Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2 - Types of gasifier for synthetic liquid fuel production: design and technology  

Science Journals Connector (OSTI)

Abstract There are many successful commercial coal gasifiers. The basic form and concept details, the design of the gasifier internals, and the operation of commercial coal gasifiers are closely guarded as proprietary information. In fact, the production of gas from carbonaceous feedstocks has been an expanding area of technology. This chapter will present the different categories of gasification reactors as they apply to various types of feedstocks. Within each category there are several commonly known processes, some of which are in current use and some of which are in lesser use.

J.G. Speight

2015-01-01T23:59:59.000Z

2

Biogas Production Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biogas Production Technologies Ruihong Zhang, Professor Biological and Agricultural Engineering University of California, Davis Email: rhzhang@ucdavis.edu Biogas and Fuel Cell...

3

Hydrogen Production- Current Technology  

Energy.gov (U.S. Department of Energy (DOE))

The development of clean, sustainable, and cost-competitive hydrogen production processesis key to a viable future clean energy economy. Hydrogen production technologies fall into three general...

4

FCT Hydrogen Production: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to Current Technology to someone by E-mail Share FCT Hydrogen Production: Current Technology on Facebook Tweet about FCT Hydrogen Production: Current Technology on Twitter Bookmark FCT Hydrogen Production: Current Technology on Google Bookmark FCT Hydrogen Production: Current Technology on Delicious Rank FCT Hydrogen Production: Current Technology on Digg Find More places to share FCT Hydrogen Production: Current Technology on AddThis.com... Home Basics Current Technology Thermal Processes Electrolytic Processes Photolytic Processes R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology The development of clean, sustainable, and cost-competitive hydrogen

5

Technology's Impact on Production  

SciTech Connect

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

6

Property:Technology Type | Open Energy Information  

Open Energy Info (EERE)

Technology Type Technology Type Property Type Text Pages using the property "Technology Type" Showing 25 pages using this property. (previous 25) (next 25) M MHK Technologies/14 MW OTECPOWER + OTEC - Closed Cycle MHK Technologies/Aegir Dynamo + Point Absorber - Floating MHK Technologies/Anaconda bulge tube drives turbine + Oscillating Wave Surge Converter MHK Technologies/AquaBuoy + Point Absorber MHK Technologies/Aquanator + Cross Flow Turbine MHK Technologies/Aquantis + Axial Flow Turbine MHK Technologies/Archimedes Wave Swing + Point Absorber MHK Technologies/Atlantis AN 150 + Axial Flow Turbine MHK Technologies/Atlantis AR 1000 + Axial Flow Turbine MHK Technologies/Atlantis AS 400 + Axial Flow Turbine MHK Technologies/Atlantisstrom + Cross Flow Turbine MHK Technologies/BOLT Lifesaver + Oscillating Wave Surge Converter

7

Biogas Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation about UC Davis's biogas technologies and integration with fuel cells. Presented by Ruihong Zhang, UC Davis, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

8

Hydrogen Production - Current Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Technology Hydrogen Production - Current Technology The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future...

9

Production Technology | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Production Technology | National Nuclear Security Administration Production Technology | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Production Technology Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Production Technology Production Technology NNSA continues to assure the safety, security, and reliability of the

10

TEHNOMUS -New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine  

E-Print Network (OSTI)

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies (1) CMM : coordinate measuring machine - 1 - COMPARISON OF A MACHINE OF MEASUREMENT WITHOUT CONTACT AND A CMM(1) : OPTIMIZATION products, the process of measurement usually proceeds on a type of machine (for example CMM

Paris-Sud XI, Université de

11

International technology transfer, firm productivity and employment.  

E-Print Network (OSTI)

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

12

2011 Pathways to Commercial Success: Technologies and Products...  

Energy Savers (EERE)

1 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported...

13

2012 Pathways to Commercial Success: Technologies and Products...  

Energy Savers (EERE)

2 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported...

14

Buildings R&D Breakthroughs: Technologies and Products Supported...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program Buildings R&D Breakthroughs: Technologies and Products Supported by the...

15

2013 Pathways to Commercial Success: Technologies and Products...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported...

16

Technology development strategy for radical product meaning  

Science Journals Connector (OSTI)

Product meaning is important for consumers. Although there exists a substantial amount of research concerning product meaning, the issue that has centred on the relationship between technology and meaning has remained. In this paper, we examine how the companies conducted their technology development aimed at improving product specifications or generating new meanings (improving product languages) for consumers. To this end, we propose a framework that describes an association between technologies and meanings. A case study within the plasma display panel (PDP) industry raises the possibility that mainstream research has shifted from a focus on specifications to a focus on languages. Further, as the growing diffusion rate of PDP, as well as a quantitative analysis of patents described in this paper, illustrate that Japanese manufacturer Panasonic has engaged in both technological and design research concurrently. Results show that technological research and design research are mutually dependent.

Satoru Goto; Shuichi Ishida

2014-01-01T23:59:59.000Z

17

Novel membrane technology for green ethylene production.  

SciTech Connect

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L. (Energy Systems); ( CSE)

2008-01-01T23:59:59.000Z

18

Fuel Cell Technologies Program: Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, and biomass or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and hydroelectric power to split water. This great potential for diversity of supply is an important reason why hydrogen is such a promising energy carrier. Hydrogen can be produced at large central plants, semi-centrally, or in small distributed units located at or very near the point of use, such as at refueling stations or stationary power

19

Technology diffusion of energy-related products in residential markets  

SciTech Connect

Acceptance of energy-related technologies by end residential consumers, manufacturers of energy-related products, and other influential intermediate markets such as builders will influence the potential for market penetration of innovative energy-related technologies developed by the Department of Energy, Office of Building and Community Systems (OBCS). In this report, Pacific Northwest Laboratory reviewed the available information on technology adoption, diffusion, and decision-making processes to provide OBCS with a background and understanding of the type of research that has previously been conducted on this topic. Insight was gained as to the potential decision-making criteria and motivating factors that influence the decision-maker(s) selection of new technologies, and some of the barriers to technology adoption faced by potential markets for OBCS technologies.

Davis, L.J.; Bruneau, C.L.

1987-05-01T23:59:59.000Z

20

Fuel Cell Technologies Office: Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Photo of hydrogen researcher. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as natural gas and coal (with carbon sequestration); nuclear; biomass; and other renewable energy technologies, such as wind, solar, geothermal, and hydro-electric power. The overall challenge to hydrogen production is cost reduction. For cost-competitive transportation, a key driver for energy independence, hydrogen must be comparable to conventional fuels and technologies on a per-mile basis in order to succeed in the commercial marketplace. Learn more about DOE's hydrogen cost goal and the analysis used in projecting the future cost of hydrogen. The U.S. Department of Energy supports the research and development of a wide range of technologies to produce hydrogen economically and in environmentally friendly ways.

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technologies Office report on commercialization of fuel cell and hydrogen technologies and products supported by the program.

22

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technologies Office FY 2011 report on commercialization of fuel cell and hydrogen technologies and products.

23

Biodiesel Production Technology: August 2002--January 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

* NREL/SR-510-36244 * NREL/SR-510-36244 J. Van Gerpen, B. Shanks, and R. Pruszko Iowa State University D. Clements Renewable Products Development Laboratory G. Knothe USDA/NCAUR Biodiesel Production Technology August 2002-January 2004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 July 2004 * NREL/SR-510-36244 Biodiesel Production Technology August 2002-January 2004 J. Van Gerpen, B.Shanks, and R. Pruszko Iowa State University D. Clements Renewable Products Development Laboratory G. Knothe USDA/NCAUR NREL Technical Monitor: K. Shaine Tyson

24

Hydrogen Production: Overview of Technology Options, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Overview of technology options for hydrogen production, its challenges and research needs and next steps

25

Prehistoric Copper Production and Technological Reproduction  

E-Print Network (OSTI)

. Results indicate a long-term improvement in the technical proficiency of Valley metalworkers, accompanied1 Prehistoric Copper Production and Technological Reproduction in the Khao Wong Prachan Valley of change in prehistoric extractive metallurgical behaviour in the Khao Wong Prachan Valley of central

Paris-Sud XI, Université de

26

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

27

Fuel Cell Technologies Office: Biological Hydrogen Production Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Hydrogen Biological Hydrogen Production Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Facebook Tweet about Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Twitter Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Google Bookmark Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Delicious Rank Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on Digg Find More places to share Fuel Cell Technologies Office: Biological Hydrogen Production Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

28

2010 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technolgies Office report on commercialization of fuel cell and hydrogen technologies and products

29

A survey of alternative oxygen production technologies  

Science Journals Connector (OSTI)

Utilization of the Martian atmosphere for the production of fuel and oxygen has been extensively studied. The baseline fuel production process is a Sabatier reactor which produces methane and water from carbon dioxide and hydrogen. The oxygen produced from the electrolysis of the water is only half of that needed for methane-based rocket propellant and additional oxygen is needed for breathing air fuel cells and other energy sources. Zirconia electrolysis cells for the direct reduction of CO 2 are being developed as an alternative means of producing oxygen but present many challenges for a large-scale oxygen production system. The very high operating temperatures and fragile nature of the cells coupled with fairly high operating voltages leave room for improvement. This paper will survey alternative oxygen production technologies present data on operating characteristics materials of construction and some preliminary laboratory results on attempts to implement each.

Dale E. Lueck; Clyde F. Parrish; William J. Buttner; Jan M. Surma

2001-01-01T23:59:59.000Z

30

Examining properties of multiple product production technologies and profit functions  

E-Print Network (OSTI)

technology. Th1s duality result is found to not hold in the case of fixed allocatable inputs. Finally, an exposition is given of properties of the production technology and the profit funct1on 1mplying duality as stated by Lau (1978). After the properties...), but assumed what Lau ( 1972) calls direct separability between inputs and outputs in all of them. Studies considering aggregate agricultural output, such as that of Griliches and major theoretical works, such as that of Mundlak, have also assumed direct...

Nash, Elizabeth Kultgen

2012-06-07T23:59:59.000Z

31

Production engineering in geothermal technology: A review  

Science Journals Connector (OSTI)

Geothermal energy is abundant and renewable, but only a very small fraction can currently be converted commercially to electricity and heating value with today's technology. In recent years, the installed geothermal capacity worldwide has more than doubled. The increase in the use of geothermal energy is the result of a multi-disciplinary effort. Highlighted are some production engineering advances that have played a significant part in making geothermal a competitive renewable energy resource.

Darrell L. Gallup

2009-01-01T23:59:59.000Z

32

Development of Technology Roadmap for Remanufacturing Oriented Production Equipment  

Science Journals Connector (OSTI)

In order to identify sustainable technologies to meet sustainability challenges of 21st century, a technology roadmapping for remanufacturing oriented production equipment is developed. The roadmap was structured...

V. P. Cunha; I. Balkaya; J. Palacios; H. Rozenfeld

2011-01-01T23:59:59.000Z

33

2009 Pathways to Commercial Success: Technologies and Products...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program 2009 Pathways to Commercial Success:...

34

Novel Membrane Technology for Green Ethylene Production - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Find More Like This Return to Search Novel Membrane Technology for Green Ethylene Production Argonne National Laboratory Contact ANL About This Technology

Dehydrogenation1:...

35

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Twitter Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Google Bookmark Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Delicious Rank Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings on Digg Find More places to share Fuel Cell Technologies Office:

36

MHK Technologies/Floating Duck Type Device | Open Energy Information  

Open Energy Info (EERE)

Type Device Type Device < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating Duck Type Device.jpg Technology Profile Primary Organization Guangzhou Institute of Energy Conversion Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description Guangzhou Institute of Energy Conversion GIEC of Chinese Academy of Sciences CAS plans to build an isolated power system with renewable energy on Dawanshan Island Guangdong Province before August 2012 with total installed capacity of 500kW including 300kW from wave energy device and 200kW from wind turbine The design of 100kW floating duck type device charging process and special transporting boat has been completed and the scale prototype is testing Technology Dimensions

37

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

38

Technologies for Production of Heat and Electricity  

SciTech Connect

Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

Jacob J. Jacobson; Kara G. Cafferty

2014-04-01T23:59:59.000Z

39

Conversion Technologies for Advanced Biofuels Bio-Oil Production  

Energy.gov (U.S. Department of Energy (DOE))

RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels Bio-Oil Production.

40

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

(Fuel, fission product, and graphite technology)  

SciTech Connect

Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

Stansfield, O.M.

