Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT...

2

Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

2011-09-15T23:59:59.000Z

3

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This...

4

EM Performs Tenth Technology Readiness Assessment  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. EM recently completed its tenth Technology Readiness Assessment (TRA) since piloting the TRA process in 2006.

5

U.S. Department of Energy Technology Readiness Assessment Guide  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

2009-10-12T23:59:59.000Z

6

Technology Readiness Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy Technical EvaluationTechnologyKeyEnergy

7

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis » Technology

8

assessing technological readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost, quality, regulation, and competitive ... Rothman, Craig Jeremy 2012-01-01 47 Technology assessment of renewable energy sustainability in South Africa. Open Access...

9

RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

2009-01-15T23:59:59.000Z

10

RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174  

SciTech Connect (OSTI)

The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

2008-12-12T23:59:59.000Z

11

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of  

E-Print Network [OSTI]

Transportation System Readiness and Resiliency Assessment Framework: Readiness and Assess Resiliency of Transportation Systems (Infrastructure, Systems, Organization and Services) to Deter, Detect Flows Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle

12

Oregon: Advancing Technology Readiness: Wave Energy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm...

13

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPA

14

TECHNOLOGY READINESS ASSESSMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPADECEMBER 2012

15

Technology Readiness Assessment Report  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable1234DepartmentDepartment of

16

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

17

Technology Readiness and the Smart Grid  

SciTech Connect (OSTI)

Technology Readiness Levels (TRLs) originated as a way for the National Aeronautics and Space Administration (NASA) to monitor the development of systems being readied for space. The technique has found wide application as part of the more general topic of system engineering. In this paper, we consider the applicability of TRLs to systems being readied for the smart grid. We find that there are many useful parallels, and much to be gained by this application. However, TRLs were designed for a developer who was also a user. That is not usually the case for smart grid developments. We consider the matter from the point of view of the company responsible for implementation, typically a utility, and we find that there is a need for connecting the many standards in the industry. That connection is explored, and some new considerations are introduced.

Kirkham, Harold; Marinovici, Maria C.

2013-02-27T23:59:59.000Z

18

NGNP Infrastructure Readiness Assessment: Consolidation Report  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

Brian K Castle

2011-02-01T23:59:59.000Z

19

Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications  

SciTech Connect (OSTI)

PNNLs objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNLs Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

Ronnebro, Ewa

2012-06-16T23:59:59.000Z

20

Mission and Readiness Assessment for Fusion Nuclear Facilities  

SciTech Connect (OSTI)

Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

G.H. Neilson, et. al.

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ats technology readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ats technology readiness First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Technology Readiness Level...

22

Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the TechnologySystem ......

23

Software Technology Readiness for the Smart Grid  

SciTech Connect (OSTI)

Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

2011-06-13T23:59:59.000Z

24

TECHNOLOGY READINESS ASSESSMENT-OVERVIEW  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS BPADECEMBER

25

CCSI Technology Readiness Levels Likelihood Model (TRL-LM) Users Guide  

SciTech Connect (OSTI)

This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

2013-03-26T23:59:59.000Z

26

Capture-Ready Power Plants -Options, Technologies and Economics Mark C. Bohm  

E-Print Network [OSTI]

1 Capture-Ready Power Plants - Options, Technologies and Economics by Mark C. Bohm Bachelor and Policy Program #12;2 #12;3 Capture-ready Power Plants Options, Technologies and Costs by Mark C. Bohm of a plant. Power plant owners and policymakers are interested in capture-ready plants because they may offer

27

Final Report on HOLODEC 2 Technology Readiness Level  

SciTech Connect (OSTI)

During the period of this project, the Holographic Detector for Clouds 2 (HOLODEC 2) instrument has advanced from a laboratory-proven instrument with some initial field testing to a fully flight-tested instrument capable of providing useful cloud microphysics measurements. This can be summarized as 'Technology Readiness Level 8: Technology is proven to work - Actual technology completed and qualified through test and demonstration.' As part of this project, improvements and upgrades have been made to the optical system, the instrument power control system, the data acquisition computer, the instrument control software, the data reconstruction and analysis software, and some of the basic algorithms for estimating basic microphysical variables like droplet diameter. Near the end of the project, the instrument flew on several research flights as part of the IDEAS 2011 project, and a small sample of data from the project is included as an example. There is one caveat in the technology readiness level stated above: the upgrades to the instrument power system were made after the flight testing, so they are not fully field proven. We anticipate that there will be an opportunity to fly the instrument as part of the IDEAS project in fall 2012.

Shaw, RA; Spuler, SM; Beals, M; Black, N; Fugal, JP; Lu, L

2012-06-18T23:59:59.000Z

28

Property:Technology Readiness Level | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead Jump to:Technology Readiness Level Property Type

29

Data Center Energy Efficiency and Renewable Energy Site Assessment: Anderson Readiness Center; Salem, Oregon  

SciTech Connect (OSTI)

This report summarizes the results from the data center energy efficiency and renewable energy site assessment conducted for the Oregon Army National Guard in Salem, Oregon. A team led by NREL conducted the assessment of the Anderson Readiness Center data centers March 18-20, 2014 as part of ongoing efforts to reduce energy use and incorporate renewable energy technologies where feasible. Although the data centers in this facility account for less than 5% of the total square footage, they are estimated to be responsible for 70% of the annual electricity consumption.

Metzger, I.; Van Geet, O.

2014-06-01T23:59:59.000Z

30

An assessment of the value of retail ready packaging  

E-Print Network [OSTI]

Use of retail-ready packaging reduces the costs of replenishing store shelves by eliminating the labor of removing packaging materials and stocking individual items on shelves. While reducing costs for retailers, retail-ready ...

Jackson, Kathleen Anne

2008-01-01T23:59:59.000Z

31

NGNP Risk Management through Assessing Technology Readiness  

SciTech Connect (OSTI)

Throughout the Next Generation Nuclear Plant (NGNP) project life cycle, technical risks are identified, analyzed, and mitigated and decisions are made regarding the design and selection of plant and sub-system configurations, components and their fabrication materials, and operating conditions. Risk resolution and decision making are key elements that help achieve project completion within budget and schedule constraints and desired plant availability. To achieve this objective, a formal decision-making and risk management process was developed for NGNP, based on proven systems engineering principles that have guided aerospace and military applications.

John W. Collins

2010-08-01T23:59:59.000Z

32

Technology Readiness Assessment Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOE

33

Technology Readiness Assessments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 201420122 DOEServices » Waste

34

Capture-ready power plants : options, technologies and economics  

E-Print Network [OSTI]

A plant can be considered to be capture-ready if, at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The concept of capture-ready is not a specific ...

Bohm, Mark (Mark C.)

2006-01-01T23:59:59.000Z

35

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect (OSTI)

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

36

Development of a culturally appropriate process for assessing distance learning readiness in Latin America  

E-Print Network [OSTI]

The purpose of this study was to develop an instrument for assessing distance learning readiness of institutions in Latin America for international projects of food and agriculture with higher education institutions in the U.S. The data collection...

Villalobos Pealosa, Patricia

2009-05-15T23:59:59.000Z

37

Capture-ready coal plants--Options, technologies and Mark C. Bohm a  

E-Print Network [OSTI]

. Introduction Interest in the construction of coal-fired power generation has increased significantly in recentCapture-ready coal plants--Options, technologies and economics Mark C. Bohm a , Howard J. Herzog a facilities, and the current challenges of availability and pricing of alternative generation technologies

38

Oregon: Advancing Technology Readiness: Wave Energy Testing and Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE)

EEREs support enabled Northwest Energy Innovations to verify the functionality of its Wave Energy TechnologyNew Zealand (WET-NZ) device.

39

Advancing Technology Readiness: Wave Energy Testing and Demonstration...  

Energy Savers [EERE]

proposed wave park off the coast of Oregon. | Photo courtesy of Ocean Power Technologies. Ocean Energy Projects Developing On and Off America's Shores Establishing a Testing Center...

40

UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every component is optimized for the highest level of performance. The unique feature of an H-technology combined-cycle system is the integrated heat transfer system, which combines both the steam plant reheat process and gas turbine bucket and nozzle cooling. This feature allows the power generator to operate at a higher firing temperature than current technology units, thereby resulting in dramatic improvements in fuel-efficiency. The end result is the generation of electricity at the lowest, most competitive price possible. Also, despite the higher firing temperature of the H System{trademark}, the combustion temperature is kept at levels that minimize emission production. GE has more than 3.6 million fired hours of experience in operating advanced technology gas turbines, more than three times the fired hours of competitors' units combined. The H System{trademark} design incorporates lessons learned from this experience with knowledge gleaned from operating GE aircraft engines. In addition, the 9H gas turbine is the first ever designed using ''Design for Six Sigma'' methodology, which maximizes reliability and availability throughout the entire design process. Both the 7H and 9H gas turbines will achieve the reliability levels of our F-class technology machines. GE has tested its H System{trademark} gas turbine more thoroughly than any previously introduced into commercial service. The H System{trademark} gas turbine has undergone extensive design validation and component testing. Full-speed, no-load testing of the 9H was achieved in May 1998 and pre-shipment testing was completed in November 1999. The 9H will also undergo approximately a half-year of extensive demonstration and characterization testing at the launch site. Testing of the 7H began in December 1999, and full speed, no-load testing was completed in February 2000. The 7H gas turbine will also be subjected to extensive demonstration and characterization testing at the launch site.

Kenneth A. Yackly

2001-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: DOE Zero Energy Ready Home Partner Locator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGETAbout

42

Utility advanced turbine systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

2000-09-15T23:59:59.000Z

43

Savannah River Site Salt Waste Processing Facility Technology Readiness  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENT OFSanEnergyWasteSeniorAssessment

44

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of a highly efficient, environmentally superior, and cost-competitive utility ATS for base-load utility-scale power generation, the GE 7H (60 Hz) combined cycle power system, and related 9H (50 Hz) common technology. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. Information specifically related to 9H production is presented for continuity in H program reporting, but lies outside the ATS program. This report summarizes work accomplished from 4Q98 through 3Q99. The most significant accomplishments are listed.

Unknown

1999-10-01T23:59:59.000Z

45

Utility Advanced Turbine Systems (ATS) technology readiness testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted horn DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include fill speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1999-05-01T23:59:59.000Z

46

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between Ge and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially be GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished from 4Q97 through 3Q98.

Unknown

1998-10-01T23:59:59.000Z

47

Utility Advanced Turbine Systems (ATS) Technology Readiness Testing  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown in Figure 1-1. This report summarizes work accomplished in 2Q98. The most significant accomplishments are listed in the report.

NONE

1998-10-29T23:59:59.000Z

48

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer conflation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. The objective of this task is to design 7H and 9H compressor rotor and stator structures with the goal of achieving high efficiency at lower cost and greater durability by applying proven GE Power Systems (GEPS) heavy-duty use design practices. The designs will be based on the GE Aircraft Engines (GEAE) CF6-80C2 compressor. Transient and steady-state thermo-mechanical stress analyses will be run to ensure compliance with GEPS life standards. Drawings will be prepared for forgings, castings, machining, and instrumentation for full speed, no load (FSNL) tests of the first unit on both 9H and 7H applications.

Unknown

1999-04-01T23:59:59.000Z

49

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

SciTech Connect (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

50

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

51

Uncertainties in energy technology assessments  

E-Print Network [OSTI]

In order to make important contributions, energy technology assessments must be large, interdisciplinary projects, generally becoming very time consuming and expensive. This small project does not involve a large assessment, ...

Coate, David

1980-01-01T23:59:59.000Z

52

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-01-01T23:59:59.000Z

53

Ion exchange technology assessment report  

SciTech Connect (OSTI)

In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

Duhn, E.F.

1992-12-31T23:59:59.000Z

54

Berkeley ReadyMade Impact Assessment: Developing an Effective and Efficient Assessment Template for Social Enterprises  

E-Print Network [OSTI]

Center for Work, Technology and Society, UC Berkeley AugustCenter for Work, Technology and Society; Chair), SaraCenter for Work, Technology and Society, UC Berkeley, 2011.

Brown, Clair; Chait, Ariel; Freeman, Eric

2011-01-01T23:59:59.000Z

55

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University of

56

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving LoanDepartment of422-SA-01AprilSRS

57

SRS Tank 48H Waste Treatment Project Technology Readiness Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 ThisApril 2,QuickFacilitySavannah

58

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) PowerSafety Design RM

59

Preliminary Technology Readiness Assessment (TRA) for the Calcine  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) PowerSafety Design RMDisposition

60

Technology Readiness Assessment Guide - DOE Directives, Delegations, and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8,MaterialsTechnologistRequirements 4A,

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Uranium Downblending and Disposition Project Technology Readiness Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of Energy SofDelaware EnergyPotomac RiverUpdateReport233

62

On the integration of technology readiness levels at Sandia National Laboratories.  

SciTech Connect (OSTI)

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01T23:59:59.000Z

63

Windows technology assessment  

SciTech Connect (OSTI)

This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

Baron, J.J.

1995-10-01T23:59:59.000Z

64

A Qualitative Readiness-Requirements Assessment Model for Enterprise Big-Data Infrastructure Investment  

SciTech Connect (OSTI)

In the last three decades, there has been an exponential growth in the area of information technology providing the information processing needs of data-driven businesses in government, science, and private industry in the form of capturing, staging, integrating, conveying, analyzing, and transferring data that will help knowledge workers and decision makers make sound business decisions. Data integration across enterprise warehouses is one of the most challenging steps in the big data analytics strategy. Several levels of data integration have been identified across enterprise warehouses: data accessibility, common data platform, and consolidated data model. Each level of integration has its own set of complexities that requires a certain amount of time, budget, and resources to implement. Such levels of integration are designed to address the technical challenges inherent in consolidating the disparate data sources. In this paper, we present a methodology based on industry best practices to measure the readiness of an organization and its data sets against the different levels of data integration. We introduce a new Integration Level Model (ILM) tool, which is used for quantifying an organization and data system s readiness to share data at a certain level of data integration. It is based largely on the established and accepted framework provided in the Data Management Association (DAMA-DMBOK). It comprises several key data management functions and supporting activities, together with several environmental elements that describe and apply to each function. The proposed model scores the maturity of a system s data governance processes and provides a pragmatic methodology for evaluating integration risks. The higher the computed scores, the better managed the source data system and the greater the likelihood that the data system can be brought in at a higher level of integration.

Olama, Mohammed M [ORNL] [ORNL; McNair, Wade [ORNL] [ORNL; Sukumar, Sreenivas R [ORNL] [ORNL; Nutaro, James J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

65

Assessment of the high temperature fission chamber technology for the French fast reactor program  

SciTech Connect (OSTI)

High temperature fission chambers are key instruments for the control and protection of the sodium-cooled fast reactor. First, the developments of those neutron detectors, which are carried out either in France or abroad are reviewed. Second, the French realizations are assessed with the use of the technology readiness levels in order to identify tracks of improvement. (authors)

Jammes, C.; Filliatre, P.; Geslot, B.; Domenech, T.; Normand, S. [Commissariat a l'Energie Atomique, CEA (France)

2011-07-01T23:59:59.000Z

66

HAS TECHNOLOGY ASSESSMENT KEPT PACE WITH GLOBALIZATION?  

E-Print Network [OSTI]

HAS TECHNOLOGY ASSESSMENT KEPT PACE WITH GLOBALIZATION? bridges vol. 18, July 2008 / Pielke makers would benefit from an authoritative, independent perspective on technology assessment of renewable energy technologies; and the US Congress is considering implementing laws to regulate speculation

Colorado at Boulder, University of

67

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

68

Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)  

SciTech Connect (OSTI)

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

Not Available

2011-10-01T23:59:59.000Z

69

Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio  

SciTech Connect (OSTI)

From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

Duffy, M. A.

2003-02-26T23:59:59.000Z

70

HVDC power transmission technology assessment  

SciTech Connect (OSTI)

The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

Hauth, R.L.; Tatro, P.J.; Railing, B.D. [New England Power Service Co., Westborough, MA (United States); Johnson, B.K.; Stewart, J.R. [Power Technologies, Inc., Schenectady, NY (United States); Fink, J.L.

1997-04-01T23:59:59.000Z

71

Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084  

SciTech Connect (OSTI)

Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

Senor, David J.

2013-10-30T23:59:59.000Z

72

Distributed thermal energy storage in the residential sector: commercialization-readiness assessment and implementation strategy  

SciTech Connect (OSTI)

The readiness of each of three candidate TES systems for near-term commercialization was examined. It was concluded that of these, TES for residential space and hot-water heating are technically and economically ready for commercialization. TES systems are unlikely to be more attractive than standard-heat-pump systems in all areas of the country; however, in many regions, particularly in the northeast and north central states, TES appears to be more attractive. In the not-too-distant future, use of TES with heat pumps may prove to be the best system nationwide. For the third system, TES for residential space cooling, it was found that those units that are presently technically viable would be too costly except in a few parts of the country; more development will be required before these systems could be commercialized on a national scale. TES systems that might be used in commercial buildings (e.g., stores and office buildings) were not examined. Environmental, market and economic, and institutional-readiness studies are presented. Market penetration and benefit analysis are summarized. Barriers to commercialization are identified along with strategies for overcoming the barriers. Schedules and resource requirements are discussed. Summaries of the study techniques and additional information are given in the appendices. (MCW)

None

1980-08-01T23:59:59.000Z

73

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

74

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

75

Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment  

SciTech Connect (OSTI)

Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

Vishik, Claire [Intel Corporation] [Intel Corporation; Sheldon, Frederick T [ORNL] [ORNL; Ott, David [Intel Corporation] [Intel Corporation

2013-01-01T23:59:59.000Z

76

Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

Huff, Georgianne; Tong, Nellie (KEMA Consulting, Fairfax, VA); Fioravanti, Richard (KEMA Consulting, Fairfax, VA); Gordon, Paul (Sentech/SRA International, Bethesda, MD); Markel, Larry (Sentech/SRA International, Bethesda, MD); Agrawal, Poonum (Sentech/SRA International, Bethesda, MD); Nourai, Ali (KEMA Consulting, Fairfax, VA)

2011-04-01T23:59:59.000Z

77

Capture-Ready Coal Plants -Options, Technologies and Economics Mark C. Bohm1  

E-Print Network [OSTI]

-five years. While coal-fired power plants offer significant cost and energy security advantages , John E. Parsons2 , Ram C. Sekar1 1 Laboratory for Energy and the Environment, Massachusetts Institute and pricing of alternative generation technologies, such as solar and wind. In the United States alone

78

assessment technology program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Advanced Technology Program Information Infrastructure for Healthcare Focused 137 Technology assessment of renewable energy sustainability in South Africa. Open Access...

79

Technology assessment of RDX production  

SciTech Connect (OSTI)

The known processes for producing RDX were assessed with the goal of identifying the process that would generate the least waste and pollution. It was concluded that the Bachman process employed at Holston AAP is the most economical process for producing RDX and that it probably produces less waste than any other process. It was generally agreed that the entire Holston operation is a very clean one that complies with all federal and state emission standards. In addition, a number of opportunities in which Holston could reduce their wastes were identified. Preliminary assessments of waste and pollution profiles for alternate materials, with emphasis on dual-use materials, were performed.

Coburn, M.D. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

1995-04-01T23:59:59.000Z

80

System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

Emmanuel Ohene Opare, Jr.; Charles V. Park

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Utility advanced turbine systems (ATS) technology readiness testing. Technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished in 1Q98.

NONE

1998-08-01T23:59:59.000Z

82

UTILITY ADVANCED TURBINE SYSTEMS (ATS) TECHNOLOGY READINESS TESTING: PHASE 3R  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed, including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE's request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q99.

