Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

2

CCSI Technology Readiness Levels Likelihood Model (TRL-LM) User’s Guide  

SciTech Connect (OSTI)

This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

2013-03-26T23:59:59.000Z

3

Final Report on HOLODEC 2 Technology Readiness Level  

SciTech Connect (OSTI)

During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012.

Shaw, RA; Spuler, SM; Beals, M; Black, N; Fugal, JP; Lu, L

2012-06-18T23:59:59.000Z

4

Property:Technology Readiness Level | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:Technology Readiness Level Property Type

5

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT...

6

Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

7

On the integration of technology readiness levels at Sandia National Laboratories.  

SciTech Connect (OSTI)

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01T23:59:59.000Z

8

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This...

9

System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

Emmanuel Ohene Opare, Jr.; Charles V. Park

2011-06-01T23:59:59.000Z

10

EM Performs Tenth Technology Readiness Assessment  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. – EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006.

11

Technology Readiness and the Smart Grid  

SciTech Connect (OSTI)

Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

Kirkham, Harold; Marinovici, Maria C.

2013-02-27T23:59:59.000Z

12

ats technology readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ats technology readiness First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Technology Readiness Level...

13

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

14

Software Technology Readiness for the Smart Grid  

SciTech Connect (OSTI)

Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

2011-06-13T23:59:59.000Z

15

Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications  

SciTech Connect (OSTI)

PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

Ronnebro, Ewa

2012-06-16T23:59:59.000Z

16

U.S. Department of Energy Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

2009-10-12T23:59:59.000Z

17

Technology Readiness Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnologyKeyEnergy

18

Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm  

E-Print Network [OSTI]

1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants ­ Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

19

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis » Technology

20

Capture-ready power plants : options, technologies and economics  

E-Print Network [OSTI]

A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

Bohm, Mark (Mark C.)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect (OSTI)

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

22

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

23

Capture-ready coal plants--Options, technologies and Mark C. Bohm a  

E-Print Network [OSTI]

. Introduction Interest in the construction of coal-fired power generation has increased significantly in recentCapture-ready coal plants--Options, technologies and economics Mark C. Bohm a , Howard J. Herzog a facilities, and the current challenges of availability and pricing of alternative generation technologies

24

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE’s support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy Technology—New Zealand (WET-NZ) device.

25

assessing technological readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost, quality, regulation, and competitive ... Rothman, Craig Jeremy 2012-01-01 47 Technology assessment of renewable energy sustainability in South Africa. Open Access...

26

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

27

Building Technologies Office: DOE Zero Energy Ready Home Partner Locator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGETAbout

28

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

29

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

30

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

31

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

32

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

33

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

34

RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

2009-01-15T23:59:59.000Z

35

RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

2008-12-12T23:59:59.000Z

36

Low Level Heat Recovery Technology  

E-Print Network [OSTI]

level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

O'Brien, W. J.

1982-01-01T23:59:59.000Z

37

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan,and Characterization 2Information

38

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

39

Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084  

SciTech Connect (OSTI)

Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

Senor, David J.

2013-10-30T23:59:59.000Z

40

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

42

Application of Synergistic Technologies to Achieve High Levels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Application of Synergistic Technologies to Achieve High Levels of Gasoline Engine Downsizing Discussed...

43

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly Efficient and Clean,...

44

Technology and System Level Demonstration of Highly Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Technology and System Level Demonstration of Highly...

45

Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment  

SciTech Connect (OSTI)

Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

Vishik, Claire [Intel Corporation] [Intel Corporation; Sheldon, Frederick T [ORNL] [ORNL; Ott, David [Intel Corporation] [Intel Corporation

2013-01-01T23:59:59.000Z

46

Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1  

E-Print Network [OSTI]

-five years. While coal-fired power plants offer significant cost and energy security advantages , John E. Parsons2 , Ram C. Sekar1 1 Laboratory for Energy and the Environment, Massachusetts Institute and pricing of alternative generation technologies, such as solar and wind. In the United States alone

47

Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

NONE

1998-08-01T23:59:59.000Z

48

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

None

1999-09-01T23:59:59.000Z

49

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

50

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPA

51

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPADECEMBER 2012

52

Technology Readiness Assessment Report  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable1234DepartmentDepartment of

53

Advanced Technology Vehicle Lab Benchmarking- Level 1  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

54

DRAFT Doc. No. TDR-3001463-000 NGNP Technology Readiness Levels...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It may be necessary to provide a coating on the cable for thermal insulation and wear resistance during reactor accident conditions. Cable of this type should be available...

55

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

3 U.S. DOE Hydrogen and Fuel Cell Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Henning Lohse-Busch, Ph.D. - Principal Investigator...

56

Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test  

SciTech Connect (OSTI)

The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

Schweitzer, J. K.; Smith, J. D.

1981-03-01T23:59:59.000Z

57

Mission and Readiness Assessment for Fusion Nuclear Facilities  

SciTech Connect (OSTI)

Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

G.H. Neilson, et. al.

2012-12-12T23:59:59.000Z

58

Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics  

SciTech Connect (OSTI)

A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

2012-09-30T23:59:59.000Z

59

Modeling Renewable Energy Readiness: The UAE Context  

E-Print Network [OSTI]

Modeling technology policy is becoming an increasingly important capability to steer states and societies toward sustainability. This paper presents a simulation-modeling approach to evaluate renewable energy readiness, ...

Choucri, Nazli

60

Community Readiness Project Helps State Get Ready for Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community Readiness Project Helps State Get Ready for Electric Vehicles Community Readiness Project Helps State Get Ready for Electric Vehicles April 10, 2013 - 12:00am Addthis In...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EV Community Readiness projects: American Lung Association of...  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti027kelly2013o.pdf More Documents & Publications EV Community Readiness projects: Center for...

62

Accelerating the Electrification of U.S. Drive Trains: Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced...

63

Adopting New Technologies for  

E-Print Network [OSTI]

Readiness 6 Organizational Readiness 8 Motivational Readiness 10 Microcultures 12 Conclusion 13 References. The main purpose of IPAS technologies is not to increase administrative efficiency or information. Many authors writing about organizational behavior have sought to understand why particular innova

Qian, Ning

64

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1997-12-31T23:59:59.000Z

65

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

66

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

67

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

68

Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...

69

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

NONE

1997-12-31T23:59:59.000Z

70

Low-level radioactive waste technology: a selected, annotated bibliography  

SciTech Connect (OSTI)

This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

1980-10-01T23:59:59.000Z

71

Nuclear explosives testing readiness evaluation  

SciTech Connect (OSTI)

This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

Valk, T.C.

1993-09-01T23:59:59.000Z

72

Beamline Commissioning Readiness Review Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ES&H and User Safety Officer T. Kruy AES Front Ends Readiness G. Markovich AES PSS & EPS Readiness M. Merritt AES Insertion Device Readiness M. Ramanathan AES CCSM & Chair AES...

73

TECHNOLOGY READINESS ASSESSMENT-OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPADECEMBER

74

In 2006, the Alliance of Coastal Technology (ACT) evaluated the performance of five commercial-ready, in situ turbidity sensors at  

E-Print Network [OSTI]

commercial-ready, in situ turbidity sensors at eight test sites located throughout North America (Fig. 1, and a freshwater lake (Fig. 1) . The sensors used in this study consisted of: A backscatter Turbidity Probe ( =660 A transmissometer ( =660nm) ­ data denoted by cp Both scattering sensors were equipped with integrated copper wipers

Boss, Emmanuel S.

75

Emergency Readiness Assurance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

1992-02-27T23:59:59.000Z

76

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

77

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect (OSTI)

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

78

Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

79

Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

80

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

technology development - Evaluation of electric vehicle benefits and challenges 3 HEV Systems Reduce cost, increase energy of energy storage Low-cost power electronics Modeling...

82

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

83

Cost uncertainty for different levels of technology maturity  

SciTech Connect (OSTI)

It is difficult at best to apply a single methodology for estimating cost uncertainties related to technologies of differing maturity. While highly mature technologies may have significant performance and manufacturing cost data available, less well developed technologies may be defined in only conceptual terms. Regardless of the degree of technical maturity, often a cost estimate relating to application of the technology may be required to justify continued funding for development. Yet, a cost estimate without its associated uncertainty lacks the information required to assess the economic risk. For this reason, it is important for the developer to provide some type of uncertainty along with a cost estimate. This study demonstrates how different methodologies for estimating uncertainties can be applied to cost estimates for technologies of different maturities. For a less well developed technology an uncertainty analysis of the cost estimate can be based on a sensitivity analysis; whereas, an uncertainty analysis of the cost estimate for a well developed technology can be based on an error propagation technique from classical statistics. It was decided to demonstrate these uncertainty estimation techniques with (1) an investigation of the additional cost of remediation due to beyond baseline, nearly complete, waste heel retrieval from underground storage tanks (USTs) at Hanford; and (2) the cost related to the use of crystalline silico-titanate (CST) rather than the baseline CS100 ion exchange resin for cesium separation from UST waste at Hanford.

DeMuth, S.F. [Los Alamos National Lab., NM (United States); Franklin, A.L. [Pacific Northwest National Lab., Richland, WA (United States)

1996-08-07T23:59:59.000Z

84

ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect (OSTI)

A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

SAMS TL; MASSIE HL

2011-01-27T23:59:59.000Z

85

Recent experiences with Energy Technology Foresight in Denmark and on Nordic Level  

E-Print Network [OSTI]

technologies: · Biomass · Solar (PV and thermal) · Wind · Fuel cells · Hydrogen · New efficient energyRecent experiences with Energy Technology Foresight in Denmark and on Nordic Level First meeting of the Energy Technology Foresight Network (EFONET) Brussels, June 16, 2005 Per Dannemand Andersen Risø National

86

High-level waste vitrification off-gas cleanup technology  

SciTech Connect (OSTI)

This brief overview is intended to be a basis for discussion of needs and problems existing in the off-gas clean-up technology. A variety of types of waste form and processes are being developed in the United States and abroad. A description of many of the processes can be found in the Technical Alternative Documents (TAD). Concurrently, off-gas processing systems are being developed with most of the processes. An extensive review of methodology as well as decontamination factors can be found in the literature. Since it is generally agreed that the most advanced solidification process is vitrification, discussion here centers about the off-gas problems related to vitrification. With a number of waste soldification facilities around the world in operation, it can be shown that present technology can satisfy the present requirement for off-gas control. However, a number of areas within the technology base show potential for improvement. Fundamental as well as verification studies are needed to obtain the improvements.

Hanson, M.S.

1980-01-01T23:59:59.000Z

87

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

88

Ready, set, go . . . well maybe  

E-Print Network [OSTI]

at the 2011 Applied Ergonomics Conference By Melaniesustainable? Case study of ergonomics program that was ‘ notwas not! Case study of ergonomics program that was ‘ready

Alexandre, Melanie M

2011-01-01T23:59:59.000Z

89

3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS  

SciTech Connect (OSTI)

This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

Marzolf, A.; Folsom, M.

2010-08-31T23:59:59.000Z

90

Trade and plant level productivity gains: Role of Import Liberalisation, Technological Spillovers and Variety Growth in  

E-Print Network [OSTI]

1 Trade and plant level productivity gains: Role of Import Liberalisation, Technological Spillovers liberalization impact productivity at the micro level in the economy? Using a panel data of Indian manufacturing productivity growth at the production level in the economy. These mechanisms include trade induced pro

Bandyopadhyay, Antar

91

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

92

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

93

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

SciTech Connect (OSTI)

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

94

Farm level technology assessment in Sub-Saharan Africa: a case study in Mali  

E-Print Network [OSTI]

is the effect that risk has on the potential outcomes of proposed technology. The objective of this research was to evaluate the farm level impacts of implementing new technologies in Sub-Saharan Africa explicitly incorporating risk into the future outcomes...

Feldman, Paul A.

1999-01-01T23:59:59.000Z

95

Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 19631997  

E-Print Network [OSTI]

Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State, industry level, technological leadership, spatial econometrics JEL codes: C21, I23, O33, R12 Copyright 2007 spatial econometric techniques, and focus on capturing the geographical dimension of growth

96

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

97

A survey of current technologies for production of oil from oil shale by in-situ retorting processes; their technical and economic readiness and requirements for further developments  

SciTech Connect (OSTI)

Four in-situ oil shale processes; Vertical Modified In-Situ (VMIS), Horizontal Modified In-Situ (HMIS), Geokinetics, and Equity have been reviewed with respect to their developmental histories, major advantages and disadvantages, present activities, major technical problems, and present states of development. The various processes are described in detail, and up-to-date experimental data has been summarized. The preliminary designs for commercialization have been developed in order to estimate capital and operating costs. Required selling prices and sensitivities have been determined as they relate to various parameters, such as oil yields, capital costs, operating costs, and economic incentives. The technologies for the various processes have been analyzed for the purpose of identifying areas of further required research and development. Programs of technological development have been suggested for each in-situ process. The results of various process evaluations have been compared, and the best near-term solutions have been determined for producing oil from oil shale using in-situ methods.

Cha, C.Y.; Chazin, D.