1990-07-25T23:59:59.000Z

42

Vehicle Technologies Office: Fact #264: April 21, 2003 Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 21, 4: April 21, 2003 Production of Ethanol and MTBE to someone by E-mail Share Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Facebook Tweet about Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Twitter Bookmark Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Google Bookmark Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Delicious Rank Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Digg Find More places to share Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on AddThis.com... Fact #264: April 21, 2003 Production of Ethanol and MTBE

43

Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 28, 2007 1: May 28, 2007 Biodiesel Production Facilities to someone by E-mail Share Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on Facebook Tweet about Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on Twitter Bookmark Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on Google Bookmark Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on Delicious Rank Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on Digg Find More places to share Vehicle Technologies Office: Fact #471: May 28, 2007 Biodiesel Production Facilities on AddThis.com... Fact #471: May 28, 2007 Biodiesel Production Facilities

44

1 Industrial Electron Accelerators type ILU for Industrial Technologies  

E-Print Network (OSTI)

1 Industrial Electron Accelerators type ILU for Industrial Technologies The present work describes industrial electron accelerators of the ILU family. Their main parameters, design, principle of action the pulse linear accelerators type ILU are developed and supplied to the industry. The ILU machines

45

New Oxygen-Production Technology Proving Successful | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oxygen-Production Technology Proving Successful Oxygen-Production Technology Proving Successful New Oxygen-Production Technology Proving Successful April 22, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon

46

Oil & Natural Gas Projects Exploration and Production Technologies | Open  

Open Energy Info (EERE)

Oil & Natural Gas Projects Exploration and Production Technologies Oil & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration and Production Technologies Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Oil & Natural Gas Projects Exploration and Production Technologies Citation U.S. Department of Energy. Oil & Natural Gas Projects Exploration and Production Technologies [Internet]. [cited 2013/10/15]. Available from: http://www.netl.doe.gov/technologies/oil-gas/Petroleum/projects/EP/Explor_Tech/P225.htm Retrieved from "http://en.openei.org/w/index.php?title=Oil_%26_Natural_Gas_Projects_Exploration_and_Production_Technologies&oldid=688583

47

Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 24, 6: February 24, 2003 Petroleum Product Prices Rise to someone by E-mail Share Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on Facebook Tweet about Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on Twitter Bookmark Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on Google Bookmark Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on Delicious Rank Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on Digg Find More places to share Vehicle Technologies Office: Fact #256: February 24, 2003 Petroleum Product Prices Rise on AddThis.com... Fact #256: February 24, 2003

48

Managing the integration of technology into the product development pipeline  

E-Print Network (OSTI)

Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

Barretto, Eduardo F., 1971-

2005-01-01T23:59:59.000Z

49

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

50

Fuel Cell Technologies Office: Biological Hydrogen Production Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Hydrogen Production Workshop Biological Hydrogen Production Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24-25, 2013, in Golden, Colorado. The workshop featured 29 participants representing academia, government, and national laboratories with expertise in the relevant fields. The objective of the Biological Hydrogen Production Workshop was to share information and identify issues, barriers, and research and development needs for biological hydrogen production to enable hydrogen production that meets cost goals. Proceedings 2013 Biological Hydrogen Production Workshop Final Report Presentations Introductory Session Fuel Cell Technologies Office Overview, Sara Dillich, DOE Fuel Cell Technologies Office

51

Agricultural R&D, technology and productivity  

Science Journals Connector (OSTI)

...irrational. It is the animal production systems that are a danger...where plantations (tea, rubber) and processors (tobacco...varietal development and seed production in less than half a dozen...redistribution rather than production. Adam Smith's invisible...

2010-01-01T23:59:59.000Z

52

Transfer-type products accompanying cold fusion reactions  

Science Journals Connector (OSTI)

Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of ? particles with large energies is discussed.

G. G. Adamian and N. V. Antonenko

2005-12-29T23:59:59.000Z

53

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

54

Production Well Performance Enhancement using Sonication Technology  

SciTech Connect

The objective of this project was to develop a sonic well performance enhancement technology that focused on near wellbore formation damage. In order to successfully achieve this objective, a three-year project was defined. The entire project was broken into four tasks. The overall objective of all this was to foster a better understanding of the mechanisms involved in sonic energy interactions with fluid flow in porous media and adapt such knowledge for field applications. The fours tasks are: Laboratory studies Mathematical modeling Sonic tool design and development Field demonstration The project was designed to be completed in three years; however, due to budget cuts, support was only provided for the first year, and hence the full objective of the project could not be accomplished. This report summarizes what was accomplished with the support provided by the US Department of Energy. Experiments performed focused on determining the inception of cavitation, studying thermal dissipation under cavitation conditions, investigating sonic energy interactions with glass beads and oil, and studying the effects of sonication on crude oil properties. Our findings show that the voltage threshold for onset of cavitation is independent of transducer-hydrophone separation distance. In addition, thermal dissipation under cavitation conditions contributed to the mobilization of deposited paraffins and waxes. Our preliminary laboratory experiments suggest that waxes are mobilized when the fluid temperature approaches 40C. Experiments were conducted that provided insights into the interactions between sonic wave and the fluid contained in the porous media. Most of these studies were carried out in a slim-tube apparatus. A numerical model was developed for simulating the effect of sonication in the nearwellbore region. The numerical model developed was validated using a number of standard testbed problems. However, actual application of the model for scale-up purposes was limited due to funding constraints. The overall plan for this task was to perlorm field trials with the sonication tooL These trials were to be performed in production and/or injection wells located in Pennsylvania, New York, and West Virginia. Four new wells were drilled in preparation for the field demonstration. Baseline production data were collected and reservoir simulator tuned to simulate these oil reservoirs. The sonication tools were designed for these wells. However, actual field testing could not be carried out because of premature termination of the project.

Adewumi, Michael A; Ityokumbul, M Thaddeus; Watson, Robert W; Eltohami, Eltohami; Farias, Mario; Heckman, Glenn; Houlihan, Brendan; Karoor, Samata Prakash; Miller, Bruce G; Mohammed, Nazia; Olanrewaju, Johnson; Ozdemir, Mine; Rejepov, Dautmamed; Sadegh, Abdallah A; Quammie, Kevin E; Zaghloul, Jose; Hughes, W Jack; Montgomery, Thomas C

2005-12-31T23:59:59.000Z

55

Sestar Technologies, LLC Revolutionar y Solar Energy Products  

E-Print Network (OSTI)

Sestar Technologies, LLC Revolutionar y Solar Energy Products Sestar Technologies, LLC (SESTAR) is developing revolutionary solar energy products that will be integral components in the ultimate solution to the world's current and future energy pro- grams. It will lead to paradigm shifts in a number of solar

Jawitz, James W.

56

A patent quality analysis for innovative technology and product development  

Science Journals Connector (OSTI)

Enterprises evaluate intellectual property rights and the quality of patent documents in order to develop innovative products and discover state-of-the-art technology trends. The product technologies covered by patent claims are protected by law, and ... Keywords: Back-propagation neural network, Patent indicator, Patent quality, Principal component analysis

Amy J. C. Trappey; Charles V. Trappey; Chun-Yi Wu; Chi-Wei Lin

2012-01-01T23:59:59.000Z

57

NETL: News Release - New Oxygen-Production Technology Proving Successful  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2009 22, 2009 New Oxygen-Production Technology Proving Successful Ceramic Membrane Enables Efficient, Cost-Effective Co-Production of Power and Oxygen Washington, D.C. -The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies. ITM Oxygen will enhance the performance of integrated gasification combined cycle (IGCC) power plants, as well as other gasification-based processes. The technology will also enhance the economics of oxy-fired combustion technologies, making it an attractive option for the capture of carbon dioxide from existing coal-fired power plants.

58

Products and Technologies | Department of Energy  

Energy Savers (EERE)

mechanisms for projects Project assistance Technology Deployment Image of a rooftop air conditioning unit with two skylights next to it and a blue sky with white clouds in...

59

Clean Energy Manufacturing Resources - Technology Full-Scale Production |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Full-Scale Production Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Clean Energy Manufacturing Resources - Technology Full-Scale Production Find resources to help you design a production and manufacturing process for a new clean energy technology or product. For full-scale production, other areas to consider include workforce development; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Design Production and Manufacturing Process Advanced Research Projects Agency: Tech-to-Market Resources - general tech-to-market (T2M) resources. DOE Advanced Manufacturing Office: Manufacturing Demonstration Facility - a collaborative manufacturing community that works to provide real data to

60

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program August 2010 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ...............................................................................................................................................................................v 1.0 Introduction ............................................................................................................................................................... 1-1 1.1 Organization of the FCT Program ..................................................................................................................

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Agricultural R&D, technology and productivity  

Science Journals Connector (OSTI)

...domestic product (GDP) rose from 56 per cent in 1980 to 65...population growth and per capita food availability would...agriculture is to meet world demand for both food and energy. This competition...former Soviet Union GDP gross domestic product...

2010-01-01T23:59:59.000Z

62

Climate VISION: Private Sector Initiatives: Forest Products: Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways AF&PA estimates that the forest products industry will reduce its greenhouse gas emissions intensity by 12% by 2012 relative to 2000 numbers. One of the main ways AF&PA anticipates that the industry will reduce its greenhouse gas emissions intensity is through implementation of new technologies from research and development programs. AF&PA has been participating in DOE's Industries of the Future program, a collaborative research and development partnership between DOE and the forest products industry. Through this program, AF&PA has participated in the development of a number of technologies aimed at cutting energy use, minimizing environmental impacts, and improving productivity in industry. If fully commercialized, these technologies could make the U.S. forest

63

Photographic lens manufacturing and production technologies  

E-Print Network (OSTI)

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

64

Methane Hydrate Production Technologies to be Tested on Alaska's North  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Production Technologies to be Tested on Alaska's Methane Hydrate Production Technologies to be Tested on Alaska's North Slope Methane Hydrate Production Technologies to be Tested on Alaska's North Slope October 24, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy, the Japan Oil, Gas and Metals National Corporation, and ConocoPhillips will work together to test innovative technologies for producing methane gas from hydrate deposits on the Alaska North Slope. The collaborative testing will take place under the auspices of a Statement of Intent for Cooperation in Methane Hydrates signed in 2008 and extended in 2011 by DOE and Japan's Ministry of Economy, Trade, and Industry. The production tests are the next step in both U.S. and Japanese national efforts to evaluate the response of gas hydrate reservoirs to alternative

65

A Realistic Technology and Engineering Assessment of Algae Biofuel Production  

E-Print Network (OSTI)

microalgae biofuel technologies for both oil and biogas production, provides an initial assessment of the US or wastewater treatment, (2) biofuel outputs--either biogas only or biogas plus oil, and (3) farm size

Quinn, Nigel

66

A High Efficiency Silicon Solar Cell Production Technology  

Science Journals Connector (OSTI)

BP Solar have developed a cost-effective production technology for the manufacture of high efficiency laser grooved buried grid (LGBG) crystalline silicon solar cells. The process has demonstrated 1718% ... a ne...

N. B. Mason; D. Jordan; J. G. Summers

1991-01-01T23:59:59.000Z

67

Fuel Cell Technologies Researcher Lightens Green Fuel Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Research funded by EEREs Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

68

12 - Biolubricant product groups and technological applications  

Science Journals Connector (OSTI)

Abstract: This chapter focuses on specific applications of biodegradable lubricants, both bio-based and from mineral origin. Biolubricants are attractive in both the industrial and automotive market segments although to a different extent. Consumer acceptance of these materials, ranging from total-loss oils to hydraulic fluids, gear lubrication oils, compressor and refrigeration oils, turbine oils, metalworking and machining fluids, to crankcase oils, food-processing oils and greases, depends largely on how well they perform during use. Minimum performance specifications are outlined per product group. Performance of biolubricants is frequently comparable to conventional products without environmental compatibility. Direct use of high-viscosity native vegetable oils as biolubricants is limited.

Jan C.J. Bart; Emanuele Gucciardi; Stefano Cavallaro

2013-01-01T23:59:59.000Z

69

Fuzzy Delphi method for evaluating hydrogen production technologies  

Science Journals Connector (OSTI)

The purpose of this research is to establish an evaluation model for selecting the most appropriate technology for development in Taiwan, based on 14 evaluation criteria. Due to the inherent uncertainty and imprecision associated with the mapping of decision makers perception to crisp values, linguistic variables are used to assess the weights of the criteria and the ratings of each technology with respect to each criterion. The criteria weights and technology ratings are collected through a seven-point linguistic scale using a Delphi questionnaire. The linguistic scores are then converted into fuzzy numbers, and a consensus of the decision makers opinions on weights and ratings is mathematically derived using fuzzy Delphi methodology. We have used the model to evaluate seven different hydrogen production technologies. The results indicate that hydrogen production via electrolysis by wind power and that via electrolysis by photovoltaic electricity are the two technologies that should be chosen for further development.

Pao-Long Chang; Chiung-Wen Hsu; Po-Chien Chang

2011-01-01T23:59:59.000Z

70

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

71

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

72

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

73

An Overview of Hydrogen Production Technologies  

SciTech Connect

Currently, hydrogen is primarily used in the chemical industry, but in the near future it will become a significant fuel. There are many processes for hydrogen production. This paper reviews reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase), pyrolysis, hydrogen from biomass, electrolysis and other methods for generating hydrogen from water, and hydrogen storage. In addition, desulfurization, water-gas-shift, and hydrogen purification methods are discussed. Basics of these processes are presented with a large number of references for the interested reader to learn more.

Holladay, Jamie D.; Hu, Jianli; King, David L.; Wang, Yong

2009-01-30T23:59:59.000Z

74

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

75

Productivity growth and biased technological change in hydroelectric dams  

Science Journals Connector (OSTI)

This paper analyses productivity growth and the nature of technical change in a sample of Portuguese hydroelectric generating plants over the period 2001 to 2008. In a first step, we employ the Luenberger productivity indicator to estimate and decompose productivity change. A Malmquist productivity index is also used for a comparative purpose. The results paint a picture of mixed productivity performance in the Portuguese energy sector. The first decomposition underlines that, in average, the productivity variation is explained by the technological change. Then, in a second step, we analyse the nature of this technical change by using the recent concept of parallel neutrality (Briec et al., 2006). We observe a global shift in the best practice frontier as well as in the evidence of input bias in technical change.

