation into a business incubator. ARDEC`s discussions and rationale for the decisions and actions that led to the implementation of the Picatinny Technology Transfer Innovation Center are discussed.

Wittig, T. [Geo-Centers, Inc. (United States); Greenfield, J. [Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ (United States)

1996-10-01T23:59:59.000Z

103

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network [OSTI]

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

104

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,383,370. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

105

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

106

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1016/j.jmb.2008.01.066 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

107

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

108

Response to the Notice of Inquiry: Technology Transfer Practices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Attn: Technology Transfer Questions ')lh ' ; ;09 Hra:41 Subject: Questions Concerning Technology...

109

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

110

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network [OSTI]

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

111

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www

112

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

113

April 12, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 12, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

114

Office of Technology Transfer 1 | P a g e  

E-Print Network [OSTI]

Office of Technology Transfer 1 | P a g e Updated.02.23.12_KT Instructions for submitting; Office of Technology Transfer 2 | P a g e Updated.02.23.12_KT 4 myUM Authentication's window of screen. Invention Disclosure Form #12; Office of Technology Transfer 3 | P a g e

Weber, David J.

115

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1217207109 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

116

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New activation. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

117

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www

118

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network [OSTI]

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

119

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network [OSTI]

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

120

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue NewRNA and antisense therapeutics Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

de Lange, Titia

122

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series "Software Patent Associate of Technology Transfer & Business Development (TTBD). August 7, 2013 from 12:00 - 1. Technology Transfer & Business Development www.ohsu.edu/techtransfer techmgmt@ohsu.edu 503-494-8200 #12;

Chapman, Michael S.

123

April 3, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 3, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

124

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

125

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network [OSTI]

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

126

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

127

INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth  

E-Print Network [OSTI]

contributes to the three-pronged mission of Dartmouth College: teaching, research and public service setting. The Technology Transfer Office provides public service by transferring technologies to industry Business Innovation Research (SBIR), Small Business Technology Transfer program (STTR), and New Hampshire

128

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology.S. patent application US 2013-0064762-A1 is pending. Tari Suprapto, Ph.D. Assistant Director Technology

129

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

130

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology Transfer

131

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

E. Lance Cole

2009-09-30T23:59:59.000Z

132

A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)  

SciTech Connect (OSTI)

This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

Schoeling, L.G.

1993-09-01T23:59:59.000Z

133

innovati nAdvanced Heat Transfer Technologies Increase Vehicle  

E-Print Network [OSTI]

innovati nAdvanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping with industry to develop and demonstrate advanced heat transfer technologies such as jet impingement cooling for thermal grease and significantly enhances direct heat transfer from the electronics. A series of nozzles

134

A planning framework for transferring building energy technologies: Executive Summary  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

135

A planning framework for transferring building energy technologies  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

136

Formal Methods Technology Transfer: A View from NASA  

E-Print Network [OSTI]

Formal Methods Technology Transfer: A View from NASA James L. Caldwell Flight Electronics Home Page on the World­Wide Web 1 . In this paper I remark on the technology transfer strategy and its Formal Methods Home Page on the World­Wide Web. In this paper we concentrate on aspects of technology

Caldwell, James

137

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New:1484-1488. #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology

138

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

139

Nuclear export and technology transfer controls  

SciTech Connect (OSTI)

A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

1988-01-01T23:59:59.000Z

140

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technology transfer significance of the International Safeguards Project Office  

SciTech Connect (OSTI)

The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

Marcuse, W.; Waligura, A.J.

1988-06-01T23:59:59.000Z

142

USDOE Technology Transfer, Responses to the Notice of Inquiry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received...

143

USDOE Technology Transfer, Frequently Asked Questions about Agreement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and...

144

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more...

145

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site:...

146

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

147

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

148

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network [OSTI]

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this… (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

149

Secretarial Policy Statement on Technology Transfer at Department...  

Broader source: Energy.gov (indexed) [DOE]

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of...

150

Transfer of hot dry rock technology  

SciTech Connect (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

151

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network [OSTI]

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

152

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Information U.S. Patent 7,323,683 (issued January 28, 2008) Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

153

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New. References Sandu, et al. 2010. J. Cell. Biol, 190:1039-52. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

154

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://www.nature.com/tp/journal/v4/n1/abs/tp2013124a.html Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

de Lange, Titia

155

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Alleles of Human Kappa Opioid Receptors and Uses Thereof

156

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Disc-Based Apparatus for High-Throughput Sample

157

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Regulator Of Extracellular Virulence Genes

158

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Novel Inhibitors of Thrombotic Clot Formation RU808+ RU

159

A model technology transfer program for independent operators  

SciTech Connect (OSTI)

In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

Schoeling, L.G.

1996-08-01T23:59:59.000Z

160

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network [OSTI]

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network [OSTI]

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

162

Technology Transfer Webinar on November 12: High-Performance...  

Broader source: Energy.gov (indexed) [DOE]

DOEOE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and...

163

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Dear...

164

Questions concerning Technology Transfer Practices at DOE Labs...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

165

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

166

Technology Transfer Commercialization Act of 2000 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices

167

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at YoungSuspect| DepartmentEnergy TECEnergy

168

E-Print Network 3.0 - accelerating technology transfer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating technology transfer Page: << < 1 2 3 4 5 > >> 1 BOARD OF TRUSTEES...

169

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

170

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network [OSTI]

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

171

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network [OSTI]

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

172

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network [OSTI]

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

173

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network [OSTI]

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

174

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies...  

Energy Savers [EERE]

Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S....

175

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

176

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network [OSTI]

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

177

NREL: Technology Transfer - Commercialization Assistance Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState and

178

NREL: Awards and Honors - Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS) CoatingTechnology

179

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

180

Technology transfer: A cooperative agreement and success story  

SciTech Connect (OSTI)

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)  

E-Print Network [OSTI]

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

Xie, Tao

182

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico  

E-Print Network [OSTI]

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico Antoine (DechezleprĂŞtre et al., 2008), we gave a general description of technology transfers by CDM projects and we important role in facilitating international technology transfers through the CDM. International transfers

183

Fermilab | Office of Partnerships and Technology Transfer | Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great

184

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

185

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

186

BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report  

SciTech Connect (OSTI)

The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

Not Available

1993-11-01T23:59:59.000Z

187

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal  

E-Print Network [OSTI]

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal Title: Real-time Analysis and Feedback during Colonoscopy to improve Quality This Small Business Technology Transfer Phase

Oh, JungHwan

188

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Tradeoff manuscript, published in "Software Tools for Technology Transfer (STTT) 15, 3 (2013) 229-245" DOI : 10.1007/s

Paris-Sud XI, Université de

189

Made in China : A Norwegian Perspective on How Cultural Differences Affect Technology Transfer.  

E-Print Network [OSTI]

??In this thesis, an attempt to incorporate cross-cultural research to an innovation-oriented approach to technology transfer is made. As cultural aspects of international technology transfer… (more)

Gulliksen, Jřrgen Horn

2010-01-01T23:59:59.000Z

190

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: to transfer the EMDEX technology to utilities; to develop measurement protocols and data management capabilities for large exposure data sets; and to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in the US and three other countries between October 1988 and September 1989. Approximately 50,000 hours of magnetic field and 23,000 hours of electric field exposure records taken at 10-second intervals were obtained, of which 70% were from Work environments. Exposures and time spent in environments have been analyzed by Primary Work Environment, by occupied environment, and by job classification. Generally, the measured fields and exposures in the Generation, Transmission, Distribution and Substation environments were higher than in other occupational environments in utilities. The Nonwork fields and exposures for workers associated with various categories were comparable. Evaluation of the project by participants indicated general satisfaction with the EMDEX system and with this approach to technology transfer. This document, Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables.

Not Available

1990-11-01T23:59:59.000Z

191

Technology Transfer Sustaining Our Legacy of Addressing National Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About |Transfer

192

Technology Transfer Working Group (TTWG) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transfer Working

193

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

194

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides and assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses; and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 8 refs., 12 figs., 2 tabs.

Bracken, T.D.

1990-11-01T23:59:59.000Z

195

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network [OSTI]

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

196

The Sandia National Laboratories technology transfer program for physical protection technologies  

SciTech Connect (OSTI)

As the Lead Laboratory for the Department of Energy in the field of physical security, Sandia National Laboratories has had the opportunity to collect extensive amounts of information on the technologies of physical security. Over the past 15 years, the volume of this knowledge has become so extensive that Sandia is now taking steps to make this information as available as possible to the DOE community and, where possible, other government agencies and NRC licensees. Through these technology transfer efforts, there are also programs available that allow cooperative research agreements between Sandia and the private sector as well. Six different technology transfer resources are being developed and used by the Safeguards Engineering Department: (1) tech transfer manuals; (2) SAND documents; (3) safeguards libraries; (4) training courses conferences; (5) technical assistance tours; and (6) cooperative research developments agreements (CRADAs).

Green, M.; Miyoshi, D.; Dry, B.

1990-01-01T23:59:59.000Z

197

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network [OSTI]

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

198

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility  

E-Print Network [OSTI]

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes of and technology transfer from NASA's research program in Independent Verification and Validation (IV, Verification. Keywords Technology transfer, Independent Verification and Validation, Research. 1. INTRODUCTION

Dekhtyar, Alexander

199

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy  

E-Print Network [OSTI]

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1. Introduction a. Relation of Technology Transfer to the Mission of the College A significant aspect available for public use and benefit. This "technology transfer" is accomplished in many ways, including

Kasman, Alex

200

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Editorial W This marks the inaugural issue of the Springer­Verlag journal Software Tools for Technology Transfer (STTT. This aim goes hand in hand with the technology transfer support offered by the related Electronic Tool

Cleaveland, Rance

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Trinity Technology Transfer News In recent months Creme has been working with their customers  

E-Print Network [OSTI]

Trinity Technology Transfer News April 2013 In recent months Creme has been working. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie | Industry Liaison Manager Enterprise Ireland technology Transfer grant, 2007-2012 Creme Global, is a TCD campus company spun out

O'Mahony, Donal E.

