Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Property:Technology Resource | Open Energy Information  

Open Energy Info (EERE)

Resource Resource Jump to: navigation, search Property Name Technology Resource Property Type Text Pages using the property "Technology Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/Anaconda bulge tube drives turbine + Wave MHK Technologies/AquaBuoy + Wave MHK Technologies/Aquanator + Current/Tidal MHK Technologies/Aquantis + Current MHK Technologies/Archimedes Wave Swing + Wave MHK Technologies/Atlantis AN 150 + Current/Tidal MHK Technologies/Atlantis AR 1000 + Current/Tidal MHK Technologies/Atlantis AS 400 + Current/Tidal MHK Technologies/Atlantisstrom + Current MHK Technologies/Benkatina Turbine + Current MHK Technologies/Blue Motion Energy marine turbine + Current MHK Technologies/Bluetec + Current MHK Technologies/Brandl Generator + Wave

2

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

3

Hydropower, Wave and Tidal Technologies Available for ...  

Site Map; Printable Version; Share this resource. Send a link to Hydropower, Wave and Tidal Technologies Available for Licensing - Energy Innovation Portalto someone ...

4

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

5

MHK Technologies/Hybrid wave Wind Wave pumps and turbins | Open Energy  

Open Energy Info (EERE)

Wind Wave pumps and turbins Wind Wave pumps and turbins < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid wave Wind Wave pumps and turbins.jpg Technology Profile Primary Organization Ocean Wave Wind Energy Ltd OWWE Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 2Wave1Wind The hybrid wave power rig uses two wave converting technologies in addition to wind mills The main system is a pneumatic float in the category of overtopping as Wave Dragon In addition the pneumatic float can house point absorbers The hybrid wave power rig is based on the patented wave energy converter from 2005

6

MHK Technologies/bioWave | Open Energy Information  

Open Energy Info (EERE)

bioWave bioWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage BioWave.jpg Technology Profile Primary Organization BioPower Systems Pty Ltd Project(s) where this technology is utilized *MHK Projects/bioWAVE Pilot Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description TThe bioWAVE is based on the swaying motion of sea plants in the presence of ocean waves. The hydrodynamic interaction of the buoyant blades with the oscillating flow field is designed for maximum energy absorption. Mooring Configuration Gravity base Optimum Marine/Riverline Conditions 30 to 50M depth 20kW m wave climate or greater

7

MHK Technologies/CETO Wave Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Technology Wave Energy Technology < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage CETO Wave Energy Technology.png Technology Profile Primary Organization Carnegie Wave Energy Limited Project(s) where this technology is utilized *MHK Projects/CETO La Reunion *MHK Projects/CETO3 Garden Island *MHK Projects/Perth Wave Energy Project PWEP Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The CETO system distinguishes itself from other wave energy devices by operating out of sight and being anchored to the ocean floor. Each CETO unit consists of a pump unit moored to the ocean floor and connected to a submerged Buoyant Actuator via a tether. The Buoyant Actuator moves in an orbital motion, in harmony with the wave, capturing the power of the passing waves. The Buoyant Actuator is connected to a tether (marine rope) that creates a vertical upward force which actuates the seabed mounted piston pump. This force pressurises fluid in the CETO system. The high pressure fluid is then sent ashore via a subsea pipeline. Onshore the fluid passes through a standard hydroelectric turbine to generate zero-emission electricity and/or through a reverse osmosis plant to directly create zero-emission desalinated water (replacing greenhouse gas emitting electrically driven pumps usually required for such plants). The fluid is then re-circulated at low-pressure to the CETO units offshore creating a closed-loop system. The generation capacity of CETO projects is scalable. To increase the project capacity additional units can be added offshore and connected back to a larger power house onshore.

8

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

9

Technology Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Resources Technology Resources Technology Resources October 16, 2013 - 5:17pm Addthis Image of the Whole Building Design Guide logo. The Whole Building Design Guide is a program of the National Institute of Building Sciences The following resource pages are part of the Whole Building Design Guide. These pages are updated on an ongoing basis. To provide detailed information on renewable energy technology options, FEMP partnered with the Whole Building Design Guide to provide technology resource pages. Each of these technology-specific pages provides detailed information on system design and types, best uses, resource assessments, economics, operations and maintenance, and other key considerations. The pages describe the technologies in a context specific to Federal sector

10

MHK Technologies/The Crestwing Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Crestwing Wave Energy Converter Crestwing Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Crestwing Wave Energy Converter.jpg Technology Profile Primary Organization Waveenergyfyn Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The connected pontoons swing around the hinge when the top of the waves passes under the floats The pontoons relative motion is converted into usable energy through a linear PTO system The pontoons are pushed upwards from the below passing wave and again dragged down by the same passing wave Complex hydrodynamic conditions occur under the pontoons when the wave formation pushes the unit up and down simultaneously The energy from waves can be divided into fifty percent potential energy and fifty percent kinetic energy Crestwing absorbs both the potential energy as the kinetic energy which is the back ground for the high efficiency

11

MHK Technologies/Wave Dragon | Open Energy Information  

Open Energy Info (EERE)

Dragon Dragon < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Dragon.jpg Technology Profile Primary Organization Wave Dragon ApS Project(s) where this technology is utilized *MHK Projects/Wave Dragon Nissum Bredning Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The Wave Dragon is a floating wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp. Behind the ramp there is a large reservoir where the water that runs up the ramp is collected and temporarily stored. The water leaves the reservoir through hydro turbines that utilize the head between the level of the reservoir and the sea level.

12

MHK Technologies/WaveSurfer | Open Energy Information  

Open Energy Info (EERE)

WaveSurfer WaveSurfer < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description WaveSurfer s main power conversion and generation systems are either semi submerged protected by the floating pontoons or completely submerged at the depth of around 8 m 27 ft Mooring Configuration 3 point slack Technology Dimensions Device Testing Date Submitted 26:36.3 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/WaveSurfer&oldid=681708

13

MHK Technologies/WaveStar | Open Energy Information  

Open Energy Info (EERE)

WaveStar WaveStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveStar.jpg Technology Profile Primary Organization Wave Star Energy Project(s) where this technology is utilized *MHK Projects/Wave Star Energy 1 10 Scale Model Test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Star machine does not form a barrier against the waves - with a view to harnessing all their energy - but instead cuts in at right angles to the direction of the wave. In this way, the waves run through the length of the machine and the energy is utilized in a continuous process, which produces a smooth output. On each side of the oblong Wave Star machine, there are a number of hemisphere-shaped floats, which are half submerged in the water. When a wave rolls in, the floats are pressed up - one after the other - until the wave subsides. Each float is positioned at the end of an arm and pumps energy by the vertical movement of the waves up and down. Every time a float is raised or lowered, a piston presses oil into the machine's common transmission system. The pressure drives a hydraulic motor, which drives a generator, which produces electricity. As the machine is several wave lengths long, the floats will work continuously to harness the energy and produce a smooth output.

14

MHK Technologies/C Wave | Open Energy Information  

Open Energy Info (EERE)

Wave Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The C Wave device uses two neutrally buoyant walls approximately half a wave length apart so that while one is moving forward the other is moving back The device works at a broad bandwidth around this half wavelength spacing However to improve annualized energy yield still further a third wall at an unequal spacing can be added in order to extract energy from different wavelengths Technology Dimensions

15

MHK Technologies/Wave Rotor | Open Energy Information  

Open Energy Info (EERE)

Rotor Rotor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rotor.jpg Technology Profile Primary Organization Ecofys Subsidiary of Econcern Project(s) where this technology is utilized *MHK Projects/C Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wave Rotor uses a combined Darrieus-Wells rotor, which is contained on the same vertical axis of rotation. These are respectively omni- and bi-directional rotors that can operate in currents of changing directions. The Wave Rotor is mounted on a platform to allow for the capture of wave energy from circulating water particles created by local currents. Since it uses two types of rotor on a single axis of rotation it is able to convert not only tidal currents, but also waves into electricity.

16

MHK Technologies/Tunneled Wave Energy Converter TWEC | Open Energy  

Open Energy Info (EERE)

Tunneled Wave Energy Converter TWEC Tunneled Wave Energy Converter TWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tunneled Wave Energy Converter TWEC.jpg Technology Profile Primary Organization SeWave Ltd Project(s) where this technology is utilized *MHK Projects/TWEC Project Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tunneled Wave Energy Converter TWEC utilizes the OWC principle through its use of a proposed bored out tunnel within a cliff side of the Faroe Islands Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

17

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

18

MHK Technologies/Magnetohydrodynamic MHD Wave Energy Converter MWEC | Open  

Open Energy Info (EERE)

Magnetohydrodynamic MHD Wave Energy Converter MWEC Magnetohydrodynamic MHD Wave Energy Converter MWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Magnetohydrodynamic MHD Wave Energy Converter MWEC.jpg Technology Profile Primary Organization Scientific Applications Research Associates Inc SARA Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Magnetohydrodynamic MHD Wave Energy Converter couples the up down motion of heave based systems A shaft transfers wave motion to the MHD generator which is deep underwater The shaft forces the conducting fluid through a set of powerful permanent magnets creating a low voltage high current electrical energy An electrical inverter converts the electrical energy to commercial quality 60 Hz AC power

19

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

20

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MHK Technologies/Wave Rider | Open Energy Information  

Open Energy Info (EERE)

Rider Rider < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Rider.jpg Technology Profile Primary Organization Seavolt Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The company s Wave Rider system uses buoys and hydraulic pumps to convert the movement of ocean waves into electricity Electricity is generated via small turbines powered by hydraulic circuits which captures the energy of the wave and converts it into high pressure hydraulic fluid flow spinning the turbines to generate electricity Technology Dimensions Device Testing Date Submitted 19:42.1 << Return to the MHK database homepage

22

MHK Technologies/Green Cat Wave Turbine | Open Energy Information  

Open Energy Info (EERE)

Wave Turbine Wave Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Cat Wave Turbine.jpg Technology Profile Primary Organization Green Cat Renewables Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Green Cat Wave Turbine employs an extremely novel yet simple mechanical coupling to drive a multi pole Direct Drive generator Recent advances in permanent magnet materials and power electronic converters have opened up this extremely straightforward conversion route Unlike a number of devices currently being investigated this configuration enables maximum energy capture from both vertical and horizontal sea motions swell and surge respectively

23

Federal Energy Management Program: Technology Deployment Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Resources to someone by E-mail Share Federal Energy Management Program: Technology Deployment Resources on Facebook Tweet about Federal Energy Management...

24

Solar Ventilation Preheating Resources and Technologies | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ventilation Preheating Resources and Technologies Solar Ventilation Preheating Resources and Technologies October 7, 2013 - 11:50am Addthis Photo of a dark brown perforated metal...

25

MHK Technologies/WavePlane | Open Energy Information  

Open Energy Info (EERE)

WavePlane WavePlane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WavePlane.jpg Technology Profile Primary Organization WavePlane A S Project(s) where this technology is utilized *MHK Projects/WavePlane Prototype 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The WavePlane is a V-shaped design, which is anchored with the head up against the incoming waves. Below the waterline the device is fitted with an artificial beach, which is designed to improve the capture of wave energy. The WavePlane is symmetrical in its construction. Each side captures the water from the waves of various heights. The device splits the oncoming waves with a series of intakes, known as lamellas, which guide the captured water into a 'flywheel tube.' The fast moving vortex that is formed then forces the water across two turbines, which are located at the ends of the two 'V-shaped legs'. Finally the water is discharged back into the ocean.

26

MHK Technologies/Seatricity wave energy converter | Open Energy Information  

Open Energy Info (EERE)

Seatricity wave energy converter Seatricity wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seatricity wave energy converter.jpg Technology Profile Primary Organization Seatricity Project(s) where this technology is utilized *MHK Projects/Seatricity Antigua *MHK Projects/Seatricity Orkney Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description In the simplest terms, a float travels up and down with the waves and operates a pump to pressurise sea water which is piped ashore. Many individual pumps are connected together to produce substantial amounts of pressurized water. Once ashore the pressurized sea water is used to drive a standard hydroelectric turbine to produce electricity.

27

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

28

MHK Technologies/Wave Water Pump WWP | Open Energy Information  

Open Energy Info (EERE)

Pump WWP Pump WWP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Water Pump WWP.gif Technology Profile Primary Organization Renewable Energy Wave Pumps Technology Resource Click here Wave Technology Description The Water Wave Pump WWP is a point absorber that uses a submerged water pump to lift a small quantity of water to a higher head collect it in a piping network and feed it to a hydro turbine to produce power Mooring Configuration Gravity base installed at the sea bed Optimum Marine/Riverline Conditions The REWP can pump water to a hgih head fro waves ranging between 1 2 meters to waves in excess of 4 meters high It self adjusts to varyilng sea levels and wave hights It resists storms safe to navigation as red floats are clearly seen during the day and red flashing lights during the night It does not disturb marine life or shore line scenic view

29

MHK Technologies/Wave Roller | Open Energy Information  

Open Energy Info (EERE)

Roller Roller < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Roller.jpg Technology Profile Primary Organization AW Energy Project(s) where this technology is utilized *MHK Projects/Peniche Portugal *MHK Projects/AW Energy EMEC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A WaveRoller device is a plate anchored on the sea bottom by its lower part. The back and forth movement of surge moves the plate, and the kinetic energy produced is collected by a piston pump. This energy can be converted to electricity by a closed hydraulic system in combination with a hydraulic motor/generator system. Upgrade to No3 is more powerful hyraulic componets.

30

MHK Technologies/Wave Energy Conversion Activator WECA | Open Energy  

Open Energy Info (EERE)

Activator WECA Activator WECA < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Conversion Activator WECA.jpg Technology Profile Primary Organization Daedalus Informatics Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The full scale WECA design is ideally fabricated with steel so as to be suitable for mounting on the run up wall of breakwaters or other rigid or floating structures The oscillating wave surge converter absorbs most of the energy of the impacting waves and turn it into compressed air which is subsequently converted into electric power or other forms of energy The device utilizes the Critical Momentum Wedge principle where the water rushing into the device resembles a virtual Wedge of kinetic energy

31

MHK Technologies/hyWave | Open Energy Information  

Open Energy Info (EERE)

hyWave hyWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HyWave.png Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Project(s) where this technology is utilized *MHK Projects/Mutriku *MHK Projects/Wavegen Technology Resource Click here Wave Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The hyWave device rests directly on the seabed and is designed to operate in the near-shore environment in a nominal mean water depth of 15m. Optimum performance will be achieved when driven by a long ocean swell. The pneumatic power of the oscillating water column (OWC) is converted to electricity by a Wells generator and specially designed induction generators.

32

MHK Technologies/Under Bottom Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Under Bottom Wave Generator Under Bottom Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Under Bottom Wave Generator.jpg Technology Profile Primary Organization Glen Edward Cook Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Water will flow up into the pipe from the down stroke and out of the pipe back into the ocean on the up stroke Waves rolling by will push water into the pipe This will mock the ocean swell A propellar is mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator

33

Unconventional Resources Technology Advisory Committee | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Resources Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology

34

Assessment of Distributed Resource Technologies  

Science Conference Proceedings (OSTI)

This report assesses the current status and prospects for future improvements of distributed resource (DR) technologies: microturbines, PEM fuel cells, solid oxide fuel cells, molten carbonate fuel cells, phosphoric acid fuel cells, reciprocating engines, combustion turbines, stirling engines, and energy storage devices. It also assesses the communications, interconnection, and control systems used by these devices.

1999-12-14T23:59:59.000Z

35

MHK Technologies/Neptune Triton Wave | Open Energy Information  

Open Energy Info (EERE)

Triton Wave Triton Wave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Neptune Triton Wave.jpg Technology Profile Primary Organization Neptune Renewable Energy Ltd Project(s) where this technology is utilized *MHK Projects/Neptune Renewable Energy 1 10 Scale Prototype Pilot Test *MHK Projects/Humber St Andrews Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Triton operates in the near-shore and consists of an axi-asymmetrical buoy attached to an A-frame piled into the sea bed. The axi-asymmetrical buoy is designed to generate a counter-phase upstream wave and a much reduced downstream wave, which maximizes capture from the wave and improves overall efficiency. In order to tune the buoy to the incident wave regime, the mass can be controlled by pumping sea water into and out of the hollow cavity inside the buoy. Power take-off is achieved via a piston and hydraulic arrangement.

36

MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Converter Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCEANTEC Wave Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description OCEANTEC Marine Energy Company Ltd owned by Iberdrola and TECNALIA is developing a sensor for wave energy technology type Spanish attenuator Floating body oscillates due to wave excitation in its main DOF pitch Mooring system allows the body to weathervane so that it is faced to the predominant wave propagation direction Main advantage capture system completely encapsulated free of contact with sea water A flywheel continuously spins under the action of an electric motor Z The pitching motion of the WEC caused by wave action is transformed into an alternating precession in the longitudinal hull axis X A coupling device transforms this precession into an unidirectional rotation of higher frequency that is used to feed a conventional electric generator

37

MHK Technologies/Archimedes Wave Swing | Open Energy Information  

Open Energy Info (EERE)

Archimedes Wave Swing Archimedes Wave Swing < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Archimedes Wave Swing.jpg Technology Profile Primary Organization AWS Ocean Energy formerly Oceanergia Project(s) where this technology is utilized *MHK Projects/AWS II *MHK Projects/Portugal Pre Commercial Pilot Project Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The AWS wave energy converter is a cylindrical chamber moored to the seabed. Passing waves move an air-filled upper casing against a lower fixed cylinder, with up and down movement being converted into electricity. As a wave crest approaches, the water pressure on the top of the cylinder increases, and the upper part or 'floater' compresses the gas within the cylinder to balance the pressures. The reverse happens as the wave trough passes and the cylinder expands. The relative movement between the floater and the lower part or silo is converted to electricity by means of a hydraulic system and motor-generator set.

38

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile Wind and Wave  

Open Energy Info (EERE)

Wind and Wave Renewable Mobile Wind and Wave Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform.jpg Technology Profile Primary Organization Darrel Dammen Technology Resource Click here Wave Technology Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like large ships floating Oil rigs or boats the levers going up and down creates a torque at the pivot point by the vessel being raised and lowered this works on all size levers making it possible to collect energy from all size Waves with enough levers with in reasonable size and numbers the force can be used hydraulically mechanically or to compress air to power generators Ten tons going up and down is a lot of force when connected to a 100 so connecting to 100 tons then to 50 tons then to 25 tons then to 10 tons to 5 tons to 2 tons continuing down in size and multiplying the levers from the less affected floating object or stationary object will mean We collect energy from 1 foot to 100 foot waves and swells This Wind and Wave with 120 oarsmen showing buoyant vessels are the oarsman in this picture with hund

39

MHK Technologies/Wave Catcher | Open Energy Information  

Open Energy Info (EERE)

Wave Catcher.png Wave Catcher.png Technology Profile Primary Organization Offshore Islands Ltd Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Wave Catcher can be orientated to take advantage of the most numerous prevailing waves to generate power It is a long surface buoy cylinder that is lifted by each passing wave As the cylinder is lifted it pulls on its anchor lines which in turn pulls on a support pulley This support pulley turns the generator s rotor and flywheel The generator s flywheel keeps the rotor turning until the next wave lifts up the cylinder and the anchor line once again turns the pulley The cylinder will also be lifted by waves from all directions As a result the anchor cables at each end of the buoy may either pull together or at slightly different times The gears the pulleys the rotor and flywheel are turned when the anchor cable s tension is high The uni direction pulley s re coil spring re winds the anchor cable back around the pulley when the buoy moves down with the trough of the wave and the anchor cable tension is low The wave generator can be in a surface buoy or mounted sub

40

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

MHK Technologies/Wave Treader fixed | Open Energy Information  

Open Energy Info (EERE)

MHK Technologies/Wave Treader fixed MHK Technologies/Wave Treader fixed < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Treader fixed.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Wave Treader concept utilises the arms and sponsons from Ocean Treader and instead of reacting against a floating Spar Buoy, will react through an Interface Structure onto the Foundation of an Offshore Wind Turbine. Between the Arms and the Interface Structure hydraulic cylinders are mounted and as the wave passes the machine first the forward Sponson will lift and fall and then the aft Sponson will lift and fall each stroking their hydraulic cylinder in turn. This pressurises hydraulic fluid which is then smoothed by hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity generator. The electricity is then exported through the cable shared with the Wind Turbine.

42

MHK Technologies/Ocean Wave Air Piston | Open Energy Information  

Open Energy Info (EERE)

Piston Piston < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OWAP captures power by continually raising or lowering a float which in turn raises or lowers one side of a lever arm about a stationary pivot point This therby raises or lowers a piston which is attached to the opposite side of the lever arm through a cylinder which in turn causes large volumes of air to move This air is funneled through drive turbines to produce power Mooring Configuration Monopile or platfrom

43

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

44

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

45

MHK Technologies/SyncWave Power Resonator | Open Energy Information  

Open Energy Info (EERE)

Power Resonator Power Resonator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SyncWave Power Resonator.jpg Technology Profile Primary Organization Marinus Power Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The SyncWave Power Resonator makes power by capturing the motion differential due to the phase lag between the two concentric float structures the Float and the Spar each having a very different resonance characteristic in waves The power generated from this phase lag is maximized under varying ocean wave conditions via a proprietary variable inertia tuning system SWELS located inside the central Spar Power is captured by an hydraulic power take off which drives a variable speed generator Power outputs conditioned by modern power electronics from several SyncWave Units in a wave farm will be collected and converted to in farm power in a sea bed mounted collector hub then transmitted ashore by subsea cable for interconnection to a shoreside load

46

MHK Technologies/WaveMaster | Open Energy Information  

Open Energy Info (EERE)

WaveMaster WaveMaster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveMaster.jpg Technology Profile Primary Organization Ocean Wavemaster Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The WaveMaster device consists of two pressure chambers connected via a number of turbines The device is located under the waters surface so that it is covered at all times The upper surface of each chamber is an active surface covered with one way valves that control the flow of water through the device The valves on the high pressure chamber allow water to flow into the chamber provided the external pressure is higher than the internal pressure in the chamber This situation typically occurs under wave crests If the external pressure is less than the internal pressure the valves remain closed and water does not flow in Similarly the valves on the low pressure chamber will only allow water to flow out of the chamber if the internal pressure is higher than the external pressure This situation typically occurs under wave troughs If the internal pressure is less than the external pressure the valves remain closed and there is no flow of water

47

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

48

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

49

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

50

Applications Guide for Guided Wave Inspection Technology  

Science Conference Proceedings (OSTI)

In recent years, long-range ultrasonic guided wave technology has been emerging as a quick and economical method of obtaining a comprehensive view of the condition of piping systems, tubing, and other components (including areas that are difficult to access) by launching and detecting waves from a remote accessible location. This report describes how ultrasonic guided waves can be applied for various components and systems. Guidance on surface preparation, generation of various wave modes, and interpreta...