Walter Briec; Nicolas Peypoch; Hermann Ratsimbanierana

2011-01-01T23:59:59.000Z

76

Assessment of the magnesium primary production technology. Final report  

SciTech Connect

At current production levels, direct energy savings achievable in primary magnesium production are 1.2 milliquads of energy per annum. Were magnesium to penetrate the automotive market to an average level of 50 pounds per vehicle, the resultant energy savings at the production stage would be somewhat larger, but the resulting savings in gasoline would conserve an estimated 325 milliquads of energy per year. The principal barrier to more widespread use of magnesium in the immediate future is its price. A price reduction of magnesium of 10% would lead to widespread conversion of aluminum die and permanent mold castings to magnesium. This report addresses the technology of electrolytic and thermic magnesium production and the economics of expanded magnesium production and use.

Flemings, M.C.; Kenney, G.B.; Sadoway, D.R.; Clark, J.P.; Szekely, J.

1981-02-01T23:59:59.000Z

77

Leaching of Phase II Mercury Control Technology By-Products  

SciTech Connect

The U.S. EPA has issued a final regulation for control of mercury from coal-fired power plants. An NETL research, development and demonstration program under DOE/Fossil Energy Innovations for Existing Plants is directed toward the improvement of the performance and economics of mercury control from coal-fired plants. The current Phase II of the RD&D program emphasizes the evaluation of performance and cost of control technologies through slip-stream and full scale field testing while continuing the development of novel concepts. One of the concerns of the NETL program is the fate of the captured flue gas mercury which is transferred to the condensed phase by-product stream. These adulterated by-products, both ashes and FGD material, represent the greatest challenge to the DOE goal of increased utilization of by-products. The degree of stability of capture by-products and their potential for release of mercury can have a large economic impact on material sales or the approach to disposal. One of the considerations for mercury control technology is the potential trade-off between effective but temporary mercury capture and less effective but more permanent sequestration. As part of a greater characterization effort of Phase II facility baseline and control technology sample pairs, NETL in-house laboratories have performed aqueous leaching procedures on a select subset of the available sample pairs. This report describes batch leaching results for mercury, arsenic, and selenium.

Hesbach, P.A.; Kachur, E.K.

2007-07-01T23:59:59.000Z

78

APPLICATION OF HIGH TECHNOLOGY POLYMERS FOR THE IMMOBILIZATION AND SOLIDIFICATION OF COMPLEX LIQUID RADWASTE TYPES  

SciTech Connect

The Cold War era created a massive build-up of nuclear weapon stockpiles in the former Soviet Union and the United States. The primary objective during this period was the development of nuclear technologies for weapons, space and power with lack of attention to the impact of radioactive and hazardous waste products on the environment. Effective technologies for radioactive and hazardous waste treatment and disposal were not well investigated or promoted during the arms build-up; and consequently, environmental contamination has become a major problem. These problems in Russia and the United States are well documented. Significant amounts of liquid radwaste have existed since the 1950's. The current government of the Russian Federation is addressing the issues of land remediation and permanent storage of radwaste resulting from internal and external pressures for safe cleanup and storage. The Russian government seeks new technologies from internal sources and from the West that will provide high performance, long term stability, safe for transport and for long-term storage of liquid radwaste at a reasonable economic cost. With the great diversity of liquid chemical compositions and activity levels, it is important to note that these waste products cannot be processed with commonly used methods. Different techniques and materials can be used for this problem resolution including the use of polymer materials that are capable of forming chemically stable, solidified waste products. In 2001, the V.G. Khlopin Radium Institute (St. Petersburg, Russia) and Pacific World Trade (Indianapolis, Indiana) began an extensive research and test program to determine the effectiveness and performance of high technology polymers for the immobilization and solidification of complex liquid radwaste types generated by the Ministry of Atomic Energy (Minatom), Russia, organization. The high tech polymers used in the tests were provided by Nochar, Inc. (Indianapolis, Indiana).

Kelley, Dennis; Brunkow, Ward; Pokhitonov, Yuri; Starchenko, Vadim

2003-02-27T23:59:59.000Z

79

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

80

2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of an effort to identify and characterize commercial and emerging technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program.

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Cell Technologies Office: Electrolysis Production of Hydrogen from  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Electrolysis Production of Hydrogen from Wind and Hydropower Workshop Proceedings Wind and hydropower are currently being evaluated in the U.S. and abroad as electricity sources that could enable large volume production of renewable hydrogen for use in transportation and distributed power applications. To further explore this prospect the Fuel Cell Technologies Office, and the Wind and Hydropower Technologies Program at the Department of Energy held a workshop to bring together stakeholders from wind, hydropower, and the electrolysis industries on September 9-10, 2003. The main objectives of the workshop were to: 1) discuss with stakeholders their current activities related to hydrogen, 2) explore with industry opportunities for low-cost hydrogen production through integration between wind and hydropower, water electrolysis and the electricity grid, and 3) review and provide feedback on a current Department of Energy/National Renewable Energy Laboratory analysis efforts to study opportunities for wind electrolysis and other renewable electricity sources.

82

Attached cultivation technology of microalgae for efficient biomass feedstock production  

Science Journals Connector (OSTI)

The potential of microalgae biofuel has not been realized because of low productivity and high costs associated with the current cultivation systems. In this paper, an attached cultivation method was introduced, in which microalgae cells grew on the surface of vertical artificial supporting material to form algal film. Multiple of the algal films were assembled in an array fashion to dilute solar irradiation to facilitate high photosynthetic efficiency. Results showed that a broad range of microalgae species can grow with this attached method. A biomass productivity of 5080gm?2d?1 was obtained outdoors for Scenedesmus obliquus, corresponding to the photosynthetic efficiency of 5.28.3% (total solar radiation). This attached method also offers lots of possible advantages over traditional open ponds, such as on water saving, harvesting, contamination controlling and scale-up. The attached cultivation represents a promising technology for economically viable production of microalgae biofuels.

Tianzhong Liu; Junfeng Wang; Qiang Hu; Pengfei Cheng; Bei Ji; Jinli Liu; Yu Chen; Wei Zhang; Xiaoling Chen; Lin Chen; Lili Gao; Chunli Ji; Hui Wang

2013-01-01T23:59:59.000Z

83

Chapter 4 - Production Technology for Bioenergy Crops and Trees  

Science Journals Connector (OSTI)

Abstract New technologies for producing energy crops and trees based on fundamental studies have been developed to improve self-sufficiency in food and feed supplies in addition to achieving sustainable natural resources. Energy crops and trees with improved leaf growth, light interception of crop canopy, photosynthetic rate, lodging resistance, and saccharification efficiency of lignocellulose, among many other traits, need to be explored. DNA marker-assisted selection using genome information has been developed as a powerful tool for breeding new bioenergy crops and trees. In this chapter, the concept and basic technologies for producing biomass from herbaceous energy crops and trees, ecophysiological characteristics for high yield and biomass production, genetic analyses of the traits responsible for biomass production, and molecular breeding for improving these traits are discussed. The definitions of herbaceous energy crops for the first and second generations, agronomy and breeding technology for these crops are explained. Recent studies on woody cell wall formation and genetic improvements associated with biomass saccharification in energy crops and woods are introduced.

Tadashi Hirasawa; Taiichiro Ookawa; Shinya Kawai; Ryo Funada; Shinya Kajita

2014-01-01T23:59:59.000Z

84

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OFFICE Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office September 2013 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Office Notice This report is being disseminated by the Department of Energy. As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001(Public Law 106-554) and information quality guidelines issued by the Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

85

Abstract„Production of two types of superconducting  

NLE Websites -- All DOE Office Websites (Extended Search)

68271-AB 68271-AB Abstract submitted to the 17 th International Conf. on Magnet Technology, Geneva, Sept. 24-28, 2001 Test Results for Prototypes of the Twin Aperture Dipoles for the LHC Insertion Region* J. Muratore, M. Anerella, J. Cozzolino, G. Ganetis, A. Ghosh, R. Gupta, M. Harrison, A. Jain, A. Marone, S. Plate, J. Schmalzle, R. Thomas, P. Wanderer, E. Willen and K.C. Wu Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000 Abstract-The Superconducting Magnet Division at Brookhaven National Laboratory (BNL) is building 26 insertion region dipoles of various types for the Large Hadron Collider (LHC) at CERN. These 9.45 m-long, 8 cm aperture magnets use the same coil design as the arc dipoles for the Relativistic Heavy Ion Collider (RHIC) at BNL. The

86

Solar Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

87

Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology  

SciTech Connect

Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

88

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

89

Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Analysis Using the H2A v3 Model (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Production Analysis Using the H2A v3 Model (Text Version) on AddThis.com...

90

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network (OSTI)

Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...

Booker, G.; Robinson, J.

91

Recent Technological Developments in Industrialized Production of Housing  

Science Journals Connector (OSTI)

...Technology Review" article "Man-Centered Standards for Technology"8 called for the early development of such evaluation standards for the application of technologies...prefabrication of plumbing, electrical, and HVAC services in either utility panels or...

T. Y. Lin; S. D. Stotesbury

1970-01-01T23:59:59.000Z

92

Hydrogen and electricity production using microbial fuel cell-based technologies  

E-Print Network (OSTI)

1 Hydrogen and electricity production using microbial fuel cell-based technologies Bruce E. Logan/mol? ? #12;8 Energy Production using MFC technologies · Electricity production using microbial fuel cells · H to renewable energy #12;9 Demonstration of a Microbial Fuel Cell (MFC) MFC webcam (live video of an MFC running

Lee, Dongwon

93

Complex analysis of energy production technologies from solid biomass in the Ukraine  

Science Journals Connector (OSTI)

The results of the energetic, economic, and environmental analyses of technologies of energy production from solid biomass are considered. Examples of the introduction of the technology of the direct combustion o...

T. A. Zheliezna; O. I. Drozdova

2014-04-01T23:59:59.000Z

94

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production  

E-Print Network (OSTI)

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 addresses the following technical barriers from the Hydrogen Production section of the Hydrogen, Fuel Cells Photoelectrodes ." #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 2

95

Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

96

Energy Department Invests $20 Million to Advance Hydrogen Production and Delivery Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $20 million for ten new research and development projects that will advance hydrogen production and delivery technologies.

97

Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production and Use of Charcoal  

E-Print Network (OSTI)

Renewable and Appropriate Energy Laboratory Report Review of Technologies for the Production of Charcoal Production __________________________________5 The Petroleum Link developing nations. In this paper, we review the current status of biomass harvesting and transport

Kammen, Daniel M.

98

Long Tails vs. Superstars: The Effect of Information Technology on Product Variety and Sales Concentration Patterns  

E-Print Network (OSTI)

The Internet and related information technologies are transforming the distribution of product sales across products, and these effects are likely to grow in coming years. Both the Long Tail and the Superstar effect are ...

Brynjolfsson, Erik

99

Research of Fine Control Technology About the Tire Rubber Production Line Auxiliary Machine  

Science Journals Connector (OSTI)

Smelting auxiliary machine is an equipment which provide rubber matrix for tire rubber production. This paper describes a technology whichs ... powder state materials weighing automatic device on tire rubber production

Jin Chen; Rong-rong Zhang; Mao-lin Ji

2014-01-01T23:59:59.000Z

100

A Production Type GC Analysis System for Light Gases  

Science Journals Connector (OSTI)

......sonic, the gaseous combustion products are one...mixtures. In tests of hydrocarbon and metallic-hydrocarbon fuels the gas- eous combustion products which...of a coiled tube heat exchanger emersed...MIXTURES) ANALYSIS DATA; COLUMNS: SILICA......

R. C. Orth; H. B. Land

1971-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

102

Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert  

E-Print Network (OSTI)

Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces for continuous tensor product systems of Hilbert spaces introduced by ARVESON [4] for classifying E0-semigroups continuous tensor product systems of Hilbert spaces with measure types of distributions of random (closed

Liebscher, Volkmar

103

Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert  

E-Print Network (OSTI)

Random Sets and Invariants for (Type II) Continuous Tensor Product Systems of Hilbert Spaces for continuous tensor product systems of Hilbert spaces introduced by ARVESON [4] for classifying E 0 ­semigroups continuous tensor product systems of Hilbert spaces with measure types of distributions of random (closed

Liebscher, Volkmar

104

The use of advanced steam reforming technology for hydrogen production  

SciTech Connect

The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturing site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.

Abbishaw, J.B.; Cromarty, B.J. [ICI Katalco, Billingham (United Kingdom)

1996-12-01T23:59:59.000Z

105

Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review  

Science Journals Connector (OSTI)

Technical, Economical, and Climate-Related Aspects of Biochar Production Technologies: A Literature Review ... Bioenergy Unit, Ecofys, 81243 Mnchen, Germany ... For this reason, this paper summarizes the available peer-reviewed scientific literature (ISI Web of Knowledge) about the technological, economical, and climate-relevant aspects of carbonization technologies. ...

Sebastian Meyer; Bruno Glaser; Peter Quicker

2011-09-30T23:59:59.000Z

106

. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the  

E-Print Network (OSTI)

Vehicle Technology, the UI team has competed in the Clean Snowmobile Challenge for the past two years. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the National Institute for Advanced Transportation Technology TECH BRIEF March 2003

Kyte, Michael

107

Conversion Technologies for Advanced Biofuels ? Bio-Oil Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Renewable Energy eere.energy.gov 2 Dr. David C. Dayton Director, Chemistry and Biofuels Center for Energy Technology RTI International 2007 - present RTI International 1993...

108

Consumers' behavioural responses toward technology-based social products.  

E-Print Network (OSTI)

??This thesis examined the determinants of consumers use of emerging mental health services delivered via mobile phone technology, which promise to provide cost-effective psychotherapeutic support (more)

Schuster, Lisa

2013-01-01T23:59:59.000Z

109

Development of gas production type curves for coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists on methane production from the coal seams. The unique coal characteristic results in a dual-porosity system. (more)

Garcia Arenas, Anangela.