1982-01-01T23:59:59.000Z

98

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network [OSTI]

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

99

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect (OSTI)

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

100

Question and Answers Alternative Fuel Readiness Plans  

E-Print Network [OSTI]

Question and Answers Alternative Fuel Readiness Plans PON-13-603 September 3, 2013 Eligibility Q1 to readiness plans? A1 This solicitation is limited to readiness planning only for alternative fuels. Q2 In regards to PON-13-603 - Alternative Fuel Readiness Plans, is electricity used for transportation

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office Merit Review 2014: Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks  

Broader source: Energy.gov [DOE]

Presentation given by Peterbilt at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the technology and system level...

102

DOE Zero Energy Ready Home High-Performance Home Sales Training...  

Broader source: Energy.gov (indexed) [DOE]

include advanced technology. And with all that load reduction, let's also put in the solar-ready construction features that are low- or no-cost, so your house can now be...

103

NGNP Risk Management through Assessing Technology Readiness  

SciTech Connect (OSTI)

Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

John W. Collins

2010-08-01T23:59:59.000Z

104

Technology Readiness Assessment Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOE

105

Technology Readiness Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices » Waste

106

Uranium Downblending and Disposition Project Technology Readiness  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial

107

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

108

ZERH Webinar: Energy- and Water- Efficiency in the DOE Zero Energy Ready Home Program  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

109

Implementation plan for WRAP Module 1 operational readiness review  

SciTech Connect (OSTI)

The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR.

Irons, L.G.

1994-11-04T23:59:59.000Z

110

Designing microelectromechanical systems-on-a-chip in a 5-level surface micromachine technology  

SciTech Connect (OSTI)

A new 5-level polysilicon surface micromachine process has been developed that offers significantly increased system complexity, while further promoting the manufacturability and reliability of microscopic mechanical systems. In general, as complexity increases, reliability suffers. This is not necessarily the case, however, with MicroElectroMechanical Systems (MEMS). In fact, utilizing additional levels of polysilicon in structures can greatly increase yield, reliability, and robustness. Surface micromachine devices are built thousands at a time using the infrastructure developed to support the incredibly reliable microelectronics industry, and the batch fabrication process utilized in the 5-level technology further increases reliability and reduces cost by totally eliminating post assembly.

Rodgers, M.S.; Sniegowski, J.J.

1998-05-01T23:59:59.000Z

111

Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

112

Solar Ready: An Overview of Implementation Practices  

SciTech Connect (OSTI)

This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

2012-01-01T23:59:59.000Z

113

Digital Forensic Readiness: Are We There Yet?  

E-Print Network [OSTI]

Digital Forensic Readiness: Are We There Yet? Antonis Mouhtaropoulos, Chang-Tsun Li Department.co.za Abstract--Digital Forensic Readiness is defined as the pre- incident plan that deals with an organization for a common forensic readiness standard. This article reviews a number of key initiatives in order to point

Li, Chang-Tsun

114

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

115

Technology-to-Market Portfolio  

Broader source: Energy.gov [DOE]

BTO’s Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

116

Greater-Than-Class C low-level radioactive waste treatment technology evaluation  

SciTech Connect (OSTI)

This report was developed to provide the Greater-Than-Class C Low-Level Radioactive Waste Management Program with criteria and a methodology to select candidate treatment technologies for Greater-Than-Class C low-level radioactive waste (GTCC LLW) destined for dedicated storage and ultimately disposal. The technology selection criteria are provided in a Lotus spreadsheet format to allow the methodology to evolve as the GTCC LLW Program evolves. It is recognized that the final disposal facility is not yet defined; thus, the waste acceptance criteria and other facility-specific features are subject to change. The spreadsheet format will allow for these changes a they occur. As additional treatment information becomes available, it can be factored into the analysis. The technology selection criteria were established from program goals, draft waste acceptance criteria for dedicated storage (including applicable regulations), and accepted remedial investigation methods utilized under the Comprehensive Environmental Response, Compensation, and Liability Act. Kepner-Tregoe decisionmaking techniques are used to compare and rank technologies against the criteria.

Garrison, T W; Fischer, D K

1993-01-01T23:59:59.000Z

117

Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment  

SciTech Connect (OSTI)

The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

G. Becker; M. Connolly; M. McIlwain

1999-02-01T23:59:59.000Z

118

The certificate in automotive technology provides students with the education and training needed to become an entry level automotive  

E-Print Network [OSTI]

AUTOMOTIVE TECHNOLOGY The certificate in automotive technology provides students with the education and training needed to become an entry level automotive technician. The automotive service industry is one. The certificate qualifies students for entry-level positions within the automotive service and repair industry

Ickert-Bond, Steffi

119

A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment  

SciTech Connect (OSTI)

In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

Olama, Mohammed M [ORNL] [ORNL; McNair, Wade [ORNL] [ORNL; Sukumar, Sreenivas R [ORNL] [ORNL; Nutaro, James J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

120

OTM and UTARI personnel will perform Technology  

E-Print Network [OSTI]

OTM and UTARI personnel will perform Technology Readiness (TRL) & Manufacturing Readiness (MRL to the Office of Technology Management via the OTM webpage OTM and UTARI personnel will review the IPD and meet for the technology; At the same time, OTM may assist in obtaining funding (SBIR/STTR, etc.) and/or technology may (a

Huang, Haiying

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

SciTech Connect (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

122

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

of previous clean technology development efforts, we do nothydrogen and other clean energy technologies would supportfor emerging clean energy technologies by combining support

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

123

Assessment of the high temperature fission chamber technology for the French fast reactor program  

SciTech Connect (OSTI)

High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l'Energie Atomique, CEA (France)

2011-07-01T23:59:59.000Z

124

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of  

E-Print Network [OSTI]

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of Transportation Systems (Infrastructure, Systems, Organization and Services) to Deter, Detect Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle

125

Organizational Readiness in Specialty Mental Health Care  

E-Print Network [OSTI]

readiness for change (ORC) measure, and key stake- holders43 clinical staff completed the ORC, and 38 key stakeholdersdeviations (SDs) of the ORC scores are also illuminating in

Hamilton, Alison B.; Cohen, Amy N.; Young, Alexander S.

2010-01-01T23:59:59.000Z

126

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

127

DOE Zero Energy Ready Home  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home 2014

128

GIT Certificate Dr. Laurence W. Carstensen August 22, 2011 1 Graduate Level Geospatial Information Technology Certification Program  

E-Print Network [OSTI]

the College of Natural Resources has developed a PhD. in Geospatial and Environmental Analysis that beganGIT Certificate Dr. Laurence W. Carstensen August 22, 2011 1 Graduate Level Geospatial Information Technology Certification Program 1. Rationale and need: Geospatial information technology (GIT) includes

Virginia Tech

129

Zero Energy Ready Home Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Zero Energy Ready Home Zero Energy Ready Home Events Zero Energy Ready Home Events November 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 26 27 28 29...

130

Zero Energy Ready Home Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Zero Energy Ready Home Zero Energy Ready Home Events Zero Energy Ready Home Events September 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 31 1 2 3 4 5...

131

Essays on regional and firm-level productivity, military spending, and technology  

E-Print Network [OSTI]

BLDG & REPAIRING GENERAL ELECTRIC CO CONGLOMERATES GENERALUnited Technologies General Electric TRW Inc Honeywell Inc-United Technologies General Electric TRW Inc Honeywell Inc-

Goudie, Bryan Daniel

2008-01-01T23:59:59.000Z

132

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

133

Effects of Parent Expectations and Involvement on the School Readiness of Children in Head Start  

E-Print Network [OSTI]

EFFECTS OF PARENT EXPECTATIONS AND INVOLVEMENT ON THE SCHOOL READINESS OF CHILDREN IN HEAD START A Dissertation by KRYSTAL TISHA? COOK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of children enrolled in Head Start. The study examined how these iv parent variables were related to children?s school readiness, and differences between ethnic groups, gender groups, and level of risk. The study tested a model whereby the effect...

Cook, Krystal Tisha'

2010-10-12T23:59:59.000Z

134

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature  

SciTech Connect (OSTI)

This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

John Collins

2009-08-01T23:59:59.000Z

135

DOE Zero Energy Ready Home Case Study: John Hubert Associates...  

Energy Savers [EERE]

Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT, Custom...

136

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

137

Readiness Review Training - Development of Criteria And Review...  

Office of Environmental Management (EM)

Development of Criteria And Review Approach Documents Readiness Review Training - Development of Criteria And Review Approach Documents November 8-9, 2010 Readiness Review Training...

138

DOE Zero Energy Ready Home Case Study, Weiss Building & Development...  

Broader source: Energy.gov (indexed) [DOE]

Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, IL DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT,...

139

EV Community Readiness projects: Center for Transportation and...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: Center for...

140

DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...  

Energy Savers [EERE]

Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...  

Energy Savers [EERE]

TX More Documents & Publications DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

142

DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...  

Broader source: Energy.gov (indexed) [DOE]

Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI Case study of a DOE Zero Energy Ready affordable home in...

143

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

ACCOMPLISHMENTS NYCLHVCC: Clean Cities 2011 EV Community Readiness DUANE Reade's Smith EV at Plug-In Day in Times Square Clean Cities 2011 Community Readiness & Planning...

144

Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report  

SciTech Connect (OSTI)

Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

Wilson, C.N., Westinghouse Hanford

1996-06-27T23:59:59.000Z

145

Lightning Arrestor Connectors Production Readiness  

SciTech Connect (OSTI)

The Lightning Arrestor Connector (LAC), part “M”, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

2008-10-20T23:59:59.000Z

146

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

147

Relationships between student achievement and levels of computer technology integration by Texas agriscience teachers  

E-Print Network [OSTI]

development opportunities for agriscience teachers. This information will also assist secondary schools in making decisions regarding technology purchases for agriscience departments. Instructional technology researchers have worked since the 1960s to gain a...

Peake, Jason Boone

2004-09-30T23:59:59.000Z

148

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

149

Shovel Ready Energy Project Grants (Florida)  

Broader source: Energy.gov [DOE]

This program leverages Florida’s state energy grant initiatives to identify “shovel-ready” projects that can be expeditiously implemented through available SEP funding. The goal is to provide...

150

Superconducting Partnership with Readiness Review Update  

E-Print Network [OSTI]

1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

151

Are You Ready? Jimmy L. Lagunero  

E-Print Network [OSTI]

Are You Ready? Jimmy L. Lagunero Emergency Management Coordinator University of Hawai,,i "Emergency ? ? ? Jimmy L. Lagunero UHM Emergency Management Coordinator phone: 808-956-0773 fax: 808-956-

Dong, Yingfei

152

Guam- Solar-Ready Residential Building Requirement  

Broader source: Energy.gov [DOE]

Note: Guam is in the process of adopting a [www.guamenergy.com/outreach-education/guam-tropical-energy-code/ tropical energy code]. As a result, the solar ready provisions described below may...

153

Essays on regional and firm-level productivity, military spending, and technology  

E-Print Network [OSTI]

BLDG & REPAIRING GENERAL ELECTRIC CO CONGLOMERATES GENERALINC GENERAL DYNAMICS CORP GENERAL ELECTRIC CO GENERAL MOTORSCo Northrop Grumman General Dynamics United Technologies General Electric

Goudie, Bryan Daniel

2008-01-01T23:59:59.000Z

154

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Coalition To Unveil Hydrogen and Fuel Cell Initiatives toOverview of Hydrogen and Fuel Cell Technology Status Reviewsuccessfully develop hydrogen and fuel cell system markets.

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

155

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

Commercialization Strategy for Hydrogen Energy Technologies,International Journal of Hydrogen Energy 23(7): 617-620.NYSERDA) (2005), “New York Hydrogen Energy Roadmap,” NYSERDA

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

156

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging… (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

157

Inclusive Computer Science Education Using a Ready-made Computer Game Framework  

E-Print Network [OSTI]

Inclusive Computer Science Education Using a Ready-made Computer Game Framework Joseph Distasio and Thomas P. Way Applied Computing Technology Laboratory Department of Computing Sciences Villanova the prevailing interest in computer games among college students, both for entertainment and as a possible career

Way, Thomas

158

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network [OSTI]

for State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipmana new role for sustainable energy strategies. The

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

159

Essays on regional and firm-level productivity, military spending, and technology  

E-Print Network [OSTI]

Statistics (BLS) Current Employment Statistics (CES) AnnualLabor Statistics Current Employment Statistics survey. Theregional employment, and state-level patent statistics are

Goudie, Bryan Daniel

2008-01-01T23:59:59.000Z

160

ENERGY STAR Webinar: Zero Energy Ready Home Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

home is as good as ENERGY STAR, the modest added "lift" to bring a home up to DOE's Zero Energy Ready specs unleashes a wave of powerful value messages. DOE Zero Energy Ready...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Zero Energy Ready Home Case Study: Brookside Development...  

Energy Savers [EERE]

Preferred Builders, Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI...

162

DOE Zero Energy Ready Home Case Study: Greenhill Contracting...  

Energy Savers [EERE]

Study: Greenhill Contracting, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY Case study of a DOE Zero Energy Ready home in New Paltz, NY,...

163

DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...  

Office of Environmental Management (EM)

Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home...

164

An assessment of the value of retail ready packaging  

E-Print Network [OSTI]

Use of retail-ready packaging reduces the costs of replenishing store shelves by eliminating the labor of removing packaging materials and stocking individual items on shelves. While reducing costs for retailers, retail-ready ...