2005-03-21T23:59:59.000Z

51

Renewable Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources and Resources and Technologies Renewable Energy Resources and Technologies October 7, 2013 - 9:18am Addthis Photo of multiple photovoltaic arrays stand tilted on a rooftop with the Boston skyline as a backdrop. The General Services Administration completed a roof-mounted, grid-connected photovoltaic system on the Metcalfe Federal Building. Explore the following renewable energy technology areas for resources and information focusing on Federal application opportunities. Solar Wind Geothermal Biomass Landfill Gas Municipal Solid Waste Hydropower and Ocean These technology areas align with the Energy Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal),

52

Unconventional Resources Technology Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee (URTAC) Meeting Crowne Plaza Hotel, Houston, Texas July 25, 2007 Welcome Sally Zinke, Chair of the Unconventional Resources Technology Advisory Committee (Committee), convened the meeting at 8:30 a.m. on July 25 in Houston, Texas. She introduced Bill Hochheiser, the Committee Management Officer, who presented a "Safety Moment" focusing on the emergency procedures for exiting the conference room and reminding people of the importance of wearing seat belts. Appendix 1 contains the Committee sign-in sheet for the meeting. Jim Mosher's resignation from the Committee due to his recent appointment to the Department of Interior was announced. For the record, his resignation letter is included in these minutes as Appendix 2.

53

MHK Technologies/Wave Energy Seawater Transmission WEST | Open Energy  

Open Energy Info (EERE)

Wave Energy Seawater Transmission WEST Wave Energy Seawater Transmission WEST < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Seawater Transmission WEST.jpg Technology Profile Primary Organization Atmocean Inc Project(s) where this technology is utilized *MHK Projects/WEST Testing Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Atmocean WEST efficiently captures wave energy by deploying many inexpensive devices across large ocean regions. By using hydraulic transmission, WEST avoids the high cost of seafloor power lines, generating electricity onshore to achieve higher reliability at lower cost. When WEST is combined with Bright Energy Storage Technologies seafloor compressed air energy storage (CAES) system, the two enable base load renewable power (eliminating the need for backup fossil-fuel power) at a projected levelized cost of electricity (LCOE) of $.08/kWh to $.12/kWh.

54

Unconventional Resources Technology Advisory Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology challenges for small...

55

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

56

MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

Oceanlinx Mark 3 Wave Energy Converter Oceanlinx Mark 3 Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oceanlinx Mark 3 Wave Energy Converter.jpg Technology Profile Primary Organization Oceanlinx Project(s) where this technology is utilized *MHK Projects/GPP Namibia *MHK Projects/Greenwave Rhode Island Ocean Wave Energy Project *MHK Projects/Hawaii *MHK Projects/Oceanlinx Maui *MHK Projects/Port Kembla *MHK Projects/Portland Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Oceanlinx Mark 3 Wave Energy Converter is a floating multi Oscilating Water Chamber Wave Energy Converter. The airflow generated by the OWC passes through a patented Denniss Auld turbine which converts the bidirectional airflow of the OWC to a unidirectional rotation of the axial flow turbine which in turn drives a generator.

57

MHK Technologies/WaveBlanket PolymerMembrane | Open Energy Information  

Open Energy Info (EERE)

WaveBlanket PolymerMembrane WaveBlanket PolymerMembrane < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WaveBlanket PolymerMembrane.jpg Technology Profile Primary Organization Wind Waves and Sun Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description WaveBlanket could be called the accordion of the sea Poetically speaking It is simply a bellows played upon by the swells of the ocean WaveBlanket is a flexible polymer membrane which uses air pressure rather than steel to achieve its lateral strength and as a result produces about 1000 times more energy per unit of mass than rigid green energy designs

58

MHK Technologies/DEXA Wave Converter | Open Energy Information  

Open Energy Info (EERE)

Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available currently on the...

59

Wave Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Jump to: navigation, search Name Wave Energy Technologies Inc Address 270 Sandy Cove Rd Place Ketch Harbour Zip B3V 1K9 Sector Marine and Hydrokinetic Website http:...

60

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHK Technologies/Indian Wave Energy Device IWAVE | Open Energy Information  

Open Energy Info (EERE)

Wave Energy Device IWAVE Wave Energy Device IWAVE < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Indian Wave Energy Device IWAVE.jpg Technology Profile Primary Organization Nualgi Nanobiotech Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description It is a floating device tethered with chains to piles driven to ocean bottom The wave action raises the heavy partially buoyant piston that drives the overhead crankshaft by half turn The receding wave drops the piston completing the balance half turn One revolution is obtained for every wave Using gear box and generator the current is produced continuously

62

Inventor Resources | Technology Commercialization and ...  

Search Technologies; Patents; Contacts. TCP Director Connie Cleary. Tech Commercialization Christine Brakel Cyrena Condemi Kimberley Elcess Poornima ...

63

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

64

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

65

Federal Energy Management Program: Photovoltaic Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Photovoltaic Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Photovoltaic Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Photovoltaic Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Google Bookmark Federal Energy Management Program: Photovoltaic Resources and Technologies on Delicious Rank Federal Energy Management Program: Photovoltaic Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Photovoltaic Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

66

Federal Energy Management Program: Wind Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Energy Wind Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Wind Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Wind Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Wind Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Wind Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Wind Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar

67

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

68

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

69

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

70

MHK Technologies/Multi Absorbing Wave Energy Converter MAWEC | Open Energy  

Open Energy Info (EERE)

Absorbing Wave Energy Converter MAWEC Absorbing Wave Energy Converter MAWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Absorbing Wave Energy Converter MAWEC.jpg Technology Profile Primary Organization Leancon Wave Energy Project(s) where this technology is utilized *MHK Projects/Leancon Real Sea Test Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description MAWEC is an OWC wave energy converter that works differently from other OWCs in that it concurrently utilizes pressure and suck. This gives the wanted effect that the vertical force on the WEC is zero when the WEC stretches over more than one wave length. The device is V-shaped and oriented perpendicular to wave direction. The device consists of a number of vertical air tubes, and when a wave passes, air is pushed into a pressure channel that sucks air out of the suck channel. During one wave period each tube (120 in total) goes through a sequence where air is first pushed into a pressure channel when the wave is rising and is later sucked from the pressure channel when the wave is falling. In this situation there is constant pressure in the pressure channel and the air flow through the turbines is constant.

71

Resourceful Kansas Puts Energy Efficient Technology on Display...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates...

72

Photovoltaic Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies Photovoltaic Resources and Technologies October 7, 2013 - 9:22am Addthis Graphic of the eTraining logo Training Available Selecting, Implementing, and Funding Photovoltaic Systems in Federal Facilities: Learn how to select, implement, and fund a photovoltaic system by taking this FEMP eTraining course. This page provides a brief overview of photovoltaic (PV) technologies supplemented by specific information to apply PV within the Federal sector. Overview Photovoltaic cells convert sunlight into electricity. Systems typically include a PV module or array made of individual PV cells installed on or near a building or other structure. A power inverter converts the direct current (DC) electricity produced by the PV cells to alternative current

73

MHK Technologies/IVEC Floating Wave Power Plant | Open Energy Information  

Open Energy Info (EERE)

IVEC Floating Wave Power Plant IVEC Floating Wave Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IVEC Floating Wave Power Plant.jpg Technology Profile Primary Organization Ivec Pty Ltd Technology Resource Click here Wave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description FWP design is based on an array of linked OWC s or chambers Similar to the cylinders of a combustion engine each FWP chamber has inlet low pressure flaps valves and outlet high pressure flaps valves As a wave passes through the FWP the water level and thus the air pressure within each chamber oscillates depending on its position within the wave cycle Mooring Configuration single point

74

Summary of New Generation Technologies and Resources  

Science Conference Proceedings (OSTI)

This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

None

1993-01-08T23:59:59.000Z

75

MHK Technologies/Ocean Wave Power Spar Buoy Engine | Open Energy  

Open Energy Info (EERE)

Spar Buoy Engine Spar Buoy Engine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Power Spar Buoy Engine.jpg Technology Profile Primary Organization Functional Design Engineering Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A long period spar buoy supports a subsurface flow augmentor The augmentor directs water from the wave s submarine flow field to a free prime mover piston The prime mover is decoupled from the machine s PTO during times in the wave s cycle when there is little power available for conversion Wave energy is stored in the device until the is enough flow magnetude that power take off can efficiently take place Power can be taken off as high pressure water crankshaft torque or directly as DC electricity

76

Resource Center Workforce SBIR/STTR Technology Transfer ...  

Science Conference Proceedings (OSTI)

... Students in Today's Global Marketplace Technology Transfer Benefits to Academia from Tech Transfer Partnerships RESOURCE CENTER ...

2013-08-21T23:59:59.000Z

77

MHK Technologies/Wave Power Desalination | Open Energy Information  

Open Energy Info (EERE)

Desalination < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Power Desalination.gif Technology Profile Primary Organization Delbuoy...

78

MHK Technologies/Uppsala Seabased AB Wave Energy Converter | Open Energy  

Open Energy Info (EERE)

AB Wave Energy Converter AB Wave Energy Converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Seabased AB Wave Energy Converter.jpg Technology Profile Primary Organization Uppsala University Division for Electricity Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The system consists of a linear permanent magnet synchronous generator located on the sea floor The generator is connected directly via a line to a buoy on the surface There are no intermediate energy conversion steps thus the generator motion is the same as the buoy motion Several generators 3 today are connected to a marine substation where the voltage is converted to grid frequency transformed to higher voltage and transmitted to shore All electrical cables throughout the system are fixed i e there are no motions that subject the cables to bending moments

79

Biomass Resources, Technologies, and Environmental Benefits  

Science Conference Proceedings (OSTI)

Biomass, a renewable energy source, is essentially solar energy captured and stored in plants via photosynthesis. For electric power generation organizations that have expertise and assets in combustion or gasification, biomass can be the most appropriate renewable energy source. This report addresses the size and cost of the biomass resource, while describing the technologies and environmental issues involved.

2004-06-03T23:59:59.000Z

80

Unconventional gas outlook: resources, economics, and technologies  

Science Conference Proceedings (OSTI)

The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

Drazga, B. (ed.)

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

82

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

MHK Technologies/WEGA wave energy gravitational absorber | Open Energy  

Open Energy Info (EERE)

WEGA wave energy gravitational absorber WEGA wave energy gravitational absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEGA wave energy gravitational absorber.jpg Technology Profile Primary Organization Sea for Life Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WEGA device is an articulated suspended body semi submerged attached to a mount structure that oscillates in an elliptical orbit with the passage of the waves The movement of the body drives an hydraulic cylinder which pushes high pressure fluid through an accumulator and an hydraulic motor driving the generator that produces energy The articulated body attaches to the mount structure through a rotary head which allows it to adapt to the direction wave propagation Multiple devices can be placed on a single mount structure according to the size and place of the structure

84

Specialized Technology Resources Inc STR Holding Inc | Open Energy  

Open Energy Info (EERE)

Technology Resources Inc STR Holding Inc Technology Resources Inc STR Holding Inc Jump to: navigation, search Name Specialized Technology Resources Inc (STR Holding Inc) Place Enfield, Connecticut Zip 6082 Product US-based manufacturer of EVA encapsulants for PV cells. References Specialized Technology Resources Inc (STR Holding Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Specialized Technology Resources Inc (STR Holding Inc) is a company located in Enfield, Connecticut . References ↑ "Specialized Technology Resources Inc (STR Holding Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Specialized_Technology_Resources_Inc_STR_Holding_Inc&oldid=351609" Categories:

85

Intrepid Technology and Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Intrepid Technology and Resources Inc Intrepid Technology and Resources Inc Jump to: navigation, search Name Intrepid Technology and Resources Inc Place Idaho Falls, Idaho Zip 83402 Sector Biomass Product The company specialises in development of biomass/biofuel plants, primarily biogas projects(methane from processing animal waste). References Intrepid Technology and Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Intrepid Technology and Resources Inc is a company located in Idaho Falls, Idaho . References ↑ "Intrepid Technology and Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Intrepid_Technology_and_Resources_Inc&oldid=347071" Categories:

86

MHK Technologies/The DEXAWAVE wave energy converter | Open Energy  

Open Energy Info (EERE)

DEXAWAVE wave energy converter DEXAWAVE wave energy converter < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DEXAWAVE wave energy converter.jpg Technology Profile Primary Organization Dexawave Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description The DEXAWAVE wave energy converter has a simple construction It consists of two rigid pontoons hinged together using a patented hinge The one pontoon can pivot relative to the other There is a hydraulic power take off system on top of the converter generating up to 250 kW Technology Dimensions Technology Nameplate Capacity (MW) 25 Device Testing Scale Test *At present our 1 to 5 scale model is working the waters outside the Danish port of Hanstholm collecting valuable data about the waves and currents that are constantly pounding the structure

87

MHK Technologies/Ocean Wave Energy Converter OWEC | Open Energy Information  

Open Energy Info (EERE)

Converter OWEC Converter OWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Wave Energy Converter OWEC.jpg Technology Profile Primary Organization Ocean Wave Energy Company Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Neutrally suspended and positively buoyant modules are quick connected into open frame networks Submerged portions are stabilized by variable ballast buoyancy chambers and optional damper sheets situated at a relatively calm depth Frame members carry shaft components of linear rotary converters associated with large point absorber buoys Both directions of reciprocal wave motion i e vertical and horizontal motion directly drive components of counter rotating electrical generators Compared to standard generators wherein one is associated with upstroke and another of smaller proportion with downstroke this configuration increases relative speed with fewer parts Electromechanical loads are real time adjustable with respect to wave sensor web resulting in optimal energy conversion from near fully submerged wave following buoys Electrical conductors are series connected and further quick connected with those of other modules via upper frame members Through implementation of rep

88

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Data and...

89

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

90

Resource Extraction, Backstop Technologies, and Growth ? Preliminary Version  

E-Print Network (OSTI)

We incorporate a non-renewable resource in a standard framework of endogenous growth through expanding varieties. Moreover, we allow for a backstop technology that is able to produce a perfect substitute for the resource. Our model is used to analyze resource extraction and technological progress over time. Three consecutive regimes of energy use can emerge in the economy: only resource extraction, simultaneous use, and complete reliance on the backstop technology. The introduction of the backstop technology crucially affects the time paths of fossil fuel extraction and technological progress. We provide conditions under which either peak-oil emerges, or the extraction path is monotonically increasing or decreasing until exhaustion of the resource stock. The rate of technological progress is non-monotonic over time: it declines initially, starts increasing when the economy approaches the regime change and jumps down once the resource stock is exhausted.

Gerard Van Der Meijden; Sjak Smulders

2013-01-01T23:59:59.000Z

91

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

92

Alternative Fuels and Advanced Vehicle Technologies: Information Resources (Brochure)  

DOE Green Energy (OSTI)

A Clean Cities brochure listing and describing Web sites and telephone numbers of resources for people interested in alternative fuels and advanced vehicle technologies.

Not Available

2004-02-01T23:59:59.000Z

93

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

94

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

95

Solar Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

96

Householder experiences with resource monitoring technology in sustainable homes  

Science Conference Proceedings (OSTI)

The use of feedback technologies, in the form of products such as Smart Meters, is increasingly seen as the means by which 'consumers' can be made aware of their patterns of resource consumption, and to then use this enhanced awareness to change their ... Keywords: behaviour change, feedback, residential, resource monitoring, smart meters, technology interface

Wendy Miller; Laurie Buys

2010-11-01T23:59:59.000Z

97

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

98

Distributed Energy Resources Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

99

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

100

Information Resources: LED Essentials - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHK Technologies/GyroWaveGen | Open Energy Information  

Open Energy Info (EERE)

GyroWaveGen GyroWaveGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage GyroWaveGen.jpg Technology Profile Primary Organization Paradyme Systems Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A gyro wave energy transducer is mounted on the buoyant body for translating the pendulum like motions of the buoyant body into rotational motion The gyro wave energy transducer includes a gimbal comprised of first and second frames with the first frame being pivotally mounted to the second frame and the second frame being pivotally mounted to the buoyant body A gyroscope is mounted to the first frame for rotation about an axis perpendicular to the axes of rotation of the first and second frames A motor generator is coupled to the gyroscope for maintaining a controlled rotational velocity for the gyroscope Transferring members are associated with one of the first and second frames for transferring torque of one of the first and second frames to the gyroscope about an axis that is perpendicular to that of the gyroscope which results in rotation of the other of the first and second frames An electrical generator is responsive to the relative rotational movement of the first and se

102

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

103

Wind Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Energy Resources and Technologies Wind Energy Resources and Technologies Wind Energy Resources and Technologies October 7, 2013 - 9:23am Addthis Photo of two wind turbines standing on a mountain in front of a cloudy blue sky. The Department of Energy tests wind turbine technologies and deployment applications at the National Wind Technology Center. This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector. Overview Federal agencies can harvest wind energy to generate electricity or mechanical power (e.g., windmills for water pumping). To generate electricity, wind rotates large blades on a turbine, which spin an internal shaft connected to a generator. The generator produces electricity, the

104

Resource Consumption of Additive Manufacturing Technology.  

E-Print Network (OSTI)

??The degradation of natural resources as a result of consumption to support the economic growth of humans society represents one of the greatest sustainability challenges. (more)

Nopparat, Nanond

2012-01-01T23:59:59.000Z

105

Center for Electric & Hydrogen Technologies & Systems: Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

* Primers on solar radiation data and its measurement. * Links to other useful solar radiation measurement and data sites. The Resource Integration Group's Renewable...

106

Vehicle Technologies Office: Workplace Charging Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

current public charging already exists across the country. Tools and Resources The AFDC offers a large collection of helpful tools. These calculators, interactive maps, and...

107

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

108

Hydropower and Ocean Energy Resources and Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

109

WEB RESOURCE: Nuclear Science and Technology  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... This page offers lecture notes and presentations from a course on nuclear science and technology. Presentation slides and audio files are also...

110

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

111

Biomass Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies Biomass Energy Resources and Technologies October 7, 2013 - 9:25am Addthis Photo of two hands cupping wood chips pouring from a green dispenser. Biomass uses agriculture and forest residues to create energy. This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector. Overview Biomass energy is fuel, heat, or electricity produced from organic materials such as plants, residues, and waste. These organic materials span several sources, including agriculture, forestry, primary and secondary mill residues, urban waste, landfill gases, wastewater treatment plants, and dedicated energy crops. Biomass energy takes many forms and can have a wide variety of applications

112

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

113

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

114

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

115

Review of Water Resources and Desalination Technologies  

SciTech Connect

Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

MILLER, JAMES E.

2003-03-01T23:59:59.000Z

116

Distributed Energy Resources Emissions Survey and Technology Characterization  

Science Conference Proceedings (OSTI)

This report characterizes emissions of gaseous and particulate pollutants from distributed energy resources (DER) technologies. Emissions profiles are provided for currently available equipment as well as for equipment expected to be commercially available by the year 2030. These profiles can be used to compare and evaluate DER technologies and can be used to develop emissions inventories for air quality modeling.

2004-11-03T23:59:59.000Z

117

Gas-Fired Distributed Energy Resource Technology Characterizations  

DOE Green Energy (OSTI)

The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

2003-11-01T23:59:59.000Z

118

Hawaii Energy Resource Technologies for Energy Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HNEI HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa MAUI SMART GRID PROJECT Hawaii Natural Energy Institute University of Hawaii at Manoa Sentech, Inc. HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE

119

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

DOE Green Energy (OSTI)

(3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

120

Mapping and Assessment of the United States Ocean Wave Energy Resource |  

Open Energy Info (EERE)

450 450 Varnish cache server Mapping and Assessment of the United States Ocean Wave Energy Resource Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables densities within a few kilometers of a linear array, even for fixed terminator devices.

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Resourceful Kansas Puts Energy Efficient Technology on Display,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits June 2, 2011 - 3:45pm Addthis One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs It turns out there's more to harvest in Kansas than just the wheat and soybeans. As one of the windiest states in the country, it's a great place to harness wind and solar power. And through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the

122

Resourceful Kansas Puts Energy Efficient Technology on Display,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resourceful Kansas Puts Energy Efficient Technology on Display, Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits Resourceful Kansas Puts Energy Efficient Technology on Display, Demonstrates Cost-Saving Benefits June 2, 2011 - 3:45pm Addthis One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works One of Riley County Public Works' new wind turbines. | Courtesy of: Riley County Public Works Lindsey Geisler Lindsey Geisler Public Affairs Specialist, Office of Public Affairs It turns out there's more to harvest in Kansas than just the wheat and soybeans. As one of the windiest states in the country, it's a great place to harness wind and solar power. And through the Department of Energy's Energy Efficiency and Conservation Block Grant program, the

123

STATEMENT OF CONSIDERATIONS REQUEST BY SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR) SPECIALIZED TECHNOLOGY RESOURCES, INC. (STR) FOR AN ADVANCE WAIVER OF PATENT RIGHTS UNDER NREL SUBCONTRACT NO. NREL-ZDO-2-30628-10 UNDER DOE CONTRACT NO. DE-AC36-98GO10337; W(A)-02-050; CH-1122 As set out in the attached waiver petition and in subsequent discussions with DOE Patent Counsel, Specialized Technology Resources, Inc. (STR) has requested an advance waiver of domestic and foreign patent rights for all subject inventions made under the above- identified cooperative agreement by its employees and its subcontractors' employees, regardless of tier, except inventions made by subcontractors eligible to retain title to inventions pursuant to P.L. 96-517, as amended, and National Laboratories. The subcontract was awarded by the National Renewable Energy Laboratory (NREL) under DOE's Photovoltaic

124

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

125

Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industrys development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial sc

Mirko Previsic

2010-06-17T23:59:59.000Z

126

The directory of US coal and technology export resources  

Science Conference Proceedings (OSTI)

The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

Not Available

1990-10-01T23:59:59.000Z

127

Technology Assessment of Interconnection Products for Distributed Resources: 2001 Update  

Science Conference Proceedings (OSTI)

This interim technology assessment for distributed resources (DR), including generation and storage, is intended to assist system engineers in understanding the availability and application of interconnection products. The report provides a frame of reference to assess these products by defining a set of interconnection functions, descriptive elements, and applications and documenting the state of the art of interconnection products.