2004-01-01T23:59:59.000Z

110

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect

Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

2005-12-01T23:59:59.000Z

111

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect

Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

2005-10-01T23:59:59.000Z

112

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program April 2012 Table of Contents Executive Summary ����������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction���������������������������������������������������������������������������������������������������������������������������������������������������������������� 1-1

113

The Technology and Economies of Hydrogen Production from Fusion Reactors  

Science Journals Connector (OSTI)

The technology, economics, and environmental effects of producing synthetic fuels (H2 gas, H2 liquid, and methanol) based on fusion (CTR) reactors are assessed. Four United States energy systems (2020 A.D.) with ...

J. Powell; F. J. Salzano; W. A. Sevian

1975-01-01T23:59:59.000Z

114

Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity  

Science Journals Connector (OSTI)

Prior research concerning IT business value has established a link between firm-level IT investment and tangible returns such as output productivity. Research also suggests that IT is vital to intermediate processes such as those that produce intangible ... Keywords: IT business value, breakthrough innovation, information technology, innovation, knowledge production function, patents, productivity, research and development

Landon Kleis; Paul Chwelos; Ronald V. Ramirez; Iain Cockburn

2012-03-01T23:59:59.000Z

115

Visions on Energy Production Technologies for Finland up to 2030  

E-Print Network (OSTI)

of combined heat and power production (CHP) 1960 28% 28% 28% 31% 37% 50% 0.4 0.45 0.50 1.0 1.00.15-0.20 0 for a future plant Wood input Power output Heat production Total efficiency Power-to-heat ratio 150 MW 60 MW 70 plant Wood input 200 MW Power output 115 MW Heat production 77 MW Efficiencies, (LHV) Power District

116

United Nations Conference on Trade and Development Biofuel production technologies  

E-Print Network (OSTI)

...................................... 17 4.2 Net energy balances ..................................................... 6 4. United States corn-ethanol production and fraction of corn crop devoted to ethanol . 7 5. Sugar

117

Reactive Dehydration technology for Production of Fuels and Chemicals...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

118

Hydrogenases and Barriers for Biotechnological Hydrogen Production Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by John Peters, Montana State University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado.

119

E-Print Network 3.0 - air filtration technologies Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification Statement TECHNOLOGY TYPE: BAGHOUSE FILTRATION PRODUCTS APPLICATION: CONTROL OF PM2... .5 EMISSIONS BY BAGHOUSE FILTRATION PRODUCTS TECHNOLOGY NAME: QG061...

120

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels .  

E-Print Network (OSTI)

??This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. (more)

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transitioning technology from R&D to production  

E-Print Network (OSTI)

Corporate research and development (R&D) drives progress in the high-tech industries. Companies that advance the state-of-the-art in product performance enjoy significant advantages over the competition. However, although ...

Pulitzer, Seward Webb, 1974-

2008-01-01T23:59:59.000Z

122

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: NorthStar Medical Technologies LLC, Commercial Domestic 9: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

123

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas.

124

A Novel, Green Technology for the Production of Aromatic Thiol from Aromatic Sulfonyl Chloride  

E-Print Network (OSTI)

Functional Theory (DFT), a quantum mechanical method, was used to investigate the new aromatic thiol production technology at the molecular level in aspects including reaction species adsorption and transition state determination. Plant design methods...

Atkinson, Bradley R.

2010-01-16T23:59:59.000Z

125

Monocrystalline Silicon Sheet Production for Solar Cells by Advanced Ingot Technology  

Science Journals Connector (OSTI)

Recent technological advances in Czochralski crystal growth and ingot wafering by I.D. slicing have improved the economic picture of mono-crystalline sheet material production considerably to the extent that ingo...

G. Fiegl

1981-01-01T23:59:59.000Z

126

Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis  

SciTech Connect

A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

Ringer, M.; Putsche, V.; Scahill, J.

2006-11-01T23:59:59.000Z

127

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: NorthStar Medical Technologies LLC, Commercial Domestic 29: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

128

Mass production of high efficiency selective emitter crystalline silicon solar cells employing phosphorus ink technology  

Science Journals Connector (OSTI)

Abstract Phosphorus ink technology has been demonstrated as a simple and cheap method to realize selective emitter (SE) crystalline silicon solar cells through mass production in a professional photovoltaic company. We have achieved an average conversion efficiency (?) of 19.01% with peak ? of 19.27% for the SE solar cells based on commercial-grade p-type silicon substrate, much higher than that of the homogeneous emitter counterparts whose average ? is 18.56%. The standard deviation of the performance for these SE solar cells is also smaller, indicating better repeatability of the phosphorus ink SE technology. Moreover, the SE silicon solar cells can well adapt to various Ag pastes while preserving high cell performance, which offers an opportunity to choose a cheap Ag paste as front metallization material. With the aid of PC1D, we have shown that the ? of the SE solar cells can be further improved as the sheet resistance in the illuminated area increases from the present value of 70 to 120?/?.

Sihua Zhong; Wenzhong Shen; Feng Liu; Xiang Li

2013-01-01T23:59:59.000Z

129

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

130

The development of innovative technologies and products for organic fruit production. An integrated project.  

E-Print Network (OSTI)

The production of organic fruits is becoming progressivelytechnical inputs for organic fruit productions, focused tothe three major Polish fruit crops (apple, strawberry and

Malusa, Eligio; Sas, Lidia

2009-01-01T23:59:59.000Z

131

Roadmap: Music Technology Music Production Bachelor of Science [CA-BS-MUST-MUSP  

E-Print Network (OSTI)

Roadmap: Music Technology ­ Music Production ­ Bachelor of Science [CA-BS-MUST-MUSP] College of Arts School of Music Catalog Year: 2012-2013 Page 1 of 3 | Last Updated: 5-Oct-12/JS This roadmap 1 C- See note 2 on page 3 JMC 23030 Basic Electronic Media Video Production 3 #12;Roadmap: Music

Sheridan, Scott

132

Roadmap: Music Technology Music Production Bachelor of Science [CA-BS-MUST-MUSP  

E-Print Network (OSTI)

Roadmap: Music Technology ­ Music Production ­ Bachelor of Science [CA-BS-MUST-MUSP] College of Arts School of Music Catalog Year: 2013-2014 Page 1 of 3 | Last Updated: 28-Feb-13/JS This roadmap 1 C- See note 2 on page 3 JMC 23030 Basic Electronic Media Video Production 3 #12;Roadmap: Music

Sheridan, Scott

133

5 SEPTEMBER 2014 VOL 345 ISSUE 6201 1195SCIENCE sciencemag.org/products LIFE SCIENCE TECHNOLOGIES  

E-Print Network (OSTI)

5 SEPTEMBER 2014 � VOL 345 ISSUE 6201 1195SCIENCE sciencemag.org/products LIFE SCIENCE TECHNOLOGIES NEW PRODUCTS: SAMPLE PREP Produced by the Science/AAAS Custom Publishing Office NGS Library Prep MagSi-NGSPREP is a magnetic, bead- based tool that offers an efficient solution for DNA cleanup and size selection in next

Napp, Nils

134

Role prioritization of hydrogen production technologies for promoting hydrogen economy in the current state of China  

Science Journals Connector (OSTI)

Abstract Hydrogen production technologies play an important role in the hydrogen economy of China. However, the roles of different technologies played in promoting the development of hydrogen economy are different. The role prioritization of various hydrogen production technologies is of vital importance for the stakeholders/decision-makers to plan the development of hydrogen economy in China and to allocate the finite R&D budget reasonably. In this study, DPSIR framework was firstly used to identify the key factors concerning the priorities of various hydrogen production technologies; then, a fuzzy group decision-making method by incorporating fuzzy AHP and fuzzy TOPSIS was proposed to prioritize the roles of different technologies. The proposed method is capable of allowing multiple groups of stakeholders/decision-makers to participate in the decision-making and addressing problems with uncertainty and imprecise information. The prioritization results by using the proposed method demonstrated that the technologies of coal gasification with CO2 capture and storage and hydropower-based water electrolysis were regarded as the two most important hydrogen production pathways for promoting the development of hydrogen economy in China among the five assessed technologies.

Jingzheng Ren; Suzhao Gao; Shiyu Tan; Lichun Dong; Antonio Scipioni; Anna Mazzi

2015-01-01T23:59:59.000Z

135

U.S. Crude Oil Production Forecast-Analysis of Crude Types  

Gasoline and Diesel Fuel Update (EIA)

oil production by crude type as it would be delivered from well-site or lease storage tanks. Once the oil enters transportation and distribution systems, it may be commingled...

136

MHK Technologies/SMART Duofloat | Open Energy Information  

Open Energy Info (EERE)

Colombia SHP *MHK ProjectsMunich Germany SHP Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production ...

137

MHK Technologies/SMART Monofloat | Open Energy Information  

Open Energy Info (EERE)

Peru SHP *MHK ProjectsRosenheim Germany SHP Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9: Commercial-Scale Production ...

138

RICOH FT MODELS PRODUCT ASU STOCK # FT 3013/3213/3513/3713 TONER TYPE 320 CP502006  

E-Print Network (OSTI)

RICOH FT MODELS PRODUCT ASU STOCK # FT 3013/3213/3513/3713 TONER TYPE 320 CP502006 DEVELOPER TYPE 310 CP502027 FT 3113/3313 TONER TYPE 310 CP502005 DEVELOPER TYPE 310 CP502027 FT 3320 TONER TYPE 3300 CP502025 DEVELOPER TYPE 3300 CP502026 FT 4415/4418/4421/4220/4222/4215 TONER TYPE 410 CP502028

Rhoads, James

139

Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints  

E-Print Network (OSTI)

can produce a bundle of goods out of many possibilities e.g., a dairy can either produce ice- creams, each producer has a convex, constant-returns- to-scale, technology. In particular, this means that it is not possible to produce something from nothing. At a given price, the producer picks a technologically feasible

Varadarajan, Kasturi R.

140

Productivity analysis and technology adoption for livestock in Tanzania  

E-Print Network (OSTI)

PRODUCTIVITY Al ALYSIS AND TECNNOLOGY ADOPTION FOR LIVESTOCK IN TANZANIA A Thesis by JAI"UES 1~V&iBUGU NJUKIA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for rhe degree of MASTER... OF SCIENCE December 1977 Major Subject: Agricultural Economics PRODUCTIVI1Y ANALYSIS AND TECNNOLOGY ADOPTIOiN FOR LIVESTOCK IiN TANZANIA A Thesis by JAMES WAMBVGU NJDKIA Approved as to style snd content by: @) ~ (1 ead of Department) (Member...

Njukia, James Wambugu

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Product symbolic status: development of a scale to assess different product types  

E-Print Network (OSTI)

for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Charles D. Samuelson Committee Members, Stephanie C. Payne Larry G. Gresham James H. Leigh Head of Department, William S. Rholes August 2005 Major... International University Chair of Advisory Committee: Dr. Charles Samuelson The literature on status, product symbolism, product involvement, and reference group influence is reviewed to conceptually define the Product Symbolic Status construct...

Wright, James Arthur

2006-10-30T23:59:59.000Z

142

Fractionation of reformate: A new variant of gasoline production technology  

SciTech Connect

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

143

Introduction: technological innovation and productivity growth: a perspective after the burst of the IT bubble  

Science Journals Connector (OSTI)

This paper considers the relationship between technological innovation and productivity growth and provides a unified framework of reference to read and interpret the papers included in this issue. As we have come to understand more and more about the complex relationship between technological innovation and productivity, it is also true that the importance attributed to technological change has shifted considerably over the last few years. From the ''frustrating years'' of the productivity slowdown, to the euphoria of the IT bubble, to the current state of somewhat scepticism in which technological change as an economic issue has come to look, if not quite irrelevant, like taking second-stage to other concerns. This paper provides a brief overview of these shifts, but then moves to a review of the current state of knowledge, based on both conceptual and empirical findings. Research on innovation and productivity has been vibrant, as we hope to show, and has produced illuminating insights, with intellectual and practical policymaking relevance. After reviewing some of these research results, the paper concludes by introducing the remaining papers in this issue, which focus on critically relevant aspects of the emerging network society. It is hoped that these papers will add to the current level of scholarship, and will contribute to expanding our knowledge about the relationship between technological innovation and productivity growth in the network society.

Pedro Conceicao; Manuel V. Heitor

2003-01-01T23:59:59.000Z

144

Clean coal technology. Coal utilisation by-products  

SciTech Connect

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

145

Advances in ion transport membrane technology for Syngas production  

Science Journals Connector (OSTI)

Abstract Ceramic, ion transport membranes for the production of Syngas (ITM Syngas) produce high pressure synthesis gas in a single unit operation from low pressure air and pre-reformed natural gas. Oxygen transport through ITM Syngas membranes occurs through a series of processes, including solid phase oxygen anion diffusion through the dense membrane and surface reactions on the air and reducing sides of the membrane. This paper focuses on the effect of adding porous layers to the syngas side or both sides of the membrane to increase the available surface area for the surface reactions. The highest fluxes are achieved by increasing the surface area on both sides of the membrane, indicating that both surface reactions are a significant resistance to oxygen transport.