Jackson, Kathleen Anne

2008-01-01T23:59:59.000Z

165

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

166

Global e-Readiness - For What? Readiness for e-Banking (JITD)  

E-Print Network [OSTI]

With the rapid diffusion of the Internet worldwide, there has been considerable interest in the e-potentials of developing countries giving rise to a 1st generation of e-Readiness studies. Moreover, ...

Maugis, V.

2004-12-10T23:59:59.000Z

167

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

168

Property:Technology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:Technology Readiness Level Property

169

Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies  

DOE Patents [OSTI]

A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

Blewer, Robert S. (Albuquerque, NM); Gullinger, Terry R. (Albuquerque, NM); Kelly, Michael J. (Albuquerque, NM); Tsao, Sylvia S. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

170

Integrated Approach to Documenting Readiness for a Potential Criticality Incident  

SciTech Connect (OSTI)

There have been 60 highly publicized criticality accidents1 over the last 60 years and the nature of the hazard is unique. Recent studies2 discuss the benefits of knowing what to expect during and immediately following these events. Emergency planning and response standards2 provide an effective tool for establishing an adequate level of readiness to a criticality accident. While these planning requirements cover a broad spectrum of activities to establish readiness, a concise and routinely reviewed criticality accident scenario may be the most valuable tool in developing a cohesive understanding and response to these challenging events. Using a guideline3 for criticality safety evaluations the analytical work and emergency planning to mitigate a criticality accident at the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory, was developed. Using a single document the analysis that established the accident characteristics, response scenario based on emergency staffing and planning, and anticipated dose consequences were integrated. This single document approach provides a useful platform to integrate the initial planning and guide the review of proposed changes to emergency response plans.

Carlisle, Bruce S.; Prichard, Andrew W.; Jones, Robert A.

2013-11-11T23:59:59.000Z

171

Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

Mazer, J.J.; No, Hyo J.

1995-08-01T23:59:59.000Z

172

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

173

Technology, Safety and Costs of Decommissioning a Reference Low-Level Waste Burial Ground. Appendices  

SciTech Connect (OSTI)

Safety and cost information are developed for the conceptual decommissioning of commercial low-level waste (LLW) burial grounds. Two generic burial grounds, one located on an arid western site and the other located on a humid eastern site, are used as reference facilities for the study. The two burial grounds are assumed to have the same site capacity for waste, the same radioactive waste inventory, and similar trench characteristics and operating procedures. The climate, geology. and hydrology of the two sites are chosen to be typical of real western and eastern sites. Volume 2 (Appendices) contains the detailed analyses and data needed to support the results given in Volume 1.

None

1980-06-01T23:59:59.000Z

174

Construction Readiness RM | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91Power Plant |Readiness RM

175

NGNP Infrastructure Readiness Assessment: Consolidation Report  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

Brian K Castle

2011-02-01T23:59:59.000Z

176

Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats  

SciTech Connect (OSTI)

Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

1990-09-18T23:59:59.000Z

177

Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation  

Broader source: Energy.gov [DOE]

Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

178

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect (OSTI)

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

179

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University of

180

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving LoanDepartment of422-SA-01AprilSRS

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Savannah River Site Salt Waste Processing Facility Technology Readiness  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENT OFSanEnergyWasteSeniorAssessment

182

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisApril 2,QuickFacilitySavannah

183

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) PowerSafety Design RM

184

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) PowerSafety Design RMDisposition

185

Advancing Technology Readiness: Wave Energy Testing and Demonstration |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment

186

Technology Readiness Assessment Guide - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8,MaterialsTechnologistRequirements 4A,

187

Small Column Ion Exchange at Savannah River Site Technology Readiness  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorIt seemsReportP RDOEEarlier

188

Uranium Downblending and Disposition Project Technology Readiness Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of Energy SofDelaware EnergyPotomac RiverUpdateReport233

189

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

190

Colorado Community Readiness Efforts for PEVs Support State Policy...  

Energy Savers [EERE]

electric vehicle readiness projects from throughout the country. | Photo by Ken Kelly, National Renewable Energy Laboratory EV Everywhere: 10 Ways Communities Can Pave the...

191

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

192

Independent Oversight Review of the NNSA Production Office Readiness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RR Readiness Review SAA Startup Approval Authority SIAP Site Integrated Assessment Plan SME Subject Matter Expert SNR Startup Notification Report SSTA Senior Scientific Technical...

193

Jasper Johns in der Nachfolge des Ready-mades.  

E-Print Network [OSTI]

??Die Arbeit untersucht, wie die Einführung des Ready-mades in die Kunstwelt die Arbeitsweise von Künstlern sowie die Produktion und Wahrnehmung von Kunstwerken beeinflusst hat. Dies… (more)

Mayer, Lynette Mildred

2013-01-01T23:59:59.000Z

194

South Africa-Facilitating Implementation and Readiness for Mitigation...  

Open Energy Info (EERE)

and Readiness for Mitigation (FIRM)" Retrieved from "http:en.openei.orgwindex.php?titleSouthAfrica-FacilitatingImplementationandReadinessforMitigation(FIRM)&oldid70000...

195

Focus Series: Program Finds Community "Readiness" Is the Key...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Community Readiness Assessments Better Buildings Network View | June 2014 It's Academic: BetterBuildings for Michigan Partners With University to Reach Employees...

196

DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville...  

Broader source: Energy.gov (indexed) [DOE]

Southern Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville, AL Case study of the first manufactured home built to the DOE Zero Energy...

197

Building America Zero Energy Ready Home Case Study: Imery Group...  

Broader source: Energy.gov (indexed) [DOE]

Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case study describing the first...

198

EV Community Readiness projects: Clean Energy Coalition (MI...  

Broader source: Energy.gov (indexed) [DOE]

link the Michigan PEV Community Readiness Plan to relevant websites and other appropriate media outlets; incorporate the Plan into the PEV Taskforce website. Clean Cities Recovery...

199

DOE Zero Energy Ready Home: Better Business for Builders Webinar...  

Broader source: Energy.gov (indexed) [DOE]

Better Business for Builders Webinar Transcript DOE Zero Energy Ready Home: Better Business for Builders Webinar Transcript Below is the text version of the webinar, DOE Zero...

200

DOE Zero Energy Ready Home Webinar: Building Energy Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EV Community Readiness projects: South Florida Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

3 Clean Cities EV Community Readiness Florida Gold Coast Sustainable Community Planning for Electric Vehicle and Charging Infrastructure PI: Christine Heshmati, South Florida...

202

Readiness Issues for Emergency Response Instrumentation  

SciTech Connect (OSTI)

Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

C.A. Riland; D.R. Bowman; R.J. Tighe

1999-03-01T23:59:59.000Z

203

Solar Ready Vets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewable Energy »Ready

204

NanoReady Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 Case Data Survey TypeTuneNanoReady

205

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 13  

E-Print Network [OSTI]

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 13 Shelter T aking shelter is often a critical in your home for sev- eral days without electricity or water services following a winter storm. We also an emergency toilet, if necessary. · Use a garbage container, pail or #12;14 ARE YOU READY? FEDERAL EMERGENCY

Tullos, Desiree

206

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83  

E-Print Network [OSTI]

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83 National Security Emergencies I n addition uncomfortable or if something does not seem right. #12;84 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY 4- rupted--electricity, telephone, natural gas, gasoline pumps, cash registers, ATM machines, and internet

Tullos, Desiree

207

4 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY  

E-Print Network [OSTI]

4 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY Emergency Planning and Disaster Supplies if you have questions. #12;FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 5 9. Take a first aid and when to shut off water, gas, and electricity at the main switches. Consult with your local utili- ties

Tullos, Desiree

208

SCS-2005-18 Roundup Ready Flex Cotton System  

E-Print Network [OSTI]

SCS-2005-18 6-05 Roundup Ready Flex Cotton System Robert Lemon, Ph.D., Professor and Extension Agronomist - Cotton Randy Boman, Ph.D., Associate Professor and Extension Agronomist - Cotton Todd Baughman Specialist Peter Dotray, Ph.D., Professor and Extension Weed Specialist R oundup Ready Flex cotton provides

Mukhtar, Saqib

209

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1  

SciTech Connect (OSTI)

The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

Hofmann, P.L.; Breslin, J.J. (eds.)

1981-01-01T23:59:59.000Z

210

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

211

Risk-Based Comparison of Carbon Capture Technologies  

SciTech Connect (OSTI)

In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

2013-05-01T23:59:59.000Z

212

Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2  

SciTech Connect (OSTI)

The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

Hofmann, P.L. (ed.)

1982-01-01T23:59:59.000Z

213

Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report  

SciTech Connect (OSTI)

The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

1994-08-01T23:59:59.000Z

214

A Study of the Relationship Between Levels of Technology Implementation (LoTi) and Student Performance on Texas Assessment of Knowledge and Skills (TAKS) Scores  

E-Print Network [OSTI]

The purpose of this study was to examine teacher Levels of Technology Implementation (LoTi) self-ratings and student Texas Assessment of Knowledge and Skills (TAKS) scores. The study assessed the relationship between LoTi ratings and TAKS scores...

Berkeley-Jones, Catherine Spotswood

2012-10-19T23:59:59.000Z

215

Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon  

SciTech Connect (OSTI)

This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

Metzger, I.; Van Geet, O.

2014-06-01T23:59:59.000Z

216

Using ISMS Principles and Functions in Developing an ARRA Readiness Review Process  

Broader source: Energy.gov [DOE]

Presenter: Linda K. Rogers, Assessments & Readiness Programs Manager, Bechtel Jacobs Company, LLC Track 8-8

217

A Study of Scientometric Methods to Identify Emerging Technologies  

SciTech Connect (OSTI)

This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

Abercrombie, Robert K [ORNL] [ORNL; Udoeyop, Akaninyene W [ORNL] [ORNL

2011-01-01T23:59:59.000Z

218

Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator  

SciTech Connect (OSTI)

Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

2012-08-01T23:59:59.000Z

219

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

220

DOE Challenge Home (Now Zero Energy Ready Home) - Building America...  

Energy Savers [EERE]

a much more rigorous set of guidelines that establish a national definition for Zero Net-Energy Ready performance. Read about this Top Innovation. See an example of a DOE...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Zero Energy Ready Home Webinar: Ducts in Conditioned Space  

Broader source: Energy.gov [DOE]

DOE Challenge Home is a blueprint for zero energy ready homes.  When we make that statement – it’s impossible to justify huge thermal losses from ducts in unconditioned spaces.  That’s why one of...

222

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

223

Marketing and Sales Solutions for Zero Energy Ready Homes Webinar...  

Broader source: Energy.gov (indexed) [DOE]

of resources that we'll cover. The first are marketing resources that deal with the brand of Zero Energy Ready Home and how it was configured from the very beginning to...

224

affecting school readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-Golden DOE 2006 Superconductivity Peer Review July 25-27, 2006 12;2 SPI Readiness Review Program Budget: 210 Kyear from DOE 100 K - LANL (3 cable projects) 110 K - ORNL...

225

DOE Zero Energy Ready Home Efficient Hot Water Distribution I...  

Broader source: Energy.gov (indexed) [DOE]

I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

226

DOE Zero Energy Ready Home Efficient Hot Water Distribution II...  

Broader source: Energy.gov (indexed) [DOE]

-- How to Get it Right Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution II -- How to Get it Right Webinar (Text Version) Below is the text...

227

DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...  

Energy Savers [EERE]

Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX Case study of a DOE Zero Energy...

228

DOE Zero Energy Ready Home: Durable Energy Builders, Houston...  

Energy Savers [EERE]

super-insulated roof, 11,500 gallon rainwater cistern to supply most of the home's drinking water, hurricane-proof roof, and triple-pane windows. DOE Zero Energy Ready Home:...

229

DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat...  

Energy Savers [EERE]

executive director for the Habitat affiliate. "We started doing ENERGY STAR about 5 years ago, and DOE Builders Challenge 3 years ago, and then DOE Zero Energy Ready Home...

230

Building America Top Innovations 2013 Profile - Zero Energy-Ready...  

Broader source: Energy.gov (indexed) [DOE]

Many Building America teams (ARBI, BA-PIRC, BSC, CARB, IBACOS, NorthernSTAR, PHI, etc.) have worked with home builders to design and test zero-energy-ready homes....

231

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies...  

Broader source: Energy.gov (indexed) [DOE]

We have these homes so well-air-sealed, we need to look at things like good source control products. Obviously, these homes are so efficient, they're zero energy ready, we have...

232

DOE Zero Energy Ready Home Case Study: Southern Energy Homes...  

Energy Savers [EERE]

built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an...

233

DOE Zero Energy Ready Home Case Study, Ithaca Neighborhood Housing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ithaca, NY Case study of a DOE Zero Energy Ready Home in Ithaca, NY, that scored HERS 50 without PV. These 1,160 ft2 affordable town houses have R-20 advance framed walls,...

234

DOE Zero Energy Ready Home Case Study, Garbett Homes, Herriman...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Home Case study of a DOE Zero Energy Ready Home in Herriman, UT, that scored HERS 40 without PV, -1 with PV. This 4,111 ft2 production home has R-23 advanced framed...

235

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

236

Sandia National Laboratories: complete operational readiness...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems Scaled Wind Farm Technology Facility Baselining Project Accelerates Work On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT,...