2001-11-30T23:59:59.000Z

128

DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE Committee's Official Designation: Unconventional Resources Technology Advisory Committee (URTAC) 2. Committee's Objectives and Scope of Activities and Duties: I The Advisory Committee is to (A) advise the Secretary on the development and implementation of programs under Section 999 of the Energy Policy Act of 2005, Publi / I No. 109-58, related to unconventional natural gas and other petroleum resources and (B) provide to the Secretary written comments regarding the draf't annual plan that is required by Section 999B(e) of the Energy Policy Act of 2005. Further, the Committee will not make recommendations on funding awards to particular consortia or other entities, or for specific

129

Mapping and Assessment of the United States Ocean Wave Energy Resource  

SciTech Connect

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration?¢????s (NOAA?¢????s) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and includes the resource made available by the lateral transfer of wave energy along wave crests, which enables wave diffraction to substantially reestablish wave power densities within a few kilometers of a linear array, even for fixed terminator devices. The total available wave energy resource along the U.S. continental shelf edge, based on accumulating unit circle wave power densities, is estimated to be 2,640 TWh/yr, broken down as follows: 590 TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80 TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130 TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total recoverable wave energy resource, as constrained by an array capacity packing density of 15 megawatts per kilometer of coastline, with a 100-fold operating range between threshold and maximum operating conditions in terms of input wave power density available to such arrays, yields a total recoverable resource along the U.S. continental shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii, and 20 TWh/yr for Puerto Rico.

Paul T. Jacobson; George Hagerman; George Scott

2011-12-01T23:59:59.000Z

130

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Science Conference Proceedings (OSTI)

This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. This approach is fully consistent with accepted global practice and more accura...

2011-12-01T23:59:59.000Z

131

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

132

Resources for Information on New and Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources for Information on Resources for Information on New and Emerging Technologies Steven Parker, PE, CEM Chief Engineer Building Energy Systems & Technologies Energy and Environment Directorate Pacific Northwest National Laboratory 1 Objective Provide list of programs that research and provide useful, technical, information on new and emerging energy- efficient technologies State supported energy-efficiency programs Utility supported energy-efficiency and research programs Other organizations Feds too (if you know where to look) Caveat emptor Call to action 2 First Note A lot of people do a lot of good work and have a lot of good information but do not publicize well Talk to utility representatives Talk to state energy office Talk to state university energy programs I prefer public reports, but other sources can be beneficial

133

Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources  

DOE Green Energy (OSTI)

Technology transfer to the industrial sector for geopressured-geothermal technology has included diverse strategies, with successes and obstacles or roadblocks. Numerical data are tabulated in terms of response to the various strategies. Strategy categories include the following: feasibility studies and reports, consortium activities and proceedings, the Geothermal Resource Council, national and international meetings of the American Association of Petroleum Geologists, other societal and organizational meetings, and conferences, Department of Energy solicitation of interest in the Commerce Business Daily, industry peer review panels, and the Secretary's Technology Initiative. Additionally, the potential of a 12-page color brochure on the geopressured-geothermal resource, workshops, and cooperative research and development agreement (CRADA) is discussed. In conclusion, what is the best way to reach the market and what is the winning combination? All of the above strategies contribute to technology transfer and are needed in some combination for the desired success. The most successful strategy activities for bringing in the interest of the largest number of industries and the independents are the consortium meetings, one-on-one telephone calling, and consortium proceedings with information service followup. the most successful strategy activities for bringing in the interest and participation of ''majors'' are national and international peer reviewed papers at internationally recognized industry-related society meetings, and on-call presentations to specific companies. Why? Because quality is insured, major filtering has already taken place, and the integrity of the showcase is established. Thus, the focused strategy is reduced to a target of numbers (general public/minors/independents) versus quality (majors). The numerical results of the activities reflecting four years of technology transfer following the 15 year lead in the early phases of geopressured-geothermal program under the leadership of Dr. Myron Dorfman, reflect a dynamic surveying of what works in technology transfer with industry in the area of geopressured-geothermal resources. The identified obstacles can be removed and future efforts can benefit by this cataloging and discussion of results.

Wys, J. Negus-de

1992-03-24T23:59:59.000Z

134

Assessment of Emission Control Technologies for Distributed Resource Options  

Science Conference Proceedings (OSTI)

Distributed resources (DR) are projected to be an expanding part of the power generation mix in the future as the market shifts from a strong reliance on large, central power plants to greater use of smaller, more dispersed power generation sources located closer to load centers. This report assesses the current environmental regulatory situation for DR technologies and describes a range of combustion and post-combustion strategies to address environmental requirements. Such information will benefit ener...

1999-12-23T23:59:59.000Z

135

Identifying the Value Proposition for Residential Distributed Resources Technologies  

Science Conference Proceedings (OSTI)

While virtually all participants in today's energy markets are intrigued by the potential of distributed resources (DR) and small-scale generation technologies, ongoing questions remain as to the market for such devices given current economic realities. This project focused on selected market opportunities to test the attractiveness of conceptual DR products, determine the relative importance of product features, and explore strategies for improving the success of DR product entry into the residential ma...

2001-11-26T23:59:59.000Z

136

Technology Review and Assessment of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The investigators reviewed and assessed the current status of distributed generation (DG) in the U.S. as it applies to smaller-scale installations (residential, commercial, and light-industrial buildingsgenerally under 1,000 kW capacity), and benchmarked the prospects for significant market impacts over the next 57 years. This study serves as an update to EPRI's Assessment of Distributed Resource Technologies, completed in 1999 [EPRI 1999].

2005-01-23T23:59:59.000Z

137

Agent-Based Wave Computation: Towards Controlling the Resource Demand  

Science Conference Proceedings (OSTI)

In recent years, the mobile agent paradigm has received significant consideration in the context of large complex decentralized systems. Tasks such as system monitoring, load balancing and resource management have been successfully mapped onto this paradigm. ...

Armin R. Mikler; Vivek S. Chokhani

2001-06-01T23:59:59.000Z

138

Mapping and Assessment of the United States Ocean Wave Energy Resource  

Open Energy Info (EERE)

TECHNICAL REPORT TECHNICAL REPORT Mapping and Assessment of the United States Ocean Wave Energy Resource EPRI Project Manager P. Jacobson 3420 Hillview Avenue Palo Alto, CA 94304-1338 USA PO Box 10412 Palo Alto, CA 94303-0813 USA 800.313.3774 650.855.2121 askepri@epri.com 1024637 www.epri.com Final Report, December 2011 Mapping and Assessment of the United States Ocean Wave Energy Resource DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI).

139

MHK Technologies/The WaveCatcher System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The WaveCatcher System.png Technology Profile Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential energy reservoir then that energy is transformed into mechanical kinetic energy in such a way that it is output in a constant output 60 hertz in other words it takes the large pulsed energy of a wave captures the wave and transforms the wave into a constant energy output Technology Dimensions Device Testing Date Submitted 30:33.7 << Return to the MHK database homepage

140

Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328  

DOE Green Energy (OSTI)

In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

Scott, G.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

142

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

143

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

144

Resource allocation in applications research : challenges and strategies of small technology developing companies  

E-Print Network (OSTI)

This is a study into the allocation of resources in the early stages of research in a small commercial entity that develops innovative technologies. The premise is that resource allocation must focus on the implementation ...

Pretorius, Jacob v. R., 1969-

2004-01-01T23:59:59.000Z

145

Resources for Technology-Based Small Businesses in the Midwest ...  

resources, Internet research and other business information resources. Moraine Valley Community College 10900 S. 88th Avenue Palos Hills, IL 60465-9556

146

Hydropower, Wave and Tidal Technologies - Energy Innovation Portal  

Biomass and Biofuels Hydropower, Wave and Tidal Industrial ... raw materials suggests the need for elimination of these materials from electric motors ...

147

Available Technologies: Green Wave: Energy-Efficient HPC ...  

A Berkeley Lab team led by John Shalf and David Donofrio developed Green Wave, a energy-efficient computing platform that can perform critical Reverse Time Migration ...

148

Author's personal copy Wave energy resources along the Hawaiian Island chain  

E-Print Network (OSTI)

Hawaii WW3 model with high-resolution winds from the Weather Research Forecast (WRF) model capture by the year 2030. Energy technologies utilizing wind and solar resources are com- mercially available and used of the weather from the far-reaching corners of the Pacific [3]. Extratropical storms near the Kuril and Aleutian

149

Status of Wave and Tidal Power Technologies for the United States  

DOE Green Energy (OSTI)

This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

Musial, W.

2008-08-01T23:59:59.000Z

150

MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...  

Open Energy Info (EERE)

Description Buoyant vessel attached to a lever the lever being attached to a stationary source like near shore Oil Rigs docks or a vessel less affected by swells and waves like...

151

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

152

Unidata: A Virtual Community Sharing Resources via Technological Infrastructure  

Science Conference Proceedings (OSTI)

In initiating the Unidata Program, scientists hoped to meet common needs for accessing and using atmospheric data in education and research using state-of-the-art technology. As communications technologies have advanced, Unidata has increasingly ...

David Fulker; Sally Bates; Clifford Jacobs

1997-03-01T23:59:59.000Z

153

NREL: Technology Deployment - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

154

Biomass power: An old resource for a new technology  

DOE Green Energy (OSTI)

As many as 50,000 MW of electricity could be generated by biomass power plants in the year 2010 with advanced technologies and improved feedstock supplies. This pamphlet describes the current status and capacity of biomass power plants in the US, advanced technologies under development, a way to guarantee a dedicated fuel supply, and sources for further information.

NONE

1995-05-01T23:59:59.000Z

155

Designing Technology as an Embedded Resource for Troubleshooting  

Science Conference Proceedings (OSTI)

In this paper we describe a number of technologies which we designed to provide support for customers troubleshooting problems with their office devices. The technologies aim to support both self-conducted and expert-supported troubleshooting and to ... Keywords: device troubleshooting, diagnostics, embedded systems, ethnography, ethnomethodology, help systems, immediate and remote help-giving, situated action, socio-technical assemblies, work practice studies

Stefania Castellani; Antonietta Grasso; Jacki O'Neill; Frederic Roulland

2009-06-01T23:59:59.000Z

156

Wave Dragon  

NLE Websites -- All DOE Office Websites (Extended Search)

Overtopping Wave Devices Wave Dragon ApSLtd HWETTEI - Workshop October 26-28, 2005, Washington, DC Hydrokinetic Technologies Technical and Environmental Issues Workshop the Wave...

157

NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE  

E-Print Network (OSTI)

.S. Department of Energy's Rocky Flats Field Office for making this report possible. In particular, Dr. John.S. Department of Energy's Rocky Flats Field Office to inventory and rank the natural heritage resources at its Divide. The RFETS is part of the U.S. Department of Energy nuclear weapons manufacturing complex

158

Comparison of Storage Technologies for Distributed Resource Applications  

Science Conference Proceedings (OSTI)

This report summarizes six electricity storage technologies by describing operating principles, technical characteristics, field experience, and capital and operating costs: o sodium sulfur (NaS) battery o polysulfide-bromine (PSB) battery ("Regensys") o vanadium redox battery (VRB) o compressed air energy storage (CAES) o flywheels electrochemical capacitors In addition, the data is used to compare storage technologies in four applications: (1) peak shaving on the customer side of the meter; (2) peak sh...

2003-03-05T23:59:59.000Z

159

Program review: resource evaluation, reservoir confirmation, and exploration technology  

DOE Green Energy (OSTI)

The details of the program review are reported. A summary of the recommendations, means for their implementation, and a six year program of expenditures which would accomplish the objectives of the recommendations are presented. Included in appendices are the following: DOE/DGE consortia participants; program managers contacted for opinion; communications received from program managers; participants, program review panel; and program strategy for resource evaluation and reservoir confirmation. (MHR)

Ward, S.H.

1978-05-01T23:59:59.000Z

160

Vortex flow in the technology of radiation wave cracking (RWC)  

E-Print Network (OSTI)

This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.

L. A. Tsoy; V. N. Kolushov; A. G. Komarov; A. N. Tsoy

2012-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vortex flow in the technology of radiation wave cracking (RWC)  

E-Print Network (OSTI)

This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.

Tsoy, L A; Komarov, A G; Tsoy, A N

2012-01-01T23:59:59.000Z

162

Technology Review and Assessment of Distributed Energy Resources  

Science Conference Proceedings (OSTI)

The investigators reviewed, benchmarked and assessed the current status of emerging battery technologies for distributed energy storage (DES) as it applies to market applications addressing residential, commercial, and light-industrial buildings, and the prospects for significant market impacts with in the electric utility sector over the next 5-7 years.

2006-02-06T23:59:59.000Z

163

Renewable energy resource and technology assessment: Southern Tier Central Region, New York, New York. Renewable Energy Resource Inventory; renewable energy technology handbook; technology assessment workbook  

DOE Green Energy (OSTI)

The Renewable Energy Resource Inventory contains regional maps that record the location of renewable energy resources such as insolation, wind, biomass, and hydropower in the Southern Tier Central Region of New York State. It contains an outline of a process by which communities can prepare local renewable energy resource inventories using maps and overlays. The process starts with the mapping of the resources at a regional scale and telescopes to an analysis of resources at a site-specific scale. The resource inventory presents a site analysis of Sullivan Street Industrial Park, Elmira, New York.

Not Available

1978-12-01T23:59:59.000Z

164

Program on Technology Innovation: Water Resources for Thermoelectric Power Generation  

Science Conference Proceedings (OSTI)

Due to severe drought conditions in the Southwest in recent years, EPRI and the U.S. Department of Energys National Energy Technology Laboratory have sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. Two of the studies assess the use of saline waters in power plants. The third describes the adaptation of a deterministic watershed model to forecast the impact of climate change on river hydrology in t...

2006-11-06T23:59:59.000Z

165

DOE Office of Indian Energy Foundational Course on Renewable Energy Technologies: Assessing Energy Resources Text Version  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Renewable Energy Technologies: Assessing Energy Resources Webinar (text version) Below is the text version of the webinar titled "DOE Office of Indian Energy Foundational Courses Renewable Energy Technologies: Assessing Energy Resources". Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's Webinar on assessing energy needs and resources sponsored by the U.S. Department of Energy, Office of Indian Energy, Policy and Programs. This Webinar is being recorded from DOE's National Renewable Energy Laboratory's brand new state of the art net zero energy research support facility in Golden, Colorado. Our energy needs and resources presentation today is one of nine foundational Webinars in a series from

166

Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies  

SciTech Connect

Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil equivalent and our nations richest oil sands resources. If economically feasible and environmentally responsible means of tapping these resources can be developed, these resources could provide a safe and stable domestic energy source for decades to come. In Utah, oil shale and oil sands resources underlay a patchwork of federal, state, private, and tribal lands that are subject to different regulatory schemes and conflicting management objectives. Evaluating the development potential of Utahs oil shale and oil sands resources requires an understanding of jurisdictional issues and the challenges they present to deployment and efficient utilization of emerging technologies. The jurisdictional patchwork and divergent management requirements inhibit efficient, economic, and environmentally sustainable development. This report examines these barriers to resource development, methods of obtaining access to landlocked resources, and options for consolidating resource ownership. This report also examines recent legislative efforts to wrest control of western public lands from the federal government. If successful, these efforts could dramatically reshape resource control and access, though these efforts appear to fall far short of their stated goals. The unintended consequences of adversarial approaches to obtaining resource access may outweigh their benefits, hardening positions and increasing tensions to the detriment of overall coordination between resource managers. Federal land exchanges represent a more efficient and mutually beneficial means of consolidating management control and improving management efficiency. Independent of exchange proposals, resource managers must improve coordination, moving beyond mere consultation with neighboring landowners and sister agencies to coordinating actions with them.

Keiter, Robert; Ruple, John; Tanana, Heather; Kline, Michelle

2011-02-28T23:59:59.000Z

167

Assessment of Emerging Low-Emissions Technologies for Combustion-Based Distributed Resource Generators  

Science Conference Proceedings (OSTI)

This report analyzes the performance and cost of conventional and emerging emission control technologies for combustion-based distributed resource generators (combustion turbines, microturbines, and reciprocating engines). The performance is measured against the proposed California Air Resources Board (CARB) small generator certification standards for 2007. The costs are provided as capital cost and cost of electricity for emission control. The report also provides information on alternative fuel conside...

2005-03-23T23:59:59.000Z

168

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

DOE Green Energy (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

169

SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy  

Science Conference Proceedings (OSTI)

We address the problem of modeling energy resource allocation, including dispatch, storage, and the long-term investments in new technologies, capturing different sources of uncertainty such as energy from wind, demands, prices, and rainfall. We also ... Keywords: analysis of algorithms, artificial intelligence, queues, simulation, statistical analysis

Warren B. Powell; Abraham George; Hugo Simo; Warren Scott; Alan Lamont; Jeffrey Stewart

2012-10-01T23:59:59.000Z

170

FY 1991--FY 1995 Information Technology Resources Long-Range Plan  

SciTech Connect

The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

Not Available

1989-12-01T23:59:59.000Z

171

RENEWABLE ENERGY RESOURCES AND TECHNOLOGIES IN NIGERIA: PRESENT SITUATION, FUTURE PROSPECTS AND POLICY FRAMEWORK  

E-Print Network (OSTI)

Abstract. Nigeria is endowed with abundant energy resources, both conventional and renewable, which provide her with immense capacity to develop an effective national energy plan. However, introduction of renewable energy resources into the nations energy mix have implications on its energy budget. The national energy supply system has been projected into the future using MARKAL, a large scale linear optimization model. However, this model may not be absolutely representative of the highly non-linear future of renewable energy. Results of the model reveal that under only a least cost constraint, only large hydro power technology is the prominent commercial renewable energy technology in the electricity supply mix of the country. Despite the immense solar energy potentials available, solar electricity generation is attractive only under severe CO2 emissions mitigation of the nations energy supply system. Similarly, the penetration of small-scale hydro power technology in the electricity supply mix is favoured only under CO2 emissions constraints. Due to economy of scale, large hydro power technology takes the lion share of all the commercial renewable energy resources share for electricity generation under any CO 2 emissions constraint. These analyses reveal that some barriers exist to the development and penetration of renewable energy resources for electricity production in Nigerias energy supply system. Barriers and possible strategies to overcome them are discussed. Intensive efforts and realistic approach towards energy supply system in the country will have to be adopted in order to adequately exploit renewable energy resources and technologies for economic growth and development.

John-felix K. Akinbami

2001-01-01T23:59:59.000Z

172

Review of the potential for biomass resources and conversion technology. Final report, Jan-Jul 83  

SciTech Connect

Biomass resources include dedicated energy crops, forestry/agricultural residues, and certain organic fractions of wastes. The magnitude of the resource base, the extent to which it can be devoted to methane production, the quantity of methane that can be produced, and the cost of the methane are issues that are addressed in this study. Research needs include improvement of agricultural production methods, especially regarding problems caused by the seasonal nature of biomass production. Reduction of capital investment per unit of methane could be achieved by development of membrane gas clean up systems or combination biomass storage/fermentation systems, are examples of advanced technologies.

Lipinsky, E.S.; Jenkins, D.M.; Young, B.A.; Sheppard, W.J.

1983-07-01T23:59:59.000Z

173

An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale  

SciTech Connect

This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

Matthew Bruff; Ned Godshall; Karen Evans

2011-04-30T23:59:59.000Z

174

Resource-technology combinations for domestic lighting in rural India: A comparative financial evaluation  

Science Conference Proceedings (OSTI)

Financial analysis and evaluation of various resource-technology combinations for rural domestic lighting is undertaken. The options include kerosene lamps, liquefied petroleum gas (LPG) and biogas lamps, solar photovoltaic lighting systems, and electric lamps. The figures of merit considered for financial comparison are the cost per hour of lighting and the cost per unit of useful energy for lighting. Sensitivity of these figures of merit to the uncertainties in the values of some of the input variables has also been studied.

Rubab, S.; Kandpal, T.C. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1997-10-01T23:59:59.000Z

175

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

176

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

SciTech Connect

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

2008-05-15T23:59:59.000Z

177

MHK Technologies/Centipod | Open Energy Information  

Open Energy Info (EERE)

Centipod Centipod < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Centipod.jpg Technology Profile Primary Organization Ecomerit Technologies LLC see Dehlsen Associates LLC Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Centipod ocean wave generating system a horizontally stable floating platform optimally yawed active to wavefront exposure has flotation pods driving hydraulic rams Fluid drives the hydroelectric generating system providing cost competitive electric power Mooring Configuration Proprietary Technology Dimensions Device Testing

178

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

179

MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps  

Open Energy Info (EERE)

US Navy Wave Energy Technology WET Program at Marine Corps US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.4164,"lon":-157.784,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

180

DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing  

Science Conference Proceedings (OSTI)

Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

Not Available

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.; Brown, T.

2001-07-16T23:59:59.000Z

182

MHK Technologies/Oregon State University Columbia Power Technologies Direct  

Open Energy Info (EERE)

State University Columbia Power Technologies Direct State University Columbia Power Technologies Direct Drive Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oregon State University Columbia Power Technologies Direct Drive Point Absorber.jpg Technology Profile Primary Organization Oregon State University OSU Project(s) where this technology is utilized *MHK Projects/OSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description When the coil experiences a changing magnetic field created by the heaving magnets voltage is generated Technology Dimensions

183

Tunable non-Gaussian resources for continuous-variable quantum technologies  

E-Print Network (OSTI)

We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.