C.F. Miller; Jack Chen; M.F. Carolan; E.P. Foster

2014-01-01T23:59:59.000Z

146

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Seam Well Completion Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Strategic Center for Natural Gas September 2003 DOE/NETL-2003/1193 Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production U.S. Department of Energy National Energy Technology Laboratory (NETL) (Strategic Center for Natural Gas) DOE/NETL-2003/1193 September 2003 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

147

DOE Selects Projects to Advance Technologies for the Co-Production of Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Technologies for the Co-Production Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks DOE Selects Projects to Advance Technologies for the Co-Production of Power and Hydrogen, Fuels or Chemicals from Coal-Biomass Feedstocks August 18, 2010 - 1:00pm Addthis Washington, DC - Eight projects that will focus on gasification of coal/biomass to produce synthetic gas (syngas) have been selected for further development by the U.S. Department of Energy (DOE). The total value of the projects is approximately $8.2 million, with $6.4 million of DOE funding and $1.8 million of non-Federal cost sharing. Syngas is a mixture of predominantly carbon monoxide and hydrogen which can subsequently be converted either to power, fuels, or chemicals. The

148

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

149

Sample Contract Language for Information Technology Using Energy-Efficient Products  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INFORMATION TECHNOLOGY USING ENERGY- INFORMATION TECHNOLOGY USING ENERGY- EFFICIENT PRODUCTS Section C - Performance Work Statement/Descriptions, Specifications The Contractor shall comply with Sections 524 and Sections 525 of the Energy Independence and Security Act of 2007; Section 104 of the Energy Policy Act of 2005; Executive Order 13514, "Federal Leadership in Environmental, Energy, and Economic Performance," dated October 5, 2009; Executive Order 13423, "Strengthening Federal Environmental, Energy, and Transportation Management," dated

150

Sample Contract Language for Information Technology Using Energy-Efficient Products  

NLE Websites -- All DOE Office Websites (Extended Search)

INFORMATION TECHNOLOGY USING ENERGY- INFORMATION TECHNOLOGY USING ENERGY- EFFICIENT PRODUCTS Section C - Performance Work Statement/Descriptions, Specifications The Contractor shall comply with Sections 524 and Sections 525 of the Energy Independence and Security Act of 2007; Section 104 of the Energy Policy Act of 2005; Executive Order 13514, "Federal Leadership in Environmental, Energy, and Economic Performance," dated October 5, 2009; Executive Order 13423, "Strengthening Federal Environmental, Energy, and Transportation Management," dated

151

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRACER DETECTION TECHNOLOGY CORP. TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY 3463 MAGIC DRIVE, SUITE T-19 SAN ANTONIO, TX 78229 March 29, 2009 Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW. Washington, DC 20585. GC-62@hq.doe.gov ATTN: TECHNOLOGY TRANSFER QUESTIONS. Response to Request for Information - Federal Register "The Costs and Benefits of Dealing with Federal Laboratories" This "white paper" is intended to deal constructively with issues relating to technology transfer and interaction of small businesses with federal laboratories, and should be considered a response to #6 (other). As a small businessman and entrepreneur engaged in the

152

TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY  

NLE Websites -- All DOE Office Websites (Extended Search)

TRACER DETECTION TECHNOLOGY CORP. TRACER DETECTION TECHNOLOGY CORP. PRODUCTS AND SERVICES FOR CORPORATE AND GOVERNMENT SECURITY 3463 MAGIC DRIVE, SUITE T-19 SAN ANTONIO, TX 78229 March 29, 2009 Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW. Washington, DC 20585. GC-62@hq.doe.gov ATTN: TECHNOLOGY TRANSFER QUESTIONS. Response to Request for Information - Federal Register "The Costs and Benefits of Dealing with Federal Laboratories" This "white paper" is intended to deal constructively with issues relating to technology transfer and interaction of small businesses with federal laboratories, and should be considered a response to #6 (other). As a small businessman and entrepreneur engaged in the

153

Are multiple parton interactions important at high energies? New types of hadrons production processes  

E-Print Network (OSTI)

Hadrons interaction at high energies is carried out by one color gluon exchange. All quarks and gluons contained in colliding hadrons take part in interaction and production of particles. The contribution of multiple parton interactions is negligible. Multiple hadrons production at high energies occurs only in three types of processes. The first process is hadrons production in gluon string, the second is hadrons production in two quark strings and the third is hadrons production in three quark strings. In proton-proton interaction production of only gluon string and two quark strings is possible. In proton-antiproton interaction production of gluon string, two quark strings and three quark strings is possible. Therefore multiplicity distributions in proton-proton and proton-antiproton interactions are different.

V. A. Abramovsky

2009-11-25T23:59:59.000Z

154

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

155

When innovativeness in form matters: the joint impact of form innovativeness and expected innovativeness type on product evaluations over time  

E-Print Network (OSTI)

assessment or it could be based on the technology involved in the product or the usage or benefits that the product offers. The confounding issue is that the researcher simply does not know what the respondent is considering when thinking about overall.... Meanwhile, innovativeness in product technology can be implemented in new products to provide improvements in performance and increased benefits to consumers (Danneels and Kleinschmidt 2001; Shrivastava and Souder 1987). This, in turn, can provide a...

Kroff, Michael William

2007-09-17T23:59:59.000Z

156

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect

Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential

Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

2005-12-01T23:59:59.000Z

157

Computer analyses for the design, operation and safety of new isotope production reactors: A technology status review  

SciTech Connect

A review is presented on the currently available technologies for nuclear reactor analyses by computer. The important distinction is made between traditional computer calculation and advanced computer simulation. Simulation needs are defined to support the design, operation, maintenance and safety of isotope production reactors. Existing methods of computer analyses are categorized in accordance with the type of computer involved in their execution: micro, mini, mainframe and supercomputers. Both general and special-purpose computers are discussed. Major computer codes are described, with regard for their use in analyzing isotope production reactors. It has been determined in this review that conventional systems codes (TRAC, RELAP5, RETRAN, etc.) cannot meet four essential conditions for viable reactor simulation: simulation fidelity, on-line interactive operation with convenient graphics, high simulation speed, and at low cost. These conditions can be met by special-purpose computers (such as the AD100 of ADI), which are specifically designed for high-speed simulation of complex systems. The greatest shortcoming of existing systems codes (TRAC, RELAP5) is their mismatch between very high computational efforts and low simulation fidelity. The drift flux formulation (HIPA) is the viable alternative to the complicated two-fluid model. No existing computer code has the capability of accommodating all important processes in the core geometry of isotope production reactors. Experiments are needed (heat transfer measurements) to provide necessary correlations. It is important for the nuclear community, both in government, industry and universities, to begin to take advantage of modern simulation technologies and equipment. 41 refs.

Wulff, W.

1990-01-01T23:59:59.000Z

158

Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector  

E-Print Network (OSTI)

Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile 1980 in the automobile industry and the trade-offs faced when choosing between fuel economy, weight little over the past 25 years to incentivize increases in pas- senger automobile fuel economy. Corporate

Rothman, Daniel

159

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

160

Strong permanent magnets provide a backbone technology required many products, including computers, electric cars, and  

E-Print Network (OSTI)

, electric cars, and wind-powered generators. Currently, the strongest permanent magnets contain rare earth for most technologies requiring permanent magnets, due to their high energy product and coercivity. However, and the extreme price volatility in recent years have led scientists to seek alternative formulas for permanent

McQuade, D. Tyler

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

162

Approaches for Identifying Consumer Preferences for the Design of Technology Products: A Case Study of Residential Solar Panels  

E-Print Network (OSTI)

This paper investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential photovoltaic ...

Chen, Heidi Q.

163

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network (OSTI)

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

164

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

165

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

166

Scalable serum-free production of recombinant adeno-associated virus type 2 by transfection of 293 suspension cells  

Science Journals Connector (OSTI)

Recombinant adeno-associated virus (rAAV) has emerged in recent years as a promising gene therapy vector that may be used in the treatment of diverse human diseases. The major obstacle to broadening the usage of rAAV vectors remains the limited capacity of available production systems to provide sufficient rAAV quantities for preclinical and clinical trials. The impracticality of expanding commonly used adherent cell lines represents a limitation to large-scale production. This paper describes successful productions of rAAV type 2 using suspension-growing human embryonic kidney (HEK293) cells in serum-free medium. The developed process, based on triple transfection employing polyethylenimine (PEI) as DNA transporter, allowed for a serum-free production of AAV, yielding viral vector titer up to 4.5נ1011 infectious viral particles (IVP) in a 3.5-L bioreactor. A maximum ratio of VG:IVP in the order of 200:1 was obtained, indicating the efficient encapsidation of viral vectors in HEK293 cells. The effect of varying the ratio of three plasmids and the influence of cell density at transfection were studied. The conditioned medium did not limit or inhibit the rAAV production; therefore, the elimination of the medium exchange step before or after transfection greatly simplified the scale-up of rAAV production. The cell-specific viral titers obtained in bioreactor suspension cultures were similar or higher than those obtained with control adherent cell cultures which further supported the scalability of the process. From multiple aspects including process simplicity, scalability, and low operating costs, this transfection method appears to be the most promising technology for large-scale production of rAAV.

Yves Durocher; Phuong Lan Pham; Gilles St-Laurent; Danielle Jacob; Brian Cass; Parminder Chahal; Cara J. Lau; Josphine Nalbantoglu; Amine Kamen

2007-01-01T23:59:59.000Z

167

Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Long-term commercialization approach with first products first Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop Washington, DC Glenn Rambach August 11, 2011 Potential market area for fuel cells (or other power plants). Defined by peak power vs. cost per unit power capacity (W vs. $/kW) for typical applications currently satisfied by legacy technologies. Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Less difficult Less difficult (smaller units) (cost tolerant market) Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Range of application size and specific cost that all can be commercially satisfied

168

Technology roadmapping for mature industries: 2010??2050 global cement product roadmap  

Science Journals Connector (OSTI)

This paper demonstrates the use of a technology roadmap to create a holistic picture of the movement in a mature industry. Not only does it also help the cement manufacturers in mature and emerging markets, but also balances between market pull and technology push at a commercialised scale. The roadmap concept can assist any organisation to address three key strategic questions: where the company aims to go, where the status quo of the company and how the company will achieve its strategic intent goals. Thus, in this research, we illustrate the evolution of cement product from present to 2050 through the existing industrial literature, analysing forces, trends, impacts and developing a global cement product roadmap. The roadmap covers a wide range of cement products.

Tugrul U. Daim; Nuttavut Intarode

2011-01-01T23:59:59.000Z

169

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

170

AEO2011: Coal Production by Region and Type | OpenEI  

Open Energy Info (EERE)

by Region and Type by Region and Type Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 140, and contains only the reference case. The unit of measurement in this dataset is million short tons. The data is broken down into northern Appalachia, central Appalachia, southern Appalachia, eastern interior, western interior, gulf, Dakota medium, western montana, Wyoming, Rocky Mountain, Arizona/New Mexico and Washington/Alaska. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO Coal Production EIA Data application/vnd.ms-excel icon AE2011: Coal Production by Region and Type- Reference Case (xls, 122.3 KiB)

171

Scale-up and Technology Transfer of Protein-based Plastic Products  

SciTech Connect

Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

Grewell, David

2008-12-08T23:59:59.000Z

172

A macroscopic technological perspective on lithic production from the Early to Late Pleistocene in the Hanshui River Valley, central China  

Science Journals Connector (OSTI)

Abstract The nature and variability of Chinese Paleolithic culture remain unclear because the method of studying lithic industries has been essentially typological, and few regions have been intensively researched. A technological and techno-functional methodology provides a new perspective for exploring the cognitive modes of hominids and interpreting the intra and inter-regional homogeneity and variability of Paleolithic cultures. Over the last few decades, numerous Paleolithic sites with stone artifacts were excavated in the Hanshui River Valley. Based on a new methodology and recent discoveries, this paper reviews the Paleolithic sites of the Hanshui River Valley and studies representative industries to investigate regional lithic production and human behaviors. In terms of operative schemes, dbitage and faonnage coexisted at nearly all sites and showed continuity and stability throughout the Pleistocene. For dbitage, the Type C was present in nearly all sites. For faonnage, operative scheme 1 (unifacially-knapped on matrix of simple bevel) was predominant. The operative schemes of both dbitage and faonnage were extremely similar in that great emphasis was placed on the selection of natural technical characters rather than on intentional preparation. For inter-regional variability, the percentage of bifaces was much lower (Valley and those of the West. Regarding intra-regional variability, the technological and techno-functional method provides a new perspective for interpreting the variability of hominids' techno-cognitive modes during lithic production. More extensive dating analysis would enable the construction of a more detailed chronological sequence of the Hanshui River Valley.

Yinghua Li; Xuefeng Sun; Erika Bodin

2014-01-01T23:59:59.000Z

173

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

174

Coupled Physical/Chemical and Biofiltration Technologies to Reduce Air Emissions from Forest Products Industries  

SciTech Connect

The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDA Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.

Gary D. McGinnis

2001-12-31T23:59:59.000Z

175

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

176

,"Crude Oil and Petroleum Products Total Stocks Stocks by Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Stocks Stocks by Type" Total Stocks Stocks by Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","9/2013","1/15/1956" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_stoc_typ_a_ep00_sae_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_stoc_typ_a_ep00_sae_mbbl_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

177

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

178

Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach  

Science Journals Connector (OSTI)

Abstract As the number of new products developed by new technologies has increased, the importance of the commercialization of new technology products has become crucial to manufactures in the successful delivery of valuable new products and services. This study classified success factors for commercialization of new products and analyzed which factors should be primarily considered. Based on the literature review and Delphi method, we identified four decision areas and further prioritized the sixteen factors under a hierarchy model structured by fuzzy AHP (analytic hierarchy process) approach. The FAHP is conducted by 111 R&D and business experts working at the worlds major players in machinery industry; using the priorities of success factors derived by FAHP, we devise an example of commercialization assessment model. The paper drives the assessment initiatives of the new product development in manufactures and provides them with practical implications about the commercialization of new technology product.