None

1999-09-01T23:59:59.000Z

83

Report of the oversight assessment of the operational readiness review of the Rocky Flats Plant, Building 707  

SciTech Connect (OSTI)

This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy`s (DOE) office of Environment, Safety and Health (EH) of the Operational Readiness Review (ORR) activities for the resumption of Building 707 operations at the Rocky Flats Plant (RFP). The EH OA was simultaneously conducted with the Office of Defense Programs (DP) line management ORR, which was conducted from September 21 to October 2, 1992, and November 2 to 13, 1992. The EH OA evaluated the comprehensiveness and effectiveness of the DP ORR. Based on its oversight assessment, the EH OA believes that Building 707 operations may be safely resumed contingent upon satisfactory resolution of all DP ORR findings. The EH OA determined that the DP ORR was conducted in a comprehensive and effective manner and represents an adequate basis for recommending resumption of Building 707 operations. The EH OA was based primarily on an evaluation of the comprehensiveness and effectiveness of the DP ORR and addressed the following areas: Management and Organization, Industrial Safety, Fire Protection, Industrial Hygiene, Conduct of Operations, Maintenance, Quality Assurance, and Training. In a limited number of these areas, the EH OA conducted independent vertical-slice reviews DP ORR results.

Krupar, J.J. Jr.

1992-12-18T23:59:59.000Z

84

Report of the oversight assessment of the operational readiness review of the Rocky Flats Plant, Building 707  

SciTech Connect (OSTI)

This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy's (DOE) office of Environment, Safety and Health (EH) of the Operational Readiness Review (ORR) activities for the resumption of Building 707 operations at the Rocky Flats Plant (RFP). The EH OA was simultaneously conducted with the Office of Defense Programs (DP) line management ORR, which was conducted from September 21 to October 2, 1992, and November 2 to 13, 1992. The EH OA evaluated the comprehensiveness and effectiveness of the DP ORR. Based on its oversight assessment, the EH OA believes that Building 707 operations may be safely resumed contingent upon satisfactory resolution of all DP ORR findings. The EH OA determined that the DP ORR was conducted in a comprehensive and effective manner and represents an adequate basis for recommending resumption of Building 707 operations. The EH OA was based primarily on an evaluation of the comprehensiveness and effectiveness of the DP ORR and addressed the following areas: Management and Organization, Industrial Safety, Fire Protection, Industrial Hygiene, Conduct of Operations, Maintenance, Quality Assurance, and Training. In a limited number of these areas, the EH OA conducted independent vertical-slice reviews DP ORR results.

Krupar, J.J. Jr.

1992-12-18T23:59:59.000Z

85

324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3  

SciTech Connect (OSTI)

A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

HUMPHREYS, D C

2002-08-01T23:59:59.000Z

86

Getting Ready for the Technical Assessment at Snowmass "Go ahead, make my FIRE"  

E-Print Network [OSTI]

reactor - couple with burning plasma physics · Boundary Physics and Plasma Technology (coupled with above overall portfolio approach includes IFE) #12;Comparison of EU One Step to DEMO Power Plant(s) with ARIESV) LawsonFusionParameter,niTiE(1020m-3kevs) Central Ion Temperature (keV) Tokamaks 1993-99 Laser 1986 Direct

87

Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments  

SciTech Connect (OSTI)

This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

Yeh, B.

2011-03-01T23:59:59.000Z

88

Biomass Gasification Technology Assessment: Consolidated Report  

SciTech Connect (OSTI)

Harris Group Inc. (HGI) was commissioned by the National Renewable Energy Laboratory to assess gasification and tar reforming technologies. Specifically, the assessments focused on gasification and tar reforming technologies that are capable of producing a syngas suitable for further treatment and conversion to liquid fuels. HGI gathered sufficient information to analyze three gasification and tar reforming systems. This report summarizes the equipment, general arrangement of the equipment, operating characteristics, and operating severity for each technology. The order of magnitude capital cost estimates are supported by a basis-of-estimate write-up, which is also included in this report. The report also includes Microsoft Excel workbook models, which can be used to design and price the systems. The models can be used to analyze various operating capacities and pressures. Each model produces a material balance, equipment list, capital cost estimate, equipment drawings and preliminary general arrangement drawings. Example outputs of each model are included in the Appendices.

Worley, M.; Yale, J.

2012-11-01T23:59:59.000Z

89

SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a)  

E-Print Network [OSTI]

, and existence of concurrent technologies for sustainability assessment. Keywords: technology assessment, system and sustainability of the new technology in real time. In the framework of FP7-ICT- 2009-5 CHOREOS project No. 257178SYSTEM DYNAMICS USE FOR TECHNOLOGIES ASSESSMENT Egils Ginters (a) , Zane Barkane (b) , Hugues

Boyer, Edmond

90

Global Assessment of Hydrogen Technologies - Executive Summary  

SciTech Connect (OSTI)

This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. Task 4 Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. Task 5 Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. Task 6 Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

2007-12-01T23:59:59.000Z

91

Using ISMS Principles and Functions in Developing an ARRA Readiness Review Process  

Broader source: Energy.gov [DOE]

Presenter: Linda K. Rogers, Assessments & Readiness Programs Manager, Bechtel Jacobs Company, LLC Track 8-8

92

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

93

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center Technical Assessment of Small Hydro Power Technologies #12;California Renewable Energy Center Technical Assessment of In-conduit Small Hydro Power Technologies The goal of this study is to investigate and assess available small hydro power generation technologies and associated operating

California at Davis, University of

94

Tiger Team Assessment, Energy Technology Engineering Center  

SciTech Connect (OSTI)

The Office Special Projects within the Office of Environment, Safety, and Health (EH) has the responsibility to conduct Tiger Team Assessments for the Secretary of Energy. This report presents the assessment of the buildings, facilities, and activities under the DOE/Rockwell Contract No. DE-AM03-76SF00700 for the Energy Technology Engineering Center (ETEC) and of other DOE-owned buildings and facilities at the Santa Susana Field Laboratory (SSFL) site in southeastern Ventura County, California, not covered under Contract No. DE-AM03-76SF00700, but constructed over the years under various other contracts between DOE and Rockwell International. ETEC is an engineering development complex operated for DOE by the Rocketdyne Division of Rockwell International Corporation. ETEC is located within SSFL on land owned by Rockwell. The balance of the SSFL complex is owned and operated by Rocketdyne, with the exception of a 42-acre parcel owned by the National Aeronautics and Space Administration (NASA). The primary mission of ETEC is to provide engineering, testing, and development of components related to liquid metals technology and to conduct applied engineering development of emerging energy technologies.

Not Available

1991-04-01T23:59:59.000Z

95

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 1 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University ofPRELIMINARY

96

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department of Energy University

97

Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1Sandra L.155-WSavannah River Site

98

Small Column Ion Exchange at Savannah River Site Technology Readiness Assessment Report  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySaveP RSmall Column Ion Exchange

99

assessment technology status: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

100

assessment ppa technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost, quality, regulation, and competitive ... Rothman, Craig Jeremy 2012-01-01 34 Technology assessment of renewable energy sustainability in South Africa. Open Access...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

array technologies assessed: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

102

Modeling Renewable Energy Readiness: The UAE Context  

E-Print Network [OSTI]

Modeling technology policy is becoming an increasingly important capability to steer states and societies toward sustainability. This paper presents a simulation-modeling approach to evaluate renewable energy readiness, ...

Choucri, Nazli

103

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

/ RECs #12;CGECTask 7. Biomass Gasification Technology Assessment · Task is still in progress · UpdateRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;Biomass/MSW Gap

California at Davis, University of

104

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

105

Community Readiness Project Helps State Get Ready for Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Community Readiness Project Helps State Get Ready for Electric Vehicles Community Readiness Project Helps State Get Ready for Electric Vehicles April 10, 2013 - 12:00am Addthis In...

106

EV Community Readiness projects: American Lung Association of...  

Broader source: Energy.gov (indexed) [DOE]

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ti027kelly2013o.pdf More Documents & Publications EV Community Readiness projects: Center for...

107

Accelerating the Electrification of U.S. Drive Trains: Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Accelerating the Electrification of U.S. Drive Trains: Ready and Affordable Technology Solutions for Domestically Manufactured Advanced...

108

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop.9 Williams, R. B., B. M. Jenkins and S. R. Kaffka (2014). An Assessment of Biomass Resources in California. An Assessment of Biomass Resources in California, 2012 ­ DRAFT. Contractor Report to the California Energy

California at Davis, University of

109

Adopting New Technologies for  

E-Print Network [OSTI]

Readiness 6 Organizational Readiness 8 Motivational Readiness 10 Microcultures 12 Conclusion 13 References. The main purpose of IPAS technologies is not to increase administrative efficiency or information. Many authors writing about organizational behavior have sought to understand why particular innova

Qian, Ning

110

Subsea Pumped Hydro Storage -A Technology Assessment.  

E-Print Network [OSTI]

??A novel technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Falk, Johan

2013-01-01T23:59:59.000Z

111

Draft Innovative Exploration Technologies Needs Assessment |...  

Energy Savers [EERE]

Program June 6 - 10, 2011 The Dixie Valley Geothermal Plant in Nevada produces 60 MW of electricity. A Roadmap for Strategic Development of Geothermal Exploration Technologies...

112

Technology assessments in transportation: survey of recent literature  

SciTech Connect (OSTI)

A survey and an evaluation of recent studies of transportation systems done in a technology-assessment framework were undertaken as the basis for a detailed statement of work for a US Department of Energy technology assessment of transportation energy-conservation strategies. Several bibliographies were searched and numerous professionals in the field of technology assessment were contacted regarding current work. Detailed abstracts were prepared for studies judged to be sufficiently broad in coverage of impacts assessed, yet detailed in coverage of all or part of the nation's transportation systems. Some studies were rich in data but not comprehensive in their analytical approach; brief abstracts were prepared for these. An explanation of the criteria used to screen the studies, as well as abstracts of 37 reports, are provided in this compendium of transportation-technology-assessment literature.

LaBelle, S.J.

1980-03-01T23:59:59.000Z

113

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Annual report, October 1, 1996--September 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown.

NONE

1997-12-31T23:59:59.000Z

114

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

115

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

116

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

117

Independent Oversight Review of the NNSA Production Office Readiness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RR Readiness Review SAA Startup Approval Authority SIAP Site Integrated Assessment Plan SME Subject Matter Expert SNR Startup Notification Report SSTA Senior Scientific Technical...

118

Focus Series: Program Finds Community "Readiness" Is the Key...  

Broader source: Energy.gov (indexed) [DOE]

& Publications Community Readiness Assessments Better Buildings Network View | June 2014 It's Academic: BetterBuildings for Michigan Partners With University to Reach Employees...

119

Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test  

SciTech Connect (OSTI)

The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

Schweitzer, J. K.; Smith, J. D.

1981-03-01T23:59:59.000Z

120

Objective assessment of manufacturing technology investments  

E-Print Network [OSTI]

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Utility advanced turbine systems (ATS) technology readiness testing -- Phase 3. Technical progress report, October 1--December 31, 1997  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which was to have been sited and operated in Phase 4 but will now be sited and operated commercially by GE. This change has resulted from DOE`s request to GE for deletion of Phase 4 in favor of a restructured Phase 3 (as Phase 3R) to include full speed, no load (FSNL) testing of the 7H gas turbine. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 4Q97.

NONE

1997-12-31T23:59:59.000Z

122

Technology assessment of renewable energy sustainability in South Africa.  

E-Print Network [OSTI]

??Thesis (PhD (School of Public Leadership)) University of Stellenbosch, 2012. Please download the required VENSIM software from: http://www.vensim.com/freedownload.html ENGLISH ABSTRACT: Technology assessment has changed in (more)

Musango, Josephine Kaviti

2011-01-01T23:59:59.000Z

123

Model for a web based medical technology assessment system  

E-Print Network [OSTI]

will form the backbone of this system. Various queries can be run to produce the desired results. This system will provide a means for assessing the currently available medical technology. Based on the information present in the system clinical engineers...

Prabhu, Gopal

1999-01-01T23:59:59.000Z

124

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network [OSTI]

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

125

Innovative and Alternative Technology Assessment Manual  

SciTech Connect (OSTI)

This four chapter, six appendix manual presents the procedures and methodology as well as the baseline costs and energy information necessary for the analysis and evaluation of innovative and alternative technology applications submitted for federal grant assistance under the innovative and alternative technology provisions of the Clean Water Act of 1977. The manual clarifies and interprets the intent of Congress and the Environmental Protection Agency in carrying out the mandates of the innovative and alternative provisions of the Clean Water Act of 1977. [DJE 2005

None

1980-02-01T23:59:59.000Z

126

Truck Technology Efficiency Assessment (TTEA) Project  

E-Print Network [OSTI]

cycle data in order to quantify the fuel savings and emissions reduction potential of technologies climate change in transportation, and related environmental impacts. Drive Cycle Data Analysis to Evaluate Fuel and Emissions Benefits Drive cycle data (velocity, acceleration and elevation histories

127

Space-reactor electric systems: subsystem technology assessment  

SciTech Connect (OSTI)

This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

Anderson, R.V.; Bost, D.; Determan, W.R.

1983-03-29T23:59:59.000Z

128

Reactor technology assessment and selection utilizing systems engineering approach  

SciTech Connect (OSTI)

The first Nuclear power plant (NPP) deployment in a country is a complex process that needs to consider technical, economic and financial aspects along with other aspects like public acceptance. Increased interest in the deployment of new NPPs, both among newcomer countries and those with expanding programs, necessitates the selection of reactor technology among commercially available technologies. This paper reviews the Systems Decision Process (SDP) of Systems Engineering and applies it in selecting the most appropriate reactor technology for the deployment in Malaysia. The integrated qualitative and quantitative analyses employed in the SDP are explored to perform reactor technology assessment and to select the most feasible technology whose design has also to comply with the IAEA standard requirements and other relevant requirements that have been established in this study. A quick Malaysian case study result suggests that the country reside with PWR (pressurized water reactor) technologies with more detailed study to be performed in the future for the selection of the most appropriate reactor technology for Malaysia. The demonstrated technology assessment also proposes an alternative method to systematically and quantitatively select the most appropriate reactor technology.

Zolkaffly, Muhammed Zulfakar; Han, Ki-In [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

2014-02-12T23:59:59.000Z

129

Nuclear explosives testing readiness evaluation  

SciTech Connect (OSTI)

This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

Valk, T.C.

1993-09-01T23:59:59.000Z

130

Beamline Commissioning Readiness Review Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ES&H and User Safety Officer T. Kruy AES Front Ends Readiness G. Markovich AES PSS & EPS Readiness M. Merritt AES Insertion Device Readiness M. Ramanathan AES CCSM & Chair AES...

131

In 2006, the Alliance of Coastal Technology (ACT) evaluated the performance of five commercial-ready, in situ turbidity sensors at  

E-Print Network [OSTI]

commercial-ready, in situ turbidity sensors at eight test sites located throughout North America (Fig. 1, and a freshwater lake (Fig. 1) . The sensors used in this study consisted of: A backscatter Turbidity Probe ( =660 A transmissometer ( =660nm) ­ data denoted by cp Both scattering sensors were equipped with integrated copper wipers

Boss, Emmanuel S.

132

Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program  

SciTech Connect (OSTI)

A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.

Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

2005-10-03T23:59:59.000Z

133

Emergency Readiness Assurance Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements of the Emergency Readiness Assurance Program with a goal of assurting that the Department of Energy (DOE) Emergency Management System (EMS) is ready to respond promptly, efficiently, and effectively to any emergency involving DOE facilities or requiring DOE assistance. Cancels DOE O 5500.10 dated 4-30-91. Chg 1 dated 2-27-92. Change 1 canceled by DOE O 151.1 of 9-25-95.

1992-02-27T23:59:59.000Z

134

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

135

DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES  

SciTech Connect (OSTI)

The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D&D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

136

Parallel optics technology assessment for the versatile link project  

SciTech Connect (OSTI)

This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

2011-01-01T23:59:59.000Z

137

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

This is the final report in the Zero-Emission Vehicle (ZEV) Technology Assessment, performed for NYSERDA by Booz-Allen & Hamilton Inc. Booz-Allen wrote the final report, and performed the following tasks as part of the assessment: assembled a database of key ZEV organizations, their products or services, and plans; described the current state of ZEV technologies; identified barriers to widespread ZEV deployment and projected future ZEV technical capabilities; and estimated the cost of ZEVs from 1998 to 2004. Data for the ZEV Technology Assessment were obtained from several sources, including the following: existing ZEV industry publications and Booz-Allen files; major automotive original equipment manufacturers; independent electric vehicle manufacturers; battery developers and manufacturers; infrastructure and component developers and manufacturers; the U.S. Department of Energy, the California Air Resources Board, and other concerned government agencies; trade associations such as the Electric Power Research Institute and the Electric Transportation Coalition; and public and private consortia. These sources were contacted by phone, mail, or in person. Some site visits of manufacturers also were conducted. Where possible, raw data were analyzed by Booz-Allen staff and/or verified by independent sources. Performance data from standardized test cycles were used as much as possible.

Woods, T.

1995-08-01T23:59:59.000Z

138

National Wind Technology Center sitewide, Golden, CO: Environmental assessment  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

NONE

1996-11-01T23:59:59.000Z

139

An assessment of desiccant cooling and dehumidification technology  

SciTech Connect (OSTI)

Desiccant systems are heat-actuated cooling and dehumidification technology. With the recent advances in this technology, desiccant systems can now achieve a primary energy coefficient of performance (COP) between 1.3 and 1.5, with potential to go to 1.7 and higher. It is becoming one of the most promising alternatives to conventional cooling systems. Two important and well-known advantages of desiccant cooling systems are that they are CFC free and they can reduce the electricity peak load. Another important but lesser-known advantage of desiccant technology is its potential for energy conservation. The energy impact study in this report indicated that a possible 13% energy saving in residential cooling and 8% in commercial cooling is possible. Great energy saving potential also exists in the industrial sector if industrial waste heat can be used for desiccant regeneration. The latest study on desiccant-integrated building heating, ventilating, and air conditioning (HVAC) systems indicated that the initial cost for the conventional cooling equipment was greatly reduced by using desiccant technology because of downsized compressors, fans, and ductworks. This cost reduction was more than enough to offset the cost of desiccant equipment. Besides, the system operation cost was also reduced. All these indicate that desiccant systems are also cost effective. This study provides an updated state-of-the-art assessment forsiccant technology in the field of desiccant materials, systems, computer models, and theoretical analyses. From this information the technology options were derived and the future research and development needs were identified. Because desiccant technology has already been applied in the commercial building sector with very encouraging results, it is expected that future market breakthroughs will probably start in this sector. A market analysis for the commercial building application is therefore included.

Mei, V.C.; Chen, F.C. (Oak Ridge National Lab., TN (United States)); Lavan, Z. (Illinois Inst. of Tech., Chicago, IL (United States)); Collier, R.K. Jr. (Collier Engineering Services, Merritt Island, FL (United States)); Meckler, G. (Gershon Meckler Associates, P.C., Herndon, VA (United States))

1992-07-01T23:59:59.000Z

140

Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulation Technology Laboratory Building 970 hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Wood, C.L.; Starr, M.D.

1994-11-01T23:59:59.000Z

142

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

143

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network [OSTI]

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

144

Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

NONE

1995-09-01T23:59:59.000Z

145

E-Print Network 3.0 - assessment energy technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22 Ris Energy Report 2 Three growing concerns sustainability (particularly in Summary: bioenergy technologies are assessed to show their current status, future trends and...

146

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them?  

E-Print Network [OSTI]

NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready, including 10% post consumer waste. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness

147

Ready, set, go . . . well maybe  

E-Print Network [OSTI]

at the 2011 Applied Ergonomics Conference By Melaniesustainable? Case study of ergonomics program that was notwas not! Case study of ergonomics program that was ready

Alexandre, Melanie M

2011-01-01T23:59:59.000Z

148

Assessment of basic research needs for greenhouse gas control technologies  

SciTech Connect (OSTI)

This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

1998-09-01T23:59:59.000Z

149

Evaluation of pressure sensing concepts: A technology assessment  

SciTech Connect (OSTI)

Advanced distributed control systems for electric power plants will require more accurate and reliable pressure gauges than those now installed. Future developments in power plant control systems are expected to use digital/optical networks rather than the analog/electric data transmission used in existing plants. Many pressure transmitters now installed use oil filling to separate process fluids from the gauge mechanism and are subject to insidious failures when the oil leaks. Testing and maintenance of pressure channels occupy a disproportionately large amount of effort to restore their accuracy and verify their operability. These and similar concerns have prompted an assessment of a broad spectrum of sensor technologies to aid in selecting the most likely candidates for adaptation to power plant applications. Ten representative conventional and thirty innovational pressure sensors are described and compared. Particular emphasis is focused on two categories: Silicon-integrated pressure sensors and fiber-optic sensors, and both of these categories are discussed in detail. Additional attractive concepts include variable reluctance gauges and resonant structure gauges that may not require oil buffering from the process fluid.