F. Dell'Anno; D. Buono; G. Nocerino; A. Porzio; S. Solimeno; S. De Siena; F. Illuminati

2013-08-11T23:59:59.000Z

184

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations,and J.L. Edwards, Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

Stadler, Michael

2008-01-01T23:59:59.000Z

185

Cycloidal Wave Energy Converter  

SciTech Connect

This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

Stefan G. Siegel, Ph.D.

2012-11-30T23:59:59.000Z

186

High Technology and Biotechnology Customers and Distributed Energy Resources: Can Energy Parks and Other Distributed Energy Resource s Services Meet Their Needs?  

Science Conference Proceedings (OSTI)

How to attract customers in the growth sectors of the economy? That's a question nearly all utilities face. This report examines how two sectors -- high technology and biotechnology (HBT) -- view energy, specifically distributed energy resources (DER) and the concept of energy parks.

2004-01-30T23:59:59.000Z

187

Renewable sources of energy and the related technologies are considered clean resources as the optimal use of these resources minimizes the environmental  

E-Print Network (OSTI)

ABSTRACT Renewable sources of energy and the related technologies are considered clean resources interest in the scientific exploration of renewable energy sources. Energy available from the sun and fabricated selected renewable energy devices viz. animal feed solar cooker, solar tunnel dryer, improved

Kumar, M. Jagadesh

188

MHK Technologies/Anaconda bulge tube drives turbine | Open Energy  

Open Energy Info (EERE)

Anaconda bulge tube drives turbine Anaconda bulge tube drives turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Anaconda bulge tube drives turbine.jpg Technology Profile Primary Organization Checkmate SeaEnergy Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Anaconda uses a large water filled distensible rubber tube floating just beneath the ocean surface and oriented parallel to wave direction As a wave passes the bulge tube is lifted with the surrounding water and this causes a bulge wave to be excited which then passes down the tubes walls gathering energy from the ocean wave as it passes By matching the speed of the bulge wave to that of the sea wave resonance is achieved and high power capture becomes possible The bulge waves are then used to drive a turbine generator located at the stern of the device

189

MHK Technologies/PowerBuoy | Open Energy Information  

Open Energy Info (EERE)

PowerBuoy PowerBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerBuoy.jpg Technology Profile Primary Organization Oregon Wave Energy Partners LLC Project(s) where this technology is utilized *MHK Projects/Coos Bay OPT Wave Park *MHK Projects/Cornwall Wave Hub *MHK Projects/Griffin Project *MHK Projects/NJBPU 1 5 MW Demonstration Program *MHK Projects/Orkney *MHK Projects/Reedsport OPT Wave Park *MHK Projects/Reedsport OPT Wave Park Expanded Project *MHK Projects/Santona Wave Energy Park *MHK Projects/US Navy Wave Energy Technology WET Program at Marine Corps Base Hawaii MCBH Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 9: Commercial-Scale Production / Application

190

Resource Letter: Bio-molecular Nano-machines: where Physics, Chemistry, Biology and Technology meet  

E-Print Network (OSTI)

Cell is the structural and functional unit of life. This Resource Letter serves as a guide to the literature on nano-machines which drive not only intracellular movements, but also motility of the cell. These machines are usually proteins or macromolecular assemblies which require appropriate fuel for their operations. Although, traditionally, these machines were subjects of investigation in biology and biochemistry, increasing use of the concepts and techniques of physics in recent years have contributed to the quantitative understanding of the fundamental principles underlying their operational mechanisms. The possibility of exploiting these principles for the design and control of artificial nano-machines has opened up a new frontier in the bottom-up approach to nano-technology.

Debashish Chowdhury

2008-07-17T23:59:59.000Z

191

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Green Energy (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

192

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

193

Resource Guide for Technology Transfer to the Pulp and Paper Industry: Part 4: Power Plant Maintenance and Repair  

Science Conference Proceedings (OSTI)

In response to requests from EPRI's member utilities, EPRI's Pulp, Paper and Forest Products Office has developed a Resource Guide for technology products related to that industry. The Resource Guide contains an initial listing of technical reports, software, and products associated with power plant maintenance and repair as found in the EPRIWeb electronic database. These products are arranged to provide the reader with a quick evaluation of each item for applicability to the reader's specific needs.

2000-03-19T23:59:59.000Z

194

Data warehousing and mining technologies for adaptability in turbulent resources business environments  

Science Conference Proceedings (OSTI)

Resources businesses often undergo turbulent and volatile periods, due to rapid increase of resource demand and poorly organised resources data volumes. This volatile industry operates multifaceted business units that manage heterogeneous data sources. ...

Shastri L. Nimmagadda; Heinz Dreher

2011-04-01T23:59:59.000Z

195

MHK Projects/US Navy Wave Energy Technology WET Program at Marine...  

Open Energy Info (EERE)

of Devices Deployed 6 Number of Build Out Units Deployed 7 Main Overseeing Organization Ocean Power Technologies Project Technology *MHK TechnologiesPowerBuoy Project Timeline and...

196

MHK Technologies/Pelamis | Open Energy Information  

Open Energy Info (EERE)

Pelamis Pelamis < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelamis.jpg Technology Profile Primary Organization Pelamis Wave Power formerly Ocean Power Delivery Project(s) where this technology is utilized *MHK Projects/Aguçadoura *MHK Projects/Orcadian Wave Farm Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Pelamis Wave Energy Converter is a semi-submerged, articulated structure composed of cylindrical sections linked by hinged joints. The wave-induced motion of these joints is resisted by hydraulic rams, which pump high-pressure fluid through hydraulic motors via smoothing accumulators. The hydraulic motors drive electrical generators to produce electricity. Power from all the joints is fed down a single umbilical cable to a junction on the sea bed. Several devices can be connected together and linked to shore through a single seabed cable.

197

MHK Technologies/Grampus | Open Energy Information  

Open Energy Info (EERE)

Grampus Grampus < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Grampus.jpg Technology Profile Primary Organization Offshore Wave Energy Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Grampus is a floating wave energy platform that uses wave action to compress air in a horizontal duct The compressed air is accumulated in a reservoir and is then used to drive a unidirectional turbine Technology Dimensions Device Testing Date Submitted 52:18.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Grampus&oldid=681581

198

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network (OSTI)

. The decarbonisation of the global power system depends first and foremost on the rate at which highly emitting technologies based on fossil fuels can be substituted for cleaner ones. While fossil fueled electricity generation technologies are mature and well... determine the 90% confidence level, and the blue curve corresponds to the most probable set of values. Uncertainty in the determination of natural resource avail- ability is notable in the case of fossil fuel reserves and re- sources. Rogner (1997) paints a...

Mercure, Jean-Francois

2011-08-25T23:59:59.000Z

199

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

200

A method for EIA scoping of wave energy converters-based on classification of the used technology  

SciTech Connect

During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

2012-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MHK Technologies/Langlee E2 | Open Energy Information  

Open Energy Info (EERE)

Langlee E2 Langlee E2 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Langlee E2.jpg Technology Profile Primary Organization Langlee Wave Power AS Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Sea waves move the hinged water wings of each submerged Langlee module analogous to the way sound waves move the diaphragm of a microphone Energy absorbed from wave motion by the moving water wings drives a hydraulic system which powers electric generators The array of Langlee power converter modules floats for best energy capture wave energy is highest just beneath the water surface The Langlee system is anchored to the seabed Each Langlee module has two pair of water wings located one half wavelength apart move in opposing directions as waves pass through the Langlee array

202

Energy from the west: a progress report of a technology assessment of western energy resource development. Executive summary  

SciTech Connect

This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 2000.

White, I.L.; Chartock, M.A.; Leonard, R.L.; LaGrone, F.S.; Bartosh, C.P.

1977-10-01T23:59:59.000Z

203

Program on Technology Innovation: Effect of Seismic Wave Incoherence on Foundation and Building Response  

Science Conference Proceedings (OSTI)

Task S2.1 of the New Plant Seismic Issues Resolution Programa joint effort of EPRI and the Department of Energy (DOE)entails a research program into the effect of seismic wave incoherence on foundation and building response. The tasks objective is to systematically study seismic wave incoherence effects on structures/foundations similar to those being considered for advanced reactor designs. Seismic wave incoherence occurs because of horizontal spatial variation of both horizontal and vertical ground mot...

2006-11-15T23:59:59.000Z

204

Audit Report on "The Office of Science's Management of Information Technology Resources"  

SciTech Connect

The Department of Energy's Office of Science (Science) and its facility contractors are aggressive users of information technology (IT) to support fundamental research in areas such as energy, environmental remediation and computational sciences. Of its $4 billion Fiscal Year 2008 budget, Science spent about $287 million to manage its IT program. This included cyber security activities, acquisition of hardware and software, and support service costs used to maintain the operating environments necessary to support the missions of the program. Prior Office of Inspector General reports have identified various issues with Science's management of its IT programs and resources. For instance, our report on Facility Contractor Acquisition and Management of Information Technology Hardware (DOE/IG-0768, June 2007) noted that the Science sites reviewed spent more than necessary when acquiring IT hardware. In another example, our review of The Department's Efforts to Implement Common Information Technology Services at Headquarters (DOE/IG-0763, March 2007) disclosed that Science's reluctance to adopt the Department of Energy Common Operating Environment (DOE-COE) at Headquarters contributed to the Department's inability to fully realize potential cost savings through consolidation and economies of scale. In light of the magnitude of the Office of Science IT program and previously identified program weaknesses, we initiated this audit to determine whether Science adequately managed its IT resources. Science had taken a number of actions to improve its cyber security posture and align its program to Federal requirements. Yet, our review disclosed that it had not taken some basic steps to enhance security and reduce costs. In particular, we found that: (1) For their non-scientific computing environments, all seven of the field sites reviewed (two Federal, five contractor) had implemented security configurations that were less stringent than those included in the Federal Desktop Core Configuration. This configuration was designed by the National Institute of Standards and Technology and its use was mandated by the Office of Management and Budget; (2) Although we previously highlighted weaknesses and recommended corrective actions, Science still had not fully established or enforced IT hardware standards for acquiring hardware such as desktop and laptop computers or related peripherals, contributing to significant unnecessary expenditures; and (3) While we have noted in a series of past reports that significant savings could be realized from aggregating demand for IT services and products across the enterprise, Science had not implemented a common infrastructure for users at its Federal sites and continued to maintain an IT environment independent of the Department's Common IT Operating Environment. The weaknesses identified were attributable, at least in part, to a lack of adequate policies and procedures for ensuring effective cyber security and hardware acquisition practices. In addition, Science had not effectively monitored the performance of its field sites to ensure that previously reported internal control weaknesses were addressed and had not implemented an appropriate mechanism to track its IT-related costs. Without improvements, Science may be unable to realize the benefits of improved security over its information systems, reduce costs associated with hardware acquisition, and lower IT support costs through consolidation of services. In particular, we determined that Science could potentially realize savings of more than $3.3 million over the next three years by better controlling hardware costs and implementing standards for certain equipment. Furthermore, Science could continue to pay for duplicative IT support services and fail to take advantage of opportunities to lower costs and apply potential savings to mission-related work. During the course of our audit work, we learned from Science officials that they had initiated the process of revising the Program Cyber Security Plan to better clarify its policy for implementing

None

2009-11-01T23:59:59.000Z

205

Audit Report on "The Office of Science's Management of Information Technology Resources"  

SciTech Connect

The Department of Energy's Office of Science (Science) and its facility contractors are aggressive users of information technology (IT) to support fundamental research in areas such as energy, environmental remediation and computational sciences. Of its $4 billion Fiscal Year 2008 budget, Science spent about $287 million to manage its IT program. This included cyber security activities, acquisition of hardware and software, and support service costs used to maintain the operating environments necessary to support the missions of the program. Prior Office of Inspector General reports have identified various issues with Science's management of its IT programs and resources. For instance, our report on Facility Contractor Acquisition and Management of Information Technology Hardware (DOE/IG-0768, June 2007) noted that the Science sites reviewed spent more than necessary when acquiring IT hardware. In another example, our review of The Department's Efforts to Implement Common Information Technology Services at Headquarters (DOE/IG-0763, March 2007) disclosed that Science's reluctance to adopt the Department of Energy Common Operating Environment (DOE-COE) at Headquarters contributed to the Department's inability to fully realize potential cost savings through consolidation and economies of scale. In light of the magnitude of the Office of Science IT program and previously identified program weaknesses, we initiated this audit to determine whether Science adequately managed its IT resources. Science had taken a number of actions to improve its cyber security posture and align its program to Federal requirements. Yet, our review disclosed that it had not taken some basic steps to enhance security and reduce costs. In particular, we found that: (1) For their non-scientific computing environments, all seven of the field sites reviewed (two Federal, five contractor) had implemented security configurations that were less stringent than those included in the Federal Desktop Core Configuration. This configuration was designed by the National Institute of Standards and Technology and its use was mandated by the Office of Management and Budget; (2) Although we previously highlighted weaknesses and recommended corrective actions, Science still had not fully established or enforced IT hardware standards for acquiring hardware such as desktop and laptop computers or related peripherals, contributing to significant unnecessary expenditures; and (3) While we have noted in a series of past reports that significant savings could be realized from aggregating demand for IT services and products across the enterprise, Science had not implemented a common infrastructure for users at its Federal sites and continued to maintain an IT environment independent of the Department's Common IT Operating Environment. The weaknesses identified were attributable, at least in part, to a lack of adequate policies and procedures for ensuring effective cyber security and hardware acquisition practices. In addition, Science had not effectively monitored the performance of its field sites to ensure that previously reported internal control weaknesses were addressed and had not implemented an appropriate mechanism to track its IT-related costs. Without improvements, Science may be unable to realize the benefits of improved security over its information systems, reduce costs associated with hardware acquisition, and lower IT support costs through consolidation of services. In particular, we determined that Science could potentially realize savings of more than $3.3 million over the next three years by better controlling hardware costs and implementing standards for certain equipment. Furthermore, Science could continue to pay for duplicative IT support services and fail to take advantage of opportunities to lower costs and apply potential savings to mission-related work. During the course of our audit work, we learned from Science officials that they had initiated the process of revising the Program Cyber Security Plan to better clarif

2009-11-01T23:59:59.000Z

206

MHK Technologies/New Pendulor | Open Energy Information  

Open Energy Info (EERE)

Pendulor Pendulor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Pendulor.jpg Technology Profile Primary Organization Muroran Institute of Technology Project(s) where this technology is utilized *MHK Projects/Muroran Institute of Technology Pilot Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The New Pendulor consists of a high-efficiency power extractor of the pendulum type installed in a pile supporting structure and a solid back wall, which will act as a detached breakwater. The structural system is designed to distribute the incident wave power to be reflected, absorbed and transmitted through a hydraulic pump. The back wall has low crest elevation to decrease wave force at storm waves, and a clearance between its bottom and the seabed to allow on-off shore movement of sediment.

207

MHK Technologies/NAREC | Open Energy Information  

Open Energy Info (EERE)

NAREC NAREC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage NAREC.jpg Technology Profile Primary Organization NaRec New and Renewable Energy Centre Technology Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers move their innovative design concepts towards commercialisation Where the Evopod was tested Technology Dimensions Device Testing Date Submitted 04:07.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/NAREC&oldid=681614" Category: Marine and Hydrokinetic Technologies What links here Related changes Special pages Printable version

208

Long-range assessment of R and D policy for gas-related conversion technologies and unconventional natural gas resources  

Science Conference Proceedings (OSTI)

This study analyzes the energy impacts on the US energy-economy system on a set of successful R and D programs. These programs are presumed to have led to the commercialization of innovative technologies that increase the US gaseous fuels resource base and promote the development of advanced natural gas conversion technologies for residential/commercial uses. The GRI and its principal subcontractor, TRW Incorporated, provided the detailed specifications of the energy conditions for both a Base Case and an R and D Policy Case. These conditions can be broadly categorized in terms of key energy resource price assumptions, energy resource availabilities, technology characterizations and market penetration guidelines for all energy technologies. Dale W. Jorgenson Associates (DJA) developed a set of demographic and economic projections including population, employment, and real GNP growth rates. The GRI and TRW staff provided the technology characterizations for most of the gas-related technologies and a number of other technologies. The data for the remaining technology characterizations were taken, for the most part, from Bhagat et al. This report presents the energy results from the BNL/DJA energy-economy system as executed under GRI specifications. It is intended to serve as a complement to the DJA report on the macro-economic consequences of these specifications. Certain assumption incorporated in the R and D and Base scenarios relating to market penetration were identified as particularly sensitive. In light of the uncertainty inherent in them, an additional set of sensitivity runs were requested by GRI and are presented in Appendix B.

Kydes, A.S.; Rabinowitz, J.

1980-04-25T23:59:59.000Z

209

MHK Technologies/Trident 1 | Open Energy Information  

Open Energy Info (EERE)

Trident 1 Trident 1 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Trident 1.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Own patented permanent magnet tubular linear generators Multiple generators clustered in PowerPod PowerPods rated and tuneable to match specific wave site and climate Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Proprietary Technology Dimensions Technology Nameplate Capacity (MW) Proprietary

210

MHK Technologies/Platform generators | Open Energy Information  

Open Energy Info (EERE)

generators generators < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description In the platform configuration the generators sit on a platform and buoy floats move the generator s coil up and down as waves and swell pass underneath Technology Dimensions Device Testing Date Submitted 06:09.4 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Platform_generators&oldid=681636

211

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report  

DOE Green Energy (OSTI)

This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

Cole, G.H.

1998-04-01T23:59:59.000Z

212

MHK Technologies/WET NZ | Open Energy Information  

Open Energy Info (EERE)

NZ NZ < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WET NZ device is planned to have a modular generation capability of up to 500 kW with onboard controls that will be able to accurately forecast incoming waves and adjust the response to changing wave patterns The device will be largely sub surface so that as much of the device as possible interacts directly with the wave energy Technology Dimensions

213

Wave Energy  

Energy.gov (U.S. Department of Energy (DOE))

Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.)

214

Geothermal resources and technology in the United States. Supporting Paper No. 4  

DOE Green Energy (OSTI)

The types of geothermal resources and their energy contents and producibility are reviewed. The production method and costs, production rates, and prerequisites of development are discussed. (MHR)

Not Available

1979-01-01T23:59:59.000Z

215

MHK Technologies/Hidroflot | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hidroflot.jpg Technology Profile Primary Organization Hidroflot S L Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Hidroflot is a floating platform with 16 wave captors floats The wave action moves the floaters through the columns The up and down movement of each two buoys drives an electromechanical system The design allows the system to gather each unit s individual push into a single output line Each platform acts as an independent power station producer of 6MW A wave power park consisting of 8 10 platforms in a one square mile area could generate an electrical output of 50 MW All the platforms are connected to a single output point from where the energy produced is delivered to onshore transmission

216

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development  

Science Conference Proceedings (OSTI)

Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

2002-09-01T23:59:59.000Z

217

Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation  

SciTech Connect

Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

1980-11-01T23:59:59.000Z

218

An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology  

Science Conference Proceedings (OSTI)

In 1976, John D. Isaacs proposed to use wave energy to invert the density structure of the ocean and pump deep, nutrient-rich water into the sunlit surface layers. The basic principle is simple: a length of tubing attached to a surface buoy at ...

Angelicque White; Karin Bjrkman; Eric Grabowski; Ricardo Letelier; Steve Poulos; Blake Watkins; David Karl

2010-02-01T23:59:59.000Z

219

Large resource development projects as markets for passive solar technologies. Final report  

DOE Green Energy (OSTI)

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

220

Ocean Energy Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Energy Technology Basics Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind powers ocean waves. Learn more about: Ocean Thermal Energy Conversion Tidal Energy Wave Energy Ocean Resources Addthis Related Articles Energy Department Releases New Energy 101 Video on Ocean Power A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices  

DOE Green Energy (OSTI)

Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

1993-10-01T23:59:59.000Z

222

MHK Technologies/WEPTOS WEC | Open Energy Information  

Open Energy Info (EERE)

WEPTOS WEC WEPTOS WEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WEPTOS WEC.jpg Technology Profile Primary Organization Weptos A S Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Through its floating angular construction the wave energy converter is able to regulate the wave energy input and reduce the impact during rough weather conditions The V shaped structure absorbs the wave energy through a line of rotors which each of them transmits the energy to a common axle directly attached to a generator This way an even energy generation throughout the wave duration follows enabling for other known generator solutions to be applied

223

MHK Technologies/Zero Impact Water Current Turbine | Open Energy  

Open Energy Info (EERE)

Zero Impact Water Current Turbine Zero Impact Water Current Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Green Wave Energy Corp GWEC Project(s) where this technology is utilized *MHK Projects/Green Wave Mendocino *MHK Projects/Green Wave San Luis Obispo Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Green Wave Zero Impact Water Current Turbine is a water current turbine that will revolutionize power generation as we know it Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Zero_Impact_Water_Current_Turbine&oldid=681718

224

The technology roadmap for plant/crop-based renewable resources 2020  

DOE Green Energy (OSTI)

The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hit the vision target of a fivefold increase in renewable resource use by 2020.

McLaren, J.

1999-02-22T23:59:59.000Z

225

Energy Technologies for the West: possible effects of energy technology on land, water, and air resources. Workshop held in San Francisco, California, 21 September 1976  

DOE Green Energy (OSTI)

John Fraser, Association of California Water Agencies, spoke on the effect of energy technology on California's water resources. He pointed out that by the year 2000, a water deficiency of about 2,250,000 acre-feet will exist in California; therefore, many agencies will not indefinitely commit supplies of fresh water for power plant cooling. Legislation for siting power plants along the coastline is summarized. Dr. James Liverman, ERDA, noted a remark by Mr. Fraser that, in its national plan, ERDA ''does not appear to pay much attention to the water issue''; he agrees, but says ERDA is committed to working with the Water Resources Council, with establishments in each state. Professor Robert Hagan, Univ. of California, reports on a program to investigate the energy required to develop water, or, in short, to move water to where it is to be used; water which may be associated with the use and conservation of water; the energy associated with waste-water treatment; and waste-water reuse. Speaker Zock Willey, Environmental Defense Fund, briefly evaluated the environmental impact of an energy technology by saying that the public has a right to know and say what the risks are in terms of the trade-offs. Russ Freeman, EIA, says he doesn't believe it possible to have an energy program in the traditional concept of a government program. EPA has learned that energy is an input to every societal process and pollution is an output from virtually everything that society does. The final speaker, Fayne L. Tucker, Lake County Air Pollution Control District, reviewed the potential of geothermal resources, saying that it is believed the Lake County government can, with the state and Federal government, plan geothermal development. It is also believed the Geysers should be considered as a payoff area. An extensive question and answer session completed the workshop. (MCW)

Not Available

1976-01-01T23:59:59.000Z

226

Technology selection and architecture optimization of in-situ resource utilization systems  

E-Print Network (OSTI)

This paper discusses an approach to exploring the conceptual design space of large-scale, complex electromechanical systems that are technologically immature. A modeling framework that addresses the fluctuating architectural ...