237

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Program GGE H2I HSCC Gasoline gallon equivalent Hawaii Hydrogen Initiative Hydrogen Station Cost Calculator ICE Internal combustion engine LDV Light-duty vehicle LS...

238

Vehicle Technologies Office Merit Review 2014: Advanced Technology...  

Energy Savers [EERE]

Advanced Technology Vehicle Lab Benchmarking - Level 1 Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking - Level 1 Presentation given by...

239

Vehicle Technologies Office Merit Review 2014: Technology and...  

Broader source: Energy.gov (indexed) [DOE]

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Vehicle Technologies Office Merit Review 2014: Technology and System Level...

240

An analytical framework for long term policy for commercial deployment and innovation in carbon capture and sequestration technology in the United States  

E-Print Network [OSTI]

Carbon capture and sequestration (CCS) technology has the potential to be a key CO2 emissions mitigation technology for the United States. Several CCS technology options are ready for immediate commercial-scale demonstration, ...

Hamilton, Michael Roberts

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Renewable Energy: Ready to Meet Its Promise?  

SciTech Connect (OSTI)

This paper will briefly review the technical status, cost, and applications of major renewable energy technologies in 1998, and also discuss some of the socioeconomic impacts of wide-scale adoption of renewables.

Bull, S. R.; Billman, L. L.

1999-01-01T23:59:59.000Z

242

WM '04 Conference, February 29 March 4, 2004, Tucson, AZ WM-4010 VITRIFICATION OF LOW AND INTERMEDIATE LEVEL WASTE: TECHNOLOGY  

E-Print Network [OSTI]

waste (HLW) from spent nuclear fuel reprocessing. Development of vitrification technologies for low waste from nuclear power plants (NPP) and institutional radioactive waste in borosilicate glass matrices radioactive waste (LILW), may result in significant reduction of transport and disposal costs. Development

Sheffield, University of

243

Operational Readiness Review Final Report for K Basin Fuel Transfer System  

SciTech Connect (OSTI)

An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR Team did not have the opportunity to observe a shift turnover from one crew to another. The ORR Team has evaluated the risk of not observing this activity and considers the risk to be minimal based on the fact that operating staff are very familiar with the FTS equipment and its procedures, and because existing Conduct of Operations processes and procedures are adequate and implemented. Because the ORR Team has not observed two-shift FTS operations, we recommend that additional RL oversight be provided at the start of two-shift FTS operations to evaluate the adequacy of crew turnovers.

DAVIES, T.H.

2002-10-01T23:59:59.000Z

244

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

245

Are CHP Systems Ready for Commercial Buildings?  

SciTech Connect (OSTI)

This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

2005-06-27T23:59:59.000Z

246

EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014  

SciTech Connect (OSTI)

This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, “Comprehensive Emergency Management System.” The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, “INL Emergency Plan/RCRA Contingency Plan.

Shane Bush

2014-09-01T23:59:59.000Z

247

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

SciTech Connect (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

248

FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125  

SciTech Connect (OSTI)

Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

2012-01-26T23:59:59.000Z

249

DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro,...

250

Computer vs. Video Game System: Ready to Rumble in the #EnergyFaceoff...  

Office of Environmental Management (EM)

Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle November 4, 2014 - 10:20am...

251

DOE Zero Energy Ready Home Case Study 2013: Manatee County Habitat...  

Energy Savers [EERE]

Energy Ready Home has a 2.5-kW PV system obtained with assistance from Florida Power and Light. All of the homes in the development are solar-energy ready with conduit in place...

252

What to Expect When Readying to Move Spent Nuclear Fuel from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

253

DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...  

Broader source: Energy.gov (indexed) [DOE]

BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS...

254

DOE Zero Energy Ready Home Case Study: Shore Road Project- Old Greenwich, Connecticut  

Broader source: Energy.gov [DOE]

This case study describes the builder Murphy Brothers' first DOE Zero Energy Ready Home in Old Greenwich, CT.

255

Text-Alternative Version: ENERGY STAR® for SSL: Getting Ready for September 30  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the ENERGY STAR® for SSL: Getting Ready for September 30 webcast.

256

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

257

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect (OSTI)

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

258

Annual Tour Ready to Explore New Mexico's Lower Pecos River  

E-Print Network [OSTI]

Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

Nebraska-Lincoln, University of

259

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

2010-04-16T23:59:59.000Z

260

DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...  

Broader source: Energy.gov (indexed) [DOE]

panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. DOE Zero Energy Ready...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Operational readiness review phase-1 final report for WRAP-1  

SciTech Connect (OSTI)

This report documents the Operational Readiness Review for WRAP-1 Phase-1 operations. The report includes all criteria, lines of inquiry with resulting Findings and Observations. The review included assessing operational capability of the organization and the computer controlled process and facility systems.

Bowen, W., Westinghouse Hanford

1996-12-27T23:59:59.000Z

262

Ready to eat breakfast cereals from food-grade sorghums  

E-Print Network [OSTI]

Two food-grade sorghum hybrids, ATx63 I *Tx436 (non waxy), and B.BON 34, (waxy), were micronized and evaluated for their potential use in ready to eat breakfast cereals (RTE-BC). Whole and decorticated grains were exposed to infra-red burners...

Cruz y Celis Ehlinger, Laura Penelope

1993-01-01T23:59:59.000Z

263

Shunting passenger trains: getting ready for Marjan van den Akker  

E-Print Network [OSTI]

Shunting passenger trains: getting ready for departure Marjan van den Akker Hilbrandt Baarsma Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Shunting passenger trains: getting of shunting train units on a railway station. Train units arrive at and depart from the station according

Utrecht, Universiteit

264

Stirling engine ready for subsea deployment  

SciTech Connect (OSTI)

The key technologies are now in place to provide for long-term independent diver support on the seabed, in place of large and costly surface support spreads. The lack of a compact air-independent energy source in the medium power range has prevented the evolution of underwater autonomous offshore operations. Five key advancements will now permit surface-independence in the performance of many subsea tasks: efficient and compact power and heat energy, computerized systems for navigation and instrumentation, composite materials for high pressure, low weight gas storage, closed-circuit breathing systems for divers, and underwater robotics and artificial intelligence.

Not Available

1985-05-01T23:59:59.000Z

265

A Study of Scientometric Methods to Identify Emerging Technologies via Modeling of Milestones  

SciTech Connect (OSTI)

This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, patents, news archives, and online mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

Abercrombie, Robert K [ORNL; Udoeyop, Akaninyene W [ORNL; Schlicher, Bob G [ORNL

2012-01-01T23:59:59.000Z

266

Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies  

E-Print Network [OSTI]

The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

Sailer, André; Lohse, Thomas

2013-01-10T23:59:59.000Z

267

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

268

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

2010-04-16T23:59:59.000Z

269

DOE Zero Energy Ready Home Partner Resources | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc.,House, Devens, MAZero Energy Ready

270

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

271

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Wastewater Recycling Technology  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

2014-08-14T23:59:59.000Z

272

ReadyMade Analysis of Berkeley Scholars to Cal Program  

E-Print Network [OSTI]

Center for Work Technology and Society, IRLE University ofthe Center for Work, Technology and Society at University of

Belohlav, Kate; Brown, Clair

2012-01-01T23:59:59.000Z

273

Taking the Challenge at Singer Village--A Cold Climate Zero Energy Ready Home  

SciTech Connect (OSTI)

After progressively incorporating ENERGY STAR(R) for Homes Versions 1, 2, and 3 into its standard practices over the years, this builder, Brookside Development, was seeking to build an even more sustainable product that would further increase energy efficiency, while also addressing indoor air quality, water conservation, renewable-ready, and resiliency. These objectives align with the framework of the DOE Challenge Home program, which 'builds upon the comprehensive building science requirements of ENERGY STAR for Homes Version 3, along with proven Building America innovations and best practices. Other special attribute programs are incorporated to help builders reach unparalleled levels of performance with homes designed to last hundreds of years.' CARB partnered with Brookside Development on the design optimization and construction of the first home in a small development of seven planned new homes being built on the old Singer Estate in Derby, CT.

Puttagunta, S.; Gaakye, O.

2014-10-01T23:59:59.000Z

274

DOE Zero Energy Ready Home Case Study, Ferguson Design and Constructio...  

Energy Savers [EERE]

Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY, Custom Home DOE Zero Energy Ready Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY,...

275

DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...  

Energy Savers [EERE]

Home Case Study, Manatee County Habitat for Humanity, Ellenton, FL, Affordable DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL...

276

324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3  

SciTech Connect (OSTI)

A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

HUMPHREYS, D C

2002-08-01T23:59:59.000Z

277

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

278

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

279

The relationship between teacher Levels of Technology Integration (LoTi) on 3rd-5th Grade Students on the Texas Assessment of Knowledge and Skills (TAKS) scores at Alamo Heights Independent School District, San Antonio, Texas  

E-Print Network [OSTI]

. The following recommendations were made: 1. Additional research is needed to examine how technology is specifically implemented in both reading and math classrooms at the elementary level. 2. Additional research is needed to examine how staff development... on the LoTi instrument affected classroom practice and teacher responses on the LoTi survey. 3. Continued support is needed to provide teachers with professional development regarding the integration of technology as a teaching tool and repeat the research...

Bashara, Dana Marie

2008-10-10T23:59:59.000Z

280

NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency  

E-Print Network [OSTI]

Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

Clark,L.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Are You Ready for Fall? | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015 Project Dashboard AprilKeepingReady for

282

LEDs Ready for Takeoff at Louisiana Airport | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVAC ModelLEDLightsLEDLEDs Ready

283

Rough and Ready Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and Ready Biomass Facility Jump to:

284

Zero Energy Ready Home Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE-March 2015

285

Zero Energy Ready Home Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE-March

286

Adapting Decisions, Optimizing Facts and Predicting Figures: Can Convergence of Concepts, Tools, Technologies and Standards Catalyze Innovation?  

E-Print Network [OSTI]

Managing uncertainty is key in decision systems, such as supply chain management or military readiness. We propose a reasonable confluence of existing concepts, tools, technologies and standards that may, collectively, ...

Datta, Shoumen

2008-07-31T23:59:59.000Z

287

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect (OSTI)

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

288

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

SciTech Connect (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snřhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

289

Spray Calciner/In-Can Melter high-level waste solidification technical manual  

SciTech Connect (OSTI)

This technical manual summarizes process and equipment technology developed at Pacific Northwest Laboratory over the last 20 years for vitrification of high-level liquid waste by the Spray Calciner/In-Can Melter process. Pacific Northwest Laboratory experience includes process development and demonstration in laboratory-, pilot-, and full-scale equipment using nonradioactive synthetic wastes. Also, laboratory- and pilot-scale process demonstrations have been conducted using actual high-level radioactive wastes. In the course of process development, more than 26 tonnes of borosilicate glass have been produced in 75 canisters. Four of these canisters contained radioactive waste glass. The associated process and glass chemistry is discussed. Technology areas described include calciner feed treatment and techniques, calcination, vitrification, off-gas treatment, glass containment (the canister), and waste glass chemistry. Areas of optimization and site-specific development that would be needed to adapt this base technology for specific plant application are indicated. A conceptual Spray Calciner/In-Can Melter system design and analyses are provided in the manual to assist prospective users in evaluating the process for plant application, to provide equipment design information, and to supply information for safety analyses and environmental reports. The base (generic) technology for the Spray Calciner/In-Can Melter process has been developed to a point at which it is ready for plant application.

Larson, D.E. (ed.)

1980-09-01T23:59:59.000Z

290

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them?  

E-Print Network [OSTI]

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready, including 10% post consumer waste. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness

291

ORISE: Training and Technology Support  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training and Technology Support ORISE helps train all levels of government personnel for natural disasters and man-made emergencies using latest technology The Oak Ridge Institute...

292

EV Community Readiness projects: SCAQMD (CA); University of Hawaii  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

293

Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)  

SciTech Connect (OSTI)

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

Not Available

2011-10-01T23:59:59.000Z

294

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008  

SciTech Connect (OSTI)

The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

Bush, S.

2009-11-05T23:59:59.000Z

295

Operational readiness review for the Waste Experimental Reduction Facility. Final report  

SciTech Connect (OSTI)

An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

Not Available

1993-11-01T23:59:59.000Z

296

Application of the cumulative risk model in predicting school readiness in Head Start children  

E-Print Network [OSTI]

outcomes. This study built on this literature by investigating how child, parent, and family risk factors predicted school readiness in Head Start children using two statistical models. Specific aims of this study included identifying 1) to what degree...

Rodriguez-Escobar, Olga Lydia

2009-05-15T23:59:59.000Z

297

A FAST WAVELET-BASED VIDEO CODEC AND ITS APPLICATION IN AN IP VERSION 6-READY  

E-Print Network [OSTI]

,mpalkow,schmidt,mw]@fhtw-berlin.de D. MARPE Fraunhofer-Institut fĂĽr Nachrichtentechnik HHI Image Processing Department Einsteinufer 37 (MCU). It is equipped with an innovative addressing system for locating mobile users and ready for next

Marpe, Detlev

298

DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

Plan review… energy modeling… field inspections… certification…done!  Right?  If only it were that simple to successfully transition to Zero Energy Ready Homes.  The reality is that there’s a lot...

299

DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs...  

Energy Savers [EERE]

updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which...

300

DOE Zero Energy Ready Home Going Green and Building Strong: Building...  