Shepard, R.L.; Thacker, L.H.

1993-09-01T23:59:59.000Z

150

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration phase 3. Quarterly progress report, October 1--December 31, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-05-01T23:59:59.000Z

151

Utility Advanced Turbine System (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, April 1--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This report summarizes work accomplished during the period 2Q96.

NONE

1996-12-31T23:59:59.000Z

152

An Assessment of Communication Technology Adoption in Texas Cooperatives  

E-Print Network [OSTI]

of communication technology from the background of cooperative managers to board management policy. The survey categorized 105 different cooperatives by current technology use and management practices. Once the data were collected, a factor analysis to understand...

Murch, Matthew 1987-

2012-08-31T23:59:59.000Z

153

Utility advanced turbine system (ATS) technology readiness testing and pre-commercial demonstration -- Phase 3. Quarterly report, July 1--September 30, 1995  

SciTech Connect (OSTI)

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detailed design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. This initial report summarizes work accomplished during the third quarter of 1995. The most significant accomplishments reported include the following. Overall design continued, progressing from preliminary and conceptual design activities to detailed design activities. The aerodynamic design of six out of eight 9H turbine airfoils was completed. The 9H compressor design concept was finalized including rotor configuration, aerodynamic design of compressor, and compressor structure. Conceptual on-base and external piping layout was begun. The ATS Phase 3 Cooperative Agreement was negotiated and signed.

NONE

1995-12-31T23:59:59.000Z

154

A survey of current technologies for production of oil from oil shale by in-situ retorting processes; their technical and economic readiness and requirements for further developments  

SciTech Connect (OSTI)

Four in-situ oil shale processes; Vertical Modified In-Situ (VMIS), Horizontal Modified In-Situ (HMIS), Geokinetics, and Equity have been reviewed with respect to their developmental histories, major advantages and disadvantages, present activities, major technical problems, and present states of development. The various processes are described in detail, and up-to-date experimental data has been summarized. The preliminary designs for commercialization have been developed in order to estimate capital and operating costs. Required selling prices and sensitivities have been determined as they relate to various parameters, such as oil yields, capital costs, operating costs, and economic incentives. The technologies for the various processes have been analyzed for the purpose of identifying areas of further required research and development. Programs of technological development have been suggested for each in-situ process. The results of various process evaluations have been compared, and the best near-term solutions have been determined for producing oil from oil shale using in-situ methods.

Cha, C.Y.; Chazin, D.

1982-01-01T23:59:59.000Z

155

Zero-emission vehicle technology assessment. Final report  

SciTech Connect (OSTI)

New York State adopted the California Low Emission Vehicle (LEV) program that includes a sales mandate for ZEVs starting in 1988. The New York State Department of Environmental Conservation (NYSDEC) was required to perform a technology review of zero-emission vehicles (ZEVs) in 1994, and examine technology developments and issues relating to ZEV performance in New York State, by the amendments to 6NYCRR Part 218, February 1992. The Final Report presents an overview of technology as of the spring of 1995, and a projection of technology status over the next 10 years.

Woods, T.

1995-08-01T23:59:59.000Z

156

Technology assessment and market analysis of solid state ultracapacitors  

E-Print Network [OSTI]

This report provides quantitative analysis of Solid State Ultracapacitors (SSUs) from technological and financial perspectives. SSUs are Ultracapacitors with solid electrolytes predicted to have huge application potential ...

Jiang, Zibo

2007-01-01T23:59:59.000Z

157

alternative technology assessment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rays is used. Photovoltaics currently relies on three technologies. Monocrystalline and polycrystalline cells are silicon-based. Thin-film cells use semi-conductor materials....

158

Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles  

SciTech Connect (OSTI)

This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

2007-12-01T23:59:59.000Z

159

Question and Answers Alternative Fuel Readiness Plans  

E-Print Network [OSTI]

Question and Answers Alternative Fuel Readiness Plans PON-13-603 September 3, 2013 Eligibility Q1 to readiness plans? A1 This solicitation is limited to readiness planning only for alternative fuels. Q2 In regards to PON-13-603 - Alternative Fuel Readiness Plans, is electricity used for transportation

160

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

California at Davis, University of

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network [OSTI]

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

162

Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition  

SciTech Connect (OSTI)

Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure properly and, at the same time, minimize the amount of dust generated from a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology given site-specific conditions. Thus, the purpose of this research, which was carried out at the Hemispheric Center for Environmental Technology (HCET) at Florida International University, was to conduct an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study targeted the problem of dust suppression during the demolition of nuclear facilities. The resulting data were employed to assist in the development of mathematical correlations that can be applied to predict dust generation during structural demolition.

Boudreaux, J.F.; Ebadian, M.A.; Williams, P.T.; Dua, S.K.

1998-10-20T23:59:59.000Z

163

Environmental Assessment for the Oak Ridge Science and Technology...  

Broader source: Energy.gov (indexed) [DOE]

6-281(E)020508 FINDING OF NO SIGNIFICANT IMPACT OAK RIDGE SCIENCE AND TECHNOLOGY PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U. S. Department of...

164

An assessment of the video analytics technology gap for transportation facilities  

E-Print Network [OSTI]

We conduct an assessment of existing video analytic technology as applied to critical infrastructure protection, particularly in the transportation sector. Based on discussions with security personnel at multiple facilities, ...

Thornton, Jason R.

165

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect (OSTI)

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

166

The DOE Hydrogen Baseline Survey: Assessing Knowledge and Opinions about Hydrogen Technology  

E-Print Network [OSTI]

and don't know about the hydrogen economy and hydrogen technologies. The data will ­ Guide educationThe DOE Hydrogen Baseline Survey: Assessing Knowledge and Opinions about Hydrogen Technology Christy Cooper U.S. Department of Energy Hydrogen Program #12;Overview Purpose: To learn what people know

167

Operational readiness review phase-1 final report for WRAP-1  

SciTech Connect (OSTI)

This report documents the Operational Readiness Review for WRAP-1 Phase-1 operations. The report includes all criteria, lines of inquiry with resulting Findings and Observations. The review included assessing operational capability of the organization and the computer controlled process and facility systems.

Bowen, W., Westinghouse Hanford

1996-12-27T23:59:59.000Z

168

DOE Zero Energy Ready Home High-Performance Home Sales Training...  

Broader source: Energy.gov (indexed) [DOE]

include advanced technology. And with all that load reduction, let's also put in the solar-ready construction features that are low- or no-cost, so your house can now be...

169

Competitive Performance Assessment of Dynamic Vehicle Routing Technologies  

E-Print Network [OSTI]

the load. On the demand side, the motivation for this work is two-fold. The growing demand for customer-responsive@wam.umd.edu and Patrick Jaillet Massachusetts Institute of Technology Department of Civil & Environmental Engineering. In this environment, demands arrive randomly over time and are described by pick up, delivery locations and hard time

170

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network [OSTI]

Farland , Howard J. Herzog Massachusetts Institute of Technology, USA Available online 7 July 2006 Abstract Low change has accounted for a significant portion of economic growth and is, in part, responsible economy-wide interactions, including international trade, energy supply and demand, inter-industry supply

171

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center California Energy Efficiency and GHG Goals · Integrated previous finding from Handbook #12;California Renewable Energy Center Resources: 1) Technology Roadmap: Energy Efficiency, Creamary, Plastics Cooking 60-100 Food and Beverages, Tinned Food, Paper, Meat Boiling 95-105 Food

California at Davis, University of

172

Environmental Decision Making and Information Technology: Issues Assessment  

SciTech Connect (OSTI)

This report presents a summary of the Information Technology and Environmental Decision Making Workshop that was held at Harvard University, October 1-3, 1998. Over sixty participants from across the US took part in discussions that focused on the current practice of using information technology to support environmental decision making and on future considerations of information technology development, information policies, and data quality issues in this area. Current practice is focusing on geographic information systems and visualization tools, Internet applications, and data warehousing. In addition, numerous organizations are developing environmental enterprise systems to integrate environmental information resources. Plaguing these efforts are issues of data quality (and public trust), system design, and organizational change. In the future, much effort needs to focus on building community-based environmental decision-making systems and processes, which will be a challenge given that exactly what needs to be developed is largely unknown and that environmental decision making in this arena has been characterized by a high level of conflict. Experimentation and evaluation are needed to contribute to efficient and effective learning about how best to use information technology to improve environmental decision making.

Barg, S.; Fletcher, T.; Mechling, J.; Tonn, B.; Turner, R.

1999-05-01T23:59:59.000Z

173

Uranium Downblending and Disposition Project Technology Readiness  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial

174

The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies  

SciTech Connect (OSTI)

This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

2004-01-15T23:59:59.000Z

175

A resource and technology assessment of coal utilization in India  

SciTech Connect (OSTI)

Electricity production in India is projected to expand dramatically in the near term to energize new industrial development, while also easing the energy shortages throughout the country. Much of the new growth in electricity production will be fueled by domestic coal resources; however, there is worldwide concern about increased coal use, as greater carbon dioxide emissions from coal combustion will exacerbate climate change. At the same time, there are now a number of different existing and emerging technological options for coal conversion and greenhouse gas (GHG) reduction worldwide that could potentially be useful for the Indian coal-power sector. This paper reviews coal utilization in India and examines current and emerging coal power technologies with near- and long-term potential for reducing greenhouse gas emissions from coal power generation. 107 refs., 8 figs., 6 tabs.

Chikkatur, A.P. [Harvard University, Cambridge, MA (United States). Kennedy School of Government

2008-10-15T23:59:59.000Z

176

Overview of technology modeling in the Remedial Action Assessment System (RAAS)  

SciTech Connect (OSTI)

There are numerous hazardous waste sites under the jurisdiction of the US Department of Energy (DOE). To assist the cleanup of these sites in a more consistent, timely, and cost-effective manner, the Remedial Action Assessment System (RAAS) is being developed by the Pacific Northwest Laboratory (PNL). RAAS is a software tool designed to automate the initial technology selection within the remedial investigation/feasibility study (RI/FS) process. The software does several things for the user: (1) provides information about available remedial technologies, (2) sorts possible technologies to recommend a list of technologies applicable to a given site, (3) points out technical issues that may prevent the implementation of a technology, and (4) provides an estimate of the effectiveness of a given technology at a particular site. Information from RAAS can be used to compare remediation options and guide selection of technologies for further study.

Johnson, C.D.; Bagaasen, L.M.; Chan, T.C.; Lamar, D.A.; Buelt, J.L.; Freeman, C.J.; Skeen, R.S.

1994-08-01T23:59:59.000Z

177

On Assessing the Robustness of Structural Health Monitoring Technologies  

SciTech Connect (OSTI)

As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

Stull, Christopher J. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory

2012-08-24T23:59:59.000Z

178

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect (OSTI)

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

179

A Comparative Study on Emerging Electric Vehicle Technology Assessments  

SciTech Connect (OSTI)

Numerous organizations have published reports in recent years that investigate the ever changing world of electric vehicle (EV) technologies and their potential effects on society. Specifically, projections have been made on greenhouse gas (GHG) emissions associated with these vehicles and how they compare to conventional vehicles or hybrid electric vehicles (HEVs). Similar projections have been made on the volumes of oil that these vehicles can displace by consuming large amounts of grid electricity instead of petroleum-based fuels. Finally, the projected rate that these new vehicle fleets will enter the market varies significantly among organizations. New ideas, technologies, and possibilities are introduced often, and projected values are likely to be refined as industry announcements continue to be made. As a result, over time, a multitude of projections for GHG emissions, oil displacement, and market penetration associated with various EV technologies has resulted in a wide range of possible future outcomes. This leaves the reader with two key questions: (1) Why does such a collective range in projected values exist in these reports? (2) What assumptions have the greatest impact on the outcomes presented in these reports? Since it is impractical for an average reader to review and interpret all the various vehicle technology reports published to date, Sentech Inc. and the Oak Ridge National Laboratory have conducted a comparative study to make these interpretations. The primary objective of this comparative study is to present a snapshot of all major projections made on GHG emissions, oil displacement, or market penetration rates of EV technologies. From the extensive data found in relevant publications, the key assumptions that drive each report's analysis are identified and 'apples-to-apples' comparisons between all major report conclusions are attempted. The general approach that was taken in this comparative study is comprised of six primary steps: (1) Search Relevant Literature - An extensive search of recent analyses that address the environmental impacts, market penetration rates, and oil displacement potential of various EV technologies was conducted; (2) Consolidate Studies - Upon completion of the literature search, a list of analyses that have sufficient data for comparison and that should be included in the study was compiled; (3) Identify Key Assumptions - Disparity in conclusions very likely originates from disparity in simple assumptions. In order to compare 'apples-to-apples,' key assumptions were identified in each study to provide the basis for comparing analyses; (4) Extract Information - Each selected report was reviewed, and information on key assumptions and data points was extracted; (5) Overlay Data Points - Visual representations of the comprehensive conclusions were prepared to identify general trends and outliers; and (6) Draw Final Conclusions - Once all comparisons are made to the greatest possible extent, the final conclusions were draw on what major factors lead to the variation in results among studies.

Ford, Jonathan [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Blackburn, Julia [Sentech, Inc.; Sikes, Karen [Sentech, Inc.

2011-03-01T23:59:59.000Z

180

Characterization of alternative electric generation technologies for the SPS comparative assessment: volume 2, central-station technologies  

SciTech Connect (OSTI)

The SPS Concept Development and Evaluation Program includes a comparative assessment. An early first step in the assessment process is the selection and characterization of alternative technologies. This document describes the cost and performance (i.e., technical and environmental) characteristics of six central station energy alternatives: (1) conventional coal-fired powerplant; (2) conventional light water reactor (LWR); (3) combined cycle powerplant with low-Btu gasifiers; (4) liquid metal fast breeder reactor (LMFBR); (5) photovoltaic system without storage; and (6) fusion reactor.

Not Available

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Executive summary. Western oil shale developmet: a technology assessment  

SciTech Connect (OSTI)

The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

Not Available

1981-11-01T23:59:59.000Z

182

Using Advanced Scientific Diving Technologies to Assess the Underwater Environment  

SciTech Connect (OSTI)

Scientific diving can provide unique information for addressing complex environmental issues in the marine environment and is applied to a variety of increasingly important issues throughout Puget Sound, including habitat degradation, endangered species, biological availability of contaminants, and the effects of overwater structures and shoreline protection features. The Pacific Northwest National Laboratory, Battelle Marine Sciences Laboratory uses trained scientific divers in conjunction with advanced technologies to collect in-situ information best obtained through direct observation and requiring minimal environmental disturbance. For example, advances in underwater communications allow divers to discuss observations and data collection techniques in real time, both with each other and with personnel on the surface. Other examples include the use of Dual frequency IDentification SONar (DIDSON), an underwater camera used to capture digital images of benthic structures, fish, and organisms during low light and high turbidity levels; the use of voice-narrated underwater video; and the development of sediment collection methods yielding one-meter cores. The combination of using trained scientific SCUBA divers and advanced underwater technologies is a key element in addressing multifaceted environmental problems, resulting in a more comprehensive understanding of the underwater environment and more reliable data with which to make resource management decisions.

Southard, John A.; Williams, Greg D.; Sargeant, Susan L.; Diefenderfer, Heida L.; Blanton, Michael L.

2003-03-31T23:59:59.000Z

183

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

SciTech Connect (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects Sleipner, Snhvit, In Salah and Weyburn are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the publics willingness to incur costs to avoid dangerous anthropogenic interference with the Earths climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

184

Pollution prevention opportunity assessment for building 878, manufacturing science and technology, organization 14100.  

SciTech Connect (OSTI)

This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.

Klossner, Kristin Ann

2004-05-01T23:59:59.000Z

185

PRELIMINARY ASSESSMENT OF THE LOW-TEMPERATURE WASTE FORM TECHNOLOGY COUPLED WITH TECHNETIUM REMOVAL  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) have been chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated with the Cast Stone waste immobilization projects at Hanford. Science and technology needs were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separations of technetium from waste processing streams. Technical approaches to address the science and technology needs were identified and an initial sequencing priority was suggested. The following table summarizes the most significant science and technology needs and associated approaches to address those needs. These approaches and priorities will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Implementation of a science and technology program that addresses these needs by pursuing the identified approaches will have immediate benefits to DOE in reducing risks and uncertainties associated with near-term decisions regarding supplemental immobilization at Hanford. Longer term, the work has the potential for cost savings and for providing a strong technical foundation for future performance assessments at Hanford and across the DOE complex.

Fox, K.

2014-05-13T23:59:59.000Z

186

Assessment of the magnesium primary production technology. Final report  

SciTech Connect (OSTI)

At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

1981-02-01T23:59:59.000Z

187

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

188

Solar Ready: An Overview of Implementation Practices  

SciTech Connect (OSTI)

This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

2012-01-01T23:59:59.000Z

189

Digital Forensic Readiness: Are We There Yet?  

E-Print Network [OSTI]

Digital Forensic Readiness: Are We There Yet? Antonis Mouhtaropoulos, Chang-Tsun Li Department.co.za Abstract--Digital Forensic Readiness is defined as the pre- incident plan that deals with an organization for a common forensic readiness standard. This article reviews a number of key initiatives in order to point

Li, Chang-Tsun

190

Mira Computational Readiness Assessment | Argonne Leadership Computing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3,0 AlabamaYearEnergy MinorityDepartment

191

Community Readiness Assessments | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment ofFresno U.S. Department ofCommunity

192

Technology-to-Market Portfolio  

Broader source: Energy.gov [DOE]

BTOs Technology-to-Market (T2M) team drives high impact technologies from R&D to market readiness, preparing these technologies for real building demonstration, market deployment, and ultimately mass-market adoption.

193

Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios  

SciTech Connect (OSTI)

A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

Not Available

1982-01-01T23:59:59.000Z

194

Conceptual design of an integrated technology model for carbon policy assessment.  

SciTech Connect (OSTI)

This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

2011-01-01T23:59:59.000Z

195

Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies  

SciTech Connect (OSTI)

The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1980-03-01T23:59:59.000Z

196

Assessment of LED Technology in Ornamental Post-Top Luminaires (Host Site: Sacramento, CA)  

SciTech Connect (OSTI)

The DOE Municipal Solid-State Street Lighting Consortium has evaluated four different LED replacements for existing ornamental post-top street lights in Sacramento, California. The project team was composed of the City and its consultant, PNNL (representing the Consortium), and the Sacramento Municipal Utility District. Product selection was finalized in March 2011, yielding one complete luminaire replacement and three lamp-ballast retrofit kits. Computer simulations, field measurements, and laboratory testing were performed to compare the performance and cost-effectiveness of the LED products relative to the existing luminaire with 100 W high-pressure sodium lamp. After it was confirmed the LED products were not equivalent to HPS in terms of initial photopic illumination, the following parameters were scaled proportionally to enable equitable (albeit hypothetical) comparisons: light output, input wattage, and pricing. Four replacement scenarios were considered for each LED product, incorporating new IES guidance for mesopic multipliers and lumen maintenance extrapolation, but life cycle analysis indicated cost effectiveness was also unacceptable. Although LED efficacy and pricing continue to improve, this project serves as a timely and objective notice that LED technology may not be quite ready yet for such applications.

Tuenge, Jason R.