202

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww pprroodduucctt  

E-Print Network [OSTI]

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww programmes". One of the functions of the Technology Transfer Office is to promote and foster a culture communities. All members of the TTO deliver seminars, workshops, and course modules on IP, technology transfer

O'Mahony, Donal E.

203

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network [OSTI]

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

204

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network [OSTI]

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

205

CONNET -DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network for the  

E-Print Network [OSTI]

CONNET - DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network of European Union's Technology Transfer Network such a one-stop-shop for the construction industry of Europe and techniques that enable technology transfer to SMEs as well as provide new business opportunities and models

Amor, Robert

206

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML  

E-Print Network [OSTI]

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML Stephen Hallinan in the discipline of software engineering and is often categorised under the umbrella of technology transfer analyse the role of a recently qualified stu- dent1 in facilitating technology transfer in the form

Gibson, J. Paul

207

februari 2008 MassMass transfer & separation technology 424302 2008transfer & separation technology 424302 2008 --APPENDIXAPPENDIX  

E-Print Network [OSTI]

Multicomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000Transfer in MulticomponentMulticomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000

Zevenhoven, Ron

208

FY05 Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

209

Cast Metals Coalition Technology Transfer and Program Management Final Report  

SciTech Connect (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

210

Technology transfer package on seismic base isolation - Volume III  

SciTech Connect (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

NONE

1995-02-14T23:59:59.000Z

211

OSWER source book: Training and technology-transfer resources  

SciTech Connect (OSTI)

The OSWER Source Book consolidates information on the numerous training and other technology transfer resources sponsored by EPA's Office of Solid Waste and Emergency Response (OSWER) and others. The OSWER Source Book provides descriptions of training courses, videos and publications of interest to Federal and State personnel working in solid and hazardous waste management. The OSWER Source Book should be especially useful to Federal personnel working in programs under authorities of the RCRA, CERCLA, SARA, or other similar Federal environmental management and restoration programs.

Not Available

1991-05-01T23:59:59.000Z

212

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe Quest

213

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe

214

Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price  

SciTech Connect (OSTI)

The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

Burdis, Mark; Sbar, Neil

2012-06-30T23:59:59.000Z

215

Technology Transfer Office (TTO) Promote and facilitate the transfer of UC San Diego innovations for the benefit of the University community and the public.  

E-Print Network [OSTI]

Technology Transfer Office (TTO) MISSION Promote and facilitate the transfer of UC San Diego San Diego established its Technology Transfer Office (TTO) to promote and facilitate this process TECHNOLOGY TRANSFER RESULTS FY2000 ­ FY2007 Fiscal Year 2000 2001 2002 2003 2004 2005 2006 2007 Licenses 47

Fainman, Yeshaiahu

216

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect (OSTI)

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

217

Can sustainable development be facilitated through regime-based preventative technology transfer?.  

E-Print Network [OSTI]

??This International Relations study examines the relationship between sustainable development and preventative technology transfer. Specifically, the focus is on whether preventative environmental regimes (facilitating organisations)… (more)

Valentin, Jorg D.

2010-01-01T23:59:59.000Z

218

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons… (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

219

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging… (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

220

Federal policy and the endangered species act: the politics, perceptions, and technologies of protecting sea turtles  

E-Print Network [OSTI]

of the requirements for the degree of MASTER OF SCIENCE December 1990 Major Subject: Wildlife and Fisheries Sciences PEDERAL POLICY AND THE ENDANGERED SPECIES ACT: THE POLITICS, PERCEPTIONS~ AND TECHNOLOGIES OP PROTECTING SEA TURTLES A Thesis ALAN DEAN... perceptions were the primary factors which influenced decisionmaking. The orientation of the National Marine Fisheries Service to promote commercial fishing delayed formulation of regulations aimed at ending incidental catch. Critical habitat designations...

Risenhoover, Alan Dean

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

222

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

223

Inspection of selected issues regarding the Department`s Enhanced Technology Transfer Program  

SciTech Connect (OSTI)

An inspection was conducted to review the Department of Energy`s Enhanced Technology Transfer Program, now referred to as the Department`s Technology Transfer Program, in order to improve the effectiveness of the program and to identify issues that require management attention. Specifically, selected Departmental and Laboratory plans, policies, and procedures for implementing technology transfer activities were reviewed. Legislation, Department directives, Management and Operating contract clauses, and selected Cooperative Research and Development Agreements/Joint Work Statements were also collected and reviewed. The inspection identified four issues for management`s attention: (1) there is a lack of uniform budget guidelines for the Department`s technology transfer activities, (2) there is a lack of objectives for the Department`s Technology Transfer Program, (3) the budget and accounting information submitted to the Office of Management and Budget regarding the Department`s technology transfer activities is incomplete, and (4) there is a Department`s Technology Transfer Program. The report includes specific recommendations to address these matters.

Not Available

1994-07-01T23:59:59.000Z

224

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright © 2009. Technology Transfer and Commercialisation, Vol. 8, No. 1, pp.51­87. Biographical notes: Kevin W. Boyack spent

225

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network [OSTI]

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

226

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network [OSTI]

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT… (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

227

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University of Memphis Licensing Opportunity  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University over time #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Why it's Better Aerogel

Dasgupta, Dipankar

228

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

229

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

230

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have certainty  

E-Print Network [OSTI]

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have of technology transfer. Interest expanded until, in 2006, AUTM's Licensing SurveyTM identified tech- nology "Communicating the Full Value of Aca- demic Technology Transfer: Some Lessons Learned," originally published

McQuade, D. Tyler

231

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

232

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management  

E-Print Network [OSTI]

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management by John W. Bagby Abstract Since the industrial revolution, standardization has become a hybrid. Standards are increasingly developed outside government regulatory venues in consortia and other forms

Bagby, John

233

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

234

The role of immigrant scientists and entrepreneurs in international technology transfer  

E-Print Network [OSTI]

This thesis characterizes the important role of US ethnic scientists and entrepreneurs for international technology diffusion. Chapter 1 studies the transfer of tacit knowledge regarding new innovations through ethnic ...

Kerr, William Robert, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

235

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

236

Closing the loop : improving technology transfer by learning from the past  

E-Print Network [OSTI]

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

237

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network [OSTI]

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

238

USDOE Technology Transfer, Working with Department of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology...

239

ORNL technology transfer continues strong upward trend | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help utilities achieve deeper and broader energy savings from their energy efficiency and demand-response programs. Dry Surface Technologies of Guthrie, Okla, licensed Barrian, a...

240

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

SciTech Connect (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Transfer Information Sheet for SUNY Canton College of Technology  

E-Print Network [OSTI]

elective 3 Bsad 340 Bus Communications Bus elective 3 Science elective Lab Science recommended GenEd"L" 3-4 Humanities elective Cinema, theater, art, music, etc recommended GenEd "A" 3 Semester 4 Bus elective Bsad 310 Science elective Any Elective 3-4 GenEd Elective Any GenEd 3 Total transfer credits 57-61 Recommended

Suzuki, Masatsugu

242

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/Buy AmericanDepartment of

243

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect (OSTI)

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

244

Technology transfer, resources import, and economic growth of newly industrializing countries  

SciTech Connect (OSTI)

The general characteristics of developing economies are poor resources endowments and relatively backward technologies. These characteristics are considered to be obstacles to economic growth. Yet, despite embodying these characteristics, Hong Kong, Korea, Singapore, and Taiwan have grown rapidly in the past two decades. Their phenomenal growth is attributed to rapid export expansion which serves as a vehicle in securing the financing of resources import and technology transfer. The important role of export expansion was investigated in models of economic growth and international trade. The models generally fall into two classes. The first class is solely concerned with the importation of resources while the second class emphasizes transfer of technology. This dissertation presents a new class of model combining the two existing classes. In the new model, resources are being introduced into the technology transfer model developed by Feldstein and Hartman, Berglas and Jones, and Khang. Thus, the new model contains two types of imports instead of one. The two imports are advanced capital, which embodies advanced technology, and resources. The new model explains fully the phenomenal growth of the four Asian NICs by demonstrating that rapid economic growth requires massive technology transfer and the alleviation of resource constraints.

Cheung, Y.H.

1984-01-01T23:59:59.000Z

245

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony;

2014-06-25T23:59:59.000Z

246

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony; ,

2012-05-21T23:59:59.000Z

247

Technology_Transfer_Memo.pdf | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transferto

248

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

249

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

250

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO… (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

251

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-01-01T23:59:59.000Z

252

Fermilab | Office of Partnerships and Technology Transfer | Fermilab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great Ideas

253

Fermilab | Office of Partnerships and Technology Transfer | Work for Others  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO

254

Technology Transfer: Triggering New Global Markets and Job Growth |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology

255

Sandia National Laboratories: Small Business Technology Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At theprogram Technology

256

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-08-02T23:59:59.000Z

257

American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.  

E-Print Network [OSTI]

and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

258

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

259

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Unknown

1999-10-31T23:59:59.000Z

260

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network [OSTI]

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

262

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network [OSTI]

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

263

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

The OSWER Source Book provides a consolidated listing of training and technology transfer resources of potential interest to U.S. Environmental Protection Agency (EPA), State, and local government personnel concerned with solid and hazardous waste management. Volume I contains information on OSWER training (including the CERCLA Education Center), publications, videotapes, information systems and software, and support programs.