Broader source: Energy.gov (indexed) [DOE]

2 Webinar (Text Version) DOE Zero Energy Ready Home Going Green and Building Strong: Building a FORTIFIED Home -- Part 2 Webinar (Text Version) Below is the text version of the...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Zero Energy Ready Home Case Study, BPC Green Builders, Custom...  

Broader source: Energy.gov (indexed) [DOE]

Study, BPC Green Builders, Custom Home, New Fairfield, CT DOE Zero Energy Ready Home Case Study, BPC Green Builders, Custom Home, New Fairfield, CT Case study of a DOE Zero Energy...

302

DOE Zero Energy Ready Home Going Green and Building Strong: Building...  

Broader source: Energy.gov (indexed) [DOE]

1 Webinar (Text Version) DOE Zero Energy Ready Home Going Green and Building Strong: Building a FORTIFIED Home -- Part 1 Webinar (Text Version) Below is the text version of the...

303

Development of a culturally appropriate process for assessing distance learning readiness in Latin America  

E-Print Network [OSTI]

The purpose of this study was to develop an instrument for assessing distance learning readiness of institutions in Latin America for international projects of food and agriculture with higher education institutions in the U.S. The data collection...

Villalobos Peńalosa, Patricia

2009-05-15T23:59:59.000Z

304

Predicting School Readiness for Low-Income Children With Disability Risks Identified Early.  

E-Print Network [OSTI]

This study examined school readiness at kindergarten entry for low-income children whose disability indicators were identified before age 3. Data were collected as part ofthe Early Head Start Research and Evaluation ...

Jeon, Hyun-Joo; Peterson, Carla A.; Wall, Shavaun; Carta, Judith J.; Gayle, Luze; Eshbaugh, Elaine M.; Swanson, Mark

2011-01-01T23:59:59.000Z

305

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...  

Broader source: Energy.gov (indexed) [DOE]

Ready certified homes than any builder in the nation. One example home achieved a HERS score of HERS 55 without PV or HERS 15 with PV. The one-story, 2,654-ft2 production...

306

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

307

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University ofPRELIMINARY

308

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University

309

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1Sandra L.155-WSavannah River Site

310

Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySaveP RSmall Column Ion Exchange

311

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _

312

Science AFP Japan ready to pay 895 million  

E-Print Network [OSTI]

. Government ministers, including Chief Cabinet Secretary Hiroyuki Hosoda and Science and Technology Minister of the costliest international technology projects in which Japan has participated. The project is aimed to be a test-bed for what is being billed as a clean, safe, inexhaustible energy source of the future

313

Identifying the concepts, principles, and applications of technology needed by entry-level workers in food, environmental, and natural resource systems in 2010  

E-Print Network [OSTI]

& Bieber, 1997). ~Conce t: An object, symbol, or event with common characteristics and a shared name (Rossett, 1987). ~Core cones t: A mental model of tacit "maps" of the o Id hich people hold in long-term memory and the short-term perceptions which... statements Everyday use of technology to eliminate waste (time, Management Skills costs, and energy) on a daily basis. Measuring cost structures and developing alternative plans for constant improvement. Developing annual business plans with specific...

Heger, Ryan Allan

2000-01-01T23:59:59.000Z

314

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect (OSTI)

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

315

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

316

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

317

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

318

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

319

A study of advanced training technology: Emerging answers to tough questions  

SciTech Connect (OSTI)

This study reports the result of an extensive nationwide review of military, private sector, and other federal agencies and organizations that are implementing a wide variety of advanced training technologies. This report classifies the general categories of advanced training technologies found and provides an overview of each, including specific types and examples. In addition, the research findings present an organizational model for training development linking overall organizational maturity to readiness to implement specific kinds of advanced training technologies. It also presents proposed methods for selecting media, describes the organizations and the data gathered, and provides a summary of implementation success at each organization. This study is organized as a set of five topics. Each topic raises a number of important questions and provides complete or emerging answers. For organizations who have made advanced training selections, this study is a resource to benchmark their success with other organizations who have made similar selections. For new or developing training organizations, this study will help plan their future technology selections by comparing their level of organizational maturity to the documented experiences of similar organizations.

NONE

1995-03-01T23:59:59.000Z

320

Social Scaling: From scale-free to stretched exponential models for scalar stress, hierarchy, levels and units in human and technological networks and evolution1  

E-Print Network [OSTI]

at different levels to reduce information and energy load by substituting relationships among leaders. These characteristics of scale-free modeling have been successful in biology, and social scaling may well follow from individuals to groups as a way of renormalizing information load with respect to human attentional

White, Douglas R.

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

322

Exploration of Ion-Exchanged Glass for Seals Applications  

E-Print Network [OSTI]

the current cost of the least expensive, deployed system or device, the readiness level must be five or greater, and the security level must be six or greater. NASA defines technology readiness levels as “a systematic metric/measurement system...

Ghanbari, Roushan

2012-10-19T23:59:59.000Z

323

Effect of different levels of technology upon expected yields, costs, and returns for major crops in Diamante Departamento, Entre Rios province, Argentina  

E-Print Network [OSTI]

EFFECT 0. . DIFFDHE!~ LEVELS OF TFCHNOLOOY UPON EXPECTED YIELDS' COS?S~ AND RETURNS FOH N&2OH CP OPS N DIA:"l i iTE PFEP ART J~~w"'TO ENTRE RIOS PROVINCE, fSQENTINA A Thesis FR', STO OSCAR iJBiRRi", CIM Suh?itted to the Grec?ate Colle... IN DIAMANTE DEPARTAMENTO, ENTRE BIOS PROVINCE~ ARGENTINA A Thesis by EHNESTO OSCAR ALRARRACIN Approved as to style and content by: (Cha1rman oi Committee) / j (Head of Department) . 7 (Member/. (Memb ) (Member) (Member) May 19/0 (Member...

Albarracin, Ernesto Oscar

1970-01-01T23:59:59.000Z

324

Evaluation of plasma melter technology for verification of high-sodium content low-level radioactive liquid wastes: Demonstration test No. 4 preliminary test report  

SciTech Connect (OSTI)

This document provides a preliminary report of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System Low-Level Waste (LLW) Vitrification Program. Phase I test conduct included 26 hours (24 hours steady state) of melting of simulated high-sodium low-level radioactive liquid waste. Average processing rate was 4.9 kg/min (peak rate 6.2 kg/min), producing 7330 kg glass product. Free-flowing glass pour point was 1250 C, and power input averaged 1530 kW(e), for a total energy consumption of 19,800 kJ/kg glass. Restart capability was demonstrated following a 40-min outage involving the scrubber liquor heat exchanger, and glass production was continued for another 2 hours. Some volatility losses were apparent, probably in the form of sodium borates. Roughly 275 samples were collected and forwarded for analysis. Sufficient process data were collected for heat/material balances. Recommendations for future work include lower boron contents and improved tuyere design/operation.

McLaughlin, D.F.; Gass, W.R.; Dighe, S.V.; D`Amico, N.; Swensrud, R.L.; Darr, M.F.

1995-01-10T23:59:59.000Z

325

2008 Solar Technologies Market Report  

E-Print Network [OSTI]

and 3.2 discuss levelized cost of energy, solar resource,various CSP technologies. 3.1. Levelized Cost of Energy, PVand CSP Levelized cost of energy (LCOE) is the ratio of an

Price, S.

2010-01-01T23:59:59.000Z

326

Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes  

SciTech Connect (OSTI)

This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

Eaton, W.C. [ed.

1995-05-31T23:59:59.000Z

327

Faience Technology  

E-Print Network [OSTI]

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

328

Organizational readiness for innovation in health care: some lessons from the recent literature  

E-Print Network [OSTI]

- vation) is unlikely. Furthermore, innovation must compete with other goals of health-care reformPA P E R S Organizational readiness for innovation in health care: some lessons from the recent innovation in health care, as the interaction between the innovation and the context of its introduction

Birmingham, University of

329

Philadelphia Gas Works Looking for a challenge and ready to power up your career?  

E-Print Network [OSTI]

Philadelphia Gas Works Looking for a challenge and ready to power up your career? The Philadelphia Gas Works (PGW) is the largest municipally-owned gas utility in the nation, supplying gas service into the large, modern facility that exists today. As one of the nation's leading natural gas providers, PGW

Plotkin, Joshua B.

330

Physics and Astronomy Department San Francisco State University Physics Readiness Exam  

E-Print Network [OSTI]

Physics and Astronomy Department San Francisco State University Physics Readiness Exam Math Qualification Test for Introductory Physics ­ Physics 111 or Physics 220 In addition to meeting course prerequisites, students wishing to enroll in Physics 111 or Physics 220 must demonstrate adequate competence

Golterman, Maarten

331

A System Architecture for Sharing De-Identified, Research-Ready Brain Scans  

E-Print Network [OSTI]

A System Architecture for Sharing De-Identified, Research-Ready Brain Scans and Health Information Department of Radiology Abstract. Progress in our understanding of brain disorders increasingly relies on the costly collection of large standardized brain magnetic resonance imaging (MRI) data sets. Moreover

Chervenak, Ann

332

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network [OSTI]

-hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

Wilcock, William

333

READY FOR TODAY. PREPARING FOR TOMORROW. The Joint Operating Environment is intended to inform joint concept  

E-Print Network [OSTI]

READY FOR TODAY. PREPARING FOR TOMORROW. #12;The Joint Operating Environment is intended to inform. Inquiries about the Joint Operating Environment should be directed to USJFCOM Public Affairs, 1562 Mitscher R O N M E N T ( J O E ) #12;While U.S. Joint Forces Command's Joint Operating Environment (JOE

Sainudiin, Raazesh

334

MOVIE "CHICAGO CITY COUNCIL: READY FOR REFORM?" (27 minutes/color)  

E-Print Network [OSTI]

, transportation, and health care. 8. Investigate how many of the reform proposals were in place twenty years afterMOVIE ­ "CHICAGO CITY COUNCIL: READY FOR REFORM?" (27 minutes/color) SYNOPSIS Following the death of Mayor Harold Washington, residents and reformers of Chicago still hoped for continued reform in Chicago

Illinois at Chicago, University of

335

DOE Zero Energy Ready Home Case Study, e2Homes, Winterpark, FL, Custom Homes  

Broader source: Energy.gov [DOE]

Case study of a DOE Zero Energy Ready Home in Winter Park, FL that scored HERS 57 without PV or HERS -7 with PV. This 4,305 ft2 custom home has autoclaved aerated concrete walls, a sealed attic with R-20 spray foam, and ductless mini-split heat pumps.

336

PERSPECTIVES ON SUSTAINABILITY, FOOD ACCESS, HEALTH, ENERGY AND CLIMATE READINESS Creating more  

E-Print Network [OSTI]

living is far more energy- efficient than life in sprawling suburbs or rural dwellings.The concentrationPERSPECTIVES ON SUSTAINABILITY, FOOD ACCESS, HEALTH, ENERGY AND CLIMATE READINESS Creating more of cities always depends on the transformation of surrounding rural areas, from which flow raw materials

Wisconsin at Madison, University of

337

Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs  

SciTech Connect (OSTI)

This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

Yoder, G.L.

2005-10-03T23:59:59.000Z

338

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

339

Building Simulation Modelers are we big-data ready?  

SciTech Connect (OSTI)

Recent advances in computing and sensor technologies have pushed the amount of data we collect or generate to limits previously unheard of. Sub-minute resolution data from dozens of channels is becoming increasingly common and is expected to increase with the prevalence of non-intrusive load monitoring. Experts are running larger building simulation experiments and are faced with an increasingly complex data set to analyze and derive meaningful insight. This paper focuses on the data management challenges that building modeling experts may face in data collected from a large array of sensors, or generated from running a large number of building energy/performance simulations. The paper highlights the technical difficulties that were encountered and overcome in order to run 3.5 million EnergyPlus simulations on supercomputers and generating over 200 TBs of simulation output. This extreme case involved development of technologies and insights that will be beneficial to modelers in the immediate future. The paper discusses different database technologies (including relational databases, columnar storage, and schema-less Hadoop) in order to contrast the advantages and disadvantages of employing each for storage of EnergyPlus output. Scalability, analysis requirements, and the adaptability of these database technologies are discussed. Additionally, unique attributes of EnergyPlus output are highlighted which make data-entry non-trivial for multiple simulations. Practical experience regarding cost-effective strategies for big-data storage is provided. The paper also discusses network performance issues when transferring large amounts of data across a network to different computing devices. Practical issues involving lag, bandwidth, and methods for synchronizing or transferring logical portions of the data are presented. A cornerstone of big-data is its use for analytics; data is useless unless information can be meaningfully derived from it. In addition to technical aspects of managing big data, the paper details design of experiments in anticipation of large volumes of data. The cost of re-reading output into an analysis program is elaborated and analysis techniques that perform analysis in-situ with the simulations as they are run are discussed. The paper concludes with an example and elaboration of the tipping point where it becomes more expensive to store the output than re-running a set of simulations.