2011-12-01T23:59:59.000Z

197

Materials technology assessment for a 1050 K Stirling Space Engine design  

SciTech Connect (OSTI)

An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

1988-10-01T23:59:59.000Z

198

Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment  

SciTech Connect (OSTI)

The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

1981-09-01T23:59:59.000Z

199

Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage  

E-Print Network [OSTI]

: The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division on Coal-fired Power Plants with Carbon Capture and Storage (CCS) as a case study of a new high-cost energyAssessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon

200

Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft  

E-Print Network [OSTI]

The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

Mahashabde, Anuja (Anuja Anil)

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New report assesses offshore wind technology challenges and potential risks and benefits.  

E-Print Network [OSTI]

New report assesses offshore wind technology challenges and potential risks and benefits. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater wind resources can provide many potential benefits, and with effective research, policies

202

OTM and UTARI personnel will perform Technology  

E-Print Network [OSTI]

OTM and UTARI personnel will perform Technology Readiness (TRL) & Manufacturing Readiness (MRL to the Office of Technology Management via the OTM webpage OTM and UTARI personnel will review the IPD and meet for the technology; At the same time, OTM may assist in obtaining funding (SBIR/STTR, etc.) and/or technology may (a

Huang, Haiying

203

Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications  

SciTech Connect (OSTI)

This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

Peterson, D.; Haase, S.

2009-07-01T23:59:59.000Z

204

Transuranic and Low-Level Boxed Waste Form Nondestructive Assay Technology Overview and Assessment  

SciTech Connect (OSTI)

The Mixed Waste Focus Area (MWFA) identified the need to perform an assessment of the functionality and performance of existing nondestructive assay (NDA) techniques relative to the low-level and transuranic waste inventory packaged in large-volume box-type containers. The primary objectives of this assessment were to: (1) determine the capability of existing boxed waste form NDA technology to comply with applicable waste radiological characterization requirements, (2) determine deficiencies associated with existing boxed waste assay technology implementation strategies, and (3) recommend a path forward for future technology development activities, if required. Based on this assessment, it is recommended that a boxed waste NDA development and demonstration project that expands the existing boxed waste NDA capability to accommodate the indicated deficiency set be implemented. To ensure that technology will be commercially available in a timely fashion, it is recommended this development and demonstration project be directed to the private sector. It is further recommended that the box NDA technology be of an innovative design incorporating sufficient NDA modalities, e.g., passive neutron, gamma, etc., to address the majority of the boxed waste inventory. The overall design should be modular such that subsets of the overall NDA system can be combined in optimal configurations tailored to differing waste types.

G. Becker; M. Connolly; M. McIlwain

1999-02-01T23:59:59.000Z

205

Technology Assessment for Proof-of-Concept UF6 Cylinder Unique Identification Task 3.1.2 Report Survey and Assessment of Technologies  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Securitys (NA-24) Next Generation Safeguards Initiative (NGSI) and the nuclear industry have begun to develop approaches to identify and monitor uranium hexafluoride (UF6) cylinders. The NA-24 interest in a global monitoring system for UF6 cylinders relates to its interest in supporting the International Atomic Energy Agency (IAEA) in deterring and detecting diversion of UF6 (e.g., loss of cylinder in transit) and undeclared excess production at conversion and enrichment facilities. The industry interest in a global monitoring system for UF6 cylinders relates to the improvements in operational efficiencies that such a system would provide. This task is part of an effort to survey and assess technologies for a UF6 cylinder to identify candidate technologies for a proof-of-concept demonstration and evaluation for the Cylinder Identification System (CIS).

Wylie, Joann; Hockert, John

2014-04-24T23:59:59.000Z

206

Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

Resin Transfer Molding Widely used Resin Transfer Molding R&D Vacuum Assisted Resin Infusion Widely used Vacuum Assisted Resin Infusion R&D Compression Molding Widely used...

207

Technology Assessment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | PEMEnergy

208

Technology Assessment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice - 20142012 | PEMEnergyRoll to Roll

209

Assessment of coal technology options and implications for the State of Hawaii  

SciTech Connect (OSTI)

The mandate of this research report was to provide the state of Hawaii with an assessment of the potential opportunities and drawbacks of relying on coal-fired generating technologies to diversify its fuel mix and satisfy future electric power requirements. This assessment was to include a review of existing and emerging coal-based power technologies-including their associated costs, environmental impacts, land use, and infrastructure requirements-to determine the range of impacts likely to occur if such systems were deployed in Hawaii. Coupled with this review, the report was also to (1) address siting and safety issues as they relate to technology choice and coal transport, (2) consider how environmental costs associated with coal usage are included in the integrated resource planning (ERP) process, and (3) develop an analytical tool from which the Department of Business, Economic Development & Tourism of the State of Hawaii could conduct first-order comparisons of power plant selection and siting. The prepared report addresses each element identified above. However, available resources and data limitations limited the extent to which particular characteristics of coal use could be assessed. For example, the technology profiles are current but not as complete regarding future developments and cost/emissions data as possible, and the assessment of coal technology deployment issues in Hawaii was conducted on an aggregate (not site-specific) basis. Nonetheless, the information and findings contained in this report do provide an accurate depiction of the opportunities for and issues associated with coal utilization in the state of Hawaii.

Carlson, J.L.; Elcock, D.; Elliott, T.J. [and others] [and others

1993-12-01T23:59:59.000Z

210

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

SciTech Connect (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

211

Organizational Readiness in Specialty Mental Health Care  

E-Print Network [OSTI]

readiness for change (ORC) measure, and key stake- holders43 clinical staff completed the ORC, and 38 key stakeholdersdeviations (SDs) of the ORC scores are also illuminating in

Hamilton, Alison B.; Cohen, Amy N.; Young, Alexander S.

2010-01-01T23:59:59.000Z

212

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities and Potential for Near-term Cost Reductions. Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the...

213

Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report  

SciTech Connect (OSTI)

The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

1994-02-01T23:59:59.000Z

214

DOE Zero Energy Ready Home  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department ofDepartment of EnergyZero Energy Ready Home 2014

215

Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology  

SciTech Connect (OSTI)

Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

Morris, W.; Hill, J. (eds.)

1980-07-01T23:59:59.000Z

216

Zero Energy Ready Home Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Zero Energy Ready Home Zero Energy Ready Home Events Zero Energy Ready Home Events November 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 26 27 28 29...

217

Zero Energy Ready Home Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Residential Buildings Zero Energy Ready Home Zero Energy Ready Home Events Zero Energy Ready Home Events September 2014 < prev next > Sun Mon Tue Wed Thu Fri Sat 31 1 2 3 4 5...

218

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas Inc agency thereof. #12;1 RSB Certification Readiness Study: Hawaii Biofuel Projects Prepared For Hawaii

219

N-K Manufacturing Technologies: Industrial Energy Assessment Yields Savings of More than $27,000 Per Year for Molded Plastics Company  

SciTech Connect (OSTI)

Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at N-K Manufacturing Technologies by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

Not Available

2005-09-01T23:59:59.000Z

220

Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes  

SciTech Connect (OSTI)

US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

Not Available

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Zero Energy Ready Home Case Study: John Hubert Associates...  

Energy Savers [EERE]

Homes, Double Oak, TX DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT, Custom...

222

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program Webinar (Text Version) Energy -- and Water -- Efficiency in the DOE Zero Energy Ready Home Program...

223

Readiness Review Training - Development of Criteria And Review...  

Office of Environmental Management (EM)

Development of Criteria And Review Approach Documents Readiness Review Training - Development of Criteria And Review Approach Documents November 8-9, 2010 Readiness Review Training...

224

DOE Zero Energy Ready Home Case Study, Weiss Building & Development...  

Broader source: Energy.gov (indexed) [DOE]

Zero Energy Ready Home Case Study, Weiss Building & Development, LLC., System Home, River Forest, IL DOE Zero Energy Ready Home Case Study, Preferred Builders, Old Greenwich, CT,...

225

EV Community Readiness projects: Center for Transportation and...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC) EV Community Readiness projects: Center for...

226

DOE Zero Energy Ready Home: Healthy Efficient Homes - Spirit...  

Energy Savers [EERE]

Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI...

227

DOE Zero Energy Ready Home Case Study: Sterling Brook Custom...  

Energy Savers [EERE]

TX More Documents & Publications DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Mandalay Homes, Prescott...

228

DOE Zero Energy Ready Home Case Study: Caldwell and Johnson,...  

Broader source: Energy.gov (indexed) [DOE]

Caldwell and Johnson, Charlestown, RI DOE Zero Energy Ready Home Case Study: Caldwell and Johnson, Charlestown, RI Case study of a DOE Zero Energy Ready affordable home in...

229

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

ACCOMPLISHMENTS NYCLHVCC: Clean Cities 2011 EV Community Readiness DUANE Reade's Smith EV at Plug-In Day in Times Square Clean Cities 2011 Community Readiness & Planning...

230

Lightning Arrestor Connectors Production Readiness  

SciTech Connect (OSTI)

The Lightning Arrestor Connector (LAC), part M, presented opportunities to improve the processes used to fabricate LACs. The A## LACs were the first production LACs produced at the KCP, after the product was transferred from Pinnellas. The new LAC relied on the lessons learned from the A## LACs; however, additional improvements were needed to meet the required budget, yield, and schedule requirements. Improvement projects completed since 2001 include Hermetic Connector Sealing Improvement, Contact Assembly molding Improvement, development of a second vendor for LAC shells, general process improvement, tooling improvement, reduction of the LAC production cycle time, and documention of the LAC granule fabrication process. This report summarizes the accomplishments achieved in improving the LAC Production Readiness.

Marten, Steve; Linder, Kim; Emmons, Jim; Gomez, Antonio; Hasam, Dawud; Maurer, Michelle

2008-10-20T23:59:59.000Z

231

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

Vinson, D.

2010-07-11T23:59:59.000Z

232

Climate and energy: a comparative assessment of the Satellite Power System (SPS) and alternative energy technologies  

SciTech Connect (OSTI)

The potential effects of five energy technologies on global, regional, and local climate were assessed. The energy technologies examined were coal combustion, light water nuclear reactors, satellite power systems, terrestrial photovoltaics, and fusion. The assessment focused on waste heat rejection, production of particulate aerosols, and emissions of carbon dioxide. The current state of climate modeling and long-range climate prediction introduces considerable uncertainty into the assessment, but it may be concluded that waste heat will not produce detectable changes in global climate until world energy use increases 100-fold, although minor effects on local weather may occur now; that primary particulate emissions from coal combustion constitute a small percentage of total atmospheric particulates; that carbon dioxide from coal combustion in the US alone accounts for about 30% of the current increase in global atmospheric CO/sub 2/, which may, by about 2050, increase world temperature 2 to 3/sup 0/C, with pronounced effects on world climate; that rocket exhaust from numerous launches during construction of an SPS may affect the upper atmosphere, with uncertain consequences; and that much research in climatology is needed before potential effects can be quantitatively predicted with any confidence. Although climatic impact is an appropriate concern in formulating long-term energy policy, the level of uncertainty about it suggests that it is not currently useful as a decision criterion. 88 references.

Kellermeyer, D.A.

1980-01-01T23:59:59.000Z

233

LWRS ATR Irradiation Testing Readiness Status  

SciTech Connect (OSTI)

The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics

Kristine Barrett

2012-09-01T23:59:59.000Z

234

Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs  

SciTech Connect (OSTI)

Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

2012-12-31T23:59:59.000Z

235

Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington  

SciTech Connect (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

236

Environment, Safety and Health Progress Assessment of the Morgantown Energy Technology Center (METC)  

SciTech Connect (OSTI)

This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. METC is currently a research and development facility, managed by DOE`s Office of Fossil Energy. Its goal is to focus energy research and development to develop engineered fossil fuel systems, that are economically viable and environmentally sound, for commercial application. There is clear evidence that, since the 1991 Tiger Team Assessment, substantial progress has been made by both FE and METC in most aspects of their ES&H program. The array of new and restructured organizations, systems, and programs at FE and METC; increased assignments of staff to support these initiatives; extensive training activities; and the maturing planning processes, all reflect a discernable, continuous improvement in the quality of the ES&H performance.

Not Available

1993-08-01T23:59:59.000Z

237

Shovel Ready Energy Project Grants (Florida)  

Broader source: Energy.gov [DOE]

This program leverages Floridas state energy grant initiatives to identify shovel-ready projects that can be expeditiously implemented through available SEP funding. The goal is to provide...

238

Superconducting Partnership with Readiness Review Update  

E-Print Network [OSTI]

1 Superconducting Partnership with Industry: Readiness Review Update Mike Gouge, ORNL Steve Ashworth, LANL Paul Bakke, DOE-Golden DOE 2004 Superconductivity Peer Review July 27-29, 2004 #12;2 SPI

239

Are You Ready? Jimmy L. Lagunero  

E-Print Network [OSTI]

Are You Ready? Jimmy L. Lagunero Emergency Management Coordinator University of Hawai,,i "Emergency ? ? ? Jimmy L. Lagunero UHM Emergency Management Coordinator phone: 808-956-0773 fax: 808-956-

Dong, Yingfei

240

Guam- Solar-Ready Residential Building Requirement  

Broader source: Energy.gov [DOE]

Note: Guam is in the process of adopting a [www.guamenergy.com/outreach-education/guam-tropical-energy-code/ tropical energy code]. As a result, the solar ready provisions described below may...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

242

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect (OSTI)

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

243

Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis  

SciTech Connect (OSTI)

With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

2011-04-15T23:59:59.000Z

244

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

245

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

246

Inclusive Computer Science Education Using a Ready-made Computer Game Framework  

E-Print Network [OSTI]

Inclusive Computer Science Education Using a Ready-made Computer Game Framework Joseph Distasio and Thomas P. Way Applied Computing Technology Laboratory Department of Computing Sciences Villanova the prevailing interest in computer games among college students, both for entertainment and as a possible career

Way, Thomas

247

Emergency Readiness Assurance Plans (ERAPs)  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume describes the assessments and documentation that would ensure that stated response capabilities are sufficient to implement emergency plans. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

248

Assessing Statistical Understanding in Middle Schools: Emerging Issues in a Technology-Rich Environment  

E-Print Network [OSTI]

resources, such as Oxygen or using technology to producepower of technology, however, such as the Oxygen item, it is

Callingham, Rosemary

2011-01-01T23:59:59.000Z

249

Artificial intelligence technology assessment for the US Army Depot System Command  

SciTech Connect (OSTI)

This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

Pennock, K A

1991-07-01T23:59:59.000Z

250

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

251

Technology assessment of external heat systems for Stirling heat pumps. Final report  

SciTech Connect (OSTI)

A technology assessment and design improvement effort was undertaken for the Stirling engine heat pump external heat system (EHS) in order to reduce costs. It was found that only two applicable EHS design approaches have been developed to any extent: a relatively undeveloped design featuring a premixed fuel and air transpiration burner, and a turbulent diffusion type burner system developed by Mechanical Technology, Inc. To evaluate and optimize the design concepts, an analytical model was developed that examined design and performance variables. The model calculated key temperatures, allowing the specification of materials requirements. Adherence to American National Standards Institute appliance furnace code material specifications was assumed. Concepts for EHS control systems were evaluated, and a cost-effective control system design was developed for the turbulent diffusion burner EHS. The study reveals that optimizing the diffusion burner EHS design can result in significant cost savings. No clear choice between the diffusion burner and transpiration burner systems could be determined from this study, but the designs of both were further developed and improved. Estimates show the EHS based on a transpiration burner to have a manufactured cost that is roughly 70% of the turbulent diffusion burner EHS cost, but fuel efficiency is lower by about 18%.

Vasilakis, A.D. [Advanced Mechanical Technology, Inc., Newton, MA (United States)

1993-12-01T23:59:59.000Z

252

Establishment of a bioassay system for cancer risk assessment in energy technology  

SciTech Connect (OSTI)

Separate abstracts were prepared for 20 papers in this report. For several years the Department of Energy (DOE), Office of Health and Environmental Research (OHER), has supported a research program aimed at developing new experimental approaches for the improvement of cancer risk assessments. The central issue is to overcome the organizational, species and other barriers that make it difficult to extrapolate laboratory-based data to predict risk to man. Most of the participants at the meeting are involved in research aimed at understanding the mechanism(s) of chemical carcinogenesis. Complex mixtures of chemicals are associated with many energy technologies. DOE's initial program emphasis focused on semi-applied research aimed at quantitative evaluation of carcinogenic activity of complex materials. Since much progress has been made in DOE integrated technology-specific chemical-biological characterization studies, the number and kinds of chemicals of concern has been reduced to a relatively few well-defined classes. Although the classes of compounds seem to be unique to some of the synfuel technologies, they are quite similar to compounds of general interest, for example, poly-nuclear aromatic hydrocarbons. Special emphasis was placed on molecular and cellular dosimetry as one of the key requirements for quantitative comparison of effects at the cell level in vivo and in vitro. Although it is relatively easy to measure cell, tissue, organ and whole organism doses associated with radiation exposures, we are just learning how to do this for chemical agents. Several methods have been developed in the past several years which can be used.

Ts'o, P.O.P.; Bruce, S.A.; Brown, A. (eds.)

1983-09-01T23:59:59.000Z

253

Needs assessment for remote systems technology at the Chornobyl Unit 4 shelter  

SciTech Connect (OSTI)

The accident at Chornobyl Unit 4 on April 26, 1986, resulted in a series of unprecedented scientific and technical challenges. The reactor building was damaged extensively. Following the accident, immediate action was needed to seal off the gaping crater created by the accident, which was a continuing source of airborne contamination. Under extreme conditions, a structure called the {open_quotes}Shelter{close_quotes} was built over the remains of the reactor building. The Shelter, which was quickly completed in November 1986, was meant to provide immediate but temporary containment. Now, 11 years later, there are significant concerns about its structural integrity and projected life expectancy. The United States and other participating G-7 countries are supporting nuclear safety upgrade efforts in Eastern Europe with a primary focus on placing the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 Shelter in a stable and environmentally acceptable condition. Application of remote systems technologies will play an important part in achieving the goals of this program. The G-7 nations have agreed to support these efforts, including the identification and development of remote system technologies for fuel removal. However at this time they have taken a firm stance against funding actual fuel removal activities. The U.S. Department of Energy Office of Nuclear Energy, Science and Technology requested that a needs assessment be performed to evaluate the requirements for applying remote systems, including robotics, at the Shelter. This document is intended to be used to identify remote systems needs and requirements at the Shelter and to provide general information on the conditions in the Shelter that could impact the use of remote systems. This document is intended as a source of information to assist those who will be implementing the Shelter Implementation Plan tasks. The document provides background information and general guidance on the application of remote systems.

Carteret, B.A. [Pacific Northwest National Lab., Richland, WA (United States); Holliday, M.A.; Jones, E.D. [Lawrence Livermore National Lab., CA (United States)] [and others

1997-12-01T23:59:59.000Z

254

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

E-Print Network [OSTI]

Assessment of Electric Steel making Through the Year 2000,by Injection Technology Steel Times, October 1994 pp.391-Hanes, C. , 1999. USS/Kobe Steel, Personal communication,

Xu, T.T.

2011-01-01T23:59:59.000Z

255

Risk-Based Comparison of Carbon Capture Technologies  

SciTech Connect (OSTI)

In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

2013-05-01T23:59:59.000Z

256

ENERGY STAR Webinar: Zero Energy Ready Home Program | Department...  

Broader source: Energy.gov (indexed) [DOE]

home is as good as ENERGY STAR, the modest added "lift" to bring a home up to DOE's Zero Energy Ready specs unleashes a wave of powerful value messages. DOE Zero Energy Ready...

257

DOE Zero Energy Ready Home Case Study: Brookside Development...  

Energy Savers [EERE]

Preferred Builders, Old Greenwich, CT, Custom DOE Zero Energy Ready Home Case Study: AquaZephyr, Ithaca, NY DOE Zero Energy Ready Home Case Study: Cobblestone Homes, Midland, MI...

258

DOE Zero Energy Ready Home Case Study: Greenhill Contracting...  

Energy Savers [EERE]

Study: Greenhill Contracting, New Paltz, NY DOE Zero Energy Ready Home Case Study: Greenhill Contracting, New Paltz, NY Case study of a DOE Zero Energy Ready home in New Paltz, NY,...