Not Available

1992-09-01T23:59:59.000Z

264

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage1,ServiceNationalH E

265

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

1991-12-31T23:59:59.000Z

266

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

1991-01-01T23:59:59.000Z

267

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

268

TECHNOLOGY TRANSFER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient update resolve008 HighDepartmentTopic Groups

269

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To License ORNL

270

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

271

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume I of The Source Book contains listings of OSWER and other office training courses, publications, videotapes, information systems and software, and support programs devoted to hazardous and solid waste issues.

Not Available

1992-09-01T23:59:59.000Z

272

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

273

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

274

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

microorganisms Halophiles | recyclable waste | carotenoids | recombinant products | nonsterile process Halophilic concentrations. Industrial waste streams often contain diverse organic matter, which can be recovered to valuable are often rich in organic carbon. Disposal or recycling is then complex and expensive. The novel technology

Szmolyan, Peter

275

The EMDEX (Electric and Magnetic Field Digital Exposure) Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order to priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides an assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses, and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 12 refs., 27 figs., 23 tabs.

Not Available

1990-11-01T23:59:59.000Z

276

Technology transfer support services to the Carbon Dioxide Research Division, US Department of Energy  

SciTech Connect (OSTI)

The US Department of Energy (DOE) serves as the lead Federal agency with respect to atmospheric carbon dioxide (CO{sub 2}) and the greenhouse effect.'' Within DOE, the Carbon Dioxide Research Division (CDRD) has been responsible for leading the research effort investigating atmospheric CO{sub 2}, global warming, and other aspects of the greenhouse effect. Critical to CDRD's endeavors is accurate, effective communication of research findings -- not only to scientists, but to policymakers and the general public as well. The past three-and-a-half years, Walcoff Associates, Inc., (Walcoff) has supported CDRD in meeting this technology transfer challenge. Walcoff has drawn upon a wide range of technical and professional skills to support the CDRD in its technology transfer services. Underlying all tasks has been the need to communicate highly complex, information across scientific, political and economic disciplines. During the three and a half year contract period, Walcoff has successfully provided support to the CDRD to enhance its technology transfer resources and accomplishments. 5 figs., 1 tab.

Not Available

1990-01-13T23:59:59.000Z

277

EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends  

SciTech Connect (OSTI)

This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

Miller, John M [ORNL; Rakouth, Heri [Delphi Automotive Systems, USA; Suh, In-Soo [Korea Advanced Institute of Science and Technology

2012-01-01T23:59:59.000Z

278

The following national Sea Grant aquaculture extension and technology transfer projects were awarded in 2012 (final year of three-year projects from a 2010 competition)  

E-Print Network [OSTI]

The following national Sea Grant aquaculture extension and technology transfer projects were Oregon Sea Grant Aquaculture Extension and Technology Transfer $99,906 Puerto Rico Sea Grant Chaparro extension and technology transfer in Washington and the Pacific Northwest $100,000 Wisconsin Sea Grant

279

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University increasingly grants the right to exploit its IP and/or know-how to commercial  

E-Print Network [OSTI]

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University that may arise as a result of technology transfer transactions. 1. When a primary candidate for a technology transfer agreement is identified and before any agreement is negotiated, the Industrial Liaison

Schellekens, Michel P.

280

Technology Transfer: An Integrated `Culture-Friendly' I.J. Bate, A. Burns, T.O. Jackson, T.P. Kelly,  

E-Print Network [OSTI]

Technology Transfer: An Integrated `Culture-Friendly' Approach I.J. Bate, A. Burns, T.O. Jackson, T. This is in contrast to many other technology transfer initiatives which have failed because academics have not truly not been prepared to perform the technology transfer in a suitable incremental and consultative manner. 1

Kelly, Tim

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technology Transfer and Intellectual Property Services TechTIPS a n n u a l r e p o r t 2 0 0 2  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services · TechTIPS a n n u a l r e p o r t 2 0 0 2 #12;University of California, San Diego Technology Transfer Advisory Committee Richard Attiyeh Vice Management and Planning The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general

Fainman, Yeshaiahu

282

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer Group (if an independent organisation) or the Company  

E-Print Network [OSTI]

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer of Signature:___________________________ [Signed by Head Technology Transfer Office (TTO) or Group on behalf of Administering Organisation or its Technology Transfer Group if independent or if the University does not have

Rambaut, Andrew

283

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real-Time Sub-Millimeter Imaging Device and Methods  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu The image scanning methodology makes #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

284

SciTech Connect: Recovery Act: Oxy-Combustion Technology Development...  

Office of Scientific and Technical Information (OSTI)

Publication: United States Language: English Subject: 99 GENERAL AND MISCELLANEOUS Clean Coal Technology; Coal-Fuels; Industrial and Environmental Processes; Electricity;...

285

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

Donald Duttlinger

2001-11-01T23:59:59.000Z

286

A technology transfer plan for the US Department of Energy's Electric Energy Systems Program  

SciTech Connect (OSTI)

The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

1986-11-01T23:59:59.000Z

287

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network [OSTI]

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

288

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

Unknown

2002-05-31T23:59:59.000Z

289

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

290

Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings  

SciTech Connect (OSTI)

A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

None

2010-01-01T23:59:59.000Z

291

Recovery Act Weekly Video: 200 Area Asbestos Removal, U-Ancillary Demolition, 200 West Transfer Building Footings  

ScienceCinema (OSTI)

A weekly update of the Recovery Act at work. Demolition of U-Ancillary that was contaminated with uranium and asbestos as well as removing asbestos from the Steam Generation Plant in the 200 East Area.

None

2012-06-14T23:59:59.000Z

292

Oswer source book. Volume 2. Training and technology transfer resources, 1994-1995  

SciTech Connect (OSTI)

This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

Not Available

1994-09-01T23:59:59.000Z

293

Oswer source book, Volume 2. Training and technology transfer resources, 1994-1995  

SciTech Connect (OSTI)

This edition of The OSWER Source Book builds on the previous versions and provides a descriptive listing of the numerous technology transfer resources available to EPA staff, State and local agencies, and others concerned with hazardous and solid waste management. Volume II lists frequently requested publications issued by the Office of Solid Waste (OSW). Publications are listed in a number of ways -- by title, document number, and subject area -- to facilitate locating a particular item. Publication order forms also are provided at the conclusion of Volume II.

Not Available

1994-09-01T23:59:59.000Z

294

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

295

Oswer source book. Volume 2. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume II contains frequently requested OSW publications, including those that address municipal solid waste and recycling. This second volume of The Source Book is new for this edition, and provides much additional information compared to the earlier version.

Not Available

1992-09-01T23:59:59.000Z

296

Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

2012-08-10T23:59:59.000Z

297

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, TMOAB, Utah -Bioenergy Technologies

298

Report on dipole-dipole resistivity and technology transfer at the Ahuachapan Geothermal field Ahuachapan, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan Geothermal Field (AGF) is a 90 megawatt geothermal-sourced powerplant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the period November 1987 through May 1988 a deep resistivity survey and technology transfer was performed at the AGF at the request of Los Alamos National Laboratory (LANL) as part of a United States Agency for International Development (USAID) project. The resistivity surveying is ongoing at the time of this report under the supervision of CEL personnel. LANL and contract personnel were present at the site during performance of the initial surveying for the purpose of technology transfer. This report presents the results and interpretation of the two initial resistivity survey lines performed on site during and shortly after the technology transfer period.

Fink, J.B. (Geophynque International, Tucson, AZ (United States))

1988-08-01T23:59:59.000Z

299

Environmental Baseline Survey Report for the Title Transfer of Parcel ED-9 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) Parcel ED-9 at the East Tennessee Technology Park (ETTP). Parcel ED-9 consists of about 13 acres that DOE proposes to transfer to Heritage Center, LLC (hereafter referred to as 'Heritage Center'), a subsidiary of the Community Reuse Organization of East Tennessee (CROET). The 13 acres include two tracts of land, referred to as ED-9A (7.06 acres) and ED-9B (5.02 acres), and a third tract consisting of about 900 linear feet of paved road and adjacent right-of-way, referred to as ED-9C (0.98 acres). Transfer of the title to ED-9 will be by deed under a Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report provides a summary of information to support the transfer of this government-owned property at ETTP to a non-federal entity.

SAIC

2010-05-01T23:59:59.000Z

300

Scale-up and Technology Transfer of Protein-based Plastic Products  

SciTech Connect (OSTI)

Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

Grewell, David

2008-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

302

International technology transfer (ITT) and corporate social responsibility (CSR) : A study in the interaction of two business functions within the Norwegian petroleum company Statoil.  