Jaemin Cho; Jaeho Lee

2013-01-01T23:59:59.000Z

179

Long-Term Column Leaching of Phase II Mercury Control Technology By-Products  

SciTech Connect

An NETL research, development and demonstration program under DOE/Fossil Energy Innovations for Existing Plants is directed toward the improvement of the performance and economics of mercury control from coal-fired plants. The current Phase II of the RD&D program emphasizes the evaluation of performance and cost of control technologies through slip-stream and full scale field testing while continuing the development of novel concepts. One of the concerns of the NETL program is the fate of the captured flue gas mercury which is transferred to the condensed phase by-product stream. The stability of mercury and any co-captured elements in the by-products could have a large economic impact if it reduced by-product sales or increasing their disposal costs. As part of a greater characterization effort of Phase II facility baseline and control technology sample pairs, NETL in-house laboratories have performed continuous leaching of a select subset of the available sample pairs using four leachants: water (pH=5.7), dilute sulfuric acid (pH=1.2), dilute acetic acid (pH=2.9), and sodium carbonate (pH=11.1). This report describes results obtained for mercury, arsenic, and selenium during the 5-month leaching experiments.

Schroeder, K.T.; Cardone, C.R.; White, Fredrick; Rohar, P.C.; Kim, A.G

2007-07-01T23:59:59.000Z

180

Tritium production potential of beam research and magnetic fusion program technologies  

SciTech Connect

Regular replenishment of tritium in the nuclear weapons stockpile is essential to maintain our nuclear deterrent. Nuclear reactor facilities presently used for the production of tritium are aging, and their operation is being curtailed awaiting the repairs and upgrades needed to meet modern standards of safety and environment. To provide improved capability in the future, DOE plans to construct a new production reactor. Alternatives to nuclear reactor methods for the production of tritium, mainly electrically-driven accelerator or fusion systems, have been proposed many times in the past. Given the critical national security implications of maintaining adequate tritium production facilities, it is clearly worthwhile for political decision-makers to have a clear and accurate picture of the technical options that could be made available at various points in the future. The goal of this white paper is to summarize available technical information on a set of non-nuclear-reactor options for tritium production with a minimum of advocacy for any one system of implicit assumptions about politically desirable attributes. Indeed, these various options differ considerably in aspects such as the maturity of the technology, the development cost and timescales required, and the capital and operating costs of a typical ''optimized'' facility.

Lee, J.D. (comp.)

1989-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Efficiency of Gas-to-Liquids Technology with Different Synthesis Gas Production Methods  

Science Journals Connector (OSTI)

The design and optimization of a gas-to-liquids technology (GTL) is considered, mostly from the view of an optimal choice of a synthesis gas (syngas) production method. ... If the tail gas is not enough, an additional portion of the natural gas is burned. ... The temperature of the flue gases passing from the radiation chamber of the tubular furnace to the convection chamber is taken as equal to 1150 C, which allows proper calculation of required amount of gas supplied to the burner. ...

Ilya S. Ermolaev; Vadim S. Ermolaev; Vladimir Z. Mordkovich

2014-02-05T23:59:59.000Z

182

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

183

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

184

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

185

Preliminary design and estimate of capital and operating costs for a production scale application of laser decontamination technology  

SciTech Connect

The application of laser ablation technology to the decontamination of radioactive metals, particularly the surfaces of equipment, is discussed. Included is information related to the design, capital and operating costs, and effectiveness of laser ablation technology, based on commercial excimer and Nd:YAG lasers, for the decontamination of production scale equipment.

Pang, Ho-ming; Edelson, M.C.

1994-08-06T23:59:59.000Z

186

FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

FutureGen FutureGen Technologies for Carbon Capture and Storage and Hydrogen and Electricity Production Office of Fossil Energy U. S. Department of Energy Washington, DC June 2, 2003 Lowell Miller, Director, Office of Coal & Power Systems 24-Jun-03 Slide 2 Office of Fossil Energy Presentation Agenda * FE Hydrogen Program * FutureGen * Carbon Sequestration Leadership Forum (CSLF) 24-Jun-03 Slide 3 Office of Fossil Energy Key Drivers * Decreasing domestic supply will lead to increased imports from less stable regions * Conventional petroleum is finite; production will peak and irreversibly decline due to continually increasing demand * Improving environmental quality - Meeting air emission regulations - Greenhouse gas emissions 0 2 4 6 8 10 12 14 16 18 20 1970 1975 1980 1985 1990 1995 2000 2005

187

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

Looping Technology Description: Amine scrubbing carboncarbon capture using absorption technologies Calera process CO 2 sequestration in concrete curing technology Carbonate looping

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

188

Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids  

SciTech Connect

The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

2013-01-18T23:59:59.000Z

189

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

SciTech Connect

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

190

Product: Tetrakis(dimethylamino)titanium(IV) P-6331 Date: February 2005 Copyright 2005, Praxair Technology, Inc. Page 1 of 8  

E-Print Network (OSTI)

Product: Tetrakis(dimethylamino)titanium(IV) P-6331 Date: February 2005 Copyright © 2005, Praxair Technology, Inc. Page 1 of 8 All rights reserved. Praxair Material Safety Data Sheet 1. Chemical Product-(dimethylamino)titanium(IV)] (MSDS No. P-6331) Trade Name: Praxair® TDMAT Chemical Name: Tetrakis(dimethylamino)titanium(IV) Synonyms

Rubloff, Gary W.

191

technology  

National Nuclear Security Administration (NNSA)

1%2A en ICF Reports http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

type-text...

192

BIO?REFINERIES: BIOPROCESS TECHNOLOGIES FOR WASTE?WATER TREATMENT, ENERGY AND PRODUCT VALORIZATION  

Science Journals Connector (OSTI)

Increasing pressure is being exerted on communities and nations to source energy from forms other than fossil fuels. Also potable water is becoming a scarce resource in many parts of the world and there remains a large divide in the demand and utilization of plant products derived from genetically modified organisms (GMOs) and non?GMOs. The most extensive user and manager of terrestrial ecosystems is agriculture which is also the de facto steward of natural resources. As stated by Miller (2008) no other industry or institution comes close to the comparative advantage held for this vital responsibility while simultaneously providing food fiber and other biology?based products including energy. Since modern commercial agriculture is transitioning from the production of bulk commodities to the provision of standardized products and specific?attribute raw materials for differentiated markets we can argue that processes such as mass cultivation of microalgae and the concept of bio?refineries be seen as part of a new agronomy. EBRU is currently exploring the integration of bioprocess technologies using microalgae as biocatalysts to achieve waste?water treatment water polishing and endocrine disruptor (EDC) removal sustainable energy production and exploitation of the resultant biomass in agriculture as foliar fertilizer and seed coatings and for commercial extraction of bulk commodities such as bio?oils and lecithin. This presentation will address efforts to establish a fully operational solar?driven microalgae bio?refinery for use not only in waste remediation but to transform waste and biomass to energy fuels and other useful materials (valorisation) with particular focus on environmental quality and sustainability goals.

A. Keith Cowan

2010-01-01T23:59:59.000Z

193

A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves  

E-Print Network (OSTI)

The empirical and theoretical justification of Gartner hype curves is a very relevant open question in the field of Technological Life Cycle analysis. The scope of the present paper is to introduce a simple model describing the growth of scientific/technological research impact, in the specific case where science is the main source of a new idea driving a technological development, leading to hype-type evolution curves. The main idea of the model is that, in a first stage, the growth of the scientific interest of a new specific field (as can be measured by publication numbers) basically follows the classical logistic growth curve. At a second stage, starting at a later trigger time, the technological development based on that scientific idea (as can be measured by patent deposits) can be described as the integral (in a mathematical sense) of the first curve, since technology is based on the overall accumulated scientific knowledge. The model is tested through a bibliometric analysis of the publication and pat...

Campani, Marco

2014-01-01T23:59:59.000Z

194

Appendix B: CArBon dioxide CApture teChnology SheetS Oxygen PrOductiOn  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen PrOductiOn Oxygen PrOductiOn B-500 Oxygen PrOductiOn u.S. dePartment Of energy advanced carbOn diOxide caPture r&d PrOgram: technOlOgy uPdate, may 2013 itm Oxygen technOlOgy fOr integratiOn in igcc and Other advanced POwer generatiOn SyStemS primary project goals Air Products and Chemicals set out to design and develop an ion transport membrane (ITM) based on ceramics that selectively transport oxygen (O 2 ) ions when operated at high temperature. This high-temperature process may be integrated with advanced power genera- tion processes that require O 2 as a feedstock, such as integrated gasification combined cycle (IGCC) and other clean energy and industrial applications. technical goals * Design, construct, and operate a 0.1-ton/day (TPD) technology development unit

195

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

196

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

197

Production Of The ADD Type Kaluza-Klein Excitations At Future e+e-, ep And pp Colliders  

SciTech Connect

Possible production of ADD type Kaluza-Klein excitations are investigated at future high energy e+e-, ep and pp colliders. Discovery limits and signatures of such excitations are discussed at above colliders comparatively.

Billur, A. A.; Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Inan, S. C. [Physics Department, Faculty of Sciences and Arts, Cumhuriyet University, 58140, Sivas (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

198

Production of the Randall-Sundrum Type Kaluza-Klein Excitations at Future e+e-, ep and pp Colliders  

SciTech Connect

Possible production of Randall-Sundrum type Kaluza-Klein excitations are investigated at future high energy e+e-, ep and pp colliders. Discovery limits and signatures of such excitations are discussed at above colliders comparatively.

Billur, A. A.; Ciftci, A. K. [Physics Department, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey); Ciftci, R. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Inan, S. C. [Physics Department, Faculty of Sciences and Arts, Cumhuriyet University, 58140, Sivas (Turkey); Sultansoy, S. [Physics Department, Faculty of Sciences and Arts, Gazi University, 06500 Teknikokullar (Turkey); Institute of Physics, Academy of Sciences, H. Cavid Avenue 33, Baku (Azerbaijan)

2007-04-23T23:59:59.000Z

199

Component tissues of different morphological types of tomato fruit and their qualitative and quantitative effects on quality of processed product  

E-Print Network (OSTI)

COMPONENT TISSUES OF DIFFERENT MORPHOLOGICAL TYPES OF TOMATO FRUIT AND THEIR QUALITATIVE AND QUANTITATIVE EFFECTS ON QUALITY OF PROCESSED PRODUCT A Thesis by Alfred Bernhart Wagner, Jr. Submitted to the Graduate College of Texas A... of Tomato Fruit and Their Qualitative and Quantitative Effects on Quality of Processed Product (December 1972) Alfred Bernhart Wagner, Jr. , B. S. , Texas A&M University Directed by: Dr. E. E. Burns Tissue regions of five morphological types of tomato...

Wagner, Alfred Bernhart

1972-01-01T23:59:59.000Z

200

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

202

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report  

E-Print Network (OSTI)

Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

Johnson, Eric E.

203

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

204

Investigating late stage biopharmaceutical product loss using novel analytical and process technology  

E-Print Network (OSTI)

The biopharmaceutical industry uses recombinant protein technologies to provide novel therapeutics to patients around the world. These technologies have presented exciting opportunities for breakthrough medical treatments ...

Hunnicutt, Leigh Anne

2008-01-01T23:59:59.000Z

205

Present Research Situation and Trend of Temperature Measurement and Control Technology for Dry-type Transformers  

Science Journals Connector (OSTI)

The thermal resistance temperature measure-ment technique is widely used in the temperature measurement and control systems for dry-type transfor-mers. The infrared temperature measurement technique has been put into practical use. The fiber-optic sensing temperature measurement technique is newly developed and has a good development prospect. All these three kinds of temperature measurement techniques have too low response speed in the temperature measurement and control of dry-type transformers. The prediction temp-erature measurement and control method based on the BP neural network is feasible to increase the response speed.

Feng Jian-qin; Kang Guo-ping; Chen Zhi-wu; Zheng An-ping; Wei Yun-bing; Cui Guang-zhao

2011-01-01T23:59:59.000Z

206

Technical support for the Ohio Coal Technology Program. Volume 1, Baseline of knowledge concerning by-product characteristics: Final report  

SciTech Connect

This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LRl and comprises two volumes. Volume I presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume II consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

1989-08-28T23:59:59.000Z

207

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

208

EERE Publication and Product Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Browse By Topic Browse By Topic Browse the Products and Publications by expanding/selecting from the topic tree below. Make selection(s) in the 'Information For' box to filter your results by audience type. Similarly, use the 'Information Type' box to filter your results by the type of information presented. Topics Bioenergy Technologies Office Building Technologies Office Federal Energy Management Program Geothermal Technologies Office Fuel Cell Technologies Office Advanced Manufacturing Office Solar Energy Technologies Program Vehicle Technologies Office Wind Program Weatherization & Intergovernmental Program General Topics Energy Savers Water Power Program Energy Analysis State and Local Energy Efficiency Action Network (SEE Action) Office of EERE Select Clear Topic Skip Navigation Links.