259

DOE Zero Energy Ready Home Case Study, Caldwell and Johnson,...  

Office of Environmental Management (EM)

Study, Caldwell and Johnson, Exeter, RI, Custom Home DOE Zero Energy Ready Home Case Study, Caldwell and Johnson, Exeter, RI, Custom Home Case study of a DOE Zero Energy Ready Home...

260

Roundtable on Sustainable Biofuels Certification Readiness Study  

E-Print Network [OSTI]

Roundtable on Sustainable Biofuels Certification Readiness Study: Hawai`i Biofuel Projects Prepared 12.1 Deliverable (item 2) Bioenergy Analyses Prepared by Hawai`i Biofuel Foundation And NCSI Americas: Hawaii Biofuel Projects Prepared For Hawaii Natural Energy Institute School of Ocean Earth Sciences

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Global e-Readiness - For What? Readiness for e-Banking (JITD)  

E-Print Network [OSTI]

With the rapid diffusion of the Internet worldwide, there has been considerable interest in the e-potentials of developing countries giving rise to a 1st generation of e-Readiness studies. Moreover, ...

Maugis, V.

2004-12-10T23:59:59.000Z

262

International Assessment of Electric-Drive Vehicles: Policies, Markets, and Technologies  

E-Print Network [OSTI]

Assessmentof Electric-Drive Vehicles: Policies, Markets, andInternational Assessment Electric-Drive Vehicles: Policies,International Assessment Electric-Drive Vehicles Policies,

Sperling, Daniel; Lipman, Timothy

2003-01-01T23:59:59.000Z

263

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report  

SciTech Connect (OSTI)

The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

Carden, R.S.

1993-08-18T23:59:59.000Z

264

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

265

Intern Opportunity: Office of Technology Alliances at UC Irvine What we need: Technology assessment of university inventions including patent landscape,  

E-Print Network [OSTI]

assessment of university inventions including patent landscape, invention summary, and initial market at UCI. Licensing Officers within OTA are responsible for making decisions about proceeding with a patent filing and, for cases that are already filed, whether or not to continue with patent prosecution. A big

Loudon, Catherine

266

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect (OSTI)

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

267

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network [OSTI]

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

268

Evaluation of flow battery technology : an assessment of technical and economic feasibility  

E-Print Network [OSTI]

Energy storage has been a topic of recent political discussions. There is interest in utilizing energy storage technologies to improve the emissions and "green" the environment. Many of the energy storage technologies have ...

Larsson, Annika (Annika S.)

2009-01-01T23:59:59.000Z

269

Advanced Technologies in Energy-Economy Models for Climate Change Assessment  

E-Print Network [OSTI]

Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies ...

Morris, J.F.

270

U.S. DOE Industrial Technologies Program Technology Delivery Plant-Wide Assessment at PPG Industries, Natrium, WV  

SciTech Connect (OSTI)

PPG and West Virginia University performed a plantwide energy assessment at the PPGs Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineering study.

Lester, Stephen R.; Wiethe, Jeff; Green, Russell; Guice, Christina; Gopalakrishnan, Bhaskaran; Turton, Richard

2007-09-28T23:59:59.000Z

271

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

272

Construction Readiness RM | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91Power Plant |Readiness RM

273

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)  

SciTech Connect (OSTI)

The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

NONE

1995-11-01T23:59:59.000Z

274

In vitro and in vivo assessment of bioactive composite scaffolds fabricated via additive manufacturing technology.  

E-Print Network [OSTI]

??Additive manufacturing (AM) technology was implemented together with new composite material comprising a synthetic materials, namely, polycaprolactone and bioactive glass with the ultimate aim of (more)

Poh, Su Ping Patrina

2014-01-01T23:59:59.000Z

275

Farm level technology assessment in Sub-Saharan Africa: a case study in Mali  

E-Print Network [OSTI]

is the effect that risk has on the potential outcomes of proposed technology. The objective of this research was to evaluate the farm level impacts of implementing new technologies in Sub-Saharan Africa explicitly incorporating risk into the future outcomes...

Feldman, Paul A.

1999-01-01T23:59:59.000Z

276

Technology Assessment: Strategic Energy Analysis Center (SEAC) 2012 Highlights (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet lists key analysis products produced by NREL in 2012. Like all NREL analysis products, these aim to increase the understanding of the current and future interactions and roles of energy policies, markets, resources, technologies, environmental impacts, and infrastructure. NREL analysis, data, and tools inform decisions as energy-efficient and renewable energy technologies advance from concept to commercial application.

Not Available

2013-02-01T23:59:59.000Z

277

TECHNOLOGY AS A TEACHING AND LEARNING TOOL: ASSESSING STUDENT UNDERSTANDING IN THE INTRODUCTORY PHYSICS LAB  

E-Print Network [OSTI]

within many domains of science, mathematics, engineering, and technology (SMET) education. In this paper to introductory physics students. The laboratory activity makes use of a collision apparatus and computer in a wide range of areas in science, mathematics, engineering, and technology education. I. Introduction

Larkin, Teresa L.

278

Marine and Hydrokinetic Technology Readiness Level | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(HeldManhattan,and Characterization 2Information

279

Advancing Technology Readiness: Wave Energy Testing and Demonstration |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment

280

Small Column Ion Exchange at Savannah River Site Technology Readiness  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE) |SeniorIt seemsReportP RDOEEarlier

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Outlook for renewable energy technologies: Assessment of international programs and policies  

SciTech Connect (OSTI)

The report presents an evaluation of worldwide research efforts in three specific renewable energy technologies, with a view towards future United States (US) energy security, environmental factors, and industrial competitiveness. The overall energy technology priorities of foreign governments and industry leaders, as well as the motivating factors for these priorities, are identified and evaluated from both technological and policy perspectives. The specific technologies of interest are wind, solar thermal, and solar photovoltaics (PV). These program areas, as well as the overall energy policies of Denmark, France, Germany, Italy, the United Kingdom (UK), Japan, Russia, and the European Community as a whole are described. The present and likely future picture for worldwide technological leadership in these technologies-is portrayed. The report is meant to help in forecasting challenges to US preeminence in the various technology areas, particularly over the next ten years, and to help guide US policy-makers as they try to identify specific actions which would help to retain and/or expand the US leadership position.

Branstetter, L.J.; Vidal, R.C.; Bruch, V.L.; Zurn, R.

1995-02-01T23:59:59.000Z

282

In Situ Remediation Integrated Program: Evaluation and assessment of containment technology  

SciTech Connect (OSTI)

Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-06-01T23:59:59.000Z

283

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

284

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect (OSTI)

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

285

Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment  

SciTech Connect (OSTI)

Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

2011-12-09T23:59:59.000Z

286

ORIGINAL PAPER Sustainability metrics for eco-technologies assessment, Part II.  

E-Print Network [OSTI]

a sustainability analysis of CO2 reuse to produce dimethyl carbonate (DMC) via eth- ylene oxide (ROUTE A) and via-to-gate in assessing pro- cess sustainability during LCA. Keywords Sustainability metrics Á CO2 sequestration Á LCA for dimethyl carbonate (DMC) production. The study aimed to assess sustainability and pointed towards routes

Grossmann, Ignacio E.

287

Colorado Community Readiness Efforts for PEVs Support State Policy...  

Energy Savers [EERE]

electric vehicle readiness projects from throughout the country. | Photo by Ken Kelly, National Renewable Energy Laboratory EV Everywhere: 10 Ways Communities Can Pave the...

288

EV Community Readiness projects: Clean Energy Coalition (MI)...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Coalition (MI); Clean Fuels Ohio EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

289

Jasper Johns in der Nachfolge des Ready-mades.  

E-Print Network [OSTI]

??Die Arbeit untersucht, wie die Einfhrung des Ready-mades in die Kunstwelt die Arbeitsweise von Knstlern sowie die Produktion und Wahrnehmung von Kunstwerken beeinflusst hat. Dies (more)

Mayer, Lynette Mildred

2013-01-01T23:59:59.000Z

290

South Africa-Facilitating Implementation and Readiness for Mitigation...  

Open Energy Info (EERE)

and Readiness for Mitigation (FIRM)" Retrieved from "http:en.openei.orgwindex.php?titleSouthAfrica-FacilitatingImplementationandReadinessforMitigation(FIRM)&oldid70000...

291

DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville...  

Broader source: Energy.gov (indexed) [DOE]

Southern Homes, Russellville, AL DOE Zero Energy Ready Home Case Study: Southern Homes, Russellville, AL Case study of the first manufactured home built to the DOE Zero Energy...

292

Building America Zero Energy Ready Home Case Study: Imery Group...  

Broader source: Energy.gov (indexed) [DOE]

Imery Group, Proud Green Home, Serenbe GA Building America Zero Energy Ready Home Case Study: Imery Group, Proud Green Home, Serenbe GA Case study describing the first...

293

EV Community Readiness projects: Clean Energy Coalition (MI...  

Broader source: Energy.gov (indexed) [DOE]

link the Michigan PEV Community Readiness Plan to relevant websites and other appropriate media outlets; incorporate the Plan into the PEV Taskforce website. Clean Cities Recovery...

294

DOE Zero Energy Ready Home: Better Business for Builders Webinar...  

Broader source: Energy.gov (indexed) [DOE]

Better Business for Builders Webinar Transcript DOE Zero Energy Ready Home: Better Business for Builders Webinar Transcript Below is the text version of the webinar, DOE Zero...

295

DOE Zero Energy Ready Home Webinar: Building Energy Optimization...  

Broader source: Energy.gov (indexed) [DOE]

Building Energy Optimization (BEopt) Software DOE Zero Energy Ready Home Webinar: Building Energy Optimization (BEopt) Software This webinar was presented on May 15, 2014 and gives...

296

EV Community Readiness projects: South Florida Regional Planning...  

Broader source: Energy.gov (indexed) [DOE]

3 Clean Cities EV Community Readiness Florida Gold Coast Sustainable Community Planning for Electric Vehicle and Charging Infrastructure PI: Christine Heshmati, South Florida...

297

Technological assessment of silicon on lattice engineered substrate (SOLES) for optical applications  

E-Print Network [OSTI]

Over the past decade, much effort had been placed to integrate optoelectronic and electronic devices. Silicon on lattice engineered substrate (SOLES) had been developed for such purpose. As SOLES technology mature, a ...

Leung, Man Yin

2008-01-01T23:59:59.000Z

298

Learning curves and engineering assessment of emerging energy technologies: onshore wind  

E-Print Network [OSTI]

Sustainable energy systems require deployment of new technologies to help tackle the challenges of climate change and ensuring energy supplies. Future sources of energy are less economically competitive than conventional ...

Mukora, Audrey Etheline

2014-06-30T23:59:59.000Z

299

Assessing early investments in low carbon technologies under uncertainty : the case of Carbon Capture and Storage  

E-Print Network [OSTI]

Climate change is a threat that could be mitigated by introducing new energy technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many uncertainties that would affect the demand ...

Ereira, Eleanor Charlotte

2010-01-01T23:59:59.000Z

300

Implementations of electric vehicle system based on solar energy in Singapore assessment of solar thermal technologies  

E-Print Network [OSTI]

To build an electric car plus renewable energy system for Singapore, solar thermal technologies were investigated in this report in the hope to find a suitable "green" energy source for this small island country. Among all ...

Liu, Xiaogang, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology  

E-Print Network [OSTI]

INTRODUCTION Waterborne illnesses associated with contaminated water sources, inadequate sanitation, and poor, Portland, OR, USA Rachel L. Peletz Centre for Affordable Water and Sanitation Technology, Calgary, Canada are largely preventable through adequate hygiene, sanitation and safe drinking water; thus, one

Kammen, Daniel M.

302

ETAG European Technology Assessment ITAS DBT viWTA POST Rathenau  

E-Print Network [OSTI]

are concentrated in a few countries. The Rising gas and oil prices along with demands on lower emissions of CO2: Technologies for wind energy, wave energy, geothermal energy, bioenergy, solar energy, hydropower and fuel

303

Readiness Issues for Emergency Response Instrumentation  

SciTech Connect (OSTI)

Issues in maintaining readiness of instruments for deployment and use in emergency response situation often differ from those in maintaining instruments for normal operations. Confunding circumstances include use of non-availability of check sources, ensuring instruments are always in calibration and operable, possible use of instruments in different climates, packaging of instrumentation for deployment, transport of instrumentation and check sources, and ensuring users are familiar with instruments. Methods and procedures for addressing these issues are presented. Instrumentation used for survey, in situ measurements, electronic dosimetry, and air conditioning are discussed.

C.A. Riland; D.R. Bowman; R.J. Tighe

1999-03-01T23:59:59.000Z

304

Solar Ready Vets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewable Energy »Ready

305

NanoReady Ltd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy,Jump9 Case Data Survey TypeTuneNanoReady

306

PHEV-EV Charger Technology Assessment with an Emphasis on V2G Operation  

SciTech Connect (OSTI)

More battery powered electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) will be introduced to the market in 2011 and beyond. Since these vehicles have large batteries that need to be charged from an external power source or directly from the grid, their batteries, charging circuits, charging stations/infrastructures, and grid interconnection issues are garnering more attention. This report summarizes information regarding the batteries used in PHEVs, different types of chargers, charging standards and circuits, and compares different topologies. Furthermore, it includes a list of vehicles that are going to be in the market soon with information on their charging and energy storage equipment. A summary of different standards governing charging circuits and charging stations concludes the report. There are several battery types that are available for PHEVs; however, the most popular ones have nickel metal hydride (NiMH) and lithium-ion (Li-ion) chemistries. The former one is being used in current hybrid electric vehicles (HEVs), but the latter will be used in most of the PHEVs and EVs due to higher energy densities and higher efficiencies. The chargers can be classified based on the circuit topologies (dedicated or integrated), location of the charger (either on or off the vehicle), connection (conductive, inductive/wireless, and mechanical), electrical waveform (direct current (dc) or alternating current (ac)), and the direction of power flow (unidirectional or bidirectional). The first PHEVs typically will have dedicated, on-board, unidirectional chargers that will have conductive connections to the charging stations or wall outlets and will be charged using either dc or ac. In the near future, bidirectional chargers might also be used in these vehicles once the benefits of practical vehicle to grid applications are realized. The terms charger and charging station cause terminology confusion. To prevent misunderstandings, a more descriptive term of electric vehicle supply equipment (EVSE) is used instead of charging station. The charger is the power conversion equipment that connects the battery to the grid or another power source, while EVSE refers to external equipment between the grid or other power source and the vehicle. EVSE might include conductors, connectors, attachment plugs, microprocessors, energy measurement devices, transformers, etc. Presently, there are more than 40 companies that are producing EVSEs. There are several standards and codes regarding conductive and inductive chargers and EVSEs from the Society of Automotive Engineers (SAE), the Underwriter Laboratories (UL), the International Electrotechnical Commission (IEC), and the National Electric Code (NEC). The two main standards from SAE describe the requirements for conductive and inductive coupled chargers and the charging levels. For inductive coupled charging, three levels are specified: Level 1 (120 V and 12 A, single-phase), Level 2 (208 V-240 V and 32 A, single-phase), and Level 3 (208-600 V and 400 A, three-phase) . The standard for the conductive-coupled charger also has similar charging ratings for Levels 1 and 2, but it allows higher current ratings for Level 2 charging up to 80 A. Level 3 charging for this standard is still under development and considers dc charging instead of three-phase ac. More details in these areas and related references can be found in this Oak Ridge National Laboratory (ORNL) report on PHEV-EV charger technology assessment.

Kisacikoglu, Mithat C [ORNL; Bedir, Abdulkadir [ORNL; Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-03-01T23:59:59.000Z

307

Technology assessment of biomass ethanol : a multi-objective, life cycle approach under uncertainty  

E-Print Network [OSTI]

A methodology is presented for assessing the current and future utilization of agricultural crops as feedstocks for the production of transportation fuels, specifically, the use of corn grain and stover for ethanol production. ...

Johnson, Jeremy C. (Jeremy Clayton)

2006-01-01T23:59:59.000Z

308

Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters  

SciTech Connect (OSTI)

In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

Freeman, S.L.

1997-01-01T23:59:59.000Z

309

Assessment of natural gas technology opportunities in the treatment of selected metals containing wastes. Topical report, June 1994-August 1995  

SciTech Connect (OSTI)

The report analyzes the disposal of certain waste streams that contain heavy metals, as determined by Resource Conservation and Recovery Act (RCRA) regulations. Generation of the wastes, the regulatory status of the wastes, and current treatment practices are characterized, and the role of natural gas is determined. The four hazardous metal waste streams addressed in this report are electric arc furnace (EAF) dust, electroplating sludge wastes, used and off-specification circuit boards and cathode ray tubes, and wastes from lead manufacturing. This report assesses research and development opportunities relevant to natural gas technologies that may result from current and future enviromental regulations.

McGervey, J.; Holmes, J.G.; Bluestein, J.

1995-08-01T23:59:59.000Z

310

Assessment of the thermal-hydraulic technology of the transition phase of a core-disruptive accident in a LMFBR  

SciTech Connect (OSTI)

The technology of thermal hydraulic aspects of the transition phase accident sequence in liquid metal fast breeder reactors has been reviewed. Previous analyses of the transition phase accident sequence have been reviewed and the current understanding of major thermal hydraulic phenomenology has been assessed. As a result of the foregoing, together with a scoping analysis of the transition phase accident sequence, major transition phase issues have been defined and research needs have been identified. The major conclusion of transition phase scoping analysis is that fuel dispersal cannot be relied upon to rule out the possibility of recriticalities during this stage of the accident.

Greene, G.A.; Ginsberg, T.; Kazimi, M.S.

1982-11-01T23:59:59.000Z

311

Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment  

SciTech Connect (OSTI)

The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

2001-02-01T23:59:59.000Z

312

Technology Assessment: NREL Provides Know-How for Highly Energy-Efficient Data Centers (Fact Sheet)  

SciTech Connect (OSTI)

NREL leads the effort to change how energy is used worldwide by helping identify and eliminate barriers to energy efficiency and clean energy technology deployment. The laboratory takes a portfolio approach that explores the full range of technology options for developing and implementing innovative energy performance solutions. The Research Support Facility (RSF) data center is a prime example of NREL's capabilities and expertise in energy efficiency. But, more important, its features can be replicated. NREL provides custom technical assistance and training for improved data center performance to help our customers realize cost savings.

Not Available

2012-05-01T23:59:59.000Z

313

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

OCCUPATIONAL SAFETY AND INDUSTRIAL HYGIENE (0S) Objective OS.1 Administrative and engineering controls to prevent and mitigate hazards associated with commencing the AR Project I1...

314

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

CONDUCT OF OPERATIONS (OP) Objective: OP.1 Adequate and correct procedures and safety limits are in place for operating the DTF ventilation system and conducting treatment...

315

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

of all safety, process, and utility systems and support equipment will support the safe conduct of operations. MN. 1.4 Hoisting and rigging equipment, required for the activity...

316

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

NS.1 Facility safety documentation that describes the "safety envelope" for the AR Project II activities is in place and has been implemented to meet the following criteria:...

317

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

ENV.1 Adequate and correct environmental permit requirements and hazardous waste procedures and limits are in place for operating the DTF ventilation system and conducting drum...

318

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

INDUSTRIAL SAFETYINDUSTRIAL HYGIENE (IS) Objective: IS.1 Adequate and correct procedures and safety limits are in place for operating the DTF ventilation system and conducting...

319

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

of emergency management responses. * Review applicable EARS. * Review Emergency Management drill and exercise training records to determine effectiveness of program and...

320

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

manuals and data have been incorporated into activity documents. EN. 1.2 Spare parts inventory for activity and support equipment is adequate for activity performance. EN. 1.3 A...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sustainability Assessment of Workforce Well-Being and Mission Readiness |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect and Counterfeit Items

322

Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)  

SciTech Connect (OSTI)

Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

Fezzler, Raymond [BIZTEK Consulting, Inc.