Chepko, Ariane (Ariane Brooke)

2009-01-01T23:59:59.000Z

227

60-GHz millimeter-wave radio: principle, technology, and new Results  

Science Conference Proceedings (OSTI)

The worldwide opening of a massive amount of unlicensed spectra around 60 GHz has triggered great interest in developing affordable 60-GHz radios. This interest has been catalyzed by recent advance of 60-GHz front-end technologies. This paper briefly ...

Nan Guo; Robert C. Qiu; Shaomin S. Mo; Kazuaki Takahashi

2007-01-01T23:59:59.000Z

228

Millimeter Wave Sensor Technologies Track Biometrics; Detect Chemicals, Gases, and Radiation  

Security threats come in many formsairborne, radiative, gaseous, human, or infiltrativeand it can be costly and impractical to deploy a broad suite of detector technologies to identify all potential hazards in public places. Argonnes millimeter ...

229

Independent Natural Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Inc Natural Resources Inc Jump to: navigation, search Name Independent Natural Resources Inc Place Eden Prairie, Minnesota Zip 55344 Product Designer of a wave converter system. Has patented the SEADOG Pump which uses buoyancy to convert ave energy to mechanical energy. References Independent Natural Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Independent Natural Resources Inc is a company located in Eden Prairie, Minnesota . References ↑ "Independent Natural Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Independent_Natural_Resources_Inc&oldid=678906"

230

MHK Technologies/SeaWEED | Open Energy Information  

Open Energy Info (EERE)

SeaWEED SeaWEED < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaWEED.jpg Technology Profile Primary Organization Grey Island Energy Inc Technology Resource Click here Wave Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Energy Extraction Device is designed to maximize power production while maintaining a high degree of survivability in some of the world s harshest environments The device is designed to harness power generated by ocean surface waves by adjusting to varying wave conditions and utilizing a hydraulic takeoff system to transmit mechanical power Technology Dimensions Device Testing Scale Test *In water tests of the system were successfully completed in the tow tank of NRC Institute for Ocean Technology

231

MHK Technologies/SARAHS Pump | Open Energy Information  

Open Energy Info (EERE)

SARAHS Pump SARAHS Pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SARAHS Pump.jpg Technology Profile Primary Organization College of the North Atlantic Project(s) where this technology is utilized *MHK Projects/Wave Powered Pumping of Seawater for On Shore Use and Electrical Generation Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Wave power is a viable source of alternate energy in coastal areas Our Burin Campus spearheads this innovative project aiming at harnessing the ocean wave energy into onshore commercial applications The technology is an outstanding achievement by a dedicated team of researchers managers and financers

232

MHK Technologies/The DUCK | Open Energy Information  

Open Energy Info (EERE)

DUCK DUCK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The DUCK.jpg Technology Profile Primary Organization Edinburgh University aka Wave Power Group Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Duck is a crest spanning spine mounted slack moored deep water floating electricity generating terminator Tank tests showed that it could capture energy from regular waves with great efficiency Technology Dimensions Device Testing Date Submitted 57:51.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/The_DUCK&oldid=681667"

233

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian ...

234

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian Renewable Energy ...

235

MHK Technologies/Hybrid Float | Open Energy Information  

Open Energy Info (EERE)

Float Float < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid Float.jpg Technology Profile Primary Organization PerpetuWave Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Elongated floats operate parallel to the wave fronts so that maximum energy extraction from the waves is possible by the large cross sectional area of the floats to be immersed in a wave front at once and thence moved upwards with the wave A further major feature of the Technology is the motion of the floats that due to the trailing arm type design move backwards as well as upwards so that the energy in the moving water and of any breaking waves on the floats is transferred to useable energy of the float by forcing the floats backwards as well as upwards This motion mimics the motion of an unattached float on the surface of the water as waves pass This is unique to our technology and combined with the large cross sectional area offered by the float design in the highest pulse loading possible This is repeated a number of times as a wave passes through with a resultant optimum energy extraction from the wave Below the vessel are fixed horizontal staliser plates that limit the r

236

MHK Technologies/Protean | Open Energy Information  

Open Energy Info (EERE)

Protean Protean < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Protean.jpg Technology Profile Primary Organization Protean Power Pty Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Applications for Protean Utility scale power plants Remote installations and near shore power Offshore power applications i Sonar Radar Systems ii Border Security iii Aquaculture fish farming Desalination plants to convert seawater to fresh potable drinking water Mooring Configuration Proprietary Optimum Marine/Riverline Conditions The PWEC is engineered to work in wave heights from 0 5m 1 5ft to in excess of 5m 16ft with a wave period from 4 seconds to 14 seconds

237

MHK Technologies/TETRON | Open Energy Information  

Open Energy Info (EERE)

TETRON TETRON < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TETRON.jpg Technology Profile Primary Organization Joules Energy Efficiency Services Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The TETRON device utilizes both the heave and surge motion of the waves The TETRON device uses an immersed sphere at the centroid of a tetrahedron cable stayed structure with double acting tube pump power take off in telescopic struts a Pelton turbine and an electric generator Currently only a 1 38 scale prototype has been built and wave tank tested Technology Dimensions

238

Development of a New Stratigraphic Trap Exploration Using Elastic-Wave Seismic Technology  

Science Conference Proceedings (OSTI)

Vecta acquired 9 square miles of 9-C seismic data in Mountrail County, North Dakota with the Mission Canyon shoreline as a primary target. Vecta contracted the Institute Francais du Petrole in order to co-develop a more rigorous multicomponent seismic interpretation product. The final interpretation was very unique in that it utilized not only the 9-C seismic data but also the new jointly developed software. A Mission Canyon anomaly was developed in 2006; however, it was of insufficient size to be a commercial target at the time. Therefore, Vecta analyzed the shear data for anisotropy within the Bakken formation and successfully reentered an abandoned producer within the project area and drilled a horizontal leg through the anomalous zones of the middle member of the Bakken formation. The well was open hole completed, swab tested, sand fraced, and swab tested some more. No shows of oil were ever seen from the Bakken formation, but the well yielded considerable amounts of formation water. The well has been abandoned as non-commercial. From the swab tests, one may conclude considerable permeability exists in the formation, thus confirming the utility of the shear wave to detect fractures within the targeted formation.

Bryan DeVault

2008-02-05T23:59:59.000Z

239

Technology Assessment of Interconnection Products for Distributed Resources: Research and Development Recommendations  

Science Conference Proceedings (OSTI)

A compatible and economical connection with the resident electrical power system is a key to realizing the full value of distributed generation and storage. This technology assessment looks at the status of interconnection equipment used for interconnecting distributed generation and storage with electric power systems. The assessment is intended to identify business opportunities and to provide specific research and development recommendations based on a manufacturer survey and technical assessment desc...

2000-12-11T23:59:59.000Z

240

Energy Basics: Wave Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource...

242

High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology  

Science Conference Proceedings (OSTI)

Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

Joe Williams

2010-12-31T23:59:59.000Z

243

MHK Technologies/Mobil Stabilized Energy Conversion Platform | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Mobil Stabilized Energy Conversion Platform MHK Technologies/Mobil Stabilized Energy Conversion Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Mobil Stabilized Energy Conversion Platform.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Stabilized Energy Conversion Platform SECOP consists of submersible hulls supporting a raised work platform containing a number of AMI s reciprocating electric generators Technology Dimensions Device Testing Date Submitted 34:44.5 << Return to the MHK database homepage Retrieved from

244

MHK Technologies/Electroactive Polymer Artificial Muscle EPAM | Open Energy  

Open Energy Info (EERE)

Electroactive Polymer Artificial Muscle EPAM Electroactive Polymer Artificial Muscle EPAM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electroactive Polymer Artificial Muscle EPAM.jpg Technology Profile Primary Organization SRI International Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Description This wave powered generator is unique in that it uses SRI s Electroactive Polymer Artificial Muscle EPAM technology a rubbery material that can generate electricity by simply being stretched and allowed to return to its original shape This artificial muscle technology can generate electricity directly from the motion of waves without the need for complicated and costly hydraulic transmissions that are typically found in other wave power generators

245

MHK Technologies/Hybrid System | Open Energy Information  

Open Energy Info (EERE)

System System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hybrid System.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description To take advantage of wave power and solar power to provide a stable power source a Wave Activated Generator was combined with a solar battery In stormy the wave activated generator is used and in fair weather solar battery is used to provide a power supply with a high output This is used as the power source for measuring instruments on the islands off the power source for measuring instruments on the islands off the southernmost coast of Japan and for the buoy of the United States Coast Guard and TRINITY HOUSE LIGHTHOUSES SERVICE

246

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

247

MHK Technologies/Wavemill | Open Energy Information  

Open Energy Info (EERE)

Wavemill Wavemill < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wavemill.jpg Technology Profile Primary Organization Wavemill Energy Project(s) where this technology is utilized *MHK Projects/Wavemill Energy Cape Breton Island NS CA Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wavemill device utilizes wave motion to drive pistons, which drive a water pump. The water is then pumped ashore where it undergoes reverse osmosis and becomes desalinated. Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage

248

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

249

MHK Technologies/SurgeWEC | Open Energy Information  

Open Energy Info (EERE)

SurgeWEC SurgeWEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SurgeWEC.JPG Technology Profile Primary Organization Resolute Marine Energy Inc Project(s) where this technology is utilized *MHK Projects/SurgeWEC Ocean Testing 1 *MHK Projects/Ocean Trials Ver 2 Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A bottom mounted hinged flap that oscillates in response to surface wave activity Mooring Configuration TBD Optimum Marine/Riverline Conditions Devices positoned just outside of the surf zone in hard bottom environment Technology Dimensions

250

MHK Technologies/C5 | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies Jump to: navigation, search << Return to the MHK database homepage C5.jpg Technology Profile Primary Organization Wave Star Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Description The C5 is anchored perpendicular to the motion of the waves On either side of the oblong machine are 20 hemisphere shaped floats that are partially submerged in the water When a wave rolls in the floats are lifted upwards in succession by the wave crest The floats are each positioned at the base of their own hydraulic cylinder When a float is raised a piston in the cylinder presses oil into the machines common transmission system with a pressure of up to 200 bar 2900 psi The pressure drives a hydraulic motor that is connected to a generator

251

MHK Technologies/IPS OWEC Buoy | Open Energy Information  

Open Energy Info (EERE)

IPS OWEC Buoy IPS OWEC Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage IPS OWEC Buoy.jpg Technology Profile Primary Organization Interproject Service AB Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The IPS OWEC Offshore Wave Energy Converter Buoy is a system for generating electricity from ocean waves at a cost competitive with fossil fuel generated power Cluster of buoys gives energy and act as wave breaker Off shore wave energy converters and systems with great flexibility Units from 10 kW 150 kW annual mean power A new interesting alternative for the internal energy conversion is based on a set of hose pumps driven by the piston in the acceleration tube pumping water to a small turbine directly coupled to a special generator

252

MHK Technologies/OWC | Open Energy Information  

Open Energy Info (EERE)

OWC OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OWC.jpg Technology Profile Primary Organization RWE npower renewables Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The breaking waves force water into an opening below water level which is then sucked out again when the waves retreat This constant rise and fall sets a column of water trapped in several chambers in motion The air mass above water is thus alternately compressed and sucked in powering a turbine that generates electricity The pilot plant s output will be enough to supply around 1 500 homes with electricity

253

Audit Report "Department of Energy Efforts to Manage Information Technology Resources in an Energy-Efficient and Environmentally Responsible Manner"  

Science Conference Proceedings (OSTI)

The American Recovery and Reinvestment Act of 2009 emphasizes energy efficiency and conservation as critical to the Nation's economic vitality; its goal of reducing dependence on foreign energy sources; and, related efforts to improve the environment. The Act highlights the significant use of various forms of energy in the Federal sector and promotes efforts to improve the energy efficiency of Federal operations. One specific area of interest is the increasing demand for Federal sector computing resources and the corresponding increase in energy use, with both cost and environmental implications. The U.S. Environmental Protection Agency reported that, without aggressive conservation measures, data center energy consumption alone is expected to double over the next five years. In our report on Management of the Department's Data Centers at Contractor Sites (DOE/IG-0803, October 2008) we concluded that the Department of Energy had not always improved the efficiency of its contractor data centers even when such modifications were possible and practical. Despite its recognized energy conservation leadership role, the Department had not always taken advantage of opportunities to reduce energy consumption associated with its information technology resources. Nor, had it ensured that resources were managed in a way that minimized impact on the environment. In particular: (1) The seven Federal and contractor sites included in our review had not fully reduced energy consumption through implementation of power management settings on their desktop and laptop computers; and, as a consequence, spent $1.6 million more on energy costs than necessary in Fiscal Year 2008; (2) None of the sites reviewed had taken advantage of opportunities to reduce energy consumption, enhance cyber security, and reduce costs available through the use of techniques, such as 'thin-client computing' in their unclassified environments; and, (3) Sites had not always taken the necessary steps to reduce energy consumption and resource usage of their data centers, such as identifying and monitoring the amount of energy used at their facilities. We concluded that Headquarters programs offices (which are part of the Department of Energy's Common Operating Environment) as well as field sites had not developed and/or implemented policies and procedures necessary to ensure that information technology equipment and supporting infrastructure was operated in an energy-efficient manner and in a way that minimized impact on the environment. For example, although required by the Department, sites had not enabled computer equipment power management features designed to reduce energy consumption. In addition, officials within Headquarters programs and at the sites reviewed had not effectively monitored performance or taken steps to fully evaluate available reductions in energy usage at their facilities. Without improvements, the Department will not be able to take advantage of opportunities to reduce energy consumption and realize cost savings of nearly $23 million over the next five years at just the seven sites reviewed. We noted that the potential for reduced energy consumption at these sites alone was equivalent to the annual power requirements of over 2,400 homes or, alternatively, removing about 3,000 cars from the road each year. Many of the available energy reduction strategies, such as fully utilizing energy-efficient settings on the many computers used by the Department and its contractors, are 'low hanging fruit' in that they will provide immediate tangible energy savings at little or no cost. Others, such as a shift to thin-client computing, an environment that transfers the processing capabilities from an individual's desk to a shared server environment, will require some level of investment which can, based on available literature, be successfully recovered through reduced acquisition and support costs. In our judgment, given its highly visible leadership in energy issues, aggressive action should be taken to make the Department's information technology operati

None

2009-05-01T23:59:59.000Z

254

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

255

Nanoscale View of Shock Wave Propagation in Single Crystal Fe, W, and Ta for Nuclear Fusion Technology  

Science Conference Proceedings (OSTI)

IFE Design & Technology / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 2)

Santiago Cuesta-Lopez; J. M. Perlado

256

MHK Technologies/Seabased | Open Energy Information  

Open Energy Info (EERE)

Seabased Seabased < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seabased.jpg Technology Profile Primary Organization Seabased AB Project(s) where this technology is utilized *MHK Projects/Uppsala University Seabased AB Lysekil Sweden Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The co-developed Uppsala/Seabased AB Wave Energy Converter is a point absorber that consists of a direct-drive permanent magnet linear generator placed on the seabed and connected to a float on the surface. Technology Dimensions Device Testing Date Submitted 10/8/2010 << Return to the MHK database homepage Retrieved from

257

MHK Technologies/SPERBOY | Open Energy Information  

Open Energy Info (EERE)

SPERBOY SPERBOY < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SPERBOY.jpg Technology Profile Primary Organization Embley Energy Project(s) where this technology is utilized *MHK Projects/Plymouth Sound Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description SPERBOY is a floating buoy Oscillating Water Column (OWC) device consisting of a buoyant structure with a submerged, enclosed column. Housed above the OWC on top of the buoy is the plant: turbines, generators and associated system facilities. The principle of operation is similar to that of fixed OWCs designed for shoreline and fixed installations, except that the device is capable of deployment in deep water to maximize greatest energy source; and the entire body floats and maintains optimum hydrodynamic interactions for the prevailing wave spectrum, producing high energy capture at minimal cost.

258

MHK Technologies/Wavebob | Open Energy Information  

Open Energy Info (EERE)

Wavebob Wavebob < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wavebob.jpg Technology Profile Primary Organization Wavebob Project(s) where this technology is utilized *MHK Projects/ADM 4 *MHK Projects/ADM 3 *MHK Projects/ADM 5 *MHK Projects/WEC 1 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Wavebob is an axi-symmetric, self-reacting point absorber, primarily operating in the heave mode. It is specifically designed to recover useful power from ocean wave energy and to be deployed in large arrays offshore. Unlike all other self-reacting heaving buoys, the WaveBob's natural frequency may be set to match the typical ocean swell (Atlantic 10m, or Pacific 15m), facilitating good energy absorption. It can ride very large waves and still recover useful power. The WaveBob typically carries three or four motor-alternator sets, all or some of which may be entrained, depending on incident wave energy. Built-in redundancy facilitates remote switching and high availability when weather conditions might preclude maintenance visits.

259

MHK Technologies/WAG Buoy | Open Energy Information  

Open Energy Info (EERE)

WAG Buoy WAG Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WAG Buoy.jpg Technology Profile Primary Organization Ryokuseisha Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Wave Activated Generator Buoy By using the wave activated generator as the power supply for a buoy excellent economic and maintenance power saving properties are realized There is a complete line from mid size models for use with harbor engineering works to large models for use as actual channel markers The solar cell and the all purpose type hybrid type can also be used Technology Dimensions

260

MHK Technologies/Direct Drive Power Generation Buoy | Open Energy  

Open Energy Info (EERE)

Power Generation Buoy Power Generation Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Drive Power Generation Buoy.jpg Technology Profile Primary Organization Columbia Power Technologies Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Direct drive point absorber In 2005 Oregon State University entered into an exclusive license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130 feet of water it uses the rise and fall of ocean waves to generate electricity Mooring Configuration Anchored

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Review department programs related to intellectual property and technology transfer to ensure department resources are leveraged to the economic benefit of the US  

SciTech Connect

Review domestic and international policy, US Intellectual Property (IP) and Technology Transfer (TT) legislation, and related Department of Energy (DOE) programs to ensure Department resources are leveraged to the benefit of the US economy. Mapping such processes should determine if/how foreign governments and/or foreign owned or controlled enterprises, specifically Japanese and to a lessor extent other Pacific Rim nations, are able to access and at times leverage US technology to their benefit. This process will also generate lessons learned that should be useful to government and industry alike in the area of TT. The review will concentrate on technology innovations developed or funded by the Department.

Martin, S.W.

1995-02-01T23:59:59.000Z

262

Water Power Program: Resource Assessment and Characterization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the United States Ocean Wave Energy Resource This report, created by the Electric Power Research Institute, assesses ocean wave energy potential along the U.S. coasts....

263

INL - Hydrokinetic & Wave Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Center Turbine (790KB PDF) Hydromatrix - Innovative Solution For Low Impact Hydropower at Existing Engineered Structures (2.2MB PDF) Hydraulic Cross-Flow Turbines (3.5MB...

264

MHK Technologies/Oyster | Open Energy Information  

Open Energy Info (EERE)

Oyster Oyster < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oyster.png Technology Profile Primary Organization Aquamarine Power Project(s) where this technology is utilized *MHK Projects/40MW Lewis project *MHK Projects/Brough Head Wave Farm *MHK Projects/Oyster 1 Project *MHK Projects/Oyster 800 Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Oyster is a nearshore hydroelectric wave energy converter. The Oyster wave energy converter comprises a buoyant, bottom-hinged flap. Incoming waves cause the flap to oscillate backwards and forwards. This oscillating action drives double-acting hydraulic cylinders which pump fresh water through a high-pressure pipeline to an onshore hydroelectric power plant. The pressurised water drives a Pelton wheel turbine connected to an electrical generator. Multiple Oyster devices can feed through a pipe manifold into a single onshore hydroelectric system.

265

New Wave Power Project In Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Power Project In Oregon Wave Power Project In Oregon New Wave Power Project In Oregon June 17, 2011 - 3:12pm Addthis Mike Reed Water Power Program Manager, Water Power Program What does this project do? Promises to add tremendous value to the wave energy industry, reinforcing utility-scale viability, collecting ground-breaking environmental impact data and exploring avenues for cost reduction. Has issued localized manufacturing contracts for the PB150 to several Oregon companies. If you've ever been surfing, or gone swimming in choppy water, you've experienced first-hand the striking power of waves. In fact, further offshore, wave activity becomes even more powerful, making it an excellent resource for generating clean, renewable energy. That's exactly what the Department of Energy and its partner Ocean Power Technologies (OPT) are

266

MHK Technologies/WET EnGen | Open Energy Information  

Open Energy Info (EERE)

EnGen EnGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET EnGen.jpg Technology Profile Primary Organization Wave Energy Technologies Inc Project(s) where this technology is utilized *MHK Projects/Sandy Cove Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The EnGen point absorber, which features 'Smart Float' technology that allows the device to travel along a rigid spar at an incline of 45 degrees. The spar is moored at a single point of contact which allows the device to be fully compliant on all three axes (pitch, roll and yaw). Mooring Configuration Proprietary

267

MHK Technologies/Waveberg | Open Energy Information  

Open Energy Info (EERE)

Waveberg Waveberg < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Waveberg.jpg Technology Profile Primary Organization Waveberg Development Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Waveberg is an articulated set of connected floats that flex as the waves pass under them using this bending motion to pump seawater The resulting high pressure water is brought ashore through piping from the Waveberg and can be pumped through a turbine Engineered plastic pipe and fiberglass are the main materials since they are durable corrosion resistant low cost and easy to fabricate

268

MHK Technologies/Seahorse | Open Energy Information  

Open Energy Info (EERE)

Seahorse Seahorse < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seahorse.jpg Technology Profile Primary Organization E CO Energi Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A main buoy on the surface and a submerged torpedo buoy are connected to the submerged generator unit by separate cords The wave motion will move the surface buoy up and down while the torpedo buoy will move in the opposite direction This rotates the permanent magnet generator and produces electricity The cords and the generator can be described as a two drum two cord system In this way two drums have different sizes for the two cords to get correct speeds and force

269

Federal Energy Management Program: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Technology Deployment NEW Technology...