209

Technology-driven roadmaps for identifying new product/market opportunities: Use of text mining and quality function deployment  

Science Journals Connector (OSTI)

Abstract A technology roadmap (TRM), an approach that is applied to the development of an emerging technology to meet business goals, is one of the most frequently adopted tools to support the process of technology innovation. Although many studies have dealt with \\{TRMs\\} that are designed primarily for a market-driven technology planning process, a technology-driven TRM is far less researched than a market-driven one. Furthermore, approaches to a technology-driven roadmap using quantitative technological information have rarely been studied. Thus, the aim of this research is to propose a new methodological framework to identify both profitable markets and promising product concepts based on technology information. This study suggests two quality function deployment (QFD) matrices to draw up the TRM in order to find new business opportunities. A case study is presented to illustrate the proposed approach using patents on the solar-lighting devices, which is catching on as a high-tech way to prevent environmental pollution and reduce fuel costs.

Gyungmi Jin; Yujin Jeong; Byungun Yoon

2014-01-01T23:59:59.000Z

210

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

211

ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data  

E-Print Network (OSTI)

testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticalityENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia 11 Nuclear Research and Consultancy Group, P

Danon, Yaron

212

TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS  

SciTech Connect

Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

James T. Cobb, Jr.

2003-09-12T23:59:59.000Z

213

Gis-technologies for integrated assessment of the productive mining areas  

Science Journals Connector (OSTI)

The paper describes the bases of a new application of GIS-technologies for integrated assessment and comparison of ... exemplified by a comparison of technological characteristics of coals, transportation and pow...

R. Yu. Zamaraev; V. N. Oparin; S. E. Popov; V. P. Potapov

2008-05-01T23:59:59.000Z

214

Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems  

Science Journals Connector (OSTI)

Abstract Supercritical and compressed fluid technology provides a powerful tool for particle design and engineering. On the other hand, aerogels are nanoporous materials holding many world-class properties. However, the morphology of the end product can be the limiting factor for aerogels in some applications. The integration of different technologies for the production of particles can lead to a breakthrough in aerogel production. In this work, the combination of the emulsiongelation process with supercritical fluid extraction was tested as a versatile technology for the production of microspherical aerogel particles. Novel natural product-based nanoporous materials (aerogels) based on starch were obtained using this method and were specifically targeted to chemical carriers for life science applications (e.g. pharmaceutics, tissue engineering, cosmetics, food, biotechnology, and agriculture). Aerogels in the form of cylinders and microspheres (400800?m) with the intrinsic outstanding textural aerogel properties (high surface area Sa=100240m2/g, low density ?=0.100.25g/cm3, large porosity ?=8590%) were produced. The effect of micronization on the kinetics of the supercritical drying of the wet gel (in ethanol) was also studied. Thus the obtained aerogels were then tested for their use as active agent carriers regarding loading capacity using ketoprofen as model compound as well as the release behavior of the loaded active compound in aqueous media simulating physiological pHs.

C.A. Garca-Gonzlez; I. Smirnova

2013-01-01T23:59:59.000Z

215

Federal Energy Management Program: Lighting Control Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Control Lighting Control Types to someone by E-mail Share Federal Energy Management Program: Lighting Control Types on Facebook Tweet about Federal Energy Management Program: Lighting Control Types on Twitter Bookmark Federal Energy Management Program: Lighting Control Types on Google Bookmark Federal Energy Management Program: Lighting Control Types on Delicious Rank Federal Energy Management Program: Lighting Control Types on Digg Find More places to share Federal Energy Management Program: Lighting Control Types on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources Technology Deployment Renewable Energy

216

Call Title: Theme 4 NMP -Nanosciences, Nanotechnologies, Materials and new Production Technologies -SMEs  

E-Print Network (OSTI)

Technologies - SMEs · Call identifier: FP7-NMP-2010-SME-4 · Date of publication: 30 July 2009 · Deadline1/ Area Topics called Funding Schemes Nanotechnologies and converging technologies NMP.2010.1.2-1 Novel of technologies for industrial applications NMP.2010.4.0-4 A new generation of multi-functional fibre

Milano-Bicocca, Università

217

Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma  

DOE Patents (OSTI)

A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

Desprez, Pierre-Yves; Campisi, Judith

2014-08-19T23:59:59.000Z

218

Comparisons of type and volume of growth media and two cropping systems for production of greenhouse tomatoes Lycopersicon esculentum Mill  

E-Print Network (OSTI)

COMPARISONS OF TYPE AND VOLUME OF GROWTH MEDIA AND TWO CROPPING SYSTEMS FOR PRODUCTION OF GREENHOUSE TOMATOES LYCOPERSICON ESCULENTUM MILL. A Thesis by JOHN DARRYL BYRD Submitted to the Graduate College of Texas A & M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1977 Major Subject: Horticulture COMPARISONS OF TYPE AND VOLUME OF GROWTH MEDIA AND TWO CROPPING SYSTEMS FOR PRODUCTIOF OF GREENHOUSE TOMATOES LYCOPERSICON ESCULENTUM MILL. A...

Byrd, John Darryl

2012-06-07T23:59:59.000Z

219

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

220

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Production Planning and Control for Mass Customization A Review of Enabling Technologies  

Science Journals Connector (OSTI)

Production planning and control (PPC) is critical to the success of mass customization (MC). It ensures production systems fulfill individual customer orders while meeting specifications, remaining within budg...

Mitchell M. Tseng; Andreas M. Radke

2011-01-01T23:59:59.000Z

222

Blue Spark Technologies formerly Thin Battery Technologies Inc | Open  

Open Energy Info (EERE)

Spark Technologies formerly Thin Battery Technologies Inc Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place Westlake, Ohio Zip 44130 Sector Carbon Product Developer and licensor of carbon-zinc battery technology. Coordinates 32.980007°, -97.168831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.980007,"lon":-97.168831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for  

E-Print Network (OSTI)

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for removing or etching away aluminum. This etchant is stored inside the acid or corrosive a specific thickness of aluminum that is desired. Note: Once the bottle is empty or you find that it's etch

Kim, Philip

224

Technology and social process : oscillations in Iron Age copper production and power in Southern Jordan.  

E-Print Network (OSTI)

??Records of technological practice provide an important lens for studying societies and cultures across time and space. This dissertation takes a diachronic view of the (more)

Ben-Yosef, Erez

2010-01-01T23:59:59.000Z

225

Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production  

SciTech Connect

Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

Hasanbeigi, Ali; Price, Lynn; Lin, Elina

2012-04-06T23:59:59.000Z

226

Antibody production by injection of living cells expressing non self antigens as cell surface type II transmembrane fusion protein  

Science Journals Connector (OSTI)

Antigen expression and purification are laborious, time consuming and frequently difficult steps in the process of antibody production. In the present study, we developed a method avoiding these two steps. This method relies on the injection of histocompatible living cells stably expressing the antigen as a cell surface type II transmembrane fusion protein. A vector, nicknamed pCD1-CD134L, was constructed to express the antigen fused at the carboxyterminal end of the human CD134 ligand (CD134L) type II transmembrane protein on the surface of eucaryotic cells. This vector was shown to induce cell surface expression of epitopes from human c-Myc (soluble protein), uterogloblin-related protein 1 (secreted protein) and CD94 (type II transmembrane protein). Using this vector, we developed a method to produce antibodies without antigen production. The flowchart of this method is as follows: (i) cloning of the antigen in the pCD1-CD134L vector; (ii) production of a histocompatible cell line stably expressing the CD134L-antigen fusion protein; (iii) testing for cell surface expression of the fusion protein by targeting the CD134L carrier; and (iv) prime-boost immunisation with living cells expressing the fusion protein. This method was successfully used for production of polyclonal antibodies raised against Ixodes ricinus calreticulin (secreted protein) in mice and for production of monoclonal antibodies raised against an epitope of Vaccinia virus A56 (type I transmembrane protein) protein in rat. The present study is the first to demonstrate the use of a type II transmembrane protein as a carrier for cell surface display of antigens.

Yannick Nizet; Laurent Gillet; Hlne Schroeder; Corinne Lecuivre; J. Louahed; J.-C. Renauld; Pierre Gianello; Alain Vanderplasschen

2011-01-01T23:59:59.000Z

227

Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Production of High Purity Production of High Purity Hydrogen from Domestic Coal: Assessing the Techno-Economic Impact of Emerging Technologies August 30, 2010 DOE/NETL-2010/1432 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States (U.S.) government. Neither the U.S., nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

228

Low-cost small scale processing technologies for production applications in various environmentsMass produced factories  

Science Journals Connector (OSTI)

The requirements for chemical and food production technologies will change in the future as a result of shorter time to market and increasing market volatility. Especially the rising use of renewable resources will require the implementation of flexible and fast to install small-scale production technologies. The increasing number of necessary apparatuses and their distributed operation, however, will constitute major challenges, both economically and procedurally. The proposed solution to face the economic challenge is modularization and standardization. For food production, dewatering represents a key issue. Thus, biomass processing should first be divided into small-scale water separation steps and then into further large-scale processing steps. As dewatering usually happens thermally and heat exchangers often benefit from the economies of scale, heat supply and energy consumption or heat transfer with little capital investment are further issues. Therefore, temperature levels should be decreased and the use of solar heat increased. For the production of biofuels and chemicals from biomass, process integration and process simplification are proposed to improve the efficacy of production equipment and processes. Choosing raw materials with molecular structures, similar to the desired chemical building block, will lower the need for heat exchange and make small-scale manufacturing of fuels and chemicals possible.

C. Bramsiepe; S. Sievers; T. Seifert; G.D. Stefanidis; D.G. Vlachos; H. Schnitzer; B. Muster; C. Brunner; J.P.M. Sanders; M.E. Bruins; G. Schembecker

2012-01-01T23:59:59.000Z

229

Development of water production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. The key parameters for the evaluation of coalbed methane (more)

Burka Narayana, Praveen Kumar.

2007-01-01T23:59:59.000Z

230

Development of gas production type curves for horizontal wells in coalbed methane reservoirs.  

E-Print Network (OSTI)

??Coalbed methane is an unconventional gas resource that consists of methane production from coal seams .The unique difference between CBM and conventional gas reservoirs is (more)

Nfonsam, Allen Ekahnzok.

2006-01-01T23:59:59.000Z

231

Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

232

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

233

Type B Accident Investigation on the June 27, 2002, Exothermic Metal Reaction Event During Converter Disassembly in Building K-33 at the East Tennessee Technology Park  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board (Board) appointed by Michael Holland, Acting Manager, Oak Ridge Operations Office, U.S. Department of Energy.

234

Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices  

SciTech Connect

U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

Debra F. Pflughoeft-Hassett

1998-02-01T23:59:59.000Z

235

Huazhong Science Technology University Yongtai Science Technology Co Ltd |  

Open Energy Info (EERE)

Huazhong Science Technology University Yongtai Science Technology Co Ltd Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name Huazhong Science & Technology University Yongtai Science & Technology Co Ltd Place Wuhan, Hubei Province, China Zip 430074 Sector Solar Product Makes solar passive water heaters. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

DOE Announces Selections for SSL Core Technology and Product Development Funding Opportunities (Round 5)  

Energy.gov (U.S. Department of Energy (DOE))

The National Energy Technology Laboratory, on behalf of the U.S. Department of Energy (DOE), is pleased to announce its selections for solid-state lighting (SSL) funding opportunities. Fourteen...

237

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

238

Type B Accident Investigation Board Report, May 8, 2004, Exothermic Metal Reactor Event During Sodium Transfer Activities, East Tennessee Technology Park, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Accident Investigation Board (Board) appointed by Gerald Boyd, Manager, Oak Ridge Operations Office, U.S. Department of Energy. The Board was appointed to perform a Type B investigation of the accident and prepare an investigation report in accordance with DOE O 225.1A, Accident Investigations.

239

Product-Line Technology Recommendations for Integrated Modular Systems Zo Stephenson, Mark Nicholson, John McDermid; University of York Department of Computer Science;  

E-Print Network (OSTI)

Product-Line Technology Recommendations for Integrated Modular Systems Zoë Stephenson, Mark product-line engineering to IMS evolution. An IMS is a networked computer systems providing (potentially detection system. Introduction Embedded software systems are nearly always good examples of product lines

Nicholson, Mark

240

Project Summary This project is to investigate how hypoxia affects the production of specific types of  

E-Print Network (OSTI)

Project Summary This project is to investigate how hypoxia affects the production of specific and established procedures in the GrandeAllen lab. The figure below outlines the experimental setup

Richards-Kortum, Rebecca

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of rearing and laying house environments on performance of incross egg production type pullets  

E-Print Network (OSTI)

'ts ~ ~ ~ ~ ~ ~ ~ ~ e e ~ e ~ ~ ~ ~ ~ ~ ~ ~ F 10 Experimental design of rearing treatments of incross pullets ~ o ~ ~ a ~ ~ a ~ ~ e ~ ~ e ~ ~ ~ ~ ~ ~ F 11 Experimental design of the laying phase of incross pullets. . . e e . . . . . . . . . . . . . . . . . , . 12 IV...' colony cage. . . 34 Egg production of birds from the different laying managements ~ ~ ~ ~ ~ ~ ~ o o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 36 Statistical analysi. s of egg product1on of birds from the d1ffsrsnt lay1ng managements . ~ . . ~ . ~ ~ ~ ~ F 37 Average...

Shupe, William Dale

2012-06-07T23:59:59.000Z

242

Acid-Functionalized SBA-15-Type Periodic Mesoporous Organosilicas and Their Use in the Continuous Production of 5-Hydroxymethylfurfural  

Science Journals Connector (OSTI)

Acid-Functionalized SBA-15-Type Periodic Mesoporous Organosilicas and Their Use in the Continuous Production of 5-Hydroxymethylfurfural ... The activity, selectivity, and stability of several supported acid catalysts were evaluated in tubular reactors designed to produce 5-hydroxymethylfurfural (HMF) continuously from fructose dissolved in a single-phase solution of THF and H2O (4:1 w/w). ... 5-hydroxymethylfurfural; continuous dehydration; packed-bed reactor; SBA-15; periodic mesoporous organosilicas; propylsulfonic acid; catalyst deactivation rate ...