E-Print Network [OSTI]

??I study Statoil?s use of international technology transfer (ITT) and corporate social responsibility (CSR), and ways in which the two business functions interact within Statoil.… (more)

Bakken, Bent Egil Roalkvam

2011-01-01T23:59:59.000Z

303

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

304

Covenant Deferral Request for the Proposed Transfer of Land Parcel ED-8 at the East Tennessee Technology Park, Oak Ridge, Tennessee - Final - May 2009  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is proposing to transfer a land parcel (hereinafter referred to as 'the Property') designated as Land Parcel ED-8 at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, by deed, and is submitting this Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, and applicable U. S. Environmental Protection Agency (EPA) guidance. The Oak Ridge Reservation (ORR), which includes ETTP, was placed on the National Priorities List (NPL) in November 1989. Environmental investigation and cleanup activities are continuing at ETTP in accordance with CERCLA, the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA). The FFA was entered into by the DOE-Oak Ridge Office (ORO), EPA Region 4, and the Tennessee Department of Environment and Conservation (TDEC) in 1991. The FFA establishes the schedule and milestones for environmental remediation of the ORR. The proposed property transfer is a key component of the Oak Ridge Performance Management Plan (ORPMP) for accelerated cleanup of the ORR. DOE, using its authority under Section 161(g) of the Atomic Energy Act of 1954 (AEA), proposes to transfer the Property to Heritage Center, LLC, a subsidiary of the Community Reuse Organization of East Tennessee (CROET), hereafter referred to as 'Heritage Center.' CROET is a 501(c)(3) not-for-profit corporation established to foster the diversification of the regional economy by re-utilizing DOE property for private-sector investment and job creation. The Property is located in the southern portion of ETTP and consists of approximately 84 acres proposed as the potential site for new facilities to be used for office space, industrial activities, or other commercial uses. The parcel contains both grassy fields located outside the ETTP 'main plant' area and infrastructure located inside the 'main plant' area. No buildings are included in the proposed ED-8 transfer. The buildings in ED-8 have already been transferred (Buildings K-1007, K-1580, K-1330, and K-1000). These buildings are not included in the transfer footprint of Land Parcel ED-8. A number of temporary structures, such as trailers and tents (non-real property), are located within the footprint. These temporary structures are not included in the transfer. DOE would continue to be responsible for any contamination resulting from DOE activities that is present on the property at the time of transfer but found after the date of transfer. The deed transferring the Property contains various restrictions and prohibitions on the use of the Property that are subject to enforcement pursuant to State Law Tennessee Code Annotated (T.C.A.) 68-212-225 and state real property law. These restrictions and prohibitions are designed to ensure protection of human health and the environment.

SAIC

2009-05-01T23:59:59.000Z

305

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

Bechtel Jacobs Company LLC

2000-03-01T23:59:59.000Z

306

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

Bechtel Jacobs Company LLC

2001-03-01T23:59:59.000Z

307

The Physics of Basis For A Conservative Physics And Conservative Technology Tokamak Power Plant, ARIES-ACT2  

SciTech Connect (OSTI)

The conservative physics and conservative technology tokamak power plant ARIES-ACT2 has a major radius of 9.75 m at aspect ratio of 4.0, strong shaping with elongation of 2.2 and triangularity of 0.63. The no wall {beta}N reaches {approximately} 2.4, limited by n=1 external kink mode, and can be extended to 3.2 with a stabilizing shell behind the ring structure shield. The bootstrap current fraction is 77% with a q95 of 8.0, requiring about {approximately} 4.0 MA of external current drive. This current is supplied with 30 MW of ICRF/FW and 80 MW of negative ion NB. Up to 1.0 MA can be driven with LH with no wall, and 1.5 or more MA can be driven with a stabilizing shell. EC was examined and is most effective for safety factor control over {rho} {approximately} 0.2-0.6 with 20 MW. The pedestal density is {approximately} 0.65x10{sup 20}/m{sup 3} and the temperature is {approximately} 9.0 keV. The H98 factor is 1.25, n/n{sub Gr} = 1.3, and the net power to LH threshold power is 1.3-1.4 in the flattop. Due to the high toroidal field and high central temperature the cyclotron radiation loss was found to be high depending on the first wall reflectivity.

Kessel, C. E.

2014-03-04T23:59:59.000Z

308

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

Suzuki, Masatsugu

309

2815 San Gabriel Austin, Texas 78705 www.ic2.utexas.edu 512.475.8900 Butler, John Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and  

E-Print Network [OSTI]

Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and Commercialization. "University Technology Transfer," U.S. Economic Outlook, 2/4 2011, 31-33. Echeverri-Carroll, Elsie L has produced a catalog of cutting-edge research on new technologies, technology transfer

Ghosh, Joydeep

310

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

311

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

312

The Physics Basis For An Advanced Physics And Advanced Technology Tokamak Power Plant Configuration, ARIES-ACT1  

SciTech Connect (OSTI)

The advanced physics and advanced technology tokamak power plant ARIES-ACT1 has a major radius of 6.25 m at aspect ratio of 4.0, toroidal field of 6.0 T, strong shaping with elongation of 2.2 and triangularity of 0.63. The broadest pressure cases reached wall stabilized ?N ~ 5.75, limited by n=3 external kink mode requiring a conducting shell at b/a = 0.3, and requiring plasma rotation, feedback, and or kinetic stabilization. The medium pressure peaking case reached ?N = 5.28 with BT = 6.75, while the peaked pressure case reaches ?N < 5.15. Fast particle MHD stability shows that the alpha particles are unstable, but this leads to redistribution to larger minor radius rather than loss from the plasma. Edge and divertor plasma modeling show that about 75% of the power to the divertor can be radiated with an ITER-like divertor geometry, while over 95% can be radiated in a stable detached mode with an orthogonal target and wide slot geometry. The bootstrap current fraction is 91% with a q95 of 4.5, requiring about ~ 1.1 MA of external current drive. This current is supplied with 5 MW of ICRF/FW and 40 MW of LHCD. EC was examined and is most effective for safety factor control over ? ~ 0.2-0.6 with 20 MW. The pedestal density is ~ 0.9x1020 /m3 and the temperature is ~ 4.4 keV. The H98 factor is 1.65, n/nGr = 1.0, and the net power to LH threshold power is 2.8- 3.0 in the flattop.

Charles Kessel, et al

2014-03-05T23:59:59.000Z

313

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

SciTech Connect (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

314

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together to serve SDSU for the management of new intellectual property developed by SDSU faculty and staff. Both play  

E-Print Network [OSTI]

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together are important documents for technology transfer; they can be both free as well as generate revenue, they allow

Ponce, V. Miguel

315

MHD Technology Transfer, Integration and Review Committee. Fifth semi-annual status report, April 1990--September 1990  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

316

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

317

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer work 2 RSE/STFC Enterprise Fellowships 3 RSE/STFC Enterprise Fellowships  

E-Print Network [OSTI]

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer in knowledge exchange and technology transfer has been recognised with the awarding of a prestigious contract by the European Space Agency (ESA). STFC Innovations Ltd to lead ESA's UK technology transfer work STFC

318

U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico’s challenging environmental issues. The results also brought focus to the potential contributions that DOE’s science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOE’s Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOE’s Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASL’s assistance, DOE’s Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexico’s interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOE’s Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOE’s Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

Jimenez, Richard, D., Dr.

2007-10-01T23:59:59.000Z

319

Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

320

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network [OSTI]

and Renewable Fuel and Vehicle Technology Program Questions and Answers 4/27/09 to 5/1/09 Two questions (How far's solicitation "seek and obtain an award" through a federal ARRA solicitation. 3) May a project producing bio and Renewable Fuel and Vehicle Technology Program. The Energy Commission recommends that you submit a pre

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S. Virgin

322

Indirect Heat Transfer Technology For Waste Heat Recovery Can Save You Money  

E-Print Network [OSTI]

-drllt fIn lb. FI~-to_heot-roccvery .ylt8m Stoek gl' ..---::-----'1 _._.__.@_.; -+ Farcod?drall fan le. Air-prohe8ting syotem UBing I ....Hransfer ayltem Three typical arrangements for recovering waste heat from furnace flue gas Fig. 1 *Trademark... heat transfer fluid and thence to selected heat "user" sites (Figure 1C). This basic method often offers an attractive investment return, particu larly in applications where stack gas exit tempera tures exceed 316?C (600?F) and the furnace duty...

Beyrau, J. A.; Bogel, N. G.; Seifert, W. F.; Wuelpern, L. E.

1984-01-01T23:59:59.000Z

323

Development and technology transfer of the BNL flame quality indicator for oil-fired applications: Project report  

SciTech Connect (OSTI)

The purpose of a flame quality indicator is to continuously and closely monitor the quality of the flame to determine a heating system`s operating performance. The most efficient operation of a system is achieved under clean burning conditions at low excess air level. By adjusting a burner to function in such a manner, monitoring the unit to maintain these conditions can be accomplished with a simple, cheap and reliable device. This report details the development of the Flame Quality Indicator (FQI) at Brookhaven National Laboratory for residential oil-heating equipment. It includes information on the initial testing of the original design, field testing with other cooperating organizations, changes and improvements to the design, and finally technology transfer and commercialization activities geared towards the development of commercially available products designed for the oil heat marketplace. As a result of this work, a patent for the technology was obtained by the U.S. Department of Energy (DOE). Efforts to commercialize the technology have resulted in a high level of interest amongst industry members including boiler manufacturers, controls manufacturers, oil dealers, and service organizations. To date DOE has issued licenses to three different manufacturers, on a non-exclusive basis, to design, build, and sell FQIs.

Butcher, T.A.; Litzke, Wai Lin; McDonald, R.J.

1994-09-01T23:59:59.000Z

324

Carbon Capture and Storage in the Permian Basin, a Regional Technology Transfer and Training Program  

SciTech Connect (OSTI)

The Permian Basin Carbon Capture, Utilization and Storage (CCUS) Training Center was one of seven regional centers formed in 2009 under the American Recovery and Reinvestment Act of 2009 and managed by the Department of Energy. Based in the Permian Basin, it is focused on the utilization of CO2 Enhanced Oil Recovery (EOR) projects for the long term storage of CO2 while producing a domestic oil and revenue stream. It delivers training to students, oil and gas professionals, regulators, environmental and academia through a robust web site, newsletter, tech alerts, webinars, self-paced online courses, one day workshops, and two day high level forums. While course material prominently features all aspects of the capture, transportation and EOR utilization of CO2, the audience focus is represented by its high level forums where selected graduate students with an interest in CCUS interact with Industry experts and in-house workshops for the regulatory community.