270

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

271

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

272

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

273

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

274

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

275

MHK Technologies/OceanStar | Open Energy Information  

Open Energy Info (EERE)

OceanStar OceanStar < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OceanStar.jpg Technology Profile Primary Organization Bourne Energy Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The OceanStar device captures the underlying pressure wave through a series of small turbine generators The OceanStar relies upon a proprietary energy efficient process to smooth out the pulse characteristics common to wave energy in order to be electrical grid friendly The OceanStars high level of scalability is essential to reach the large surface areas required to reach utility scale ocean power generation Technology Dimensions

276

MHK Technologies/European Pico Pilot Plant | Open Energy Information  

Open Energy Info (EERE)

European Pico Pilot Plant European Pico Pilot Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage European Pico Pilot Plant.jpg Technology Profile Primary Organization Wave Energy Centre Project(s) where this technology is utilized *MHK Projects/OWC Pico Power Plant Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description A bottom mounted shoreline oscillating water column structure equipped with a horizontal axis Wells turbine generator set and a guide vane stator installed on each side of the rotor Control options are facilitated by a relief valve presently a slow acting valve with plans to substitute a fast acting mechanism in the wave chamber

277

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

www.netl.doe.gov/technologies/oil-gas/publications/Hydrates/Exploration priorities for marine gas hydrates, Fire In Thewww.netl.doe.gov/technologies/oil-gas/publications/Hydrates/

Moridis, George J.

2008-01-01T23:59:59.000Z

278

Idaho National Laboratory - Hydropower Program - Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower Evaluation Software State Resource Assessments Resource Assessments Reports Technology Transfer Virtual Hydropower Prospector Virtual Hydropower Prospector do Brasil...

279

MHK Technologies/SeaRaser buoy seawater pump | Open Energy Information  

Open Energy Info (EERE)

SeaRaser buoy seawater pump SeaRaser buoy seawater pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaRaser buoy seawater pump.jpg Technology Profile Primary Organization Dartmouth Wave Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description SEARASER uses wave displacement to lift a float attached to a piston and uses gravity in the wave s following trough to push the piston back down It is different from other wecs as it is tethered to a weight on the seabed by a single flexible tether but utilises a double acting piston thereby producing volumes of pressurised water in both directions of the piston

280

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

282

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

283

MHK Technologies/The B1 buoy | Open Energy Information  

Open Energy Info (EERE)

buoy buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The B1 buoy.gif Technology Profile Primary Organization Fred Olsen Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Proprietary Mooring Configuration Proprietary Technology Dimensions Technology Nameplate Capacity (MW) Proprietary Device Testing Scale Test *Currently undergoing open sea testing scaled device Previous tests carried out in the sea with scaled devices 1 20 1 10 and 1 3 scale including the use of the research rig Buldra Lab Test *Various tests performed both in dry conditions and in wave test tanks 1 33 1 20 1 3

284

Proceedings of the ninth international symposium on remote sensing of environment, 15--19 April 1974. Volume II. [Earth Resources Technology Satellite  

SciTech Connect

Presentations were given on the utilization of remote sensing technology by regional governmental units and by federal governmental agencies, as well as various applications in monitoring and managing the earth's resources and man's global environment. Ground-based, airborne, and spaceborne sensor systems and manual and machine-assisted data analysis and interpretation are included. Separate entries were made for two papers.

1974-01-01T23:59:59.000Z

285

Distributed Energy Resources for Carbon Emissions Mitigation  

E-Print Network (OSTI)

2003. Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

Firestone, Ryan; Marnay, Chris

2008-01-01T23:59:59.000Z

286

Energy Department Invests $16 Million to Develop Wave and Tidal Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million to Develop Wave and Tidal 6 Million to Develop Wave and Tidal Energy Technologies Energy Department Invests $16 Million to Develop Wave and Tidal Energy Technologies August 29, 2013 - 12:00pm Addthis Image of machinery to generate energy using tides. As part of the Obama Administration's all-of-the-above strategy to deploy every available source of American energy, the Energy Department today announced $16 million for seventeen projects to help sustainably and efficiently capture energy from waves, tides, and currents. Together, these projects will increase the power production and reliability of wave and tidal devices and help gather valuable data on how deployed devices interact with the surrounding environment. "Wave and tidal energy represent a large, untapped resource for the United

287

MHK Technologies/Horizon Horizontal Platform | Open Energy Information  

Open Energy Info (EERE)

Horizontal Platform Horizontal Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Horizon Horizontal Platform.jpg Technology Profile Primary Organization Elgen Wave Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Horizon is an array of specialized point absorbers contained in an ultra stable floating platform The unique design of the platform causes it to be entirely unaffected by waves and swells allowing it to remain almost perfectly motionless Horizon converts energy on both the up and down strokes of the floats This oscillating bi directional motion is converted to a rotating mono directional motion by horizon s unique linear drive converters The output drive shaft is connected to a generator which in turn is connected to a transmission line laid on the ocean floor running to the utility grid on land

288

MHK Technologies/W2 POWER | Open Energy Information  

Open Energy Info (EERE)

POWER POWER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage W2 POWER.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Point absorbers for waves pump water to a Peltor turbine But on the same platform we also combine this with offshore wind mills Mooring Configuration Slack mooring but allowed to sway 90 degree around prevailing wind direction All within a frame mooring with capasity of i e 10 units This is similar to the type of mooring used by modern type ferrfloting fish faring i Norway but in larger scale Optimum Marine/Riverline Conditions Offshore deep water with average significant wave hight 2 5 m and periode average 5 6 Sice we combine wave and offshore wind power we also desired good wind conditions

289

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

290

MHK Technologies/Pelagic Power 1 | Open Energy Information  

Open Energy Info (EERE)

1 1 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pelagic Power 1.jpg Technology Profile Primary Organization Pelagic Power AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The technology of Pelagic Power has on a simple working principle based on a wave pump In its simplest form the wave pump consists of thre components a linear piston pump a water anchor and a surface bouy Pumps that are afloat 20 40 meters under the surface of the sea are key elements in Pelagic Power s wave energy concept In a submerged position the pumps are not at risk of being exposed to storm waves Within the new installations lie either so called absorbers or buoys upon the surface These devices gather energy from the waves and send it to the pumps located further down The pumps movement occurs between the absorber and a water anchor placed on each pump These pumps are called pelagic wave pumps and are not anchored to the seabed

291

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

292

MHK Technologies/FO | Open Energy Information  

Open Energy Info (EERE)

FO FO < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage FO.jpg Technology Profile Primary Organization SEEWEC Consortium lead partner Ghent University Project(s) where this technology is utilized *MHK Projects/SEEWEC Consortium Brevik NO Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The basic concept of the FO device consists of several 12 or 21 point absorbers placed under a floating platform Technology Dimensions Device Testing Date Submitted 9/28/2010 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/FO&oldid=680556

293

MHK Technologies/Finavera Buoy | Open Energy Information  

Open Energy Info (EERE)

Finavera Buoy Finavera Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Finavera Buoy.jpg Technology Profile Primary Organization Oregon Iron Works Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description MARINE DIVISION Oregon Iron Works Inc OIW has a globally recognized Marine Division with a wide range of advanced accomplishments from custom design prototype development Fabricate OPT Power Take Off 2007 Design Build Finavera Buoy 2007 Fabricate OPT Next Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic

294

Written Information Equipment TECHNOLOGY: Oral Information  

SCIENTIFIC OR TECHNOLOGICAL Equipment TECHNOLOGY: DEVELOPMENTAL RESOURCES Written Information Oral Information Hardware Facilities Data

295

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

296

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Petroleum Geology, Atlas of Oil and Gas Fields, Structuraland logging conventional oil and gas wells. The ability to

Moridis, George J.

2008-01-01T23:59:59.000Z

297

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel...

298

MHK Technologies/Pulse Stream 100 | Open Energy Information  

Open Energy Info (EERE)

Pulse Stream 100 Pulse Stream 100 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 100.jpg Technology Profile Primary Organization Pulse Tidal Ltd Project(s) where this technology is utilized *MHK Projects/Pulse Stream 100 Demonstration Project Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The 100kW Humber prototype system uses tidal streams to oscillate horizontal blades rather than extracting energy in the same way as a wind turbine through rotary blades. This mode of operation is the key to the device's unique access to shallow water and has so far shown that it can harness enough energy to power 70 homes. The device is connected to the national grid through nearby industrial process plant Millennium Inorganic Chemicals and Ethernet connected through neighbouring resin manufacturing company Cray Valley.

299

MHK Technologies/EPAM | Open Energy Information  

Open Energy Info (EERE)

EPAM EPAM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EPAM.jpg Technology Profile Primary Organization Artificial Muscle Incorporated Technology Resource Click here Wave Technology Description Artificial Muscle Inc AMI is a leading technology developer designer and manufacturer of actuator and sensing components based on a proprietary technology platform called Electroactive Polymer Artificial Muscle EPAM EPAM technology offers significant advantages over traditional technologies used to provide movement It is much lighter smaller quieter and cheaper and offers more controllable configurations The Diaphragm configuration originally developed for pumps and valves provides push and pull out of plane motion in a compact design that can be versatile for many applications thus called the Universal Muscle Actuator UMA Power Generation Valves Pumps

300

MHK Technologies/Seadov | Open Energy Information  

Open Energy Info (EERE)

Seadov Seadov < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Seadov.jpg Technology Profile Primary Organization Seadov Pty Ltd Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description 3 wind turbines power the reverse osmosis plant on board to desalinate the ocean water into potable water Subject to site location wave solar wind and tidal energy devices may be used to harness the available prevailing natural energy surrounding the site Technology Dimensions Device Testing Date Submitted 33:09.8 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Seadov&oldid=681648

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Information Resources: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Building Technologies Program - Information Resources Registration Online registration for the 2012 DOE SSL Market Introduction...

302

MHK Technologies/ITRI WEC | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search << Return to the MHK database homepage ITRI20kW.jpg Technology Profile Primary Organization Industrial Technology Research Institute Project(s) where this technology is utilized *MHK Projects/ITRI_WEC Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description Spec.:D 6m, Stroke 2.1m, Total Weight: 63.7 Mt, Total Length : 17.9 m, PTO: Hydraulic system, Power Generation Efficiency: Estimated 40% Designed to Operate with Shore Connection? No Distance from Shore (m) 800 Technology Dimensions Length (m) 6 Width (m) 6 Height (m) 17.9 Freeboard (m) 4.9 Draft (m) 13

303

wave | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281559 Varnish cache server wave Dataset Summary Description This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed especially for this study by National Oceanographic and Atmospheric Administration's (NOAA's) National Centers for Environmental Prediction. For total resource estimation, wave power density in terms of kilowatts per meter is aggregated across a unit diameter circle. Source Electric Power Research Institute (EPRI) Date Released December 05th, 2011 (3 years ago) Date Updated Unknown Keywords

304

Marine & Hydrokinetic Technologies (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

Not Available

2010-04-01T23:59:59.000Z

305

Resource: Engineering & Technology for a Sustainable World, Vol. 7 No. 4, April 2000: pp. 7-8.  

E-Print Network (OSTI)

-firing fuel mixed with coal to generate heat, steam, and electricity. Newer gasification technology allows to produce 0.9 billion gallons of ethanol (99% of US ethanol production). This ethanol is blended

306

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

307

Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Energy Program Tribal Summit Below are resources for Tribes on renewable energy technologies. Developing Clean Energy Projects on Tribal Lands: Data and Resources for...

308

MHK Technologies/Rho Cee | Open Energy Information  

Open Energy Info (EERE)

Rho Cee Rho Cee < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Rho Cee.png Technology Profile Primary Organization Float Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Rho Cee is a multi resonant Oscillating Water Column OWC system in a wide aperture Terminator configuration Constructed in pre stressed reinforced concrete it is deployed afloat in deep water from the similarly constructed Pneumatically Stabilized Platform PSP of Float Inc The principle of design and operation is Impedance Matching wherein the input impedance of the Rho Cee is intended to match that characteristic of the targeted wave climate Resonant operation with controllable loading assures the required impedance matching Power take off See Components below Maintainability assured by all equipment located in the dry accessible to personnel on foot

309

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

310

MHK Technologies/Floating absorber | Open Energy Information  

Open Energy Info (EERE)

absorber absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating absorber.jpg Technology Profile Primary Organization Euro Wave Energy Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The main module consists of Two drive wheels on each side of the vertical running rod which always move in the opposite direction A unique connection of two camclutches which operate such that at all time the correct rotating direction in one of the drive wheels run the generator Generator and buoyancy elements Technology Dimensions Device Testing Date Submitted 27:29.6

311

MHK Technologies/Titan Platform | Open Energy Information  

Open Energy Info (EERE)

Titan Platform Titan Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Titan Platform.jpg Technology Profile Primary Organization Grays Harbor Ocean Energy Company LLC Project(s) where this technology is utilized *MHK Projects/Grays Harbor Ocean Energy and Coastal Protection Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Titan platform eliminates the need for specialized offshore construction and crane ships The platform along with the wind turbine and wave energy converters are assembled on shore with the platform legs raised The platform and devices are towed to the site and the legs are then lowered to the seafloor and the platform is jacked up on the legs

312

MHK Technologies/eelGrass | Open Energy Information  

Open Energy Info (EERE)

eelGrass eelGrass < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage EelGrass.jpg Technology Profile Primary Organization AeroVironment Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description AV has developed an innovative device for harnessing the ocean s energy Anchored to the sea floor and floating beneath the surface its turbine generates clean energy as the float moves horizontally through the water responding to pressure changes from passing waves Unobtrusive silent and reliable it is an attractive alternative to other ocean energy devices Mooring Configuration Proprietary Technology Dimensions

313

MHK Technologies/The Linear Generator | Open Energy Information  

Open Energy Info (EERE)

Linear Generator Linear Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Linear Generator.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The simplicity of the Trident Energy solution is based around the fact that the system has only one moving part - float / linear generator translator, which is powered by the motion of floats placed in the sea. As waves pass through the wavefarm, so the floats rise and fall. This causes relative motion between the two components of the linear generator (the translator and stator) and electricity is immediately generated. There is absolutely no contact between the two parts of the generator as the energy conversion is entirely electromagnetic.

314

MHK Technologies/Manchester Bobber | Open Energy Information  

Open Energy Info (EERE)

Manchester Bobber Manchester Bobber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Manchester Bobber.jpg Technology Profile Primary Organization University of Manchester Project(s) where this technology is utilized *MHK Projects/University of Manchester Phase 1 and 2 NaREC Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description Floating mass connected to a ratcheting clutch, gearbox and flywheel to power an induction generator to generate electricity - Constant movement of the waves combined with the buoyancy and weight of the floating mass can produce consistent electricity output.

315

Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology  

Science Conference Proceedings (OSTI)

This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

Canja, S.; Williams, C.R.

1982-04-01T23:59:59.000Z

316

MHK Technologies/SeaDog Pump | Open Energy Information  

Open Energy Info (EERE)

SeaDog Pump SeaDog Pump < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SeaDog Pump.jpg Technology Profile Primary Organization Independent Natural Resources Project(s) where this technology is utilized *MHK Projects/Gulf of Mexico Ocean test Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The main components of the SEADOG pump include a buoyancy chamber, buoyancy block, piston assembly, piston shaft, piston cylinder, and intake and exhaust valves. When positioned in the water, the buoyancy block (filled with air) floats within the buoyancy chamber, moving up and down in relation to the ocean waves and swells. The buoyancy block is connected to the piston shaft, which in turn moves the piston assembly through the piston cylinder. As the buoyancy block moves down in the trough of a wave it draws the piston downward through the piston cylinder. The downward movement draws water into the piston cylinder through the intake valve filling the piston cylinder chamber. As the next wave lifts the buoyancy block the water within the piston cylinder is under pressure and is expelled through the exhaust valve. Each stroke of the piston causes the water to be pumped from the piston cylinder in a regular manner.

317

MHK Technologies/Deep Gen Tidal Turbines | Open Energy Information  

Open Energy Info (EERE)

Deep Gen Tidal Turbines Deep Gen Tidal Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Deep Gen Tidal Turbines.jpg Technology Profile Primary Organization Tidal Generation Ltd Project(s) where this technology is utilized *MHK Projects/Tidal Generation Ltd EMEC Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The DEEP Gen 1 MW fully submerged tidal turbine best exploits resources in depths 30m The horizontal axis turbine is inexpensive to construct and easy to install due to the lightweight 80 tons MW support structure allows rapid removal and replacement of powertrains enabling safe maintenance in a dry environment and is located out of the wave zone for improved survivability

318

Mapping and Assessment of the United States Ocean Wave Energy...  

Open Energy Info (EERE)

Resource This project estimates the naturally available and technically recoverable U.S. wave energy resources, using a 51-month Wavewatch III hindcast database developed...

319

MHK Technologies/Stingray | Open Energy Information  

Open Energy Info (EERE)

Stingray Stingray < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Stingray.jpg Technology Profile Primary Organization The Engineering Business Ltd Project(s) where this technology is utilized *MHK Projects/The Engineering Business Ltd Shetland Islands UK Technology Resource Click here Current/Tidal Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Stingray consists of a hydroplane with an attack angle correctly positioned relative to the approaching water stream The flow of the current causes the supporting arm to oscillate which in turn forces hydraulic cylinders to extend and retract This produces high pressure oil which is used to drive a generator

320

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Energy Management Program: Biomass Energy Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Biomass Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Biomass Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Biomass Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Biomass Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Biomass Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Biomass Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

322

Engineering and Economic Evaluation of Municipal Solid Waste Technologies  

Science Conference Proceedings (OSTI)

In 2006, the Electric Power Research Institute (EPRI) initiated a project to conduct engineering and economic evaluations of renewable energy technologies, including wind, biomass, solar, geothermal, hydro, and ocean tidal and wave (Program 84). The goal of the evaluations is to develop an objective and consistent assessment of the current performance and project the future performance of the technologies with regard to thermal efficiency, capital and operation and maintenance costs, resource requirement...

2011-12-23T23:59:59.000Z

323

Engineering and Economic Evaluation of Offshore Wind Technology  

Science Conference Proceedings (OSTI)

In 2006, the Electric Power Research Institute (EPRI) initiated a new project to conduct engineering and economic evaluations of renewable energy technologies, including wind, biomass, solar, geothermal, hydro, ocean tidal and wave, and others (Program 84). The goal of the evaluations is to develop an objective and consistent assessment of the current and projected future performance of the technologies with regard to thermal efficiency, capital and operations and maintenance costs, resource requirements...

2011-12-23T23:59:59.000Z

324

MHK Technologies/Direct Energy Conversion Method DECM | Open Energy  

Open Energy Info (EERE)

Conversion Method DECM Conversion Method DECM < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Direct Energy Conversion Method DECM.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Description The Direct Energy Conversion Method DECM device has four major components 1 linear generators that convert straight line mechanical motion directly into electricity 2 floats placed in the sea to capture wave energy through a rising and falling action which drives linear generators resulting in the immediate generation of electricity 3 a sea platform used to support the floats and generators and 4 a conventional anchoring system to moor the rig

325

MHK Technologies/Pulse-Stream 120 | Open Energy Information  

Open Energy Info (EERE)

Pulse-Stream 120 Pulse-Stream 120 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Description Building on the success of the Pulse-Stream 100 which was installed in 2009, Pulse Tidal has formed a large technical team and secured a European Union grant for development of a commercial scale product. This device will be installed in Scotland in 2012. Mooring Configuration Secured to the seabed with drilled and grouted pin-piles Optimum Marine/Riverline Conditions 2.5m/s flow-rate. Depth average 60ft. Technology Dimensions Length (m) 10 Width (m) 45 Height (m) 13

326

MHK Technologies/Brandl Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Brandl Generator.jpg Technology Profile Primary Organization Brandl Motor Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Brandl Generator consists of a floating disc that is 10 meters in diameter and one meter thick that rises and falls with the waves A pendulum mass hanging beneath a spring moves up and down anticyclically This mass drives the direct connected magnets that induce an electrical current when they move through the induction coils This drawing shows the basic idea Legend 1 magnets 2 inductance coil 3 floating disc 4 spring 5 pendulum mass

327

MHK Technologies/Yu Oscillating Generator YOG | Open Energy Information  

Open Energy Info (EERE)

Oscillating Generator YOG Oscillating Generator YOG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yu Oscillating Generator YOG.jpg Technology Profile Primary Organization Yu Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description By harnessing force located on top of the device s mast Known as a form of actuator You would get a levered mechanical gain converted to torque for a period of time oscillating the lower half side to side The lower half will then drive a turbine producing power As it slows due to resistance the actuator will harness force again to drive the device Making up for any loss motion do to resistance

328

Transmission Line Technology for Electron Cyclotron Heating  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on Electron Cyclotron Wave Physics, Technology, and Applications - Part 2

J. L. Doane; R. A. Olstad

329

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 Tapping into Wave and Tidal Ocean Power: 15% Water Power by 2030 January 27, 2012 - 11:30am Addthis A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology A map generated by Georgia Tech's tidal energy resource database shows mean current speed of tidal streams. The East Coast, as shown above, has strong tides that could be tapped to produce energy. | Photo courtesy of Georgia Institute of Technology Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program

330

MHK Technologies/Poseidon s Organ | Open Energy Information  

Open Energy Info (EERE)

s Organ s Organ < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Poseidon s Organ.jpg Technology Profile Primary Organization Floating Power Plant Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Poseidon is a concept for a floating power plant that can double as a floating foundation for offshore windmills thus creating a sustainable energy hybrid device Poseidon has not yet been built at full scale but has been tested with fine results in scale lengths of 8m and 17m Currently a 37m off shore plant is under construction A full scale Poseidon plant will measure approximately 420 meters A Poseidon 230m scale plant is expected to have a 35 efficiency rate and to have an energy yield from the waves of 28 207 MWh year provided the plant is located in an area with a wave resource like that of Portugal

331

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

ESTABLISHED MATERIALS TECHNOLOGIES ... Specifically, digital resources are available relating to materials for nuclear power, materials sustainability, and ...