Sanyal, Jibonananda [ORNL; New, Joshua Ryan [ORNL

2014-01-01T23:59:59.000Z

340

Sandia National Laboratories: verify operational readiness of SWiFT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farm Technology Facility Baselining

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories: verify operational readiness of SWiFT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farm Technology Facility

342

NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)  

SciTech Connect (OSTI)

Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

Not Available

2010-08-01T23:59:59.000Z

343

Mechanical Devices Readiness FY04.0402.1  

SciTech Connect (OSTI)

This Advanced Design and Production Technologies (ADAPT) project funded production process and tooling improvements to meet and sustain rate production for the program mechanism assemblies. Techniques were developed to allow evaluation and rework of sealed mechanisms that will result in prevention of the scrapping of future mechanisms. Future system mechanisms will likely be smaller with tighter tolerance parts that will require improved inspection equipment and techniques. During the latter phase of this project, the ISL (Intent Stronglink) PRT (Product Realization Team) developed designs and manufacturing processes at Sandia and at multiple KCP (Kansas City Plant) vendors, to produce glass ceramic headers to replace the brazed ceramic headers in the ISL. This achievement will result in significant production costs savings (unit cost and product scrap due to leaking headers).

Bender, Thomas R.

2008-10-10T23:59:59.000Z

344

COMPUTER SCIENCE INFORMATION TECHNOLOGY  

E-Print Network [OSTI]

COMPUTER SCIENCE and INFORMATION TECHNOLOGY POSTGRADUATE STUDIES 2006 School of Mathematics, Statistics and Computer Science The University of New England Armidale, NSW, Australia Printed courses in computer science and the graduate level topics in computer science which are offered

Dunstan, Neil

345

Development of the Write Process for Pipeline-Ready Heavy Oil  

SciTech Connect (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

346

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare – Ozone Based Laundry Systems  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of ozone laundry system installations at the Charleston Place Hotel in Charleston, Sout Carolina, and the Rogerson House assisted living facility in Boston, Massachusetts.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Sutherland, T. A.; Foley, K. J.

2014-08-14T23:59:59.000Z

347

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

348

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

- 7 speed dual clutch transmissions Jetta TDI (bio-fuels) Ford TADA PHEV Supplier BEV prototype BEV Tesla Hydrogen Fuel cell Hydrogen internal combustion engine ANL PHEV prototype...

349

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

* Hybrid Electric (HEV) * Plug-in HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen * Ethanol, Butanol * Diesel (Bio,...

350

The ATLAS Trigger System: Ready for Run-2  

E-Print Network [OSTI]

The ATLAS trigger has been used very successfully for the online event selection during the first run of the LHC between 2009-2013 at a centre-of-mass energy between 900 GeV and 8 TeV. The trigger system consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT) that reduces the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of a few hundred Hz. During the next data-taking period starting in early 2015 (Run-2) the LHC will operate at a centre-of-mass energy of about 13 TeV resulting in roughly five times higher trigger rates. We will review the upgrades to the ATLAS Trigger system that have been implemented during the shutdown and that will allow us to cope with these increased trigger rates while maintaining or even improving our efficiency to select relevant physics processes. This includes changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system and the merging of the prev...

Nakahama, Yu; The ATLAS collaboration

2015-01-01T23:59:59.000Z

351

Designing A Competency Framework For Logistics Executives: The Case Of The Ready-Made Garments Manufacturers In Egypt.  

E-Print Network [OSTI]

??The ready-made garments (RMG) manufacturing industry in Egypt is one of the main industries that supports the Egyptian economy through exports? earnings. Egypt?s RMG exports… (more)

El-Zarka, Sara

2010-01-01T23:59:59.000Z

352

Influence of Agricultural Dual Credit on Student College Readiness Self-Efficacy  

E-Print Network [OSTI]

INFLUENCE OF AGRICULTURAL DUAL CREDIT ON STUDENT COLLEGE READINESS SELF-EFFICACY A Record of Study by ALANNA LEE NEELY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... should consider earning postsecondary degrees and credentials. The Completion Agenda states: This increased focus on college completion (not simply college access) is reflected in, for example, President Obama?s goal for the United States...

Neely, Alanna L.

2013-07-12T23:59:59.000Z

353

Berkeley ReadyMade Impact Assessment: Developing an Effective and Efficient Assessment Template for Social Enterprises  

E-Print Network [OSTI]

Center for Work, Technology and Society, UC Berkeley AugustCenter for Work, Technology and Society; Chair), SaraCenter for Work, Technology and Society, UC Berkeley, 2011.

Brown, Clair; Chait, Ariel; Freeman, Eric

2011-01-01T23:59:59.000Z

354

Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy  

SciTech Connect (OSTI)

The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

None

1980-08-01T23:59:59.000Z

355

Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the TechnologySystem ......

356

Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions  

E-Print Network [OSTI]

The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

The ATLAS Collaboration

2010-05-25T23:59:59.000Z

357

Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement  

SciTech Connect (OSTI)

This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

N /A

2002-10-11T23:59:59.000Z

358

Hydrogen Production via a Commerically Ready Inorganic membrane Reactor  

SciTech Connect (OSTI)

It has been known that use of the hydrogen selective membrane as a reactor (MR) could potentially improve the efficiency of the water shift reaction (WGS), one of the least efficient unit operations for production of high purity hydrogen from syngas. However, no membrane reactor technology has been reduced to industrial practice thus far, in particular for a large-scale operation. This implementation and commercialization barrier is attributed to the lack of a commercially viable hydrogen selective membrane with (1) material stability under the application environment and (2) suitability for large-scale operation. Thus, in this project, we have focused on (1) the deposition of the hydrogen selective carbon molecular sieve (CMS) membrane we have developed on commercially available membranes as substrate, and (2) the demonstration of the economic viability of the proposed WGS-MR for hydrogen production from coal-based syngas. The commercial stainless steel (SS) porous substrate (i.e., ZrO{sub 2}/SS from Pall Corp.) was evaluated comprehensively as the 1st choice for the deposition of the CMS membrane for hydrogen separation. The CMS membrane synthesis protocol we developed previously for the ceramic substrate was adapted here for the stainless steel substrate. Unfortunately no successful hydrogen selective membranes had been prepared during Yr I of this project. The characterization results indicated two major sources of defect present in the SS substrate, which may have contributed to the poor CMS membrane quality. Near the end of the project period, an improved batch of the SS substrate (as the 2nd generation product) was received from the supplier. Our characterization results confirm that leaking of the crimp boundary no longer exists. However, the thermal stability of the ZrO{sub 2}/SS substrate through the CMS membrane preparation condition must be re-evaluated in the future. In parallel with the SS membrane activity, the preparation of the CMS membranes supported on our commercial ceramic membrane for large-scale applications, such as coal-based power generation/hydrogen production, was also continued. A significant number (i.e., 98) of full-scale membrane tubes have been produced with an on-spec ratio of >76% during the first production trial. In addition, we have verified the functional performance and material stability of this hydrogen selective CMS membrane with a hydrocracker purge gas stream at a refinery pilot testing facility. No change in membrane performance was noted over the >100 hrs of testing conducted in the presence of >30% H{sub 2}S, >5,000 ppm NH{sub 3} (estimated), and heavy hydrocarbons on the order of 25%. The excellent stability of our hydrogen selective CMS membrane opens the door for its use in WGS-MR with a significantly reduced requirement of the feedstock pretreatment.

Paul Liu

2007-06-30T23:59:59.000Z

359

ReadyMade Analysis of Hospital de la Familia’s Cataract Surgery Program in Guatemala  

E-Print Network [OSTI]

Center for Work, Technology, and Society, IRLE University ofCenter for Work, Technology, and Society, UC Berkeley, to

Brown, Clair; Freeman, Eric; Belohlav, Kate; Chait, Ariel; Thal, Lawrence

2012-01-01T23:59:59.000Z

360

Technical Readiness and Gaps Analysis of Commercial Optical Materials and Measurement Systems for Advanced Small Modular Reactors  

SciTech Connect (OSTI)

This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in terms of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.

Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong (Amy); Andersen, Eric S.; Berglin, Eric J.; Bliss, Mary; Cannon, Bret D.; Devanathan, Ramaswami; Mendoza, Albert; Sheen, David M.

2013-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program  

E-Print Network [OSTI]

WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program Fidelity Investments innovation, and effective deployment of leading-edge technologies. Our entry-level technology training, Quality Assurance, Mainframe Development and Technology Infrastructure and Engineering (TIE). Upon

Virginia Tech

362

Analyses of Value-added for Case-ready Beef, with Special Emphasis on Texas.  

E-Print Network [OSTI]

-added for Case-ready Beef, with Special Emphasis on Texas R.A. Dietrich, D.E. Farris, and J.B. Ward* .. espectively, associate professor, professor, and research associate, Texas Agricultural Experiment Station, Department of Agricultural Economics, Texas A.... The poultry industry, for e),arnp~le, was able to reduce fabrication and mar- keting costs by adopting a centrally-packaged, 5 chill-pack system. The results have been increased efficiencies for poultry and increased retail shelf life while providing...

Dietrich, R.A.; Farris, D.E.; Ward, J.B

1992-01-01T23:59:59.000Z

363

DOE Zero Energy Ready Home Case Study 2013: BPC Green Builders, New Fairfield, CT  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home 2014BPC

364

DOE Zero Energy Ready Home Case Study 2013: Caldwell and Johnson, Exeter, RI  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home

365

DOE Zero Energy Ready Home Case Study 2013: Clifton View Homes, Coupeville, WA  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home Clifton

366

DOE Zero Energy Ready Home Case Study 2013: Dwell Development, Seattle, WA  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home

367

DOE Zero Energy Ready Home Case Study 2013: Ferguson Design and Construction, Inc., Sagaponak, NY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready HomeFerguson

368

DOE Zero Energy Ready Home Case Study 2013: Garbett Homes, Herriman, UT  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready

369

DOE Zero Energy Ready Home Case Study 2013: Ithaca Neighborhood Housing Services, Ithaca, NY  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy ReadyIthaca

370

DOE Zero Energy Ready Home Case Study 2013: KB Home, San Marcos, CA  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy ReadyIthacaKB Home

371

DOE Zero Energy Ready Home Case Study 2013: Manatee County Habitat for Humanity, Ellenton, FL  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy ReadyIthacaKB

372

Zero Energy Ready Home - 2014 BTO Peer Review | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE- 2014 BTO

373

Readiness Assurance  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS/%2A contractor6/%2A7/%2A

374

Environmental technologies program, Fiscal year 1994  

SciTech Connect (OSTI)

This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

NONE

1994-12-31T23:59:59.000Z

375

`Capture ready' regulation of fossil fuel power plants Betting the UK's carbon emissions on promises of future technology  

E-Print Network [OSTI]

-linked UK energy and climate change policies. Current climate change targets include 20% reduction of national green house gas emissions by 2010 and 80% reduction by 2050 from a 1990 baseline. However, only

Haszeldine, Stuart

376

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

377

Department of Engineering Technology Technology Education  

E-Print Network [OSTI]

Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

Bieber, Michael

378

Distributed Energy Technology Characterization (Desiccant Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

379

Report of independent consultants reviewing Integrated Test Stands (ITS) performance and readiness of DARHT for construction start  

SciTech Connect (OSTI)

Independent consultants met at Los Alamos, June 15 and 16, 1993, to review progress on the commissioning of the Integrated Test Stand (ITS) for DARHT and to provide DOE with technical input on readiness for construction of the first radiographic arm of DARHT. The consultants concluded that all milestones necessary for demonstrating the performance of the DARHT accelerator have been met and that the project is ready for construction to resume. The experimental program using ITS should be continued to quantify the comparison of experiment and theory, to test improvements on the injector insulator, and to better evaluate the interaction of the beam and the target.

Not Available

1993-08-01T23:59:59.000Z

380

Technology '90  

SciTech Connect (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas  

SciTech Connect (OSTI)

The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

Horner, M.W.

1980-12-01T23:59:59.000Z

382

Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies  

SciTech Connect (OSTI)

This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

2014-09-01T23:59:59.000Z

383

Science, technology and innovation  

E-Print Network [OSTI]

for International Development 1 year full time/2 years part time Technological innovation lies at the heart-makers, scientists and companies at different levels. International development agencies are increasingly recognising that will prepare you for careers in academia, government agencies, international development agencies, business

Sussex, University of

384

Welcome to the Operation READY 2002 collection Flexible formats: print, CD-ROM, DVD video and Web  

E-Print Network [OSTI]

1 Welcome to the Operation READY 2002 collection Flexible formats: print, CD-ROM, DVD video and Web and deployment New and updated videos Family Assistance Center Workshops and sessions are shorter Scenarios are shorter Lessons are self-contained Planning and executing a FACEX added New and updated video Homecoming

385

Diesel Emission Control Technology Review  

Broader source: Energy.gov (indexed) [DOE]

Technology Review Tim Johnson August 22, 2006 DEER 2006 Detroit 2 Summary * Regulations - Europe is in middle of determining Euro 5 and Euro 6 (LD) levels * Implications to US...

386

First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform  

SciTech Connect (OSTI)

Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first `Upfront Delisting` petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this `privatization` project will be discussed.

Pickett, J.B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Norford, S.W.; Diener, G.A.