Rychel, Dwight

2013-09-30T23:59:59.000Z

325

Environmental Baseline Survey Report for the Title Transfer of Land Parcel ED-4 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) report documents the baseline environmental conditions of a land parcel referred to as 'ED-4' (ED-4) at the U. S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP). DOE is proposing to transfer the title of this land to the Heritage Center, LLC. Parcel ED-4 is a land parcel that consists of two noncontiguous areas comprising a total of approximately 18 acres located east of the ETTP. The western tract of ED-4 encompasses approximately 8.5 acres in the northeastern quadrant of the intersection of Boulevard Road and Highway 58. The eastern tract encompasses an area of approximately 9.5 acres in the northwestern quadrant of the intersection of Blair Road and Highway 58 (the Oak Ridge Turnpike). Aerial photographs and site maps from throughout the history of the ETTP, going back to its initial development in the 1940s as the Oak Ridge Gaseous Diffusion Plant (ORGDP), indicate that this area has been undeveloped woodland with the exception of three support facilities for workers constructing the ORGDP since federal acquisition in 1943. These three support facilities, which were located in the western tract of ED-4, included a recreation hall, the Town Hall Camp Operations Building, and the Property Warehouse. A railroad spur also formerly occupied a portion of Parcel ED-4. These former facilities only occupied approximately 5 percent of the total area of Parcel ED-4. This report provides supporting information for the transfer of this government-owned property at ETTP to a non-federal entity. This EBS is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). In order to support a Clean Parcel Determination (CPD) in accordance with CERCLA Sect. 120(h)(4)(d), groundwater and sediment samples were collected within, and adjacent to, the Parcel ED-4 study area. The potential for DOE to make a CPD for ED-4 is further supported by a No Further Investigation (NFI) determination made on land that adjoins ED-4 to the east (DOE 1997a) and to the south (DOE 1997b).

SAIC

2008-05-01T23:59:59.000Z

326

Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996  

SciTech Connect (OSTI)

This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

NONE

1998-01-01T23:59:59.000Z

327

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

328

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes  

E-Print Network [OSTI]

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes information on the division of net royalties and proceeds: "With respect by the University associated with such action. After such expenses are reimbursed, royalties and other proceeds from

Logan, David

329

EA-2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

DOE is preparing an EA to assess potential environmental impacts of the proposed land transfer to the Metropolitan Knoxville Airport Authority for the development of a general aviation airport at the East Tennessee Technology Park Heritage Center, in Oak Ridge, Tennessee. Public Comment Opportunities None available at this time. Documents Available for Download No downloads found for this office.

330

Arra: Tas::89 0227::Tas Recovery Act 100g Ftp: An Ultra-High Speed Data Transfer Service Over Next Generation 100 Gigabit Per Second Network  

SciTech Connect (OSTI)

Data-intensive applications, including high energy and nuclear physics, astrophysics, climate modeling, nano-scale materials science, genomics, and financing, are expected to generate exabytes of data over the coming years, which must be transferred, visualized, and analyzed by geographically distributed teams of users. High-performance network capabilities must be available to these users at the application level in a transparent, virtualized manner. Moreover, the application users must have the capability to move large datasets from local and remote locations across network environments to their home institutions. To solve these challenges, the main goal of our project is to design and evaluate high-performance data transfer software to support various data-intensive applications. First, we have designed a middleware software that provides access to Remote Direct Memory Access (RDMA) functionalities. This middleware integrates network access, memory management and multitasking in its core design. We address a number of issues related to its efficient implementation, for instance, explicit buffer management and memory registration, and parallelization of RDMA operations, which are vital to delivering the benefit of RDMA to the applications. Built on top of this middleware, an implementation and experimental evaluation of the RDMA-based FTP software, RFTP, is described and evaluated. This application has been implemented by our team to exploit the full capabilities of advanced RDMA mechanisms for ultra-high speed bulk data transfer applications on Energy Sciences Network (ESnet). Second, we designed our data transfer software to optimize TCP/IP based data transfer performance such that RFTP can be fully compatible with today’s Internet. Our kernel optimization techniques with Linux system calls sendfile and splice, can reduce data copy cost. In this report, we summarize the technical challenges of our project, the primary software design methods, the major project milestones achieved, as well as the testbed evaluation work and demonstrations during our project life time.

YU, DANTONG [Brookhaven National Lab/Stony Brook University; Jin, Shudong [Stony Brook University

2014-03-01T23:59:59.000Z

331

K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN  

SciTech Connect (OSTI)

This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

Swientoniewski M.D.

2008-02-24T23:59:59.000Z

332

Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.  

SciTech Connect (OSTI)

This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Department of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.

Koker, Denise; Micheau, Jill M.

2006-07-01T23:59:59.000Z

333

Environmental Baseline Survey Report for the Title Transfer of the K-792 Switchyard Complex at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) K-792 Switchyard Complex, which includes the former K-792 Switchyard, the K-79 1-B building, the K-796-A building, and the K-792 Northern Expansion Area located in the northwestern portion of the East Tennessee Technology Park (ETTP). The total area of the property is approximately 19.91 acres. DOE is proposing to transfer the title of this land area and buildings to the Heritage Center, LLC (Heritage Center), a subsidiary corporation of the Community Reuse Organization of East Tennessee (CROET). This report provides supporting information for the transfer of this government-owned facility at ETTP to a non-federal entity. The area proposed for title transfer includes the former K-792 Switchyard, the K-792 Northern Expansion Area, Bldg. K-791-B, Bldg. K-796-A, and the underlying property known as the underlying fee. Located within the K-792 Switchyard footprint but not included in the transfer are Bldg. K-131 0-MP and Bldg. K- 131 0-MQ, two buildings owned by a private company that leases space in the northern portion of the Switchyard. The transfer footprint is bounded by Perimeter Road to the north and west, the parking area for Portal 8 to the south, and primarily the former K-792 Powerhouse Complex and Avenue 'U' North to the east; however, the eastern boundary along the Northern Expansion area has no physical features associated with it. Zone 2 remedial action objectives were developed by the DVS to support the future use of ETTP as a mixed-use commercial and industrial park. Therefore, remediation criteria were designed for the protection of the future industrial worker under the assumption the worker normally would not have the potential for exposure to soils at depths below 10 ft below ground surface (bgs). Accordingly, land use controls (LUCs) have been established to restrict disturbance of soils below 10 ft deep and to limit future land use to industriallcornmercial activities. Where the need for LUCs below 10 ft bgs is not warranted, this is so stated and explained. Once all actions associated with the DVS for Zone 1 and Zone 2 are completed and the data support it, there will be a re-evaluation with EPA and TDEC for the restriction on excavation below 10 ft. The DVS process and the preparation of this report included visual and physical inspections of the property and adjacent properties, a detailed records search, sampling and analysis of soils, radiological walkover surveys, and a risk evaluation. Resources evaluated as part of the records search included Federal Government records, title documents, aerial photographs that may reflect prior uses, and interviews with current and former employees 1 involved in the operations on the real property to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes were stored for one year or more, known to have been released, or disposed of. In addition, radiological surveys of Bldgs. K-791-B and K-796-A were conducted to assess the buildings radiological condition. Soil vapor sampling and polychlorinated biphenyl (PCB) swipe sampling also were conducted within the buildings. Based on the U. S. Department of Energy's (DOE's) review of the existing information, including discussions and interviews referenced herein, and evaluation of the data gathered in preparation of the environmental baseline survey (EBS) for the K-792 Switchyard Complex, DOE recommends the following: Due to the uncertainty associated with the nature of the on-site groundwater and the need to evaluate and possibly address groundwater in the future, DOE recommends that the transfer of the K-792 Switchyard Complex be achieved by a covenant deferral per the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) Sect. 120(h)(3)(c). Land use restrictions associated with the covenant deferral are described.

SAIC

2009-12-01T23:59:59.000Z

334

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50˘/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12˘/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

335

Heat Transfer Technology  

E-Print Network [OSTI]

,(C) 122 (5OJ 140 (6OJ 158 (70 DRY TOWER 6< F, (K) (15)18 (10) 36 (20 ~ATER "OUT" F, (C) 27 104 (40) 113 (45) 122 (50 ApPROACH F, (C) (15)18 (10) 36 (20 DRY BULB F, (D 27 (30)86 (30) 86(3086 Wn SFrTlo. WATER "IN" F, (() 104 (40) 113 (45) 122... (50 IIET TOWER 6t F, (K) 18 (10) 0 WATER "OlIT" F, (D S 86 (30) 104 (40) ApPROACH F, (K) ~~ (~l 27 (15)3 (5) ~ET BULB F, (C) 77 (25) 77 (25) 77 (25 VARIATiON OF TEMPERATURES AS A FUNCTION OF THE MODE OF OPERATION. To decrease...

Lefevre, M. R.

1984-01-01T23:59:59.000Z

336

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S.