2011-03-01T23:59:59.000Z

323

System Analysis and Assessment of Technological Alternatives for Nordic H2  

E-Print Network [OSTI]

with renewable electricity, and biomass gasification for hydrogen production. For stationary applications, fuel gasification and steam reforming seem to be the most competitive technologies for hydrogen production. The competitiveness of biomass gasification is greatly affected by the biomass fuel price, which is a local energy

324

ORIGINAL PAPER Sustainability metrics for eco-technologies assessment, part I  

E-Print Network [OSTI]

-008-0189-9 #12;greenhouse gas as a raw material, defined as chemical sequestration. Dimethyl carbonate (DMC presents a preliminary screening of eco-technologies for dimethyl carbonate (DMC) produc- tion. Through to economical and environmental criteria, to determine the most sustainable route. CO2 sequestration potential

Grossmann, Ignacio E.

325

"UUV FCEPS Technology Assessment and Design Process" Kevin L. Davies1  

E-Print Network [OSTI]

Electrolyte Membrane (PEM) Fuel Cell (FC) operating on hydrogen and oxygen. The Fuel Cell System (FCS) within a holistic approach in combining alternative hydrogen and oxygen storage, and fuel cell system, options evaluation and technology screening for the application of a Fuel Cell Energy/Power System (FCEPS

326

Assessment of solar technology in the home-building industry. Final report  

SciTech Connect (OSTI)

The NAHB Research Foundation, Inc., conducted a review of existing survey data supplied by home builders. The objective of this effort was to provide data which would serve as a basis for evaluating the completed and/or continuing programs of the Office of Solar Heat Technologies and to identify areas of future program emphasis.

Not Available

1983-06-01T23:59:59.000Z

327

Assessing the Impact of Heat Rejection Technology on CSP Plant Revenue: Preprint  

SciTech Connect (OSTI)

This paper explores the impact of cooling technology on revenue for hybrid-cooled plants with varying wet cooling penetration for four representative locations in the American Southwest. The impact of ACC design-point initial temperature difference (ITD - the difference between the condensing steam temperature and ambient dry-bulb) is also included in the analysis.

Wagner, M. J.; Kutscher, C. F.

2010-10-01T23:59:59.000Z

328

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 13  

E-Print Network [OSTI]

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 13 Shelter T aking shelter is often a critical in your home for sev- eral days without electricity or water services following a winter storm. We also an emergency toilet, if necessary. · Use a garbage container, pail or #12;14 ARE YOU READY? FEDERAL EMERGENCY

Tullos, Desiree

329

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83  

E-Print Network [OSTI]

FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 83 National Security Emergencies I n addition uncomfortable or if something does not seem right. #12;84 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY 4- rupted--electricity, telephone, natural gas, gasoline pumps, cash registers, ATM machines, and internet

Tullos, Desiree

330

4 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY  

E-Print Network [OSTI]

4 ARE YOU READY? FEDERAL EMERGENCY MANAGEMENT AGENCY Emergency Planning and Disaster Supplies if you have questions. #12;FEDERAL EMERGENCY MANAGEMENT AGENCY ARE YOU READY? 5 9. Take a first aid and when to shut off water, gas, and electricity at the main switches. Consult with your local utili- ties

Tullos, Desiree

331

SCS-2005-18 Roundup Ready Flex Cotton System  

E-Print Network [OSTI]

SCS-2005-18 6-05 Roundup Ready Flex Cotton System Robert Lemon, Ph.D., Professor and Extension Agronomist - Cotton Randy Boman, Ph.D., Associate Professor and Extension Agronomist - Cotton Todd Baughman Specialist Peter Dotray, Ph.D., Professor and Extension Weed Specialist R oundup Ready Flex cotton provides

Mukhtar, Saqib

332

A Study of the Relationship Between Levels of Technology Implementation (LoTi) and Student Performance on Texas Assessment of Knowledge and Skills (TAKS) Scores  

E-Print Network [OSTI]

The purpose of this study was to examine teacher Levels of Technology Implementation (LoTi) self-ratings and student Texas Assessment of Knowledge and Skills (TAKS) scores. The study assessed the relationship between LoTi ratings and TAKS scores...

Berkeley-Jones, Catherine Spotswood

2012-10-19T23:59:59.000Z

333

ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect (OSTI)

A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

SAMS TL; MASSIE HL

2011-01-27T23:59:59.000Z

334

The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project  

E-Print Network [OSTI]

Online at stacks.iop.org/ERL/8/015038 Abstract The sustainable development of brownfields reflects and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ: sustainable brownfield development, life-cycle assessment, built environment, embodied energy, cumulative

Illinois at Chicago, University of

335

Symposium on intermediate-range atmospheric-transport processes and technology assessment. [Lead Abstract  

SciTech Connect (OSTI)

Separate abstracts were prepared for the 47 papers in this proceedings. The purpose of this meeting was to assess the state of the art of modeling atmospheric transport processes 10 to 100 km downwind of point and area sources of pollution. (KRM)

Not Available

1981-10-01T23:59:59.000Z

336

Risk Assessment supporting the decision on the initial selection of supplemental ILAW technologies  

SciTech Connect (OSTI)

A risk assessment on the long-term environmental impact of various potential waste forms was conducted at the request of the Hanford Site's Mission Acceleration Initiative Team. These potential waste forms (bulk vitrification, cast stone, and steam reformer) may treat some of the low-activity waste currently planned to be treated at the Waste Treatment Plant.

MANN, F. M.

2003-09-29T23:59:59.000Z

337

Exploration Technologies Technology Needs Assessment  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy EnvironmentalJulyDepartment|March 2006Department of

338

Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

2012-02-01T23:59:59.000Z

339

An assessment of space reactor technology needs and recommendations for development  

SciTech Connect (OSTI)

In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. a systematic approach was used to explore needs at several levels that are increasingly specific. Level 0 -- general trends and issues; Level 1 -- generic space capabilities to address trends; Level 2 -- requirements to support capabilities; Level 3 -- system types capable of meeting requirements; Level 4 --generic reactor system types; and Level 5 -- specific baseline systems. Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper.

Marshall, A.C. [Sandia National Labs., Albuquerque, NM (United States); Wiley, R.L. [Consultant, Columbia, MD (United States)

1995-11-01T23:59:59.000Z

340

Western oil shale development: a technology assessment. Volume 1. Main report  

SciTech Connect (OSTI)

The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

Not Available

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Assessment of incineration and melting treatment technologies for RWMC buried waste  

SciTech Connect (OSTI)

This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

Geimer, R.; Hertzler, T.; Gillins, R. [Science Applications International Corp., Idaho Falls, ID (United States); Anderson, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-02-01T23:59:59.000Z

342

Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits  

SciTech Connect (OSTI)

The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

1981-10-13T23:59:59.000Z

343

An Assessment of the Status of Captive Broodstock Technology of Pacific Salmon, 1995 Final Report.  

SciTech Connect (OSTI)

This report provides guidance for the refinement and use of captive broodstock technology for Pacific salmon (Oncorhynchus spp.) by bringing together information on the husbandry techniques, genetic risks, physiology, nutrition, and pathology affecting captive broodstocks. Captive broodstock rearing of Pacific salmon is an evolving technology, as yet without well defined standards. At present, we regard captive rearing of Pacific salmon as problematic: high mortality rates and low egg viability were common in the programs we reviewed for this report. One of the most important elements in fish husbandry is the culture environment itself. Many captive broodstock programs for Pacific salmon have reared fish from smolt-to-adult in seawater net-pens, and most have shown success in providing gametes for recovery efforts. However, some programs have lost entire brood years to diseases that transmitted rapidly in this medium. Current programs for endangered species of Pacific salmon rear most fish full-term to maturity in fresh well-water, since ground water is low in pathogens and thus helps ensure survival to adulthood. Our review suggested that captive rearing of fish in either freshwater, well-water, or filtered and sterilized seawater supplied to land-based tanks should produce higher survival than culture in seawater net-pens.

Flagg, Thomas A.; Mahnaken, Conrad V.W.; Hard, Jeffrey J.

1995-06-01T23:59:59.000Z

344

An assessment of space reactor technology needs and recommendations for development  

SciTech Connect (OSTI)

In order to provide a strategy for space reactor technology development, the Defense Nuclear Agency (DNA) has authorized a brief review of potential national needs that may be addressed by space reactor systems. A systematic approach was used to explore needs at several levels that are increasingly specific. {sm_bullet} Level 0{emdash}General Trends and Issues {sm_bullet} Level 1{emdash}Generic Space Capabilities to Address Trends {sm_bullet} Level 2{emdash}Requirements to Support Capabilities {sm_bullet} Level 3{emdash}System Types Capable of Meeting Requirements {sm_bullet} Level 4{emdash}Generic Reactor System Types {sm_bullet} Level 5{emdash}Specific Baseline Systems Using these findings, a strategy was developed to support important space reactor technologies within a limited budget. A preliminary evaluation identified key technical issues and provide a prioritized set of candidate research projects. The evaluation of issues and the recommended research projects are presented in a companion paper. {copyright} {ital 1996 American Institute of Physics.}

Marshall, A.C. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Wiley, R.L. [Consultant, 5998 Camelback Lane, Columbia, Maryland 21045 (United States)

1996-03-01T23:59:59.000Z

345

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

346

An Assessment of carbon reduction technology opportunities in the petroleum refining industry.  

SciTech Connect (OSTI)

The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

Petrick, M.

1998-09-14T23:59:59.000Z

347

Environmental assessment and finding of no significant impact: Biorecycling Technologies, Inc., Noble Biogas and Fertilizer Plant, Fresno County, California  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is considering a proposal from the California Energy Commission for partial funding up to $1,500,000 of the construction of the biorecycling Technologies, Inc., (BTI) Noble Biogas and Fertilizer Plant in Fresno County, California. BTI along with its contractors and business partners would develop the plant, which would use manure and green waste to produce biogas and a variety of organic fertilizer products. The California Energy Commission has requested funding from the DOE Commercialization Ventures program to assist in the construction of the plant, which would produce up to one megawatt of electricity by burning biogas in a cogeneration unit. The purpose of this environmental assessment (EA) is to provide DOE and the public with information on potential environmental impacts associated with funding development of the proposed project.

NONE

1997-09-01T23:59:59.000Z

348

Operational Readiness Review Final Report for K Basin Fuel Transfer System  

SciTech Connect (OSTI)

An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR Team did not have the opportunity to observe a shift turnover from one crew to another. The ORR Team has evaluated the risk of not observing this activity and considers the risk to be minimal based on the fact that operating staff are very familiar with the FTS equipment and its procedures, and because existing Conduct of Operations processes and procedures are adequate and implemented. Because the ORR Team has not observed two-shift FTS operations, we recommend that additional RL oversight be provided at the start of two-shift FTS operations to evaluate the adequacy of crew turnovers.

DAVIES, T.H.

2002-10-01T23:59:59.000Z

349

Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator  

SciTech Connect (OSTI)

Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

2012-08-01T23:59:59.000Z

350

EV Community Readiness projects: New York City and Lower Hudson...  

Broader source: Energy.gov (indexed) [DOE]

EV Community Readiness projects: New York City and Lower Hudson Valley Clean Communities, Inc. (NY, MA, PA); NYSERDA (ME, NH, VT, MA, RI, CT, NY, NJ, PA, DE, MD, DC) EV Community...

351

DOE Challenge Home (Now Zero Energy Ready Home) - Building America...  

Energy Savers [EERE]

a much more rigorous set of guidelines that establish a national definition for Zero Net-Energy Ready performance. Read about this Top Innovation. See an example of a DOE...

352

DOE Zero Energy Ready Home Webinar: Ducts in Conditioned Space  

Broader source: Energy.gov [DOE]

DOE Challenge Home is a blueprint for zero energy ready homes. When we make that statement its impossible to justify huge thermal losses from ducts in unconditioned spaces. Thats why one of...

353

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

354

Marketing and Sales Solutions for Zero Energy Ready Homes Webinar...  

Broader source: Energy.gov (indexed) [DOE]

of resources that we'll cover. The first are marketing resources that deal with the brand of Zero Energy Ready Home and how it was configured from the very beginning to...

355

Webinar: Marketing and Sales Solutions for Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

356

affecting school readiness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-Golden DOE 2006 Superconductivity Peer Review July 25-27, 2006 12;2 SPI Readiness Review Program Budget: 210 Kyear from DOE 100 K - LANL (3 cable projects) 110 K - ORNL...

357

DOE Zero Energy Ready Home Efficient Hot Water Distribution I...  

Broader source: Energy.gov (indexed) [DOE]

I -- What's At Stake Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution I -- What's At Stake Webinar (Text Version) Below is the text version of the...

358

DOE Zero Energy Ready Home Efficient Hot Water Distribution II...  

Broader source: Energy.gov (indexed) [DOE]

-- How to Get it Right Webinar (Text Version) DOE Zero Energy Ready Home Efficient Hot Water Distribution II -- How to Get it Right Webinar (Text Version) Below is the text...

359

DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...  

Energy Savers [EERE]

Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX Case study of a DOE Zero Energy...

360

DOE Zero Energy Ready Home: Durable Energy Builders, Houston...  

Energy Savers [EERE]

super-insulated roof, 11,500 gallon rainwater cistern to supply most of the home's drinking water, hurricane-proof roof, and triple-pane windows. DOE Zero Energy Ready Home:...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat...  

Energy Savers [EERE]

executive director for the Habitat affiliate. "We started doing ENERGY STAR about 5 years ago, and DOE Builders Challenge 3 years ago, and then DOE Zero Energy Ready Home...

362

Building America Top Innovations 2013 Profile - Zero Energy-Ready...  

Broader source: Energy.gov (indexed) [DOE]

Many Building America teams (ARBI, BA-PIRC, BSC, CARB, IBACOS, NorthernSTAR, PHI, etc.) have worked with home builders to design and test zero-energy-ready homes....

363

DOE Zero Energy Ready Home: Ventilation and Filtration Strategies...  

Broader source: Energy.gov (indexed) [DOE]

We have these homes so well-air-sealed, we need to look at things like good source control products. Obviously, these homes are so efficient, they're zero energy ready, we have...

364

DOE Zero Energy Ready Home Case Study: Southern Energy Homes...  

Energy Savers [EERE]

built to the DOE Zero Energy Ready Home standard. This manufactured home achieved a HERS score of 57 without PV. The home has been set up for side-by-side testing with an...

365

DOE Zero Energy Ready Home Case Study, Ithaca Neighborhood Housing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ithaca, NY Case study of a DOE Zero Energy Ready Home in Ithaca, NY, that scored HERS 50 without PV. These 1,160 ft2 affordable town houses have R-20 advance framed walls,...

366

DOE Zero Energy Ready Home Case Study, Garbett Homes, Herriman...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production Home Case study of a DOE Zero Energy Ready Home in Herriman, UT, that scored HERS 40 without PV, -1 with PV. This 4,111 ft2 production home has R-23 advanced framed...

367

HTGR Technology Family Assessment for a Range of Fuel Cycle Missions  

SciTech Connect (OSTI)

This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR full recycle service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the pebble bed approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in limited separation or minimum fuel treatment separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

Steven J. Piet; Samuel E. Bays; Nick Soelberg

2010-08-01T23:59:59.000Z

368

HTGR Technology Family Assessment for a Range of Fuel Cycle Missions  

SciTech Connect (OSTI)

This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR full recycle service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the pebble bed approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in limited separation or minimum fuel treatment separation approaches motivates study of impurity-tolerant fuel fabrication.

Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

2010-11-01T23:59:59.000Z

369

Assessment of H/sub 2/S control technologies for geothermal power plants  

SciTech Connect (OSTI)

Techniques for controlling hydrogen sulfide (H/sub 2/S) from geothermal development are analyzed. Several technologies for controlling H/sub 2/S emissions from power plants are examined. The Hydrogen Peroxide Combination System, Stretford System and possibly EIC or Coury upstream controls appear capable of compliance with the emission limitations of 100 grams per hour per gross megawatt in 1980 (and 50 q/hr/(g) MW in 1985 or 1990) at the Geysers Dry stream field in Northern California. Unresolved problems still plague all these options. Well field operations result in H/sub 2/S releases from well drilling, well venting and steam stacking. Hydrogen peroxide reduces H/sub 2/S emissions during drilling and venting can be controlled with vent gathering (condensation/reinjection) systems. Steam stacking during power plant outages emit more H/sub 2/S over shorter periods than other field operations. Potential controls for stacking are: (1) upstream abatement, (2) automated well operation, (3) computerized wellfield operation (as of PG and E's Geysers Unit No. 15), and (4) further steamfield interconnection (cross-overs).

Not Available

1980-02-01T23:59:59.000Z

370

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 1  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation. These Appendices contain the Federal Register Notice, comments on evaluation factors, independent technical reviewers resumes, independent technical reviewers manual, and technology information packages.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

371

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

372

Sandia National Laboratories: complete operational readiness...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

systems Scaled Wind Farm Technology Facility Baselining Project Accelerates Work On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT,...

373

Hydrogen Infrastructure Market Readiness: Opportunities and Potential...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Program GGE H2I HSCC Gasoline gallon equivalent Hawaii Hydrogen Initiative Hydrogen Station Cost Calculator ICE Internal combustion engine LDV Light-duty vehicle LS...

374

A preliminary assessment of the state of harvest and collection technology for forest residues  

SciTech Connect (OSTI)

To meet the 'Twenty in Ten Initiative' goals set in the 2007 State of the Union address, forest resources will be needed as feedstocks for lignocellulosic ethanol production. It has been estimated that 368 million dry tons can be produced annually in the U.S. from logging residues and fuel treatment thinnings. Currently, very little of this woody biomass is used for energy production due to the costs and difficulty in collecting and transporting this material. However, minimizing biomass costs (including harvest, handling, transport, storage, and processing costs) delivered to the refinery is necessary to develop a sustainable cellulosic ethanol industry. Achieving this goal requires a fresh look at conventional timber harvesting operations to identify ways of efficiently integrating energy wood collection and developing cost-effective technologies to harvest small-diameter trees. In conventional whole-tree logging operations, entire trees are felled and skidded from the stump to the landing. The residues (also called slash), consisting of tops and limbs, accumulate at the landing when trees are delimbed. This slash can be ground at the landing with a mobile grinder or transported to another central location with a stationary grinder. The ground material is transported via chip vans, or possibly large roll on/off containers, to the user facility. Cut-to-length harvesting systems are gaining popularity in some locations. In these operations, specialized harvesters that can fall, delimb, and cut logs to length are used. The small diameter tops and limbs accumulate along the machine's track. It can be left in the forest to dry or removed soon after harvest while logs are extracted. Removing slash during the same operation as the wood has been shown to be more efficient. However, leaving residue in the forest to dry reduces moisture content, which improves grinder performance, reduces dry matter loss during storage, and inhibits colonization of fungi that produce harmful spores. In recent years, new machines that are specially designed for collection of small diameter wood have been developed in the U.S. and Europe. Residue bundlers and balers improve transportation and handling efficiency by densifying the material and packaging it so that it can be handled with conventional equipment. An experimental integrated harvester/grinder can fall small diameter trees and feed them into a grinder. The ground material is collected in a bin that can be dumped into a chip van. The harvester head is also capable of delimbing and bucking (cut into sections) small timber to be used for pulp and posts. Limitations of these new technologies are their large capital costs and complexity, leading to high maintenance costs and the need for highly trained operators. To ensure that quality feedstock materials consistently enter the mouth of the refinery, the uniform format supply system concept proposes that feedstock diversity be managed at harvest, much like the current grain supply system. This allows for standardization of key infrastructure components and facilitation of a biomass commodity system. Challenges in achieving a uniform woody biomass supply include, but are not limited to, developing machines for efficient harvest of small-diameter trees in a range of topographies and conditions, developing machines and operating plans for grinding biomass as near to the stump as possible, developing cost-effective drying strategies to reduce losses and mold growth during wood chip storage, and quantifying environmental impacts of slash removal and fuel thinnings to aid landowner decisions and policy development.