1998-06-01T23:59:59.000Z

387

Super efficient refrigeration systems: Two non-CFC designs ready for commercialization  

SciTech Connect (OSTI)

Two high-efficiency prime movers for refrigeration are ready for field testing and commercialization. Either machine, combined with other advanced measures, could result in a CFC-free refrigerator using significantly less energy than units meeting the 1993 US efficiency standards. The first design is a linear motor/compressor that manufacturers could substitute for the standard rotating motor/compressor in a conventional refrigerator. The second design is a Stirling-cycle refrigeration machine that is self contained and uses helium gas as the working fluid. The results of prototype testing, the inherent simplicity of both machines, and their virtually frictionless operation point to economical and reliable service. If these features are confirmed in further testing now being conducted by appliance and compressor manufacturers, these machines will be strong candidates for inclusion in super efficient refrigerator designs over the next few years.

Stickney, B.L.

1992-12-31T23:59:59.000Z

388

Vehicle Technologies Office: Federal Laboratory Consortium Excellence in  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |MotorsReportReadinessTechnology

389

UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007  

SciTech Connect (OSTI)

The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste Processing programs. The resulting summary of technical risks and needs was captured in the Roadmap. The Roadmap identifies key Waste Processing initiative areas where technology development work should be focused. These areas are listed below, along with the Work Breakdown Structure (WBS) designation given to each initiative area. The WBS designations will be used throughout this document.

Bush, S

2008-08-12T23:59:59.000Z

390

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

SciTech Connect (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

391

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

392

EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

393

EV Community Readiness projects: South Florida Regional Planning Council; Virginia Department of Mines, Minerals and Energy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

394

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

395

Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis,Technologies Available Technologies

396

A functional approach for studying technological progress : extension to wireless telecommunications technology  

E-Print Network [OSTI]

This thesis attempts to study the technological progress of wireless technology and the wireless industry throughout history, using high-level, non-device specific performance metrics. Such metrics are developed by following ...

Amaya, Mario A

2008-01-01T23:59:59.000Z

397

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

398

Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval  

SciTech Connect (OSTI)

This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

2002-02-25T23:59:59.000Z

399

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies  

SciTech Connect (OSTI)

This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

400

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia River Gorge. Photo: C. Bruce Forster  

E-Print Network [OSTI]

A wind turbine blade is ready to be lifted into place at the Windy Point Wind Farm in the Columbia with juvenile bypass systems to keep the smolts out of the turbines. But given the gravity of the [salmon

402

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

403

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

404

FEMP/NTDP Technology Focus New Technology  

E-Print Network [OSTI]

FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

405

E-Print Network 3.0 - ats technical readiness Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4.3 M Fork ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

406

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

407

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

408

(Environmental technology)  

SciTech Connect (OSTI)

The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

Boston, H.L.

1990-10-12T23:59:59.000Z

409

Manufacturing technologies  

SciTech Connect (OSTI)

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

410

Reactor User Interface Technology Development Roadmaps for a High Temperature Gas-Cooled Reactor Outlet Temperature of 750 degrees C  

SciTech Connect (OSTI)

This report evaluates the technology readiness of the interface components that are required to transfer high-temperature heat from a High Temperature Gas-Cooled Reactor (HTGR) to selected industrial applications. This report assumes that the HTGR operates at a reactor outlet temperature of 750°C and provides electricity and/or process heat at 700°C to conventional process applications, including the production of hydrogen.

Ian Mckirdy

2010-12-01T23:59:59.000Z

411

Vacuum Technology  

SciTech Connect (OSTI)

The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

Biltoft, P J

2004-10-15T23:59:59.000Z

412

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

413

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies Volune II - Survey Results  

SciTech Connect (OSTI)

This report consists of the results from each Equipment and Practice Form completed by the program managers and principal investigators. Information collected from the Equipment and Practice Form include the following: name and description of the technology; energy characteristics; when the technology will be ready for commercialization; estimated payback period; market sectors that would benefit; important commercialization barriers to overcome; energy-related benefits; and non-energy benefits of the technology to customers. Some of these technologies include: heat pumps, heat exchangers, insulation lighting systems; cooling systems, ventilation systems, burners, leak detection systems, retrofit procedure, operating and maintenance procedures, wall systems, windows, sampling equipment, measuring methods and instruments, thermal analysis methods, and computer codes.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

414

Combined SO sub 2 /NO sub x reduction technology  

SciTech Connect (OSTI)

Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

Livengood, C.D.; Huang, H.S. (Argonne National Lab., IL (United States)); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

1992-01-01T23:59:59.000Z

415

Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio  

SciTech Connect (OSTI)

From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

Duffy, M. A.

2003-02-26T23:59:59.000Z

416

ECH Technology Development  

SciTech Connect (OSTI)

Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

Temkin, Richard [MIT

2014-12-24T23:59:59.000Z

417

Nuclear Technology Programs  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

418

Venus Technology Plan Venus Technology Plan  

E-Print Network [OSTI]

Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

Rathbun, Julie A.

419

Advanced Turbine Technology Applications Project (ATTAP) and Hybrid Vehicle Turbine Engine Technology Support project (HVTE-TS): Final summary report  

SciTech Connect (OSTI)

This final technical report was prepared by Rolls-Royce Allison summarizing the multiyear activities of the Advanced Turbine Technology Applications Project (ATTAP) and the Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) project. The ATTAP program was initiated in October 1987 and continued through 1993 under sponsorship of the US Department of Energy (DOE), Energy Conservation and Renewable Energy, Office of Transportation Technologies, Propulsion Systems, Advanced Propulsion Division. ATTAP was intended to advance the technological readiness of the automotive ceramic gas turbine engine. The target application was the prime power unit coupled to conventional transmissions and powertrains. During the early 1990s, hybrid electric powered automotive propulsion systems became the focus of development and demonstration efforts by the US auto industry and the Department of energy. Thus in 1994, the original ATTAP technology focus was redirected to meet the needs of advanced gas turbine electric generator sets. As a result, the program was restructured to provide the required hybrid vehicle turbine engine technology support and the project renamed HVTE-TS. The overall objective of the combined ATTAP and HVTE-TS projects was to develop and demonstrate structural ceramic components that have the potential for competitive automotive engine life cycle cost and for operating 3,500 hr in an advanced high temperature turbine engine environment. This report describes materials characterization and ceramic component development, ceramic components, hot gasifier rig testing, test-bed engine testing, combustion development, insulation development, and regenerator system development. 130 figs., 12 tabs.

NONE

1998-12-01T23:59:59.000Z

420

Electric Drive Vehicle Level Control Development Under Various...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Under Various Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Energy Management Strategies for Fast Battery Temperature Rise and...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology and the Box  

E-Print Network [OSTI]

its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

Maitland, Padma

2013-01-01T23:59:59.000Z

422

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

423

Toward Direct Biosynthesis of Drop-in Ready Biofuels in Plants: Rapid Screening and Functional Genomic Characterization of Plant-derived Advanced Biofuels and Implications for Coproduction in Lignocellulosic Feedstocks.  

E-Print Network [OSTI]

??Advanced biofuels that are “drop-in” ready, completely fungible with petroleum fuels, and require minimal infrastructure to process a finished fuel could provide transportation fuels in… (more)

Joyce, Blake Lee

2013-01-01T23:59:59.000Z

424

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

425

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

426

Dezincing Technology  

SciTech Connect (OSTI)

Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

1997-08-01T23:59:59.000Z

427

SIMULTANEOUS PRODUCTION OF HIGH-PURITY HYDROGEN AND SEQUESTRATION-READY CO2 FROM SYNGAS  

SciTech Connect (OSTI)

This final report summarizes the progress made on the program ''Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO{sub 2} from Syngas (contract number DE-FG26-99FT40682)'', during October 2000 through September of 2003. GE Energy and Environmental Research (GE-EER) and Southern Illinois University (SIU) at Carbondale conducted the research work for this program. This program addresses improved methods to efficiently produce simultaneous streams of high-purity hydrogen and separated carbon dioxide from synthesis gas (syngas). The syngas may be produced through either gasification of coal or reforming of natural gas. The process of production of H{sub 2} and separated CO{sub 2} utilizes a dual-bed reactor and regenerator system. The reactor produces hydrogen and the regenerator produces separated CO{sub 2}. The dual-bed system can be operated under either a circulating fluidized-bed configuration or a cyclic fixed-bed configuration. Both configurations were evaluated in this project. The experimental effort was divided into lab-scale work at SIU and bench-scale work at GE-EER. Tests in a lab-scale fluidized bed system demonstrated the process for the conversion of syngas to high purity H{sub 2} and separated CO{sub 2}. The lab-scale system generated up to 95% H{sub 2} (on a dry basis). Extensive thermodynamic analysis of chemical reactions between the syngas and the fluidized solids determined an optimum range of temperature and pressure operation, where the extent of the undesirable reactions is minimum. The cycling of the process between hydrogen generation and oxygen regeneration has been demonstrated. The fluidized solids did not regenerate completely and the hydrogen purity in the reuse cycle dropped to 70% from 95% (on a dry basis). Changes in morphology and particle size may be the most dominant factor affecting the efficiency of the repeated cycling between hydrogen production and oxygen regeneration. The concept of simultaneous production of hydrogen and separated stream of CO{sub 2} was proved using a fixed bed 2 reactor system at GE-EER. This bench-scale cyclic fixed-bed reactor system designed to reform natural gas to syngas has been fabricated in another coordinated DOE project. This system was modified to reform natural gas to syngas and then convert syngas to H{sub 2} and separated CO{sub 2}. The system produced 85% hydrogen (dry basis).

Linda Denton; Hana Lorethova; Tomasz Wiltowski; Court Moorefield; Parag Kulkarni; Vladimir Zamansky; Ravi Kumar

2003-12-01T23:59:59.000Z

428

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

429

CSIR TECHNOLOGY AWARDS -2013  

E-Print Network [OSTI]

CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

Jayaram, Bhyravabotla

430

Methodology for Prototyping Increased Levels of Automation  

E-Print Network [OSTI]

of automation than previous NASA vehicles, due to program requirements for automation, including Automated Ren into a human space flight vehicle, NASA has created the Function-specific Level of Autonomy and Automation Tool levels of automation than previous NASA vehicles. A key technology to the success of the CEV

Valasek, John

431

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

432

Development of Enabling Technologies for High Efficiency, Low...  

Broader source: Energy.gov (indexed) [DOE]

high BMEP * Robust combustion control - Transient control of HCCI - Combustion feedback sensors - Combustion mode switching Gap Analysis * Evaluate Production readiness *...

433

AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Siemens-VersiCharge AC Level 2 Charging System Testing Results AVTA: Siemens-VersiCharge AC Level 2 Charging System Testing Results The Vehicle Technologies Office's Advanced...

434

Ventilation technologies scoping study  

SciTech Connect (OSTI)

This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the needs of California, determining residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and level of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

Walker, Iain S.; Sherman, Max H.

2003-09-30T23:59:59.000Z

435

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

436

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

437

Getting Ready for the Technical Assessment at Snowmass "Go ahead, make my FIRE"  

E-Print Network [OSTI]

reactor - couple with burning plasma physics · Boundary Physics and Plasma Technology (coupled with above overall portfolio approach includes IFE) #12;Comparison of EU One Step to DEMO Power Plant(s) with ARIESV) LawsonFusionParameter,niTiE(1020m-3kevs) Central Ion Temperature (keV) Tokamaks 1993-99 Laser 1986 Direct

438

RECENT TRENDS IN FEDERAL LAB TECHNOLOGY  

E-Print Network [OSTI]

Budget Resources for Federal Lab R&D Spending, Ranked by Budget Level Table 2.2 Distribution of Active#12;RECENT TRENDS IN FEDERAL LAB TECHNOLOGY TRANSFER: FY 1999­2000 BIENNIAL REPORT Report Administration U.S. Department of Commerce May 2002 #12;RECENT TRENDS IN FEDERAL LAB TECHNOLOGY TRANSFER: FY

Perkins, Richard A.

439

Active Diesel Emission Control Technology for Transport Refrigeration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

440

Base Technologies and Tools for Supercritical Reservoirs Geothermal...  

Open Energy Info (EERE)

SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and...

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

442

Sandia National Laboratories: verify operational readiness of SWiFT systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farm Technology

443

Variance analysis in the quality control of ready mixed concrete in a major structure  

E-Print Network [OSTI]

the same quality of concrete. 5. The use of different types of lightweight aggregates with and without fly ash did not seem to affect variability in the 3000 psi (20. 7 Npa) strength level. 6. Lower compressive strength results observed during... Plot of 28-day strengths versus 7-day strengths The 7500 Psi Strength Level General 40 42 Compressive strength versus water-cement ratio Compressive strength versus slump Variance analysis for the 7500 psi strength variations . 42 43 46 Oua1...

Valle Aguilar, Jorge Luis

1984-01-01T23:59:59.000Z

444

Plasma technology directory  

SciTech Connect (OSTI)

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

445

FBIS report. Science and technology: Japan, December 10, 1996  

SciTech Connect (OSTI)

Contents (partial): Japan: Fabrication of Diamond Single Crystal Thin Film by Ion Beam Deposition; Japan: Hitachi Metal Develops New Semi Solid Metal Processing Technology; Japan: NTT Develops Fuel Cell System That Uses Both City Gas, LPG; Japan: Daihatsu Motor Completes Prototype EV; Japan: NIRIM Announces Success With Synthetic Bone Development; Japan: Sandoz Pharmaceuticals Plans Clinical Trials of Gene Therapy to Cerebral Tumor in Japan; Japan: MITI To Provide Aid for Residential Solar Power Generation Systems; Japan: MELCO To Provide Satellite Solar Cell Panel for SSL, USA; Japan: Japan Atomic Energy Research Institute Leads Nuclear Research; Japan: Kobe Steel`s Superconducting Magnet Ready to Go Fast; Japan: MPT To Begin Validation Test for Electric Money Implementation; and Japan: Defense Agency to Send ASDF`s Pilots to Russia for Training.