337

NREL: Technology Transfer - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews April 27, 2015

338

NREL: Technology Transfer - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews

339

Technology Transfer Reporting Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServicesThis form is to

340

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment of Energy PartneringPartnerships and

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

2006 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 2005 ORNL StoryNovember6 2006

342

2007 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 20057 2007 ORNL Story Tips 1-10 of7

343

2008 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 200578 Tue, 12/23/200874 FR8 20088

344

2009 Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-on halloweenReliable7O(α,5 200578August09search09 - March 31,9

345

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect (OSTI)

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

346

Recovery Act  

Broader source: Energy.gov [DOE]

Recovery Act and Energy Department programs were designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

347

Recovery Act Funding Opportunities Webcast  

Broader source: Energy.gov [DOE]

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

348

Partnerships for technology introduction -- Putting the technologies of tomorrow into the marketplace of today. Report to Congress on Sections 127 and 128 of the Energy Policy Act of 1992  

SciTech Connect (OSTI)

This report to Congress was prepared on behalf of the Secretary of the US Department of Energy (DOE) in response to Sections 127 and 128 of the Energy Policy Act of 1992 (EPAct), Pub. L. 102-486. In preparing the report to the Congress, DOE has assessed the national and regional energy savings potential of products already on the market and those that will be available to consumers by the late 1990s. The Department has also examined the present cost-effectiveness of these emerging appliances as mature technologies. To help in its assessment, DOE organized eight workshops at which representatives from manufacturing and building industries, utilities, retailers and wholesalers, public interest groups and Federal and state government agencies could express their views. The information derived from these workshops was key to the formulation of the report`s general and specific recommendations. DOE has concluded that the Federal Government can effectively stimulate the market for emerging technologies by forming partnerships with the appliance industry and other interested parties promoting the use of highly efficient appliances. Based on the interaction with industry at the eight workshops and through direct contact, DOE has concluded that Federal action and technical assistance is not only desired by industry, but crucial to the expansion of these markets. Section 128 of EPAct requires an assessment of the energy savings and environmental benefits of replacing older, less efficient appliances with more efficient products than currently required by Federal law. Since early replacement of appliances is but one possible market-stimulating action, DOE has elected to include its discussion as part of the overall report to the Congress.

NONE

1995-04-01T23:59:59.000Z

349

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

350

Clean Cities Recovery Act: Vehicle & Infrastructure Deployment  

Broader source: Energy.gov (indexed) [DOE]

project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

351

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect (OSTI)

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

352

Technology Deployment Annual Report 2010  

SciTech Connect (OSTI)

This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

Keith Arterburn

2010-12-01T23:59:59.000Z

353

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

354

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

355

EA-1640: Transfer of Land and Facilities within the East Tennessee Technology Park and Surrounding Area, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

DOE’s Oak Ridge Operations Office issued a final EA and a finding of no significant impact for a proposal to convey DOE property located at the East Tennessee Technology Park and the surrounding area to the Community Reuse Organization of East Tennessee, City of Oak Ridge, other agencies, or private entities for mixed use economic development.Public Comment Opportunities.

356

Richard Bland College Transfer Guide  

E-Print Network [OSTI]

and Technology-IDT Interdisciplinary Studies-IDS International Business-INBU International Studies-IS ItalianRichard Bland College Transfer Guide #12;Using the Transfer Guide Thank you for your interest in Old Dominion University!!! The ODU Transfer Guide is designed to assist students transferring to ODU

357

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

358

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

359

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

SciTech Connect (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

360

8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report  

SciTech Connect (OSTI)

Abstract Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (? 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ?20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.

Buongiorno, Jacopo; Hu, Lin-wen

2009-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Radiation Protection Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

362

The Dermatology Acting Internship  

E-Print Network [OSTI]

our experience with an acting internship in dermatology, weevolving role of the acting internship in the medical SchoolThe Dermatology Acting Internship John B Stephens MD, Sharon

Stephens, John B; Raimer, Sharon S; Jr, Richard F Wagner

2011-01-01T23:59:59.000Z

363

Electroless nickel bath recycle. Project accomplishment summary for DOE Technology Transfer Initiative project 93-Y12P-086-C1  

SciTech Connect (OSTI)

The Lockheed Martin Energy Systems plating group has decades of experience in electroless nickel plating. The group conceived of, established the validity of, and patented the ENVIRO-CP process for plating bath rejuvenation, which eliminates the generation of hazardous waste from plating processes. Fidelity Chemical Products Corporation supplies chemicals to and has knowledge of the plating industry. A second partner (CRADA identity protected) conducts production plating. The objective of this Cooperative Research and Development Agreement (CRADA) project was to transfer the ENVIRO-CP process to the plating industry. Energy Systems personnel were to evaluate and modify the general process so that it could be used for a specific plating process, working in concert with the partner. Technical results/accomplishments: the plating solutions and the ENVIRO-CP process were analyzed and modified for direct use in the partner`s plating facility. An engineering flowsheet and pilot plant production-scale equipment were designed. Some pilot-scale equipment was fabricated; the balance will be procured and the system tested when the partner is able to budget for purchase of the remaining equipment.

NONE

1996-03-22T23:59:59.000Z

364

Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461  

SciTech Connect (OSTI)

During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

Pesaran, A.; Keyser, M.

2014-12-01T23:59:59.000Z

365

Freedom of Information Act (FOIA) and Privacy Act Requests |...  

Energy Savers [EERE]

Freedom of Information Act (FOIA) and Privacy Act Requests Freedom of Information Act (FOIA) and Privacy Act Requests FOIA and Privacy Act Requests FOIA Requests FOIA information...

366

Recovery Act: State Assistance for Recovery Act Related Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Center Recovery Act Recovery Act: State Assistance for Recovery Act Related Electricity Policies Recovery Act: State Assistance for Recovery Act Related Electricity...

367

Data analysis, analytical support, and technology transfer support for the Federal Energy Management Program Office of Conservation and Renewable Energy Department of Energy. Final technical report, August 8, 1987--August 7, 1992  

SciTech Connect (OSTI)

Activities included the collecting, reporting, and analysis of Federal energy usage and cost data; development of program guidance and policy analysis of Federal energy usage and cost data; development of program guidance and policy analysis; inter-agency liaison; promotion of energy efficiency initiatives; and extensive technology transfer and outreach activities.

Tremper, C.

1992-12-31T23:59:59.000Z

368

At the end of the secure period, Technology Transfer (for patent works) or the Office of Research and Creative Activities (Export Controls) will be contacted to verify that the work can be released.  

E-Print Network [OSTI]

At the end of the secure period, Technology Transfer (for patent works) or the Office of Research a patent, OR 2. Works with Export Control restrictions. Graduate Studies 105 FPH, Provo, UT, 84602 Tel@byu.edu patent OR export control restrictions #12;

Hart, Gus

369

Synchrophasor Technologies and their Deployment in the Recovery...  

Energy Savers [EERE]

Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

370

Recovery Act-Funded HVAC projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into heating, ventilation, and air conditioning (HVAC) technologies and...

371

Recovery Act-Funded Working Fluid Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

372

Solid Waste Management Services Act (Connecticut)  

Broader source: Energy.gov [DOE]

This Act affirms the commitment of the state government to the development of systems and facilities and technology necessary to initiate large-scale processing of solid wastes and resource...

373

Recovery Act-Funded Water Heating Projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into water heating technologies and applications. Projects funded by the...

374

Faces of the Recovery Act: Sun Catalytix  

ScienceCinema (OSTI)

BOSTON- At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation of solar energy, and ARPA-E funding through the Recovery Act. To learn about more ARPA-E projects through the Recovery Act: http://arpa-e.energy.gov/FundedProjects.aspx

Nocera, Dave

2013-05-29T23:59:59.000Z

375

An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations  

SciTech Connect (OSTI)

Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

2007-07-01T23:59:59.000Z

376

A study of B(s)0 to J/psi phi in the D0 experiment and an example of HEP technology transfer  

SciTech Connect (OSTI)

After years of preparation, data taking with the upgraded D0 detector at the Tevatron proton-antiproton collider has begun. The large amount of data produced in a p{bar p}-collider requires sophisticated triggers to filter out the interesting events. Described in this thesis is the development of trigger software for the newly implemented Silicon Microstrip Tracker. D0 is a multi-purpose detector with a broad physics program. one area being studied at D0 is B mesons. An algorithm for reconstructing the B{sub s}{sup 0} and B{sub d}{sup 0} mesons and for measuring their lifetimes has been developed and is described in this thesis. The results suggest that an improvement of the current lifetime measurements can be achieved within the next two years. The reconstruction of a J/{psi} meson forms the basis for a wide range of b-physics. Data taken with the muon system during the commissioning period of the detector has been analyzed and a signal for the J/{psi} meson has been found. Systematic transfer of HEP technologies into other areas and their commercial exploitation plays an important role in the future of particle physics. An area of particular interest is DNA sequencing as shown by the recent completion of the sequencing of the human genome. The final part of this thesis details the development of a simulation for a high throughput sequencing device which is currently being developed at Imperial College.

Bauer, Daniela Ursula

2002-01-01T23:59:59.000Z

377

The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES  

E-Print Network [OSTI]

, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single, and thermal boundary resistance in a junction of nanotubes are reviewed. Then, the heat transfer from an SWNT

Maruyama, Shigeo

378

NREL: Technology Transfer - Agreements for Commercializing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S. VirginAgreements

379

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews April

380

NETL Technologies Recognized for Technology Development, Transfer |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL ReleasesDepartment of

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Water Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act regulates and registers water withdrawals in the Commonwealth of Massachusetts to enable effective planning and management of water use and conservation. The Act establishes a Water...

382

Technologies Available for Licensing | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies SHARE Available Technologies One of the primary missions of the Technology Transfer Division is to move our intellectual property from the research facility to the...

383

Animal Waste Technology Fund (Maryland)  

Broader source: Energy.gov [DOE]

A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

384

Technology '90  

SciTech Connect (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

385

Statement of Patricia Hoffman Acting Assistant Secretary for...  

Broader source: Energy.gov (indexed) [DOE]

Hoffman Acting Assistant Secretary for Electricity Delivery and Energy Reliability before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S....

386

Faces of the Recovery Act: Sun Catalytix | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sun Catalytix Faces of the Recovery Act: Sun Catalytix Addthis Description At the Massachusetts Institute of Technology, Dan Nocera talks about Sun Catalytix, the next generation...

387

The Recovery Act: Cutting Costs and Upping Capacity | Department...  

Broader source: Energy.gov (indexed) [DOE]

technologies are helping make solar power much more cost-competitive, with significant cost reductions expected between now and 2015. The Recovery Act included more than 5...

388

Technology Transfer Success Stories, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

complex chemical pre-treatment and handling of liquid samples needed for current heavy metal assay methods. Environmentally-friendly plastics are a development from the metathesis...