332

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

333

MHK Technologies/Water Air Pump WAP | Open Energy Information  

Open Energy Info (EERE)

Pump WAP Pump WAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Water Air Pump WAP.jpg Technology Profile Primary Organization Shamil Ayntrazi Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Water Air Pump WAP uses a partially submerged funnel shaped air pump to compress air collect it in a piping network and feed it to an air turbine Mooring Configuration Gravity base installed at the sea bed Technology Dimensions Device Testing Date Submitted 11:50.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Water_Air_Pump_WAP&oldid=681697"

334

MHK Technologies/Pneumatically Stabilized Platform PSP | Open Energy  

Open Energy Info (EERE)

MHK Technologies/Pneumatically Stabilized Platform PSP MHK Technologies/Pneumatically Stabilized Platform PSP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pneumatically Stabilized Platform PSP.jpg Technology Profile Primary Organization Float Inc Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The PSP is a distinct type of pneumatic platform one in which the platform is composed of a number of cylindrical shaped components packed together in a rectangular pattern to form a module Each cylinder is sealed at the top open to the ocean at its base and contains air at a pressure slightly above atmospheric pressure Modules can be of a size that are relatively easy to manipulate as shown in the simplified drawing below

335

Federal Energy Management Program: Resources on Water Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Efficiency Many helpful resources about water efficiency are available. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation...

336

Assessment and Mapping of the Riverine Hydrokinetic Resource...  

Open Energy Info (EERE)

resource, that account for selected technological factors affecting capture and conversion of the theoretical resource. The technically recoverable resource does not account...

337

MHK Technologies/Gentec WATS System | Open Energy Information  

Open Energy Info (EERE)

Gentec WATS System Gentec WATS System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Gentec WATS System.gif Technology Profile Primary Organization Green Heat Solutions Limited Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The only renewable wave energy system that can deliver constant base load or load following electricity in the GW range A by product is desalinated water The system comprises a wave energy converter mounted on a sea going ship that is free to go to where the waves are Gentec WaTS deep ocean or pelagic waves travel up an artificial beach mounted on the vessel where the potential and kinetic energies are converted directly into heat It is stored as heat on board the ship in large thermal accumulators until they are fully charged up thermally Deep ocean waves contain a lot of power so the thermal batteries can be recharged in just a few hours When fully charged the ship returns to it onshore berth where its valuable cargo of heat is transferred to a much larger heat store it is from this heat store that continuous green base load electricity is generated with the option to peak shave The on shore Gentec WaTS power station has a capacity factor of 100 because it can run for

338

Marine & hydrokinetic technology development.  

DOE Green Energy (OSTI)

The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

LiVecchi, Al (National Renewable Energy Laboratory); Jepsen, Richard Alan

2010-06-01T23:59:59.000Z

339

Wave Power: Destroyer of Rocks; Creator of Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E PG&E Wave Energy Wave Energy Federal Utility Partnership Federal Utility Partnership Working Group Meeting Working Group Meeting Wave Energy Wave Energy Development Development Ontario, CA Ontario, CA November 18 November 18- -19, 200 19, 2009 9 Donald G. Price Donald G. Price Senior Consulting Scientist, PG&E Senior Consulting Scientist, PG&E Wave Power Overview Wave Power Overview * * What is Wave Power? What is Wave Power? o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean o o Wave power or wave energy is the energy contained in ocean Wave power or wave energy is the energy contained in ocean waves that is converted into electricity by various means. waves that is converted into electricity by various means. o o It is a clean, renewable energy resource capable of being utilized

340

A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets  

SciTech Connect

Utility load management programs--including direct load control and interruptible load programs--were employed by utilities in the past as system reliability resources. With electricity industry restructuring, the context for these programs has changed; the market that was once controlled by vertically integrated utilities has become competitive, raising the question: can existing load management programs be modified so that they can effectively participate in competitive energy markets? In the short run, modified and/or improved operation of load management programs may be the most effective form of demand-side response available to the electricity system today. However, in light of recent technological advances in metering, communication, and load control, utility load management programs must be carefully reviewed in order to determine appropriate investments to support this transition. This report investigates the feasibility of and options for modifying an existing utility load management system so that it might provide reliability services (i.e. ancillary services) in the competitive markets that have resulted from electricity industry restructuring. The report is a case study of Southern California Edison's (SCE) load management programs. SCE was chosen because it operates one of the largest load management programs in the country and it operates them within a competitive wholesale electricity market. The report describes a wide range of existing and soon-to-be-available communication, control, and metering technologies that could be used to facilitate the evolution of SCE's load management programs and systems to provision of reliability services. The fundamental finding of this report is that, with modifications, SCE's load management infrastructure could be transitioned to provide critical ancillary services in competitive electricity markets, employing currently or soon-to-be available load control technologies.

Weller, G.H.

2001-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MHK Technologies/PowerGin | Open Energy Information  

Open Energy Info (EERE)

PowerGin PowerGin < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PowerGin.jpg Technology Profile Primary Organization Kinetic Wave Power Technology Resource Click here Wave Technology Type Click here Overtopping Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The energy conversion rate of the PowerGin is 20 30 The PowerGin makes use of both vertical and horizontal energy which allows the device to operate effectively in low wave states Buckets are mounted in a dense spiral pattern around the perimeter similar to hydro electric turbine blades which provide a high surface area to catch wave energy As the buckets on the ramp side of the rotor fill with wave water the rotors begin to turn Water is emptied out of the bucket instantaneously when it is submerged under the water by a patented gravity driven flap on the bottom The flap slams shut in one direction and opens in the other The two rotors rotate in opposite directions which maintain balance and continuous rotary power flow

342

MHK Technologies/OMI Combined Energy System | Open Energy Information  

Open Energy Info (EERE)

OMI Combined Energy System OMI Combined Energy System < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OMI Combined Energy System.png Technology Profile Primary Organization Ocean Motion International LLC OMI Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Combined Energy System CES consists of four sub system components a seawater wave pump a hydro turbine electric generator a reverse osmosis filtration unit and an electrolysis hydrogen generation unit The CES is designed to operate on a large offshore platform which is essentially a modified version of a standard modular offshore drilling unit The system produces potable water electricity and hydrogen which is delivered to shore through service piping and cabling The OMI WavePump is technically described as a mass displacement wave energy conversion device The patented seawater pump and heart of the CES is an innovative design which uses a small number of simple moving components for minimal maintenance and wear The hydro turbine electric generator is driven by the output of multiple WavePumps which provide a constant flow of high volume high pressure seawater

343

Ocean Tidal and Wave Energy  

Science Conference Proceedings (OSTI)

First published in 2000, the annual Renewable Energy Technical Assessment Guide (TAG-RE) provides a consistent basis for evaluating the economic feasibility of renewable generation technologies. This excerpt from the 2005 TAG-RE addresses ocean tidal and wave energy conversion technologies, which offer promise for converting the significant energy potential available in ocean tidal currents and waves to electricity in the future.

2005-12-19T23:59:59.000Z

344

MHK Technologies/Tidal Sails | Open Energy Information  

Open Energy Info (EERE)

Sails Sails < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Sails.jpg Technology Profile Primary Organization Tidal Sails AS Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Tidal Sails device is a series of underwater sails affixed to wires strung across the tidal stream at an angle The sails are driven back and forth by the tidal flow between two stations at one of which the generator is installed Technology Dimensions Device Testing Date Submitted 26:04.6 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Tidal_Sails&oldid=681675

345

Industrial Applications for Renewable Resources  

Science Conference Proceedings (OSTI)

This CD-ROM contains the PowerPoint presentations from the presenters from Industrial Applications of Renewable Resources: A Conference on Sustainable Technologies. Industrial Applications for Renewable Resources Biofuels and Bioproducts and Biodiesel DV

346

Image Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

347

MHK Technologies/Hydroair | Open Energy Information  

Open Energy Info (EERE)

Hydroair Hydroair < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hydroair.jpg Technology Profile Primary Organization Dresser Rand Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Incoming surface waves induce an oscillating flow of air within the chamber which in turn flows backwards and forwards through an air turbine installed in a duct connecting the chamber to the atmosphere The turbine converts this air movement into electrical energy The VRT design comprises two sets of static guide vanes located on either side and at a larger diameter than that of the rotor These vanes are connected by a shaped duct to provide a route for the airflow Air enters the duct at a relatively low velocity and acquires a swirl motion as it passes through the inlet guide vanes The air then accelerates as it passes down the narrowing duct toward the turbine rotor The air drives the rotor and then decelerates as it travels back through the expanding duct before passing over the outlet guide vanes The process is repeated in reverse for the next wave cycle

348

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

that reduce air emissions. Emissions & Generation Resource Integrated Database (eGRID) A tool that provides data on the environmental characteristics of almost all electric...

349

Publications & Resources, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

or approved by Brookhaven National Laboratory or the Human Resources Division. Manuals Scientific Staff Manual Supervisors Personnel Manual SBMS Subject Areas Compensation...

350

Fuel Cell Technologies Office: Transportation and Stationary...  

NLE Websites -- All DOE Office Websites (Extended Search)

HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies Office Information...

351

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

352

Additional Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Resources Additional Resources Additional Resources October 16, 2013 - 4:36pm Addthis The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These resources are organized by: Resource Guides Renewable Energy Planning Planning Construction Operations and Maintenance Commissioning Sample Plans and Documents Resource Guides Whole Building Design Guide (WBDG) WBDG: New Construction and Major Renovation Guiding Principles (WBDG) Leadership in Energy and Environmental Design (LEED) New Construction and Major Renovation Reference Guide Greening Federal Facilities: An Energy, Environmental, and Economic Resource Guide for Federal Facility Managers and Designers

353

MHK Technologies/OE Buoy OE 50 | Open Energy Information  

Open Energy Info (EERE)

OE Buoy OE 50 OE Buoy OE 50 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OE Buoy OE 50.jpg Technology Profile Primary Organization Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Ocean Energy Galway Bay IE *MHK Projects/OE Buoy OE 30 Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description The OEBuoy device uses wave energy to compress air in a plenum chamber and pump it through an air turbine system. This isolates the power conversion system from the seawater and also provides a high-speed air flow to the turbine. The device is a floating system with the mouth of the OWC facing away from the wave direction. This results in high energy efficiencies at the operating point because of the motions of the float system relative to the waves.

354

MHK Technologies/LUKAS | Open Energy Information  

Open Energy Info (EERE)

LUKAS LUKAS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage LUKAS.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The device according to the invention aims at supplying a means of Navigation appropriate clean easy to use it can be an additional means of navigation This invention allows navigation by converting the kinetic energy of movements the oscillations right left an or front back or high down to a uni directional one way horizontal push These energies are free renewable but still undeveloped yet in navigations Mooring Configuration Does not indicate

355

Federal Energy Management Program: Renewable Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technologies to someone by E-mail Share Federal Energy Management Program: Renewable Energy Resources and Technologies on Facebook Tweet about Federal Energy Management...

356

Shock waves in trombones A. Hirschberg  

E-Print Network (OSTI)

Shock waves in trombones A. Hirschberg Eindhoven University of Technology, W&S, P.O. Box 513, 5600 of the wave propagation in the pipe. At fortissimo levels this leads to shock wave formation observed in our and the band- width necessary in order to observe shock waves. Our ex- perimental results, shown in Figs. 2

Luo, Xiaoyu

357

Wave Energy Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wave Energy Basics Wave Energy Basics Wave Energy Basics August 16, 2013 - 4:30pm Addthis Photo of a large wave. Wave energy technologies extract energy directly from surface waves or from pressure fluctuations below the surface. Renewable energy analysts believe there is enough energy in ocean waves to provide up to 2 terawatts of electricity. (A terawatt is equal to a trillion watts.) However, wave energy cannot be harnessed everywhere. Wave power-rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, and Australia as well as the northeastern and northwestern coasts of the United States. In the Pacific Northwest alone, it is feasible that wave energy could produce 40-70 kilowatts (kW) per 3.3 feet (1 meter) of western coastline. Wave Energy Technologies

358

High Power Superconducting Continuous Wave Linacs for Protons and  

Office of Science (SC) Website

Power Superconducting Continuous Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: High Power Superconducting Continuous Wave Linacs for Protons and Heavy-Ions

359

Resources for Partners  

SciTech Connect

This DOE Industrial Technologies Program fact sheet describes the resources and opportunities available to partners how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems.

2006-02-01T23:59:59.000Z

360

MHK Technologies/TUVALU | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » MHK Technologies/TUVALU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TUVALU.jpg Technology Profile Primary Organization Arlas Invest Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The chain or cable coils in each of the floating cylinders These cylinders rotate inside the main structure The effect would be similar to an inverted Yo Yo when stretching the cord the Yo Yo turns At the other end of the chain or cable a weight or ballast is attached to anchor the system to the sea bed In the case of the buoy both cylinders and the main structure when it rises with the wave the cables stretch the cylinders and cause them to rotate The mechanical energy obtain in the cylinders is converted to electrical energy by means of a generator connected to the transmission

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization  

SciTech Connect

The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

Not Available

1994-01-01T23:59:59.000Z

362

Advanced Manufacturing Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

on AddThis.com... Publications Databases Success Stories Webcasts Workshops Energy Analysis Industries & Technologies Related Links Information Resources What People Are...

363

Energy Basics: Ocean Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

364

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

365

Testimony Before the Senate Energy and Natural Resources Committee  

Energy.gov (U.S. Department of Energy (DOE))

Subject: Energy Development and Water Resources Carl Bauer, Director, National Energy Technology Laboratory

366

Proceedings of Workshop on Language Resources, Technology and Services in the Sharing Paradigm, pages 8492, Chiang Mai, Thailand, November 12, 2011.  

E-Print Network (OSTI)

: description: free text of the resource Figure 2 - The ContentInfo component and its elements 88 #12; resource.g. subtypes of corpora and lexi- cal/conceptual resources, tasks performed for tools etc.) TextInfo, AudioInfo and their description must include a CorpusIn- fo component and a TextInfo one (Figure 3). As aforementioned, here we

367

Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays  

SciTech Connect

This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys??????? that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate high-resolution (fine scale, very near-field) fluid/structure interaction simulations of buoy motions, as well as array-scale, phase-resolving wave scattering simulations. These modeling efforts will utilize state-of-the-art research quality models, which have not yet been brought to bear on this complex problem of large array wave/structure interaction problem.

Rhinefrank, Kenneth E.; Haller, Merrick C.; Ozkan-Haller, H. Tuba

2013-01-26T23:59:59.000Z

368

NREL: Technology Transfer - Wind Technology Center Installing ...  

Wind Technology Center Installing a Dynamic Duo August 25, 2009. Generating 20 percent of the nation's electricity from clean wind resources will ...

369

SunShot Initiative: Solar Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Assessment to Solar Resource Assessment to someone by E-mail Share SunShot Initiative: Solar Resource Assessment on Facebook Tweet about SunShot Initiative: Solar Resource Assessment on Twitter Bookmark SunShot Initiative: Solar Resource Assessment on Google Bookmark SunShot Initiative: Solar Resource Assessment on Delicious Rank SunShot Initiative: Solar Resource Assessment on Digg Find More places to share SunShot Initiative: Solar Resource Assessment on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Research, Development, & Demonstration Distribution Grid Integration Transmission Grid Integration Solar Resource Assessment Technology Validation Power Electronics & Balance of System Hardware Technologies Competitive Awards Balance of Systems

370

For Researchers: Entrepreneurial Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrepreneurial Resources Entrepreneurial Resources What determines which technologies become the foundation for a new company? In essence, a technology must attract the necessary financing from venture capital or other sources. In order to do this, the technology must offer a fundamental improvement or the basis for a new product or service. Generally the improvement must be significant, as opposed to an incremental, with great potential for market impact. It is also important that the technology enjoy a strong proprietary position. It must have, for example, an issued patent or a patent pending, with strong claims that separate it from competing technologies. The cutting-edge nature of research here at Berkeley Lab often results in technologies that meet these criteria. The Technology Transfer Department

371

MHK Technologies/Current Power | Open Energy Information  

Open Energy Info (EERE)

Power Power < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Power.jpg Technology Profile Primary Organization Current Power AB Project(s) where this technology is utilized *MHK Projects/Norde lv Technology Resource Click here Current/Tidal Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Current Power device is a slow speed vertical axis turbine that utilizes a direct drive permanent magnet rotating generator The concept is based on a vertical axle turbine directly coupled to a permanent magnet synchronous generator The system is intended to be placed on the bottom of the ocean or a river where it would be protected from storm surges and strong waves The output from the generator has to be rectified and inverted before connection to the grid Robustness is achived by the simple mechanical construction

372

MHK Technologies/Navatek WEC | Open Energy Information  

Open Energy Info (EERE)

WEC WEC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Navatek WEC.png Technology Profile Primary Organization Navatek Ltd Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The Navatek WEC was developed using in house expertise gained through a decade of research into the design construction and at sea testing of advanced ship hull prototypes for the Office of Naval Research and other customers The same sophisticated hydrodynamics motions tools used to design ship hulls with reduced motions were applied in reverse to develop a WEC with enhanced motions for greater energy capture Navatek is currently looking at system aspects of proposed energy farms using this WEC device together with novel concepts for associated energy storage

373

MHK Technologies/Trondheim Point Absorber | Open Energy Information  

Open Energy Info (EERE)

Trondheim Point Absorber Trondheim Point Absorber < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Trondheim Point Absorber.jpg Technology Profile Primary Organization Norwegian University of Science and Technology CONWEC AS Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The floating buoy can oscillate along a strut that at its lower end is connected to a universal joint on an anchor on the sea bed The water depth which depends on the tide is in the range of 4 to 7 m On the top of the hull the latching mechanism and one of the guiding roller units are visible As the bottom of the hull is open sea water is flowing into and out from an inner chamber where the water surface acts as the piston of an air pump

374

MHK Technologies/HydroGen 10 | Open Energy Information  

Open Energy Info (EERE)

HydroGen 10 HydroGen 10 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage HydroGen 10.jpg Technology Profile Primary Organization HydroGen Aquaphile sarl Project(s) where this technology is utilized *MHK Projects/Hydro Gen Technology Resource Click here Current/Tidal Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Hydro Gen is a big floating paddle wheels turbine included in a catamaran frame venturi shaped The frame is optimized to allow tapping a maximum of water in move in order to capture a maximum of kinetic energy which is transformed in mechanical energy by the wheel motion and then transformed into electrical energy through a generator mechanically driven by the wheel And then finally changed by a power control station to a steady electrical current normed at the customer request

375

MHK Technologies/Oscillating Cascade Power System OCPS | Open Energy  

Open Energy Info (EERE)

Oscillating Cascade Power System OCPS Oscillating Cascade Power System OCPS < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Oscillating Cascade Power System OCPS.jpg Technology Profile Primary Organization New Energy Solutions LLC Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The OCPS generator consists of a cascade of vertical hydrofoils submerged in moving water This array of hydrofoils oscillates in antiphase at resonance flutter in a slow swimming motion resulting in maximum power transfer from flowing water to electricity The system efficiently converts the oscillating mechanical energy into a steady electric current A 60 overall water to wire efficiency was demonstrated at the proof of concept test and 65 or better overall efficiency is projected using the new engineering advances incorporated since the test in the commercial model

376

MHK Technologies/PSE MAR | Open Energy Information  

Open Energy Info (EERE)

PSE MAR PSE MAR < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage PSE MAR.png Technology Profile Primary Organization Tecnalia Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description TECNALIA is the coordinator of the most significant Spanish initiative being carried out in the field of marine energy The Special Strategic Marine Energy Project PSE MAR is co funded by the Ministry of Education and Science and aims to position Spain as a world leader in the marine energy sector Technology Dimensions Device Testing Date Submitted 16:06.3 << Return to the MHK database homepage

377

MHK Technologies/SurfPower | Open Energy Information  

Open Energy Info (EERE)

SurfPower SurfPower < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SurfPower.jpg Technology Profile Primary Organization Seawood Designs Inc Project(s) where this technology is utilized *MHK Projects/Lake Huron Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The SurfPower is a constant pressure, fluid operated rectangular plate point absorber. The device is anchored to the seabed via hydraulic cylinders that operate as piston pumps. The upward and lateral motion of a pontoon forces fluid from the piston pump, at high pressure (200 bar), to a collection main on the seabed. This high pressure fluid is delivered to an onshore Pelton turbine that drives an asynchronous electrical generator.

378

Federal Energy Management Program: Solar Ventilation Preheating Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Ventilation Solar Ventilation Preheating Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Ventilation Preheating Resources and Technologies on AddThis.com... Energy-Efficient Products

379

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

380

Building Technologies Office: Tools & Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Documents and Reports Background Program Evaluation Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Features Fact of the Week More...