Webb, Erin [ORNL; Perlack, Robert D [ORNL; Blackwelder, D. Brad [Idaho National Laboratory (INL); Muth, David J. [Idaho National Laboratory (INL); Hess, J. Richard [Idaho National Laboratory (INL)

2008-08-01T23:59:59.000Z

375

Assessment of technologies for constructing self-drying low-slope roofs  

SciTech Connect (OSTI)

Issues associated with removing excessive moisture from low-slope roofs have been assessed. The economic costs associated with moisture trapped in existing roofs have been estimated. The evidence suggests that existing moisture levels cause approximately a 40% overall reduction in the R-value of installed roofing insulation in the United States. Excess operating costs are further increased by a summertime heat transfer mode unique to wet insulation, caused by the daily migration of water within the roof. By itself, this effect can increase peak electrical demand for air conditioning by roughly 15 W/m{sup 2} of roofing, depending on the type of insulation. This effect will increase peak demand capacity required of utilities in any geographic region (e.g., 900 MW in the South). A simple formula has been derived for predicting the effect that self-drying roofs can have upon time-averaged construction costs. It is presumed that time-averaged costs depend predominantly upon (1) actual service life and (2) the likelihood that the less expensive recover membranes can be installed safely over old roofs. For example, an increase in service life from 15 to 20 years should reduce the current cost of roofing ($12 billion/year) by 21%. Another simple formula for predicting the reroofing waste volume indicates that an increase in service life from 15 to 20 years might reduce the current estimated 0.4 billion ft{sup 3}/year of waste by 25%. A finite-difference computer program has been used to study the flow of heat and moisture within typical existing roofs for a variety of US climates. Nearly all publicly available experimental drying data have been consulted. The drying times for most existing low-slope roofs in the United States are controlled largely climate and the permeability of the structural deck to water vapor.

Kyle, D.M.; Desjarlais, A.O.

1994-05-01T23:59:59.000Z

376

An analytical framework for long term policy for commercial deployment and innovation in carbon capture and sequestration technology in the United States  

E-Print Network [OSTI]

Carbon capture and sequestration (CCS) technology has the potential to be a key CO2 emissions mitigation technology for the United States. Several CCS technology options are ready for immediate commercial-scale demonstration, ...

Hamilton, Michael Roberts

2010-01-01T23:59:59.000Z

377

K-12 Professional Learning Communities (PLCs) in a Rural School District on the High Plains of Texas: Mechanism for Teacher Support of Innovative Formative Assessment and Instruction with Technology (iFAIT)  

E-Print Network [OSTI]

and student achievement. A survey administered in September 2012 and again in December 2012 provided a measure of teacher use of formative assessments, technology use in formative assessments, and perceptions of teachers using the PLC as a mechanism...

Talkmitt, Marcia J.

2013-05-06T23:59:59.000Z

378

AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems  

SciTech Connect (OSTI)

A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

Dove, F.H.; Cole, C.R.; Foley, M.G.

1982-09-01T23:59:59.000Z

379

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

SciTech Connect (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

380

Renewable Energy: Ready to Meet Its Promise?  

SciTech Connect (OSTI)

This paper will briefly review the technical status, cost, and applications of major renewable energy technologies in 1998, and also discuss some of the socioeconomic impacts of wide-scale adoption of renewables.

Bull, S. R.; Billman, L. L.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Evaluation of the near-term commercial potential of technologies being developed by the Office of Building Technologies  

SciTech Connect (OSTI)

This project developed an inventory of the Office of Building Technologies (OBT) from a survey administered in 1988 to program managers and principal investigators from OBT. Information provided on these surveys was evaluated to identify equipment and practices that are near-term opportunities for technology commercialization and to determine whether they needed some form of assistance from OBT to be successful in the marketplace. The near-term commercial potential of OBT technologies was assessed by using a technology selection screening methodology. The screening first identified those technologies that were ready to be commercialized in the next two years. The second screen identified the technologies that had a simple payback period of less than five years, and the third identified those that met a current need in the marketplace. Twenty-six OBT technologies met all the criteria. These commercially promising technologies were further screened to determine which would succeed on their own and which would require further commercialization support. Additional commercialization support was recommended for OBT technologies where serious barriers to adoption existed or where no private sector interest in a technology could be identified. Twenty-three technologies were identified as requiring commercialization support from OBT. These are categorized by each division within OBT and are shown in Table S.1. The methodology used could easily be adapted to screen other DOE-developed technologies to determine commercialization potential and to allocate resources accordingly. It provides a systematic way to analyze numerous technologies and a defensible and documented procedure for comparing them. 4 refs., 7 figs., 10 tabs.

Weijo, R.O. (Portland General Electric Co., OR (USA)); Nicholls, A.K.; Weakley, S.A.; Eckert, R.L.; Shankle, D.L.; Anderson, M.R.; Anderson, A.R. (Pacific Northwest Lab., Richland, WA (USA))

1991-03-01T23:59:59.000Z

382

Depleted Uranium Hexafluoride Management Program. The technology assessment report for the long-term management of depleted uranium hexafluoride. Volume 2  

SciTech Connect (OSTI)

With the publication of a Request for Recommendations and Advance Notice of Intent in the November 10, 1994 Federal Register, the Department of Energy initiated a program to assess alternative strategies for the long-term management or use of depleted uranium hexafluoride. This Request was made to help ensure that, by seeking as many recommendations as possible, Department management considers reasonable options in the long-range management strategy. The Depleted Uranium Hexafluoride Management Program consists of three major program elements: Engineering Analysis, Cost Analysis, and an Environmental Impact Statement. This Technology Assessment Report is the first part of the Engineering Analysis Project, and assesses recommendations from interested persons, industry, and Government agencies for potential uses for the depleted uranium hexafluoride stored at the gaseous diffusion plants in Paducah, Kentucky, and Portsmouth, Ohio, and at the Oak Ridge Reservation in Tennessee. Technologies that could facilitate the long-term management of this material are also assessed. The purpose of the Technology Assessment Report is to present the results of the evaluation of these recommendations. Department management will decide which recommendations will receive further study and evaluation.

Zoller, J.N.; Rosen, R.S.; Holliday, M.A. [and others] [and others

1995-06-30T23:59:59.000Z

383

A systematic assessment of the state of hazardous waste clean-up technologies. Quarterly technical progress report, April 1--June 30, 1993  

SciTech Connect (OSTI)

West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushing (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.

Berg, M.T.; Reed, B.E.; Gabr, M.

1993-07-01T23:59:59.000Z

384

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect (OSTI)

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

385

Assessment of oil-shale technology in Brazil. Final technical report, October 27, 1980-July 27, 1981  

SciTech Connect (OSTI)

The development of an oil shale industry in the United States will require the solution of a variety of technical, economic, environmental, and health and safety problems. This assessment investigates whether US oil shale developers might benefit from the experience gained by the Brazilians in the operation of their Usina Prototipo do Irati oil shale demonstration plant at Sao Mateus do Sul, and from the data generated from their oil shale research and development programs. A chapter providing background information on Brazil and the Brazilian oil shale deposits is followed by an examination of the potential recovery processes applicable to Brazilian oil shale. The evolution of the Brazilian retorting system is reviewed and compared with the mining and retorting proposed for US shales. Factors impacting on the economics of shale oil production in Brazil are reviewed and compared to economic analyses of oil shale production in the US. Chapters examining the consequences of shale development in terms of impact on the physical environment and the oil shale worker complete the report. Throughout the report, where data permits, similarities and differences are drawn between the oil shale programs underway in Brazil and the US. In addition, research areas in which technology or information transfer could benefit either or both countries' oil shale programs are identified.

Not Available

1981-07-27T23:59:59.000Z

386

Implementation plan for WRAP Module 1 operational readiness review  

SciTech Connect (OSTI)

The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR.

Irons, L.G.

1994-11-04T23:59:59.000Z

387

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

388

How to refer to this article. Nicol, D (2008), Technology-supported assessment: A review of research, unpublished manuscript available at http://www.reap.ac.uk/resources.html  

E-Print Network [OSTI]

How to refer to this article. Nicol, D (2008), Technology-supported assessment: A review of research, unpublished manuscript available at http://www.reap.ac.uk/resources.html Technology-supported Assessment: A Review of Research Author David Nicol University of Strathclyde d.j.nicol@strath.ac.uk October

Azzopardi, Leif

389

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

quantities with high unit costs. Due to these special characteristics, the A&D 165 industry is particularly suitable for an early adoption of AM 12, 13. For instance, Boeing...

390

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, April 2014 | Department of

391

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

392

Are CHP Systems Ready for Commercial Buildings?  

SciTech Connect (OSTI)

This paper highlights challenges associated with integration of CHP systems with existing buildings and maintaining their performance over time. The paper also identifies key research and development needs to address the challenges, so that CHP technologies can deliver the promised performance and reach their full potential market penetration.

Katipamula, Srinivas; Brambley, Michael R.; Zaltash, Abdi; Sands, Jim

2005-06-27T23:59:59.000Z

393

EMERGENCY READINESS ASSURANCE PLAN (ERAP) FOR FISCAL YEAR (FY) 2014  

SciTech Connect (OSTI)

This Emergency Readiness Assurance Plan (ERAP) for Fiscal Year (FY) 2014 in accordance with DOE O 151.1C, Comprehensive Emergency Management System. The ERAP documents the readiness of the INL Emergency Management Program using emergency response planning and preparedness activities as the basis. It describes emergency response planning and preparedness activities, and where applicable, summarizes and/or provides supporting information in tabular form for easy access to data. The ERAP also provides budget, personnel, and planning forecasts for FY-15. Specifically, the ERAP assures the Department of Energy Idaho Operations Office that stated emergency capabilities at INL are sufficient to implement PLN-114, INL Emergency Plan/RCRA Contingency Plan.

Shane Bush

2014-09-01T23:59:59.000Z

394

First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform  

SciTech Connect (OSTI)

Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first `Upfront Delisting` petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this `privatization` project will be discussed.

Pickett, J.B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Norford, S.W.; Diener, G.A.

1998-06-01T23:59:59.000Z

395

Development of the Write Process for Pipeline-Ready Heavy Oil  

SciTech Connect (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

396

Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration  

SciTech Connect (OSTI)

The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

2010-03-31T23:59:59.000Z

397

assessment ioa assessment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY...

398

DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Home: Near Zero Maine Home II, Vassalboro, Maine DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro, Maine Case study of a DOE Zero Energy Ready home in Vassalboro,...

399

Computer vs. Video Game System: Ready to Rumble in the #EnergyFaceoff...  

Office of Environmental Management (EM)

Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle Computer vs. Video Game System: Ready to Rumble in the EnergyFaceoff Jungle November 4, 2014 - 10:20am...

400

DOE Zero Energy Ready Home Case Study 2013: Manatee County Habitat...  

Energy Savers [EERE]

Energy Ready Home has a 2.5-kW PV system obtained with assistance from Florida Power and Light. All of the homes in the development are solar-energy ready with conduit in place...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

What to Expect When Readying to Move Spent Nuclear Fuel from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

402

DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury...  

Broader source: Energy.gov (indexed) [DOE]

BPC Green Builders, Danbury, CT DOE Zero Energy Ready Home Case Study: BPC Green Builders, Danbury, CT Case study of a DOE Zero Energy Ready home in Danbury, CT, that scored HERS...

403

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary  

SciTech Connect (OSTI)

Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

NONE

1997-05-01T23:59:59.000Z

404

Operationalizing Anticipatory Governance: Steering Emerging Technologies Towards Sustainability  

E-Print Network [OSTI]

64. CTSI. (2009). "About Clean Technology." Retrieved 11/24,The case of clean technologies." Science Technology & HumanTechnology Assessment Clean Technology and Sustainable

Philbrick, Mark

2010-01-01T23:59:59.000Z

405

assisted reproductive technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

consumer information. Referral Date: Consumer's Name: Date of Birth Assistive Technology Assessment Computer Skills Assessment Assistive TechnologyComputer...

406

assisted reproduction technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

consumer information. Referral Date: Consumer's Name: Date of Birth Assistive Technology Assessment Computer Skills Assessment Assistive TechnologyComputer...

407

assisted reproduction technologies: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

consumer information. Referral Date: Consumer's Name: Date of Birth Assistive Technology Assessment Computer Skills Assessment Assistive TechnologyComputer...

408

Assessment of US electric vehicle programs with ac powertrains  

SciTech Connect (OSTI)

AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

Kevala, R.J. (Booz, Allen and Hamilton, Inc., Bethesda, MD (USA). Transportation Consulting Div.)

1990-02-01T23:59:59.000Z

409

DOE Zero Energy Ready Home Case Study: Shore Road Project- Old Greenwich, Connecticut  

Broader source: Energy.gov [DOE]

This case study describes the builder Murphy Brothers' first DOE Zero Energy Ready Home in Old Greenwich, CT.

410

Text-Alternative Version: ENERGY STAR for SSL: Getting Ready for September 30  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the ENERGY STAR for SSL: Getting Ready for September 30 webcast.

411

The Effect of Student Learning Styles on the Learning Gains Achieved When Interactive Simulations Are Coupled with Real-Time Formative Assessment via Pen-Enabled Mobile Technology  

E-Print Network [OSTI]

This paper describes results from a project in an undergraduate engineering physics course that coupled classroom use of interactive computer simulations with the collection of real-time formative assessment using pen-enabled mobile technology. Interactive simulations (free or textbook-based) are widely used across the undergraduate science and engineering curriculia to help actively engaged students increase their understanding of abstract concepts or phenomena which are not directly or easily observable. However, there are indications in the literature that we do not yet know the pedagogical best practices associated with their use to maximize learning. This project couples student use of interactive simulations with the gathering of real-time formative assessment via pen-enabled mobile technology (in this case, Tablet PCs). The research question addressed in this paper is: are learning gains achieved with this coupled model greater for certain types of learners in undergraduate STEM classrooms? To answer t...

Kowalski, F V

2013-01-01T23:59:59.000Z

412

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction  

SciTech Connect (OSTI)

Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

NONE

1997-05-01T23:59:59.000Z

413

ORISE Resources: Community Assessment Tool for the CDC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activity (HPA). The CAT is a tool that communities can use to assess their total health care readiness for a disaster-not just hospitals, but the entire health care...

414

Annual Tour Ready to Explore New Mexico's Lower Pecos River  

E-Print Network [OSTI]

Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

Nebraska-Lincoln, University of

415

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

2010-04-16T23:59:59.000Z

416

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

417

DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...  

Broader source: Energy.gov (indexed) [DOE]

panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. DOE Zero Energy Ready...

418

Ready to eat breakfast cereals from food-grade sorghums  

E-Print Network [OSTI]

Two food-grade sorghum hybrids, ATx63 I *Tx436 (non waxy), and B.BON 34, (waxy), were micronized and evaluated for their potential use in ready to eat breakfast cereals (RTE-BC). Whole and decorticated grains were exposed to infra-red burners...

Cruz y Celis Ehlinger, Laura Penelope

1993-01-01T23:59:59.000Z

419

Shunting passenger trains: getting ready for Marjan van den Akker  

E-Print Network [OSTI]

Shunting passenger trains: getting ready for departure Marjan van den Akker Hilbrandt Baarsma Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Shunting passenger trains: getting of shunting train units on a railway station. Train units arrive at and depart from the station according

Utrecht, Universiteit

420

MODULE 2: TEACHING & ASSESSMENT Selection of face-to-face sessions, technology workshops and/or online activities: May  

E-Print Network [OSTI]

to disciplinary groupings. Completion will be recorded by the STIA Facilitators, and reported to Summer Sessions technology workshop options for STIA Certificate Intenders #12;

Akhmedov, Azer

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Stirling engine ready for subsea deployment  

SciTech Connect (OSTI)

The key technologies are now in place to provide for long-term independent diver support on the seabed, in place of large and costly surface support spreads. The lack of a compact air-independent energy source in the medium power range has prevented the evolution of underwater autonomous offshore operations. Five key advancements will now permit surface-independence in the performance of many subsea tasks: efficient and compact power and heat energy, computerized systems for navigation and instrumentation, composite materials for high pressure, low weight gas storage, closed-circuit breathing systems for divers, and underwater robotics and artificial intelligence.

Not Available

1985-05-01T23:59:59.000Z

422

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 7. Accident analysis; selection and assessment of potential release scenarios  

SciTech Connect (OSTI)

In this part of the assessment, several accident scenarios are identified that could result in significant releases of chemicals into the environment. These scenarios include ruptures of storage tanks, large magnitude on-site spills, mixing of incompatible wastes, and off-site releases caused by tranpsortation accidents. In evaluating these scenarios, both probability and consequence are assessed, so that likelihood of occurrence is coupled with magnitude of effect in characterizing short term risks.

NONE

1997-05-01T23:59:59.000Z

423

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 6. Screening ecological risk assessment (SERA). Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Screening Ecological Risk Assessment (SERA) is an analysis of the potential significance of risks to ecological receptors (e.g., plants, fish, wildlife) from exposure to facility emissions. The SERA was performed using conservative assumptions and approaches to determine if a further, more refined analysis is warranted. Volume VI describes in detail the methods used in the SERA and reports the results of the SERA in terms of site-specific risks to ecological receptors.

NONE

1995-11-01T23:59:59.000Z

424

IIT SCHOOL OF APPLIED TECHNOLOGY  

E-Print Network [OSTI]

INDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY PREPARING SKILLED INDIVIDUALS, INDUSTRIAL FACILITIES, SUPPLY CHAIN MANAGEMENT, SUSTAINABILITY AND MANUFACTURING TECHNOLOGY. #12;BE ONE to assess, implement, and utilize current technologies, and to learn how to manage industrial operations

Heller, Barbara

425

524 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 3, MAY 2001 Optimal Control Techniques for Assessing Feasibility  

E-Print Network [OSTI]

524 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 3, MAY 2001 Optimal Control solutions. In the business environment that calls for aggressive reduction in the time-to-market

Stefanopoulou, Anna

426

Preparing prospective teacher education students at two-year post secondary institutions: an assessment of proficiency in technology usage  

E-Print Network [OSTI]

The purpose of this study was to examine the proficiency or lack of proficiency of prospective teacher education students at two-year community colleges to use and integrate instructional technologies. In addition, this study also examined...

Cavenall, Pamela Elaine Rogers

2009-05-15T23:59:59.000Z

427

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect (OSTI)

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

428

Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector  

SciTech Connect (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. With the working of energy programs and policies on carbon regulation, how to effectively analyze and manage the costs associated with GHG reductions become extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions (e.g., carbon emission) for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models. In this report, we first conduct brief overview on different representations of end-use technologies (mitigation measures) in various energy-climate models, followed by problem statements, and a description of the basic concepts of quantifying the cost of conserved energy including integrating non-regrets options. A non-regrets option is defined as a GHG reduction option that is cost effective, without considering their additional benefits related to reducing GHG emissions. Based upon these, we develop information on costs of mitigation measures and technological change. These serve as the basis for collating the data on energy savings and costs for their future use in integrated assessment models. In addition to descriptions of the iron and steel making processes, and the mitigation measures identified in this study, the report includes tabulated databases on costs of measure implementation, energy savings, carbon-emission reduction, and lifetimes. The cost curve data on mitigation measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

Xu, T.T.; Sathaye, J.; Galitsky, C.

2010-09-30T23:59:59.000Z

429

Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale development in the early decade, as defined by the scenario, will produce growth primarily

Rotariu,, G. J.