389

Technology Transfer Success Stories, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Security Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set...

390

NREL: Technology Transfer - Licensing Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the

391

NREL: Technology Transfer - Nondisclosure Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews April 27,

392

NREL: Technology Transfer - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews April 27,Success

393

NREL: Technology Transfer Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of

394

Mike Paulus Director - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3, 1999ofMike Henderson Instruments HighMikeMike

395

Working with SRNL - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL main campus Working with SRNL05/07/2014

396

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSL George Wang's Invitedtechnology

397

Ombuds Services for Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOil inventories inOmbuds OfficeSelfTech

398

Technology Transfer Success Stories, Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

converts the power of motion into electrical generation and battery charging. It uses a micro-generator with power management circuitry that kinetically charges mobile batteries...

399

Plasma technology directory  

SciTech Connect (OSTI)

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

400

Privacy Act of 1974; Publication of Compilation of Privacy Act...  

Office of Environmental Management (EM)

Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records Privacy Act of...

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MICHIGAN TECHNOLOGICAL UNIVERSITY SINGLE AUDIT ACT COMPLIANCE  

E-Print Network [OSTI]

, 2011 CFDA Federal Program Name Pass-through Federal Number Grant/Contract Number Entity Expenditures U U.S. Department of Agriculture 10.unk No CFDA Number 08-JV-11242306-064 -n/a- 113,606 FS #08-CR/a- 2,031 Total U.S. Department of Agriculture 391,131 U.S. Department of Commerce 11.unk No CFDA Number

402

Recovery Act Milestones  

ScienceCinema (OSTI)

Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

403

Coastal Management Act (Georgia)  

Broader source: Energy.gov [DOE]

The Coastal Management Act provides enabling authority for the State to prepare and administer a coastal management program. The Act does not establish new regulations or laws; it is designed to...

404

Intergovernmental Personnel Act Assignments  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual implements provisions of the Intergovernmental Personnel Act (IPA) within the Department of Energy (DOE) and establishes requirements, responsibilities, and authority for effecting assignments under the Act. Does not cancel other directives.

2000-08-24T23:59:59.000Z

405

Hanford technology integration: A success story  

SciTech Connect (OSTI)

This paper describes recent activities of the Richland Northwest Laboratory in the area of technology transfer. A major thrust within major DOE laboratories has been the implementation of technology transfer activities which transfer scientific knowledge, transfer technologies developed to deal with the production or conservation of energy, and transfer spinoff technologies into the private sector. Several activities which are in process or have been implemented are described in this paper.

Stenehjem, E.J.; Pond, D.J.; Widrig, J.E.; Deonigi, D.E.

1994-10-01T23:59:59.000Z

406

ACT-ARA  

Energy Science and Technology Software Center (OSTI)

003092IBMPC00 ACT-ARA: Code System for the Calculation of Changes in Radiological Source Terms with Time   

407

Preparing for Transfer Biological Engineering  

E-Print Network [OSTI]

Environmental Engineering Game Design Industrial Systems & Information Technology Information Science MaterialsPreparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering

Walter, M.Todd

408

WIPP - Privacy Act of 1974  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews ThisPrivacy Act Quick

409

Wetlands Protection Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes regulations regarding the removal, dredging, filling, and altering of land bordering waters, allowing such activity only with permits and in certain situations. Specific...

410

Energy Monitoring Act (Canada)  

Broader source: Energy.gov [DOE]

This act requires that every energy enterprise file with the Minister a return setting out statistics and information relating to its ownership and control; financial information; information,...

411

Recovery Act Project Stories  

Broader source: Energy.gov [DOE]

Funded by the American Recovery and Reinvestment Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to federal agencies.

412

Wetland Conservation Act (Minnesota)  

Broader source: Energy.gov [DOE]

This chapter of the Minnesota Administrative Rules implements the Wetland Conservation Act of 1991, setting standards for water preservation, withdrawal, and replacement.

413

Stormwater Management Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

The policy and purpose of this act is to encourage planning and management of storm water runoff in each watershed consistent with sound water and land use practices.

414

Shore Protection Act (Georgia)  

Broader source: Energy.gov [DOE]

The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

415

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28  

E-Print Network [OSTI]

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. (b) ESTABLISHMENT OF TECHNOLOGY INNOVATION PROGRAM.-- The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq

Magee, Joseph W.

416

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

417

Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Site environmental protection --Site waste management -Site sustainability --Site pollution prevention Operations -Business diversity -Technology transfer -Procurement -Human...

418

Sponsored Project Account Cost Transfer Explanation  

E-Print Network [OSTI]

Sponsored Project Account Cost Transfer Explanation Check-Off List December 2011 The explanations checked below best describe the reasons for why the cost transfers are being made. Costs as to how to allocate the cost, temporarily assigned the cost to an existing account that acted

He, Chuan

419

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

420

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mississippi Public Utility Act  

Broader source: Energy.gov [DOE]

The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

422

Forest Conservation Act (Maryland)  

Broader source: Energy.gov [DOE]

The main purpose of Maryland's Forest Conservation Act is to minimize the loss of Maryland's forest resources during land development by making the identification and protection of forests and...

423

Environmental Protection Act (Illinois)  

Broader source: Energy.gov [DOE]

This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

424

High Voltage Safety Act  

Broader source: Energy.gov [DOE]

The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

425

Healthy Air Act (Maryland)  

Broader source: Energy.gov [DOE]

The Maryland Healthy Air Act was developed with the purpose of bringing Maryland into attainment with the National Ambient Air Quality Standards (NAAQS) for ozone and fine particulate matter by the...

426

Radiation Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

This Act establishes The Department of Environmental Quality as the designated official agency of the State of Oklahoma for all regulatory activities for the use of atomic energy and sources of...

427

Public Utilities Act (Illinois)  

Broader source: Energy.gov [DOE]

This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

428

Wind Energy Act (Maine)  

Broader source: Energy.gov [DOE]

The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

429

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

430

Energy and Water Development and Related Agencies Appropriations Act of 2010  

Broader source: Energy.gov [DOE]

Section 312 of the Energy and Water Development and Related Agencies Appropriations Act of 2010 amends Section 136 of the Energy Independence and Security Act to include ultra-efficient vehicles within the definition of advanced technology vehicles.

431

Recovery Act-Funded Geothermal Heat Pump projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

432

Two Recovery Act Funding Case Studies Now Available  

Broader source: Energy.gov [DOE]

Utilities across America are using Recovery Act funds and smart grid technologies to deliver more reliable and affordable power, recover from major storms, and improve operations. Two case studies are now available.

433

asymptomatic patients act: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Key parts of the Patient Protection and Affordable Care Act, also known as the health care reform law, go into effect January 1, 2014. When this Computer Technologies and...

434

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect (OSTI)

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

435

Recovery Act Funds at Work  

Broader source: Energy.gov [DOE]

Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Here are case studies from a variety of Recovery Act programs.

436

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

437

DOE Facilities Technology Partnering Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

2001-01-12T23:59:59.000Z

438

Massachusetts Clean Air Act (Massachusetts)  

Broader source: Energy.gov [DOE]

The Act contains regulations to prevent the pollution and contamination of the atmosphere. The Act establishes a contiguous metropolitan pollution control district, comprised of towns in the...

439

Coastal Marshlands Protection Act (Georgia  

Broader source: Energy.gov [DOE]

The Coastal Marshlands Protection Act provides the Coastal Resources Division with the authority to protect tidal wetlands. The Coastal Marshlands Protection Act limits certain activities and...

440

Technology Innovation Honoring Students, Faculty, and Staff  

E-Print Network [OSTI]

2012 Technology Innovation Awards Honoring Students, Faculty, and Staff for their Dedication Portland, Oregon Sponsored by: #12;2012 Technology Innovation Awards WELCOME & AWARDS REMARKS Andrew R.O. Watson, PhD, CLP Interim Director, Technology Transfer Technology Transfer and Business Development

Chapman, Michael S.

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CRSP Act of 1956  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N Goods PO6,Act of 1956 An act to

442

American Disabilities Act  

Broader source: Energy.gov [DOE]

The Americans with Disabilities Act prohibits private employers, state and local governments, employment agencies and labor unions from discriminating against qualified individuals with disabilities in job application procedures, hiring, firing, advancement, compensation, job training, and other terms, conditions, and privileges of employment.

443

E-Print Network 3.0 - atsofl2 act redundantly Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 51 Exploiting Redundancy to Conserve Energy in Storage Systems Summary: , which would act as the original disks. The goal of...

444

E-Print Network 3.0 - aintegumenta-like6 act redundantly Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences 53 Exploiting Redundancy to Conserve Energy in Storage Systems Summary: , which would act as the original disks. The goal of...

445

Small Business Administration Recovery Act Implementation | Department...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

446

Networking and Information Technology Research and Development...  

Office of Environmental Management (EM)

Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

447

Cooperative pulses Technologieangebot /Technology offer  

E-Print Network [OSTI]

on issues from the national and international research and technology transfer. To market the patentsCooperative pulses Technologieangebot /Technology offer Referenz /Reference 2010-04E04 Branche at the TUM TUM ForTe Forschungsförderung & Technologie- transfer Patent- und Lizenzbüro Arcisstra�e 2180333

448

MELCOR accident analysis for ARIES-ACT  

SciTech Connect (OSTI)

We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

Paul W. Humrickhouse; Brad J. Merrill

2012-08-01T23:59:59.000Z

449

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z

450

Toxic Substances Control Act  

SciTech Connect (OSTI)

This Reference Book contains a current copy of the Toxic Substances Control Act and those regulations that implement the statute and appear to be most relevant to DOE activities. The document is provided to DOE and contractor staff for informational purposes only and should not be interpreted as legal guidance. Questions concerning this Reference Book may be directed to Mark Petts, EH-231 (202/586-2609).