382

MHK Technologies/Electric Buoy | Open Energy Information  

Open Energy Info (EERE)

Buoy Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Buoy.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description AMI s Ocean Swell and Wave Energy Conversion OSWEC device uses a patented linear generator to directly convert the motion of ocean swells and waves into electric power In our initial designs the generator mounts underneath a floating buoy or on the surface of a platform with the buoy below however it is possible to fit the generator on other types of wave motion energy extracting mechanisms Housing moves up and down with the motion of the Buoy on the ocean s surface while the Damping Plates hold the Generator Coil in a stable position The relative motion between the magnetic field in the generator housing and Generator Coil creates an electric voltage in the Generator Coil After four design evolutions Aqua Magnetics Inc has created our patented reciprocating linear generator Scalable for a wide range of applications and able to operate in a wide range of sea states Generator prototype will produce approximately 10 watts of power in 15 cm 6 inch wind chop in the intraco

383

Property:Project Resource | Open Energy Information  

Open Energy Info (EERE)

Project Resource Project Resource Jump to: navigation, search Property Name Project Resource Property Type Text Pages using the property "Project Resource" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + Wave MHK Projects/ADM 3 + Wave MHK Projects/ADM 4 + Wave MHK Projects/ADM 5 + Wave MHK Projects/AWS II + Wave MHK Projects/Agucadoura + Wave MHK Projects/Alaska 13 + Current /Tidal MHK Projects/Alaska 35 + Current /Tidal MHK Projects/Algiers Light Project + Current /Tidal MHK Projects/Anconia Point Project + Current /Tidal MHK Projects/Ashley Point Project + Current /Tidal MHK Projects/Astoria Tidal Energy + Current /Tidal MHK Projects/Atchafalaya River Hydrokinetic Project II + Current /Tidal MHK Projects/Avalon Tidal + Current /Tidal

384

A National Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

National Resource National Resource for Industry Manufacturing DeMonstration facility As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first Manufacturing Demonstration Facility (MDF), established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy and

385

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources (Redirected from Wave) Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

386

MHK Technologies/SEAREV | Open Energy Information  

Open Energy Info (EERE)

SEAREV SEAREV < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SEAREV.jpg Technology Profile Primary Organization Ecole Centrale de Nantes Project(s) where this technology is utilized *MHK Projects/SEAREV Pays de la Loire FR Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description SEAREV includes a sealed, watertight floater with a charged wheel inside that acts as an embedded pendulum. The upper half of the horizontal-axis, 9-meter-diameter wheel is empty. Weight is concentrated in the concrete-filled lower half, thus producing the pendulum effect. Sea swell and waves make the floater oscillate, causing the pendulum wheel to swing back and forth. Since the floater and pendulum each have their own movement, the relative floater-wheel movement activates a hydroelectric system that converts mechanical energy into electricity. Hydraulic pumps connected to the pendulum wheel charge the high pressure accumulators that discharge the water through hydraulic engines that drive electric generators. Several SEAREV floaters can be anchored offshore, creating a park or farm.

387

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Technologies to someone by E-mail Share Federal Energy Management...

388

EERE: Building Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Printable Version Share this resource Send a link to EERE: Building Technologies Office - Webmaster to someone by E-mail Share EERE: Building Technologies Office -...

389

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

390

EERE: Building Technologies Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Printable Version Share this resource Send a link to EERE: Building Technologies Office - Contacts to someone by E-mail Share EERE: Building Technologies Office - Contacts...

391

Federal Energy Management Program: Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources. The FEMP Low Standby Product List is also available. Technology Deployment: Developing, measuring, and implementing new and underutilized technologies for energy...

392

Building Technologies Office: Saving Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Saving Energy Printable Version Share this resource Send a link to Building Technologies Office: Saving Energy to someone by E-mail Share Building Technologies Office: Saving...

393

Nonintrusive Measurement of Ocean Waves: Lidar Wave Gauge  

Science Conference Proceedings (OSTI)

In December 1999, a nonintrusive directional lidar wave gauge (LWG) was field tested at the Field Research Facility (FRF) in North Carolina. The LWG uses proven lidar technology to directly measure water surface elevation from above the waters ...

Jennifer L. Irish; Jennifer M. Wozencraft; A. Grant Cunningham; Claudine Giroud

2006-11-01T23:59:59.000Z

394

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

395

MHK Technologies/Pulse Stream 1200 | Open Energy Information  

Open Energy Info (EERE)

Stream 1200 Stream 1200 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Pulse Stream 1200.jpg Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Current Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Building on the success of the Pulse Stream 100 which was installed in 2009 Pulse Tidal has formed a large technical team and secured a European Union grant for development of a commercial scale product This device will be installed in Scotland in 2012 Mooring Configuration Secured to the seabed with drilled and grouted pin piles Optimum Marine/Riverline Conditions 2 5m s flow rate Depth average 60ft

396

MHK Technologies/Uppsala Cross flow Turbine | Open Energy Information  

Open Energy Info (EERE)

flow Turbine flow Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uppsala Cross flow Turbine.gif Technology Profile Primary Organization Uppsala University Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description A cross flow turbine with fixed blade pitch is directly connected i e no gearbox to a low speed generator The generator is designed to give good efficiency over a wide range of speeds and loads The output voltage and current from the generator will be rectified and then inverted to grid specifications Mooring Configuration Gravity base Optimum Marine/Riverline Conditions Not yet determined Research concerns velocities below and above 1 m s

397

Office of Resource Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Management Resource Management Home Sub Offices › Business Operations › Information Management › Human Resources and Administration Mission and Functions HSS Standard Operating Practices (For Internal Users Only) HSS Subject Matter Experts and Functional Points of Contacts Contact Us HSS Logo Office of Resource Management Direct Report to the Chief Health, Safety and Security Officer Mission and Functions Mission The Office of Resource Management supports the infrastructure of the Office of Health, Safety and Security (HSS) by providing balanced, unbiased, technically competent, and customer focused services in the areas of: (1) Financial Management, including budget formulation and execution; (2) Procurement Management, including contract and credit card programs; (3) Information Management, including technology-based solutions and programs; (4) Quality Assurance; (5) Human Resources, including recruitment and retention programs; (6) Administrative Services, including property management, travel, and work space management; and; (7) Strategic and Program Planning including performance and efficiency measures.

398

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

regarding transmission costs, availability of federal taxtransmission, technology options, resource costs, availabilityon availability in WREZ resource hubs. The transmission

Mills, Andrew D

2011-01-01T23:59:59.000Z

399

Science & Technology Review September 2009  

Science Conference Proceedings (OSTI)

This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

Bearinger, J P

2009-07-24T23:59:59.000Z

400

MHK Technologies/Ocean Treader floating | Open Energy Information  

Open Energy Info (EERE)

Treader floating Treader floating < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Treader floating.jpg Technology Profile Primary Organization Green Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Development of Ocean Treader Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description The Ocean Treader is comprised of two sponsons at the fore and aft of the device and a spar buoy in the center. As a wave passes along the device, first the fore sponson lifts and falls, then the spar buoy, and then the aft sponson, respectively. The relative motion between these three floating bodies is harvested by hydraulic cylinders mounted between the tops of the arms and the spar buoy. The cylinders pressurize hydraulic fluid that spins hydraulic motors and an electric generator. The electricity is exported via a cable piggy-backed to the anchor cable. Ocean Treader is designed to passively weather-vane to face the wave direction; and in addition, the device has active onboard adjustment to allow for offset due to the effects of current.

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MHK Technologies/AquaBuoy | Open Energy Information  

Open Energy Info (EERE)

AquaBuoy AquaBuoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage AquaBuoy.jpg Technology Profile Primary Organization Finavera Renewables Ocean Energy Ltd Project(s) where this technology is utilized *MHK Projects/Figueira da Foz Portugal *MHK Projects/Humboldt County Wave Project *MHK Projects/Makah Bay Offshore Wave Pilot Project *MHK Projects/South Africa *MHK Projects/Ucluelet BC Canada Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Aquabuoy 2.0 is a large 3 meter wide buoy tied to a 70-foot-long shaft. By bobbing up and down, the water is rushed into an acceleration tube, which in turn causes a piston to move. This moving of the piston causes a steel reinforced rubber hose to stretch, making it act as a pump. The water is then pumped into a turbine which in turns powers a generator. The electricity generated is brought to shore via a standard submarine cable.

402

NREL: Technology Transfer - Contacts  

National Renewable Energy Laboratory Technology Transfer Contacts. Here you'll find contact information and resources to help answer any questions you may have about ...

403

Technology@TMS  

Science Conference Proceedings (OSTI)

To assist in the advancement of this emerging technology, The Minerals, Metals & Materials Society (TMS) has taken several initiatives to provide resources to...

404

MHK Technologies/SEACAP | Open Energy Information  

Open Energy Info (EERE)

SEACAP SEACAP < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage SEACAP.jpg Technology Profile Primary Organization HYDROCAP ENERGY SAS Technology Resource Click here Current Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The device is made of a fixed central jacket having several external legs around A floater moves up and down the jacket s legs under the action of the waves The floater is made of two hulls which are built onshore and flotted to the jacket site clamped around the jacket legs In initial solution several wheels attached to the floater will be driven along the pile by the vertical movement of the floater and will in turn drive several generators located inside the hulls Alternatively the floater may also drive a hydraulic system located on the above plateform deck which in turn will drive an hydraulic motor and finally an electric generator The system may be combined with the structure of offshore fixed windmills in a combined wave wind energy convertor thereby sharing some of the fixed installation and production costs and increasing at marginal cost the production of the windmill installation by around 30

405

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

406

Hospitality resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

407

Healthcare resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

408

Congregation resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

409

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology Marketing Summaries.

410

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology M ...

411

Program on Technology Innovation: Validation of CLASSI and SASSI Codes to Treat Seismic Wave Incoherence in Soil-Structure Interacti on (SSI) Analysis of Nuclear Power Plant Structures  

Science Conference Proceedings (OSTI)

The New Plant Seismic Issues Resolution Program was initiated to address emerging seismic issues as they relate to the design of new nuclear power plants. Task S2.1 of the program is a multi-phase research project to assess the effects of seismic wave incoherence on the response of foundations and structures similar to those being considered for advanced reactor designs. The initial phases of this task focused on the objective of systematically studying seismic wave incoherence effects on structures/fo...

2007-11-30T23:59:59.000Z

412

Los Alamos technology strikes a chord with algal biofuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology strikes chord with algal biofuels Los Alamos technology strikes a chord with algal biofuels Sound-wave technology is helping Solix Biofuels, Inc. optimize production of...

413

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

February 2003. Distributed Energy Resources in Practice: ARyan. January 2004. Distributed Energy Resources Customer2003. Gas-Fired Distributed Energy Resource Technology

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

414

Marine and Hydrokinetic Resources | Open Energy Information  

Open Energy Info (EERE)

Marine and Hydrokinetic Resources Marine and Hydrokinetic Resources Jump to: navigation, search << Return to the MHK database homepage Contents 1 Marine and Hydrokinetic Resource Assessment and Characterization 2 Current/Tidal/Riverine 3 Wave 4 Ocean Thermal Energy Conversion (OTEC) Marine and Hydrokinetic Resource Assessment and Characterization To find out more about Marine and Hydrokinetic Resource Assessment and Characterization click on this link. Current/Tidal/Riverine Tile Current.jpg To find out more about Tidal Energy click on this link and for Current Energy this link. Wave Wave 02.jpg To find out more about Wave Energy click on this link. Ocean Thermal Energy Conversion (OTEC) Ocean Thermo 04.jpg To find out more about OTEC Energy click on this link. << Return to the MHK database homepage

415

Ship Waves and Lee Waves  

Science Conference Proceedings (OSTI)

Three-dimensional internal trapped lee wave modes produced by an isolated obstacle in a stratified fluid are shown to have dynamics analogous to surface ship waves on water of finite depth. Two models which allow for vertical trapping of wave ...

R. D. Sharman; M. G. Wurtele

1983-02-01T23:59:59.000Z

416

wave energy | OpenEI  

Open Energy Info (EERE)

99 99 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281099 Varnish cache server wave energy Dataset Summary Description Source The Wave Energy Resource Assessment project is a joint venture between NREL, EPRI, and Virginia Tech. EPRI is the prime contractor, Virginia Tech is responsible for development of the models and estimating the wave resource, and NREL serves as an independent validator and also develops the final GIS-based display of the data. Source National Renewable Energy Laboratory (NREL) Date Released September 27th, 2011 (3 years ago) Date Updated October 20th, 2011 (3 years ago) Keywords EPRI GIS NREL Puerto Rico shapefile United States Virginia Tech wave energy

417

MHK Technologies/Green Flagship | Open Energy Information  

Open Energy Info (EERE)

Flagship Flagship < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Green Flagship.jpg Technology Profile Primary Organization Wallenius Wilhelmsen Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The E S Orcelle will have five hulls a long slender main hull and four support hulls or sponsons to provide stability at sea The stability offered by the pentamaran hull and its fins combined with the use of new propulsion systems will eliminate the need for the vessel to take on and release ballast water In addition the pentamaran hull design will contribute to the improved utilisation of energy and to the clean flow of water around vessel Compared to today s vessels the pentamaran hull shape of the E S Orcelle and its utilisation of energy from renewable sources will help optimise the cargocarrying capacity of the vessel The E S Orcelle will have a maximum deadweight capacity of 13 000 tons and weigh 21 000 tons much like today s car carriers Yet the E S Orcelle will be capable of carrying approximately 3 000 more tons of cargo thanks to the use of lightweight materials and the elimination of ballast water Wave energy may be transformed into various types of energy by

418

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

Science Conference Proceedings (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

419

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for current cost, performance, and technology status data for eight central-station power generation technologies. In this report, central station is defined as >100 MW with the exception of some renewable-resource-based technologies. In addition to fossil- and nuclear-based technologies, four renewable-resource-based technologies are included. This report addresses the principal technology options for utility-scale power generation.

2011-06-30T23:59:59.000Z

420

Federal Energy Management Program: Federal Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Federal Technology Deployment Working Group Energy...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wave Star Energy | Open Energy Information  

Open Energy Info (EERE)

Star Energy Star Energy Jump to: navigation, search Name Wave Star Energy Place Denmark Zip DK-2920 Product Denmark-based private wave device developer. References Wave Star Energy[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: Wave Star Energy 1 10 Scale Model Test This company is involved in the following MHK Technologies: C5 WaveStar This article is a stub. You can help OpenEI by expanding it. Wave Star Energy is a company located in Denmark . References ↑ "Wave Star Energy" Retrieved from "http://en.openei.org/w/index.php?title=Wave_Star_Energy&oldid=678928" Categories: Clean Energy Organizations

422

Potential alternative energy technologies on the Outer Continental Shelf.  

SciTech Connect

This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

Elcock, D.; Environmental Assessment

2007-04-20T23:59:59.000Z

423

Federal Energy Management Program: Solar Hot Water Resources and  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Hot Water Solar Hot Water Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Hot Water Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Hot Water Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Hot Water Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Hot Water Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Hot Water Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

424

MHK Technologies/S D E | Open Energy Information  

Open Energy Info (EERE)

wave surge converter device is shore mounted where the motion of the waves causes a hydraulic platform to move back and forth Technology Dimensions Device Testing Date Submitted...

425

A case study review of technical and technology issues for transition of a utility load management program to provide system reliability resources in restructured electricity markets  

E-Print Network (OSTI)

metering and communication gateway technology enables utilities and service companies to use residential and commercial customer data to enhance servicedata communications, master computer, and metering systems for each ancillary service

Weller, G.H.

2001-01-01T23:59:59.000Z

426

Technical Resources  

Science Conference Proceedings (OSTI)

AOCS Resource Directory helps members maintain technical excellence in their professions. Technical Resources Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemi

427

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

428

Technology '90  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

429

MHK Technologies/LIMPET OWC fixed Near shore OWC | Open Energy Information  

Open Energy Info (EERE)

LIMPET OWC fixed Near shore OWC LIMPET OWC fixed Near shore OWC < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage LIMPET OWC fixed Near shore OWC.jpg Technology Profile Primary Organization Voith Hydro Wavegen Limited Project(s) where this technology is utilized *MHK Projects/Siadar Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 7/8: Open Water System Testing & Demonstration & Operation Technology Description Limpet (Land Installed Marine Powered Energy Transformer) is a shoreline energy converter sited on the island of Islay, off Scotland's west coast. The current Limpet device - Limpet 500 - was installed in 2000 and produces power for the national grid. Limpet uses the principle of an oscillating water column.

430

MHK Technologies/Multi Resonant Chambers MRC 1000 | Open Energy Information  

Open Energy Info (EERE)

Resonant Chambers MRC 1000 Resonant Chambers MRC 1000 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Multi Resonant Chambers MRC 1000.jpg Technology Profile Primary Organization ORECon Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description A 1 5MW Multi Resonant Chamber MRC using Oscillating Water Column OWC principles Consists of 3 x 500kW independent chambers each with a Dresser Rand HydroAir turbine driving an induction generator Full power conversion system delivers grid compliant power 1 5MW 33kV 60Hz to shore Device is tension moored to maximise power capture and minimise footprint All maintenance is done on board No moving parts in the water Turbines are low speed 300rpm high efficiency 75 and low noise

431

Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Power Program Water Power Program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The Water Power Program works with industry partners, universities, and the Department of Energy's national

432

Resources on Water Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Efficiency » Resources on Water Efficiency Water Efficiency » Resources on Water Efficiency Resources on Water Efficiency October 8, 2013 - 10:03am Addthis Many helpful resources about water efficiency are available. Also see Contacts. Federal Resources Reverse Osmosis Optimization Technology Evaluation: -This FEMP technology evaluation assesses techniques for optimizing reverse osmosis systems to increase system performance and water efficiency. Side Stream Filtration for Cooling Towers (Full Report): Comprehensive document assessing side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. Technical Evaluation of Side Stream Filtration for Cooling Towers (Fact

433

Challenges in Integrating Renewable Technologies  

E-Print Network (OSTI)

PV, solar thermal, and wave. Breakthroughs are also needed in large-scale energy storage technologies reliability and econ- omy. The challenges of integrating high penetrations of renewable energy technologies

434

2011 Energy Technology Partnership Forum (4/11)  

Science Conference Proceedings (OSTI)

Energy Technology Partnership Forum. Purpose: ... Agenda: Sessions include Energy Resources: Biofuels; Renewable Energy; Nuclear Energy. ...

2013-09-17T23:59:59.000Z

435

Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion  

NLE Websites -- All DOE Office Websites (Extended Search)

Dominion Resources, Inc. to someone by E-mail Dominion Resources, Inc. to someone by E-mail Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Facebook Tweet about Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Twitter Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Google Bookmark Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Delicious Rank Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on Digg Find More places to share Vehicle Technologies Office: Workplace Charging Challenge Partner: Dominion Resources, Inc. on AddThis.com... Goals Research & Development

436

Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy  

E-Print Network (OSTI)

Hollow Core Fiber Optics for Mid-Wave and Long-Wave Infrared Spectroscopy Jason M. Kriesel and testing of hollow core glass waveguides (i.e., fiber optics) for use in Mid-Wave Infrared (MWIR) and Long related applications, and fiber optics are a key enabling technology needed to improve the utility

437

Wind Energy Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

determine whether the wind resource in a particular area is adequate for wind power. Addthis Related Articles Glossary of Energy Related Terms Hydropower Technologies Wind Turbines...

438

Federal Energy Management Program: Renewable Energy Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

photovoltaic system on the Metcalfe Federal Building. This section explores renewable energy technologies and resources with a special focus on Federal application opportunities....

439

NREL: Learning - Student Resources on Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy The following resources can provide you with more information on solar energy. If you are unfamiliar with this technology, see the introduction to solar energy....

440

Travel Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Travel Resources Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

Note: This page contains sample records for the topic "technology resource wave" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

442

Xtreme Power 1.5 MW / 1.0 MWh Dynamic Power Resource (DPR) System Evaluation at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

Utility-scale advanced electrical energy storage has the potential to improve the reliability and efficiency of the energy delivery network and also pave the way for greater additions of variable renewable resources onto the grid. This in mind, Xcel Energy, EPRI, and other stakeholders are engaged in a multi-year project to demonstrate the use of energy storage to support the grid integration of renewablesspecifically, solar PV on the distribution network. To better understand the capabilities of the Xt...

2011-12-29T23:59:59.000Z

443

Technologies for Sustainable  

E-Print Network (OSTI)

> Denmark ­ A Bright Green Nation 6 Energy Technologies Intelligent Energy 18 Smart grids 20 Plug-in cars energy 29 Bioethanol 31 Solar energy 33 Fuel cells 35 Hydro and wave power 37 Geothermal energy 39 Energy

444

Carnegie Wave Energy Limited | Open Energy Information  

Open Energy Info (EERE)

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Jump to: navigation, search Name Carnegie Wave Energy Limited Address 1 124 Stirling Highway Place North Fremantle Zip 6159 Sector Marine and Hydrokinetic Year founded 1993 Number of employees 25 Website http://www.carnegiewave.com Region Australia LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: CETO La Reunion CETO3 Garden Island Perth Wave Energy Project PWEP This company is involved in the following MHK Technologies: CETO Wave Energy Technology This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Carnegie_Wave_Energy_Limited&oldid=678263

445

Building Technologies Office: Subscribe to Building Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Webinars Printable Version Share this resource Send a link to Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates to someone by E-mail Share Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Facebook Tweet about Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Twitter Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Google Bookmark Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Delicious Rank Building Technologies Office: Subscribe to Building Technologies Office Events and Webinars Updates on Digg

446

Pages that link to "Property:ProgramResources" | Open Energy...  

Open Energy Info (EERE)

Wind Energy Resource Assessment (SWERA) ( links) Power Technologies Energy Data Book ( links) Geospatial Toolkit ( links) Long range Energy Alternatives...

447

Program on Technology Innovation: Integrated Generation Technology Options 2012  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for 2012 cost, performance, and technology status data for 10 central-station power-generation technologies, including fossil-, nuclear-, and renewable resourcebased technologies. In this report, central station is defined as > 100 MW with the exception of some renewable resourcebased technologies. This report addresses the principal technology options for utility-scale power ...

2013-02-19T23:59:59.000Z

448

Pathway and Resource Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

449

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Building Technologies Office: Improving the Energy Efficiency of Commercial Buildings to someone by E-mail Share Building Technologies Office:...

450

Fuel Cell Technologies Office: Durability Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Durability Working Group to someone by E-mail Share Fuel Cell Technologies Office:...

451

EERE: Fuel Cell Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Webmaster to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

452

EERE: Fuel Cell Technologies Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Contacts to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

453

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

454

Sandia National Laboratories: Working with Sandia: Technology ...  

Technology partnerships allow community members to leverage Sandia's resources. Sandia has transferred technology to external partners for more than three decades ...

455

MHK Technologies/C Plane | Open Energy Information  

Open Energy Info (EERE)

to the MHK database homepage C Plane.jpg Technology Profile Primary Organization Aquantis Inc Technology Resource Click here Current Technology Type Click here Cross Flow...

456

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-m