1982-02-01T23:59:59.000Z

430

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

2010-04-16T23:59:59.000Z

431

DOE Zero Energy Ready Home Partner Resources | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc.,House, Devens, MAZero Energy Ready

432

Disease Prediction Models and Operational Readiness  

SciTech Connect (OSTI)

INTRODUCTION: The objective of this manuscript is to present a systematic review of biosurveillance models that operate on select agents and can forecast the occurrence of a disease event. One of the primary goals of this research was to characterize the viability of biosurveillance models to provide operationally relevant information for decision makers to identify areas for future research. Two critical characteristics differentiate this work from other infectious disease modeling reviews. First, we reviewed models that attempted to predict the disease event, not merely its transmission dynamics. Second, we considered models involving pathogens of concern as determined by the US National Select Agent Registry (as of June 2011). Methods: We searched dozens of commercial and government databases and harvested Google search results for eligible models utilizing terms and phrases provided by public health analysts relating to biosurveillance, remote sensing, risk assessments, spatial epidemiology, and ecological niche-modeling, The publication date of search results returned are bound by the dates of coverage of each database and the date in which the search was performed, however all searching was completed by December 31, 2010. This returned 13,767 webpages and 12,152 citations. After de-duplication and removal of extraneous material, a core collection of 6,503 items was established and these publications along with their abstracts are presented in a semantic wiki at http://BioCat.pnnl.gov. Next, PNNLs IN-SPIRE visual analytics software was used to cross-correlate these publications with the definition for a biosurveillance model resulting in the selection of 54 documents that matched the criteria resulting Ten of these documents, However, dealt purely with disease spread models, inactivation of bacteria, or the modeling of human immune system responses to pathogens rather than predicting disease events. As a result, we systematically reviewed 44 papers and the results are presented in this analysis.

Corley, Courtney D.; Pullum, Laura L.; Hartley, David M.; Benedum, Corey M.; Noonan, Christine F.; Rabinowitz, Peter M.; Lancaster, Mary J.

2014-03-19T23:59:59.000Z

433

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network [OSTI]

of the conventional gas reserve of 1.5x10 14 m 3 ofconventional oil and gas reserves, the assessment of theconventional fossil fuel reserves, gas hydrates are emerging

Moridis, George J.

2008-01-01T23:59:59.000Z

434

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report  

SciTech Connect (OSTI)

This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

NONE

1995-11-01T23:59:59.000Z

435

Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report  

SciTech Connect (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

436

Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare Wastewater Recycling Technology  

SciTech Connect (OSTI)

The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

2014-08-14T23:59:59.000Z

437

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

NONE

1995-11-01T23:59:59.000Z

438

ReadyMade Analysis of Berkeley Scholars to Cal Program  

E-Print Network [OSTI]

Center for Work Technology and Society, IRLE University ofthe Center for Work, Technology and Society at University of

Belohlav, Kate; Brown, Clair

2012-01-01T23:59:59.000Z

439

Manufacturing Demonstration Facility Technology Collaborations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from industry to assess applicability of new technologies that can reduce manufacturing energy intensity or produce new, energy-efficient products. As part of the technology...

440

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment  

SciTech Connect (OSTI)

The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program  

SciTech Connect (OSTI)

Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

2001-07-13T23:59:59.000Z

442

DOE Zero Energy Ready Home Case Study, Ferguson Design and Constructio...  

Energy Savers [EERE]

Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY, Custom Home DOE Zero Energy Ready Home Case Study, Ferguson Design and Construction, Inc., Sagaponak, NY,...

443

DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...  

Energy Savers [EERE]

Home Case Study, Manatee County Habitat for Humanity, Ellenton, FL, Affordable DOE Zero Energy Ready Home Case Study: Southeast Volusia Habitat for Humanity, Edgewater, FL...

444

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector  

E-Print Network [OSTI]

2001. The Energy Technology Systems Analysis Programme (and Institute of Paper Science and Technology (IPST) atGeorgia Institute of Technology, Atlanta. Kramer, K. J. ,

Xu, Tengfang

2014-01-01T23:59:59.000Z

445

NCTCOG Solar Ready II Project: Clean Air Through Energy Efficiency  

E-Print Network [OSTI]

Clean Air Through Energy Efficiency November 20, 2014 NCTCOG Solar Ready II Project Lori Clark Principal Air Quality Planner ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy Sun...Shot Initiative Rooftop Solar Challenge 2 ESL-KT-14-11-12 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 U.S. Department of Energy (DOE) SunShot Initiative The U.S. Department of Energy SunShot Initiative is a collaborative national...

Clark,L.

2014-01-01T23:59:59.000Z

446

Are You Ready for Fall? | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFApril 2015 Project Dashboard AprilKeepingReady for

447

LEDs Ready for Takeoff at Louisiana Airport | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DCKickoffLDV HVAC ModelLEDLightsLEDLEDs Ready

448

Rough and Ready Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°and Ready Biomass Facility Jump to:

449

Zero Energy Ready Home Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE-March 2015

450

Zero Energy Ready Home Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy DECEMBER 2014 ZERO ENERGY READY HOME UPDATE-March

451

Adapting Decisions, Optimizing Facts and Predicting Figures: Can Convergence of Concepts, Tools, Technologies and Standards Catalyze Innovation?  

E-Print Network [OSTI]

Managing uncertainty is key in decision systems, such as supply chain management or military readiness. We propose a reasonable confluence of existing concepts, tools, technologies and standards that may, collectively, ...

Datta, Shoumen

2008-07-31T23:59:59.000Z

452

Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988  

SciTech Connect (OSTI)

The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

Not Available

1989-01-01T23:59:59.000Z

453

assessments: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Websites Summary: technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY...

454

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report  

SciTech Connect (OSTI)

During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

NONE

1995-05-01T23:59:59.000Z

455

Western oil-shale development: a technology assessment. Volume 4. Solid waste from mining and surface retorts  

SciTech Connect (OSTI)

The overall objectives of this study were to: review and evaluate published information on the disposal, composition, and leachability of solid wastes produced by aboveground shale oil extraction processes; examine the relationship of development to surface and groundwater quality in the Piceance Creek basin of northwestern Colorado; and identify key areas of research necessary to quantitative assessment of impact. Information is presented under the following section headings: proposed surface retorting developments; surface retorting processes; environmental concerns; chemical/mineralogical composition of raw and retorted oil shale; disposal procedures; water quality; and research needs.

Not Available

1982-01-01T23:59:59.000Z

456

Integrated Approach to Documenting Readiness for a Potential Criticality Incident  

SciTech Connect (OSTI)

There have been 60 highly publicized criticality accidents1 over the last 60 years and the nature of the hazard is unique. Recent studies2 discuss the benefits of knowing what to expect during and immediately following these events. Emergency planning and response standards2 provide an effective tool for establishing an adequate level of readiness to a criticality accident. While these planning requirements cover a broad spectrum of activities to establish readiness, a concise and routinely reviewed criticality accident scenario may be the most valuable tool in developing a cohesive understanding and response to these challenging events. Using a guideline3 for criticality safety evaluations the analytical work and emergency planning to mitigate a criticality accident at the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory, was developed. Using a single document the analysis that established the accident characteristics, response scenario based on emergency staffing and planning, and anticipated dose consequences were integrated. This single document approach provides a useful platform to integrate the initial planning and guide the review of proposed changes to emergency response plans.

Carlisle, Bruce S.; Prichard, Andrew W.; Jones, Robert A.

2013-11-11T23:59:59.000Z

457

2015 Technology Innovation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for RTU and Lighting Retrofits Energy Efficiency TIP 140: Energy Efficiency Emerging Technology Assessment and Demonstration Projects TIP 261: Determining and Improving the...

458

Benchmarking of Competitive Technologies  

Broader source: Energy.gov (indexed) [DOE]

evaluations and assessments * Compare results with other HEV technologies * Identify new areas of interest * Evaluate advantages and disadvantages of design changes - Example:...

459

Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition  

SciTech Connect (OSTI)

The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup ?1} to 2.0 ms{sup ?1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup ?1} to 1.0 ms{sup ?1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

El-Alej, M., E-mail: m.elalej@cranfield.ac.uk; Mba, D., E-mail: m.elalej@cranfield.ac.uk; Yeung, H., E-mail: m.elalej@cranfield.ac.uk [School of Engineering, Cranfield University, Cranfield, Bedfordshire, MK43 OAL (United Kingdom)

2014-04-11T23:59:59.000Z

460

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008  

SciTech Connect (OSTI)

The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

Bush, S.

2009-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Computational fluid dynamics assessment: Volume 1, Computer simulations of the METC (Morgantown Energy Technology Center) entrained-flow gasifier: Final report  

SciTech Connect (OSTI)

An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.

Celik, I.; Chattree, M.

1988-07-01T23:59:59.000Z

462

An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations  

SciTech Connect (OSTI)

Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

2007-07-01T23:59:59.000Z

463

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 8. Additional analysis in response to peer review recommendations  

SciTech Connect (OSTI)

Contents: Introduction; Combustion Engineering; Air Dispersion and Deposition Modeling; Accident Analysis; Exposure Assessment; Toxicology; and Ecological Risk Assessment.

NONE

1997-05-01T23:59:59.000Z

464

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization. Letter report made publicly available December 1992  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation`s public works infrastructure. The product is a relational database that we refer to as a ``prototype catalogue of technologies.`` The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

465

Assessment of energy and economic impacts of particulate-control technologies in coal-fired power generation  

SciTech Connect (OSTI)

Under contract to Argonne National Laboratory, Midwest Research Institute has derived models to assess the economic and energy impacts of particulate-control systems for coal-fired power plants. The models take into account the major functional variables, including plant size and location, coal type, and applicable particulate-emission standards. The algorithms obtained predict equipment and installation costs, as well as operating costs (including energy usage), for five control devices: (1) cold-side electrostatic precipitators, (2) hot-side electrostatic precipitators, (3) reverse-flow baghouses, (4) shake baghouses, and (5) wet scrubbers. A steam-generator performance model has been developed, and the output from this model has been used as input for the control-device performance models that specify required design and operating parameters for the control systems under study. These parameters then have been used as inputs to the cost models. Suitable guideline values have been provided for independent variables wherever necessary, and three case studies are presented to demonstrate application of the subject models. The control-equipment models aggregate the following cost items: (1) first costs (capital investment), (2) total, first-year annualized costs, and (3) integrated cost of ownership and operation over any selected plant lifetime. Although the models have been programmed for rapid computation, the algorithms can be solved with a hand calculator.

Not Available

1980-04-01T23:59:59.000Z

466

EV Community Readiness projects: SCAQMD (CA); University of Hawaii  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

467

Operational readiness review for the Waste Experimental Reduction Facility. Final report  

SciTech Connect (OSTI)

An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

Not Available

1993-11-01T23:59:59.000Z

468

Assessing Risk and Driving Risk Mitigation for First-of-a-Kind Advanced Reactors  

SciTech Connect (OSTI)

Planning and decision making amidst programmatic and technological risks represent significant challenges for projects. This presentation addresses the four step risk-assessment process needed to determine clear path forward to mature needed technology and design, license, and construct advanced nuclear power plants, which have never been built before, including Small Modular Reactors. This four step process has been carefully applied to the Next Generation Nuclear Plant. STEP 1 - Risk Identification Risks are identified, collected, and categorized as technical risks, programmatic risks, and project risks, each of which result in cost and schedule impacts if realized. These include risks arising from the use of technologies not previously demonstrated in a relevant application. These risks include normal and accident scenarios which the SMR could experience including events that cause the disablement of engineered safety features (typically documented in Phenomena Identification Ranking Tables (PIRT) as produced with the Nuclear Regulatory Commission) and design needs which must be addressed to further detail the design. Product - Project Risk Register contained in a database with sorting, presentation, rollup, risk work off functionality similar to the NGNP Risk Management System . STEP 2 - Risk Quantification The risks contained in the risk register are then scored for probability of occurrence and severity of consequence, if realized. Here the scoring methodology is established and the basis for the scoring is well documented. Product - Quantified project risk register with documented basis for scoring. STEP 3 - Risk Handling Strategy Risks are mitigated by applying a systematic approach to maturing the technology through Research and Development, modeling, test, and design. A Technology Readiness Assessment is performed to determine baseline Technology Readiness Levels (TRL). Tasks needed to mature the technology are developed and documented in a roadmap. Product - Risk Handling Strategy. STEP 4 - Residual Risk Work off The risk handling strategy is entered into the Project Risk Allocation Tool (PRAT) to analyze each task for its ability to reduce risk. The result is risk-informed task prioritization. The risk handling strategy is captured in the Risk Management System, a relational database that provides conventional database utility, including data maintenance, archiving, configuration control, and query ability. The tool's Hierarchy Tree allows visualization and analyses of complex relationships between risks, risk mitigation tasks, design needs, and PIRTs. Product - Project Risk Allocation Tool and Risk Management System which depict project plan to reduce risk and current progress in doing so.

John W. Collins

2011-09-01T23:59:59.000Z

469

A Radiological Survey Approach to Use Prior to Decommissioning: Results from a Technology Scanning and Assessment Project Focused on the Chornobyl NPP  

SciTech Connect (OSTI)

The primary objectives of this project are to learn how to plan and execute the Technology Scanning and Assessment (TSA) approach by conducting a project and to be able to provide the approach as a capability to the Chernobyl Nuclear Power Plant (ChNPP) and potentially elsewhere. A secondary objective is to learn specifics about decommissioning and in particular about radiological surveying to be performed prior to decommissioning to help ChNPP decision makers. TSA is a multi-faceted capability that monitors and analyzes scientific, technical, regulatory, and business factors and trends for decision makers and company leaders. It is a management tool where information is systematically gathered, analyzed, and used in business planning and decision making. It helps managers by organizing the flow of critical information and provides managers with information they can act upon. The focus of this TSA project is on radiological surveying with the target being ChNPP's Unit 1. This reactor was stopped on November 30, 1996. At this time, Ukraine failed to have a regulatory basis to provide guidelines for nuclear site decommissioning. This situation has not changed as of today. A number of documents have been prepared to become a basis for a combined study of the ChNPP Unit 1 from the engineering and radiological perspectives. The results of such a study are expected to be used when a detailed decommissioning plan is created.

Milchikov, A.; Hund, G.; Davidko, M.

1999-10-20T23:59:59.000Z

470

Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program  

SciTech Connect (OSTI)

The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

Sorensen, J.H.

1992-05-01T23:59:59.000Z

471

Assessment of the need for dual indoor/outdoor warning systems and enhanced tone alert technologies in the Chemical Stockpile Emergency Preparedness Program  

SciTech Connect (OSTI)

The need for a dual indoor/outdoor warning system as recommended by the program guidance and Alert and Notification (A&N) standard for the Chemical Stockpile Emergency Preparedness Program is analyzed in this report. Under the current program standards, the outdoor warning system consists of omnidirectional sirens and the new indoor system would be an enhanced tone alert (TA) radio system. This analysis identifies various tone-alert technologies, distribution options, and alternative siren configurations. It also assesses the costs and benefits of the options and analyzes what appears to best meet program needs. Given the current evidence, it is recommended that a 10-dB siren system and the special or enhanced TA radio be distributed to each residence and special institution in the immediate response zone as preferred the A&N standard. This approach minimizes the cost of maintenance and cost of the TA radio system while providing a high degree of reliability for indoor alerting. Furthermore, it reaches the population (residential and institutional) in the greatest need of indoor alerting.

Sorensen, J.H.

1992-05-01T23:59:59.000Z

472

Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology  

SciTech Connect (OSTI)

In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a backstop to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

2014-02-07T23:59:59.000Z

473

Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices  

SciTech Connect (OSTI)

New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

Committee on Climate Change Science and Technology Integration (CCCSTI)

2009-01-01T23:59:59.000Z

474

Application of the cumulative risk model in predicting school readiness in Head Start children  

E-Print Network [OSTI]

outcomes. This study built on this literature by investigating how child, parent, and family risk factors predicted school readiness in Head Start children using two statistical models. Specific aims of this study included identifying 1) to what degree...

Rodriguez-Escobar, Olga Lydia

2009-05-15T23:59:59.000Z

475

Webinar: Ventilation and Filtration Strategies with Indoor airPLUS and Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

476

A FAST WAVELET-BASED VIDEO CODEC AND ITS APPLICATION IN AN IP VERSION 6-READY  

E-Print Network [OSTI]

,mpalkow,schmidt,mw]@fhtw-berlin.de D. MARPE Fraunhofer-Institut für Nachrichtentechnik HHI Image Processing Department Einsteinufer 37 (MCU). It is equipped with an innovative addressing system for locating mobile users and ready for next

Marpe, Detlev

477

ZERH Webinar: Energy- and Water- Efficiency in the DOE Zero Energy Ready Home Program  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Zero Energy Ready Home (ZERH) Program represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings,...

478

DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes  

Broader source: Energy.gov [DOE]

Plan review energy modeling field inspections certificationdone! Right? If only it were that simple to successfully transition to Zero Energy Ready Homes. The reality is that theres a lot...

479

DOE ZERH Webinar: Updates to the DOE Zero Energy Ready Home Specs...  

Energy Savers [EERE]

updated the DOE Zero Energy Ready Home specs, we've continued to track our partner feedback and other industry issues. This brings us to the release of Revision 05, which...

480

DOE Zero Energy Ready Home Going Green and Building Strong: Building...  

Broader source: Energy.gov (indexed) [DOE]

2 Webinar (Text Version) DOE Zero Energy Ready Home Going Green and Building Strong: Building a FORTIFIED Home -- Part 2 Webinar (Text Version) Below is the text version of the...

Note: This page contains sample records for the topic "technology readiness assessment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

DOE Zero Energy Ready Home Case Study, BPC Green Builders, Custom...  

Broader source: Energy.gov (indexed) [DOE]

Study, BPC Green Builders, Custom Home, New Fairfield, CT DOE Zero Energy Ready Home Case Study, BPC Green Builders, Custom Home, New Fairfield, CT Case study of a DOE Zero Energy...

482

DOE Zero Energy Ready Home Going Green and Building Strong: Building...  

Broader source: Energy.gov (indexed) [DOE]

1 Webinar (Text Version) DOE Zero Energy Ready Home Going Green and Building Strong: Building a FORTIFIED Home -- Part 1 Webinar (Text Version) Below is the text version of the...

483

Predicting School Readiness for Low-Income Children With Disability Risks Identified Early.  

E-Print Network [OSTI]

This study examined school readiness at kindergarten entry for low-income children whose disability indicators were identified before age 3. Data were collected as part ofthe Early Head Start Research and Evaluation ...

Jeon, Hyun-Joo; Peterson, Carla A.; Wall, Shavaun; Carta, Judith J.; Gayle, Luze; Eshbaugh, Elaine M.; Swanson, Mark

2011-01-01T23:59:59.000Z

484

DOE Zero Energy Ready Home Case Study: Palo Duro Homes, Albuquerque...  

Broader source: Energy.gov (indexed) [DOE]

Ready certified homes than any builder in the nation. One example home achieved a HERS score of HERS 55 without PV or HERS 15 with PV. The one-story, 2,654-ft2 production...

485

Green Technology Foresight as Instrument in Governance for Sustainability  

E-Print Network [OSTI]

activities. Also people in the fields of technology studies and technology assessment are discussing foresight, has occurred as part of this renewed and extended focus on technology foresight

486

Effects of Parent Expectations and Involvement on the School Readiness of Children in Head Start  

E-Print Network [OSTI]

EFFECTS OF PARENT EXPECTATIONS AND INVOLVEMENT ON THE SCHOOL READINESS OF CHILDREN IN HEAD START A Dissertation by KRYSTAL TISHA? COOK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of children enrolled in Head Start. The study examined how these iv parent variables were related to children?s school readiness, and differences between ethnic groups, gender groups, and level of risk. The study tested a model whereby the effect...

Cook, Krystal Tisha'

2010-10-12T23:59:59.000Z

487

Healy Clean Coal Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

488

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

489

DRAFT Doc. No. TDR-3001463-000 NGNP Technology Readiness Levels...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It may be necessary to provide a coating on the cable for thermal insulation and wear resistance during reactor accident conditions. Cable of this type should be available...

490

Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _

491

Industrial Process Heating - Technology Assessment  

Office of Environmental Management (EM)

materials, especially for heating corrosive fluids 306 Strength and corrosion of metallic components for structural and sensor protection 307 Coatings to...

492

Multicomponent Seismic Technology Assessment of  

E-Print Network [OSTI]

, and R. Boswell, eds., Natural gas hydrates--Energy resource potential and associated geologic hazards) in the Green Canyon area of the northern Gulf of Mexico were analyzed in this study. These expulsion features

Texas at Austin, University of

493

Industrial Process Heating - Technology Assessment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs |Industrial

494

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Centers Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic Universitys South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMRECs experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.