Not Available

1992-05-15T23:59:59.000Z

451

The Kansas Revised Limited Liability Company Act  

E-Print Network [OSTI]

changes; dissolution and winding up; and foreign LLCs. VC LU with with uction, c tate Act :ted the - - the le :stry, c ility ited ltes --A I grant k k Amy c " ,,..A 2 * I wish to thank the University of Kansas School of Law for 2 re... validated, 1999 Supp. 17-7678(a), there is no longer any neea for a papel the wordir ,spending provisions ot the LCA demor fully the latter embraces the KLLCA de gcsimile communication" as nic equipn ~d or transfer a copy of an 3ocumt.n~ via teleoho K...

Hecker, Edwin W. Jr.

2000-01-01T23:59:59.000Z

452

Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector  

SciTech Connect (OSTI)

Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m{sup 2} without non-condensable gas condition in steam. (authors)

Yutaka Abe; Yujiro Kawamoto [University of Tsukuba, Tsukuba, Ibaraki (Japan); Chikako Iwaki [Toshiba Corporation (Japan); Tadashi Narabayashi [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

453

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

454

Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Lehigh University: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Terrafore: Heat Transfer and Latent Heat Storage in Inorganic Molten...

455

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect (OSTI)

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

456

On Acting from Duty  

E-Print Network [OSTI]

, for an action to have moral worth, the action must be motivated solely by duty. In the first section of the Groundwork, Kant provides examples of moral agents of varying character to illustrate the distinction between acting merely in accordance with duty... an action of this kind, however right and however amiable it may be, still has no genuinely moral worth. It stands on the same footing as other inclinations—for example, the inclination for honour, which if fortunate enough to hit on something beneficial...

Fossee, Jordan Michael

2013-09-24T23:59:59.000Z

457

ARM - Recovery Act Instruments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstruments Related Links RelatedActRecovery

458

Recovery Act Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 Revision 3 + DraftJLab on Act Summary -

459

Recovery Act Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 Revision 3 + DraftJLab on Act Summary -has

460

Recovery Act Open House  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 Revision 3 + DraftJLab on Act Summary

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Water Resources Act (Ontario, Canada)  

Broader source: Energy.gov [DOE]

The Ontario Water Resources Act is designed to conserve, protect and manage Ontario's water resources for efficient and sustainable use. The act focuses on both groundwater and surface water...

462

Pollution Control Act (South Carolina)  

Broader source: Energy.gov [DOE]

This Act declares the maintenance of reasonable standards of purity of air and water to be the public policy of the state. The Act authorizes the Department of Health and Environmental Control to...

463

Solid Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

464

Montana Radon Control Act (Montana)  

Broader source: Energy.gov [DOE]

The Radon Control Act regulates the emission of radon, the gaseous decay products of uranium or thorium. The Act addresses operator certification of radon-producing facilities, testing and...

465

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

466

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

Comments Barriers Approach Performance Measures and Accomplishments Technology Transfer Collaborations PublicationsPatents Plans for Next Fiscal Year ...

467

Wireless Power Transfer  

SciTech Connect (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-07-22T23:59:59.000Z

468

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

469

Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical Approach  

E-Print Network [OSTI]

International technology transfer..........................................................51 6 Conclusion ......................................................................................................62 Research paper 2: What Drives the International Transfer of Climate Change Mitigation Technologies1 Invention and International Diffusion of Climate Change Mitigation Technologies: An Empirical

Paris-Sud XI, Université de

470

Proton-Coupled Electron Transfer  

SciTech Connect (OSTI)

Proton-Coupled Electron Transfer (PCET) describes reactions in which there is a change in both electron and proton content between reactants and products. It originates from the influence of changes in electron content on acid?base properties and provides a molecular-level basis for energy transduction between proton transfer and electron transfer. Coupled electron?proton transfer or EPT is defined as an elementary step in which electrons and protons transfer from different orbitals on the donor to different orbitals on the acceptor. There is (usually) a clear distinction between EPT and H-atom transfer (HAT) or hydride transfer, in which the transferring electrons and proton come from the same bond. Hybrid mechanisms exist in which the elementary steps are different for the reaction partners. EPT pathways such as PhO•/PhOH exchange have much in common with HAT pathways in that electronic coupling is significant, comparable to the reorganization energy with H{sub DA} ~ ?. Multiple-Site Electron?Proton Transfer (MS-EPT) is an elementary step in which an electron?proton donor transfers electrons and protons to different acceptors, or an electron?proton acceptor accepts electrons and protons from different donors. It exploits the long-range nature of electron transfer while providing for the short-range nature of proton transfer. A variety of EPT pathways exist, creating a taxonomy based on what is transferred, e.g., 1e{sup -}/2H{sup +} MS-EPT. PCET achieves “redox potential leveling” between sequential couples and the buildup of multiple redox equivalents, which is of importance in multielectron catalysis. There are many examples of PCET and pH-dependent redox behavior in metal complexes, in organic and biological molecules, in excited states, and on surfaces. Changes in pH can be used to induce electron transfer through films and over long distances in molecules. Changes in pH, induced by local electron transfer, create pH gradients and a driving force for long-range proton transfer in Photosysem II and through other biological membranes. In EPT, simultaneous transfer of electrons and protons occurs on time scales short compared to the periods of coupled vibrations and solvent modes. A theory for EPT has been developed which rationalizes rate constants and activation barriers, includes temperature- and driving force (?G)-dependences implicitly, and explains kinetic isotope effects. The distance-dependence of EPT is dominated by the short-range nature of proton transfer, with electron transfer being far less demanding.Changes in external pH do not affect an EPT elementary step. Solvent molecules or buffer components can act as proton donor acceptors, but individual H2O molecules are neither good bases (pK{sub a}(H{sub 3}O{sup +}) = ?1.74) nor good acids (pK{sub a}(H{sub 2}O) = 15.7). There are many examples of mechanisms in chemistry, in biology, on surfaces, and in the gas phase which utilize EPT. PCET and EPT play critical roles in the oxygen evolving complex (OEC) of Photosystem II and other biological reactions by decreasing driving force and avoiding high-energy intermediates.

Weinberg, Dave; Gagliardi, Christopher J.; Hull, Jonathan F; Murphy, Christine Fecenko; Kent, Caleb A.; Westlake, Brittany C.; Paul, Amit; Ess, Daniel H; McCafferty, Dewey Granville; Meyer, Thomas J

2012-01-01T23:59:59.000Z

471

Data Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is aID Service First DOIData Transfer

472

Transferring Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfor a CleanTransfer Service,

473

Transferring Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTraining andfor a CleanTransfer

474

Savannah River Site: New Bubbler Technology  

ScienceCinema (OSTI)

A close look at new SRS Bubbler technology that processes liquid waste. A 7 million dollar project funded by the Recovery Act. Production nearly doubles with this new technology

None

2012-06-14T23:59:59.000Z

475

Triple acting radial seal  

DOE Patents [OSTI]

A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

Ebert, Todd A (West Palm Beach, FL); Carella, John A (Jupiter, FL)

2012-03-13T23:59:59.000Z

476

Michael Fischetti, Acting Director  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |CharlesDepartment ofChemistry |InstituteIf

477

Uranium Mill Tailings Radiation Control Act of 1978  

SciTech Connect (OSTI)

The long-term environmental effects of the Uranium Mill Tailings Radiation Control Act of 1978 address the public health hazards of radioactive wastes and recognize the significance of this issue to public acceptance of nuclear energy. Title I of the Act deals with stabilizing and controlling mill tailings at inactive sites and classifies the sites by priority. It represents a major Federal commitment. Title II changes and strengthens Nuclear Regulatory Commission authority, but it will have little overall impact. It is not possible to assess the Act's effect because there is no way to know if current technology will be adequate for the length of time required. 76 references. (DCK)

Magee, J.

1980-01-01T23:59:59.000Z

478

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

479

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

480

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydraulic Wind Power Transfer Technology Afshin Izadian  

E-Print Network [OSTI]

encouraged companies such as Mitsubishi and Chapdrive to invest in onshore and offshore hydraulic driven wind wind power, and by doing so, it reduces the capital equipment of the entire power plant

Zhou, Yaoqi

482

XTT: Extreme Technology Transfer--Introducing  

E-Print Network [OSTI]

and other agile methodologies consist of pre- scribed practices. Some of these agile practices are based these best practices. In other cases, agile practices alter or depart from best practices experiences and techniques for teaching agile practices and transi- tioning teams to their use. Part III

Wallingford, Eugene

483

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

Not Available

1980-05-01T23:59:59.000Z

484

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions for OptimizingGraphic of

485

NREL: Technology Transfer - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of the U.S.CooperativeEnergy

486

Technology Transfer | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluorite EnergyAPitch perfect

487

International Commercial Arbitration and Technology Transfer Disputes.  

E-Print Network [OSTI]

??The thesis explores the concept of International Arbitration, an alternative to litigation. It argues the benefits and the inherent limitations parties are likely to face… (more)

Boban, Jaan

2012-01-01T23:59:59.000Z

488

Working with SRNL - Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWaste

489

Working with SRNL - Technology Transfer - Ombudsman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWasteTech Briefs

490

Working with SRNL - Technology Transfer - Tech Briefs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWasteTech

491

Technology Transfer Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlow Room Air Mixing | Department

492

Technology Transfer Reporting Form | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »

493

Awards recognize outstanding innovation in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDearTechnicalAwards recognize outstanding innovation Awards

494

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible for7

495

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible for78

496

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible for7809

497

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible for78090

498

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible

499

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible2 October

500

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNiche InnovativePossible2