NONE

1996-12-10T23:59:59.000Z

446

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

SciTech Connect (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

447

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology  

E-Print Network [OSTI]

Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

448

Are you ready to QUIT smoking or using other tobacco products? Help is now available on campus through Quit Smoking NOW (QSN). This FREE six-week tobacco  

E-Print Network [OSTI]

Are you ready to QUIT smoking or using other tobacco products? Help is now available on campus tobacco-free. With the help of a trained smoking cessation facilitator, you can learn how to: Combat cravings, identify triggers, manage your moods and develop strategies that will help you quit for good

Weston, Ken

449

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

Reduce cost, increase energy of energy storage Low-cost power electronics Modeling Simulation and Laboratory and Field Testing "VTP is advancing the large-scale, cost-...

450

Technology and System Level Demonstration of Highly Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Engine Speed) - Powertrain Components - VibrationCustomer Acceptance * Trailer Aerodynamic Devices that Meet Operational Requirements * Vehicle and Powertrain Communication...

451

Technology and System Level Demonstration of Highly Efficient...  

Broader source: Energy.gov (indexed) [DOE]

AvgGust: 6.5 mphsteady Temp MinAvgMax: 546368F Wind AvgGust: 2340 mph 20 Aerodynamic Improvements - Technical Progress Configurations Demo 2 - 24% Target Demo 1 - 14%...

452

Technology and System Level Demonstration of Highly Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Lithium Ion Start Battery Predictive Cruise Control SOFC eHVAC Light Trailer 11 Aerodynamic Improvements - Technical Progress 11 Configurations Demo 2 - 24% Target Demo 1 -...

453

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

- VW Jetta TSI: Advanced engine and powertrain evaluation - Sonata: P2 hybrid architecture versus power-split type systems - Volt: Evaluation of first OEM EREV plug-in hybrid...

454

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Engine - 1.8 liters Atkinson cycle engine, 98 hp@5200 Electric Motors - Permanent magnet AC synchronous motors - Traction motor: 60 kW, 207 Nm - Generator: 41 kW, 40...

455

Technology and System Level Demonstration of Highly Efficient and Clean,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122

456

Technology and System Level Demonstration of Highly Efficient and Clean,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122Diesel Powered Class 8

457

Technology and System Level Demonstration of Highly Efficient and Clean,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122Diesel Powered Class 8Diesel

458

Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2 DOE Hydrogen and

459

Advanced Technology Vehicle Lab Benchmarking - Level 1 | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2 DOE Hydrogen

460

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2 DOE

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2 DOEDepartment of

462

Application of Synergistic Technologies to Achieve High Levels of Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope Change #1 | Department ofApplication of Spray FoamEngine

463

Technology Evaluation Workshop Report for Tank Waste Chemical Characterization  

SciTech Connect (OSTI)

A Tank Waste Chemical Characterization Technology Evaluation Workshop was held August 24--26, 1993. The workshop was intended to identify and evaluate technologies appropriate for the in situ and hot cell characterization of the chemical composition of Hanford waste tank materials. The participants were asked to identify technologies that show applicability to the needs and good prospects for deployment in the hot cell or tanks. They were also asked to identify the tasks required to pursue the development of specific technologies to deployment readiness. This report describes the findings of the workshop. Three focus areas were identified for detailed discussion: (1) elemental analysis, (2) molecular analysis, and (3) gas analysis. The technologies were restricted to those which do not require sample preparation. Attachment 1 contains the final workshop agenda and a complete list of attendees. An information package (Attachment 2) was provided to all participants in advance to provide information about the Hanford tank environment, needs, current characterization practices, potential deployment approaches, and the evaluation procedure. The participants also received a summary of potential technologies (Attachment 3). The workshop opened with a plenary session, describing the background and issues in more detail. Copies of these presentations are contained in Attachments 4, 5 and 6. This session was followed by breakout sessions in each of the three focus areas. The workshop closed with a plenary session where each focus group presented its findings. This report summarizes the findings of each of the focus groups. The evaluation criteria and information about specific technologies are tabulated at the end of each section in the report. The detailed notes from each focus group are contained in Attachments 7, 8 and 9.

Eberlein, S.J.

1994-04-01T23:59:59.000Z

464

Northwestern University Information Technology  

E-Print Network [OSTI]

... Integrated Technology Classrooms Online Lectures Collaborative Course Management Tools ...in any teaching environment Classroom Laptop Mobile Device www.it.northwestern.edu NUITAcademic&ResearchTechnologiesNorthwestern University Information Technology (NUIT) is committed to supporting faculty research

Shull, Kenneth R.

465

Analytic framework for TRL-based cost and schedule models  

E-Print Network [OSTI]

Many government agencies have adopted the Technology Readiness Level (TRL) scale to help improve technology development management under ever increasing cost, schedule, and complexity constraints. Many TRL-based cost and ...

El-Khoury, Bernard

2012-01-01T23:59:59.000Z

466

Laminar Flow Control Flight Experiment Design  

E-Print Network [OSTI]

?s Airframe Technology subproject [2]. The task is charged 2 with increasing the Technology Readiness Level (TRL) from a laboratory environment (TRL 4) at the Texas A&M University Flight Research Laboratory to an operationally relevant flight environment...

Tucker, Aaron 1975-

2012-11-29T23:59:59.000Z

467

GaN-Ready Aluminum Nitride Substrates for Cost-Effective, Very Low Dislocation Density III-Nitride LED's  

SciTech Connect (OSTI)

The objective of this project was to develop and then demonstrate the efficacy of a costeffective approach for a low defect density substrate on which AlInGaN LEDs can be fabricated. The efficacy of this “GaN-ready” substrate would then be tested by growing high efficiency, long lifetime InxGa1-xN blue LEDs. The approach used to meet the project objectives was to start with low dislocation density AlN single-crystal substrates and grow graded AlxGa1-xN layers on top. Pseudomorphic AlxGa1-xN epitaxial layers grown on bulk AlN substrates were used to fabricate light emitting diodes and demonstrate better device performance as a result of the low defect density in these layers when benched marked against state-of-the-art LEDs fabricated on sapphire substrates. The pseudomorphic LEDs showed excellent output powers compared to similar wavelength devices grown on sapphire substrates, with lifetimes exceeding 10,000 hours (which was the longest time that could reliably be estimated). In addition, high internal quantum efficiencies were demonstrated at high driving current densities even though the external quantum efficiencies were low due to poor photon extraction. Unfortunately, these pseudomorphic LEDs require high Al content so they emit in the ultraviolet. Sapphire based LEDs typically have threading dislocation densities (TDD) > 108 cm-2 while the pseudomorphic LEDs have TDD ? 105 cm-2. The resulting TDD, when grading the AlxGa1-xN layer all the way to pure GaN to produce a “GaN-ready” substrate, has varied between the mid 108 down to the 106 cm-2. These inconsistencies are not well understood. Finally, an approach to improve the LED structures on AlN substrates for light extraction efficiency was developed by thinning and roughening the substrate.

Sandra Schujman; Leo Schowalter

2010-10-15T23:59:59.000Z

468

Get Ready for Fall: Leaf Peeping, Staying Warm, and Saving Money |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies OfficeDepartment of

469

Thailand-The World Bank Partnership for Market Readiness (PMR) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to:TetraSunanalysis, TechnologyEnergy Information

470

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract and ProjectTechnology Solutions for

471

Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract and ProjectTechnology Solutions

472

Sandia National Laboratories: verify operational readiness of SWiFT data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systems Scaled Wind Farm Technology Facilityacquisition

473

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given...

474

Fuel Cell Technologies Office Science and Technology Policy Fellowship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

475

Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...  

Energy Savers [EERE]

10 Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and...

476

2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...  

Energy Savers [EERE]

Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

477

Implementation plan for the Waste Experimental Reduction Facility Restart Operational Readiness Review  

SciTech Connect (OSTI)

The primary technical objective for the WERF Restart Project is to assess, upgrade where necessary, and implement management, documentation, safety, and operation control systems that enable the resumption and continued operation of waste treatment and storage operations in a manner that is compliant with all environment, safety, and quality requirements of the US Department of Energy and Federal and State regulatory agencies. Specific processes that will be resumed at WERF include compaction of low-level compatible waste; size reduction of LLW, metallic and wood waste; incineration of combustible LLW and MLLW; and solidification of low-level and mixed low-level incinerator bottom ash, baghouse fly ash, and compatible sludges and debris. WERF will also provide for the operation of the WWSB which includes storage of MLLW in accordance with Resource Conservation and Recovery Act requirements.

Not Available

1993-03-01T23:59:59.000Z

478

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

SciTech Connect (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

479

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

480

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness level" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Technology Zones (Virginia)  

Broader source: Energy.gov [DOE]

Virginia’s 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

482

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

483

Green Purchasing & Green Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

484

Technology To Realize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory...

485

Technology Integration Overview  

Broader source: Energy.gov (indexed) [DOE]

Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

486

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

487

Fuel & Lubricant Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 15, 2012 Kevin Stork, Team Lead VTP Annual Merit Review VTP Fuel & Lubricant Technologies eere.energy.gov 2 | Vehicle Technologies Program Mission Enable advanced combustion...

488

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

489

Vehicle Technologies Office: News  

Broader source: Energy.gov [DOE]

EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

490

Morgantown Energy Technology Center, technology summary  

SciTech Connect (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

491

The architecture of a network level intrusion detection system  

SciTech Connect (OSTI)

This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

Heady, R.; Luger, G.; Maccabe, A.; Servilla, M. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Computer Science

1990-08-15T23:59:59.000Z

492

Acoustic Separation Technology  

SciTech Connect (OSTI)

Today's restrictive environmental regulations encourage paper mills to close their water systems. Closed water systems increase the level of contaminants significantly. Accumulations of solid suspensions are detrimental to both the papermaking process and the final products. To remove these solids, technologies such as flotation using dissolved air (DAF), centrifuging, and screening have been developed. Dissolved Air Flotation systems are commonly used to clarify whitewater. These passive systems use high pressure to dissolve air into whitewater. When the pressure is released, air micro-bubbles form and attach themselves to fibers and particles, which then float to the surface where they are mechanically skimmed off. There is an economic incentive to explore alternatives to the DAF technology to drive down the cost of whitewater processing and minimize the use of chemicals. The installed capital cost for a DAF system is significant and a typical DAF system takes up considerable space. An alternative approach, which is the subject of this project, involves a dual method combining the advantages of chemical flocculation and in-line ultrasonic clarification to efficiently remove flocculated contaminants from a water stream

Fred Ahrens; Tim Patterson

2002-02-22T23:59:59.000Z

493

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

1991-12-31T23:59:59.000Z

494

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

1991-01-01T23:59:59.000Z

495

A method for EIA scoping of wave energy converters-based on classification of the used technology  

SciTech Connect (OSTI)

During the first decade of the 21st Century the World faces spread concern for global warming caused by rise of green house gasses produced mainly by combustion of fossil fuels. Under this latest spin all renewable energies run parallel in order to achieve sustainable development. Among them wave energy has an unequivocal potential and technology is ready to enter the market and contribute to the renewable energy sector. Yet, frameworks and regulations for wave energy development are not fully ready, experiencing a setback caused by lack of understanding of the interaction of the technologies and marine environment, lack of coordination from the competent Authorities regulating device deployment and conflicts of maritime areas utilization. The EIA within the consent process is central in the realization of full scale devices and often is the meeting point for technology, politics and public. This paper presents the development of a classification of wave energy converters that is based on the different impact the technologies are expected to have on the environment. This innovative classification can be used in order to simplify the scoping process for developers and authorities.

Margheritini, Lucia, E-mail: lm@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark); Hansen, Anne Merrild, E-mail: merrild@plan.aau.dk [Aalborg University, Department of Planning and Development, Fibigerstraede 13, DK - 9220, Aalborg (Denmark); Frigaard, Peter, E-mail: pf@civil.aau.dk [Aalborg University, Department of Civil Engineering, Sohngardsholmsvej 57, DK - 9000, Aalborg (Denmark)

2012-01-15T23:59:59.000Z

496

Technology Deployment List | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

497

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING  

SciTech Connect (OSTI)

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL; MENDOZA RE

2010-08-11T23:59:59.000Z

498

Technology & Information Management Minor Curriculum Chart: 2013-2014  

E-Print Network [OSTI]

Technology & Information Management Minor Curriculum Chart: 2013-2014 http 11B or 19B TIM 105 Management of Technology I · ISM 50 or perm. of instructor Entry Level Writing Requirement TIM 158 Business Strategy & Information Systems · ISM 105 TIM 125 Management of Technology II

Stuart, Josh

499

TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING  

SciTech Connect (OSTI)

This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

SAMS TL

2010-07-07T23:59:59.000Z

500

Technology development life cycle processes.  

SciTech Connect (OSTI)

This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

Beck, David Franklin

2013-05-01T23:59:59.000Z