Mark H. Tucker; Anthony J. Crisci; Bethany N. Wigington; Neelay Phadke; Ricardo Alamillo; Jinping Zhang; Susannah L. Scott; James A. Dumesic

2012-07-09T23:59:59.000Z

243

Multi-Seam Well Completion Technology: Implications for Powder River Basin Coalbed Methane Production  

SciTech Connect

The purpose of this study is to evaluate the potential benefits of applying multiseam [well] completion (MSC) technology to the massive stack of low-rank coals in the Powder River Basin. As part of this, the study objectives are: Estimate how much additional CBM resource would become accessible and technically recoverable--compared to the current practice of drilling one well to drain a single coal seam; Determine whether there are economic benefits associated with MSC technology utilization (assuming its widespread, successful application) and if so, quantify the gains; Briefly examine why past attempts by Powder River Basin CBM operators to use MSC technology have been relatively unsuccessful; Provide the underpinnings to a decision whether a MSC technology development and/or demonstration effort is warranted by DOE. To a great extent, this assessment builds on the previously published study (DOE, 2002), which contains many of the key references that underlie this analysis. It is available on the U.S. Department of Energy, National Energy technology Laboratory, Strategic Center for Natural Gas website (www.netl.doe.gov/scng). It is suggested that readers obtain a copy of the original study to complement the current report.

Office of Fossil Energy; National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

244

The role of emerging energy-efficient technology in promoting workplace productivity and health: Final report  

SciTech Connect

The objective of this particular Indoor Health and Productivity (IHP) project is to improve the communication of research findings in the indoor health and productivity area to scientists and building professionals (e.g. architects and engineers) and, thus, to help stimulate implementation of existing knowledge.

Kumar, Satish; Fisk, William J.

2002-02-01T23:59:59.000Z

245

Monitoring of Total Type II Pyrethroid Pesticides in Citrus Oils and Water by Converting to a Common Product 3-Phenoxybenzoic Acid  

E-Print Network (OSTI)

Monitoring of Total Type II Pyrethroid Pesticides in Citrus Oils and Water by Converting to a Common Product 3-Phenoxybenzoic Acid Mark R. McCoy, Zheng Yang, Xun Fu,§ Ki Chang Ahn, Shirley J. Gee an alternative method that converts the type II pyrethroids to a common chemical product, 3-phenoxybenzoic acid

Hammock, Bruce D.

246

Geothermal innovative technologies catalog  

SciTech Connect

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

247

Additive manufacturing technology and material selection for direct manufacture of products based on computer aided design geometric feature analysis  

Science Journals Connector (OSTI)

This paper presents research into the development of an algorithm developed in a Visual Basic programming environment that aids in the selection of materials processed using additive manufacturing (AM) technologies. AM technologies such as selective laser sintering (SLS) and fused deposition modelling (FDM) have limitations on the materials available to them and each system has factors that limit the geometric freedom of the components that they can produce. Thus, materials capable of being processed on these types of technology can be selected through a method of traversing the geometric features of a computer aided design (CAD) model and performing an analysis of each individual feature's attributes. The algorithm developed for this research uses data based on minimum feature size and a model bounding box as criteria in the selection of suitable materials. Through integration with an existing commercially available CAD software package, a component can be automatically analysed for its geometric feature properties and attributes, returning suitable AM systems and material information for selection by the operator. A number of case studies are presented that highlight the successful operation of the AM technology and material selection tool that has been developed.

Paul C. Smith; Mihaela-Elena Lupeanu; Allan E.W. Rennie

2012-01-01T23:59:59.000Z

248

Design manual for management of solid by-products from advanced coal technologies  

SciTech Connect

Developing coal conversion technologies face major obstacles in byproduct management. This project has developed several management strategies based on field trials of small-scale landfills in an earlier phase of the project, as well as on published/unpublished sources detailing regulatory issues, current industry practice, and reuse opportunities. Field testing, which forms the basis for several of the disposal alternatives presented in this design manual, was limited to byproducts from Ca-based dry SO{sub 2} control technologies, circulating fluidized bed combustion ash, and bubbling bed fluidized bed combustion ash. Data on byproducts from other advanced coal technologies and on reuse opportunities are drawn from other sources (citations following Chapter 3). Field results from the 5 test cases examined under this project, together with results from other ongoing research, provide a basis for predictive modeling of long-term performance of some advanced coal byproducts on exposure to ambient environment. This manual is intended to provide a reference database and development plan for designing, permitting, and operating facilities where advanced coal technology byproducts are managed.

NONE

1994-10-01T23:59:59.000Z

249

MANAGING SHORT-LIFECYCLE TECHNOLOGY PRODUCTS FOR AGERE S. David Wu  

E-Print Network (OSTI)

characterization tools for capacity planning and capacity negotiation with their global supply partners with correlation values ranging from 0.51 to 0.95. These findings have significant implications to capacity classification: 1. An Overview of Short-Lifecycle Technology Markets In the mid to late 1990's, high- tech

Wu, David

250

A diverse range of gene products are effectors of the type I interferon antiviral response  

Science Journals Connector (OSTI)

... HCV (b), HIV-1 (d) and YFV (e). ISGs are colour coded: Fluc control (red), inhibitory (black) and enhancing (green). Data were ... K., Tassello, J. & Rice, C. M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol. 81, 83748383 ...

John W. Schoggins; Sam J. Wilson; Maryline Panis; Mary Y. Murphy; Christopher T. Jones; Paul Bieniasz; Charles M. Rice

2011-04-10T23:59:59.000Z

251

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andOther Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

252

Lean effectiveness model for products and services : servicing existing systems in aerospace and technology  

E-Print Network (OSTI)

Enterprises undergo transformation for more efficient and effective performance and growth. The Lean Enterprise Self Assessment Tool (LESAT) is a product of the Lean Advancement Initiative (LAI) and the Massachusetts ...

Srivastava, Tina Prabha

2012-01-01T23:59:59.000Z

253

Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production  

Science Journals Connector (OSTI)

While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent...

Deepak Kumar; Ganti S Murthy

2011-09-01T23:59:59.000Z

254

A New LCA Methodology of Technology Evolution (TE-LCA) and its Application to the Production of Ammonia (1950-2000) (8 pp)  

Science Journals Connector (OSTI)

This paper presents a new LCA method of technology evolution (TE-LCA), and its application to the production ... over the last fifty years. The TE-LCA of a chemical process is the procedure ... then transformed ...

Ramon Mendivil; Ulrich Fischer

2006-03-01T23:59:59.000Z

255

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

type of high-heat or pyroprocessing kiln used today is theis decarbonated in the pyroprocessing stage (main reaction:water (H 2 O) during pyroprocessing (e.g. , ,in a cement

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

256

The relationship between technology-based and product-based knowledge and alliance formation in new firms  

Science Journals Connector (OSTI)

Firms are typically viewed as seeking alliances to achieve certain outcomes, advantages they perceive will result from these relationships. Our research investigates whether certain inputs, specifically knowledge, can explain differential alliance formation. Our empirical analysis of 67 new computer and telecommunications firms reveals that firms with more extensive technology-based and product-based knowledge are more likely to form alliances at a higher rate than those with less extensive knowledge. The implications for these findings are that alliances are more attractive to firms with a foundation of knowledge that can be leveraged, and firms with this knowledge have something of value to attract alliance partners.

Donna J. Kelley; Mark P. Rice; Lois S. Peters

2001-01-01T23:59:59.000Z

257

Sibolu Technology | Open Energy Information  

Open Energy Info (EERE)

Sibolu Technology Sibolu Technology Jump to: navigation, search Name Sibolu Technology Place Suzhou, Jiangsu Province, China Sector Solar Product A Chinese technical service and solution provider for a-Si thin-film solar cell production and monosilicon solar cell production. Coordinates 31.3092°, 120.613121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3092,"lon":120.613121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Alpha Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Alpha Technologies Place Bellingham, Washington State Zip 98226 Sector Services, Solar Product Bellingham (WA)-based firm offering, among other products, power conversion products designed specifically for the PV market, plus installation services for solar systems. Coordinates 48.75235°, -122.471219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.75235,"lon":-122.471219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

GmbH (ECRA), 2007. Carbon Capture Technology - Options andCrete 2.5. Emerging Carbon Capture Technologies for thestatus of emerging carbon capture technologies for the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

260

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network (OSTI)

and Resource Saving Technologies in Cement Industry.1:8794. Blue World Crete. 2012. Technology. Available atOakey. 2009. CO 2 Capture Technologies for Cement Industry.

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1366 Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: 1366 Technologies Name 1366 Technologies Address 45 Hartwell Avenue Place North Lexington, Massachusetts Zip 02421 Sector Solar Product Developer of technologies for enhancing PV efficiency, including new cell wiring and wafer packaging systems. Website http://www.1366tech.com/ Coordinates 42.472405°, -71.257792° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.472405,"lon":-71.257792,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Mears Technology | Open Energy Information  

Open Energy Info (EERE)

Mears Technology Mears Technology Jump to: navigation, search Name Mears Technology Place Waltham, Massachusetts Zip 2451 Sector Solar Product Waltham-based developer of manufacturing technology for semiconductor chip producers. The firm's MEARS Silicon Technology can be used in solar applicaiton. Coordinates 44.126439°, -73.213733° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.126439,"lon":-73.213733,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Ubiquitous Technologies | Open Energy Information  

Open Energy Info (EERE)

Ubiquitous Technologies Ubiquitous Technologies Jump to: navigation, search Name Ubiquitous Technologies Place Victoria, Texas Zip 77903 Sector Solar Product Ubiquitous Technologies is a nano technology solar energy R&D and commercialization company. Coordinates 48.428315°, -123.364514° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.428315,"lon":-123.364514,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Genetically enhanced cellulase production in Pseudomonas cellulosa using recombinant DNA technology  

DOE Patents (OSTI)

An enhanced strain of Pseudomonas celllulosa was obtained by introducing a recombinant genetic construct comprising a heterologous cellulase gene operably connected to a promoter into ATCC 55702, mutagenizing the transformants by treatment with MNNG, and selecting a high cellulase producing transformant. The transformant, designated Pseudomonas cellulosa ATCC XXXX, exhibits enhanced levels of cellulase production relative to the untransformed Pseudomonas cellulosa strain #142 ATCC 55702.

Dees, H. Craig (Knoxville, TN)

1999-01-01T23:59:59.000Z

265

Energy Department Announces $10 Million for Technologies to Produce Advanced Biofuel Products from Biomass  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced up to $10 million in funding to advance the production of advanced biofuels, substitutes for petroleum-based feedstocks, and bioproducts made from renewable, non-food-based biomass, such as agricultural residues and woody biomass.

266

Production of exotic, short lived carbon isotopes in ISOL-type facilities  

E-Print Network (OSTI)

The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

Franberg, Hanna; Kster, Ulli; Ammann, Markus

2008-01-01T23:59:59.000Z

267

Production of Middle Caloric Fuel Gas from Coal by Dual-Bed Gasification Technology  

Science Journals Connector (OSTI)

This work demonstrated the dual-bed gasification technology on a pilot plant (1000 tons of coal/a) mainly consisting of a fluidized-bed gasifier and a pneumatic combustor using the coal with a particle size of less than 20 mm. ... It can be seen in Table 1 that the mass fraction of the coal with sizes less than 2.0 mm was about 45 wt %. ... Coal was continuously fed in the gasifier, and meanwhile, air or gas mixture (air and steam) as the fluidizing medium and gasifying reagent was introduced from the bottom of the gasifier. ...

Yin Wang; Wen Dong; Li Dong; Junrong Yue; Shiqiu Gao; Toshiyuki Suda; Guangwen Xu

2010-04-23T23:59:59.000Z

268

Quarterly Report: Microchannel-Assisted Nanomaterial Deposition Technology for Photovoltaic Material Production  

SciTech Connect

Quarterly report to ITP for Nanomanufacturing program. Report covers FY11 Q2. The primary objective of this project is to develop a nanomanufacturing process which will reduce the manufacturing energy, environmental discharge, and production cost associated with current nano-scale thin-film photovoltaic (PV) manufacturing approaches. The secondary objective is to use a derivative of this nanomanufacturing process to enable greener, more efficient manufacturing of higher efficiency quantum dot-based photovoltaic cells now under development. The work is to develop and demonstrate a scalable (pilot) microreactor-assisted nanomaterial processing platform for the production, purification, functionalization, and solution deposition of nanomaterials for photovoltaic applications. The high level task duration is shown. Phase I consists of a pilot platform for Gen II PV films along with parallel efforts aimed at Gen III PV quantum dot materials. Status of each task is described.

Palo, Daniel R.

2011-04-26T23:59:59.000Z

269

Recovery of gas from hydrate deposits using conventional production technology. [Salt-frac technique  

SciTech Connect

Methane hydrate gas could be a sizeable energy resource if methods can be devised to produce this gas economically. This paper examines two methods of producing gas from hydrate deposits by the injection of hot water or steam, and also examines the feasibility of hydraulic fracturing and pressure reduction as a hydrate gas production technique. A hydraulic fracturing technique suitable for hydrate reservoirs is also described.

McGuire, P.L.

1982-01-01T23:59:59.000Z

270

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

271

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

272

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

273

Predictive Maintenance Programs (PMPs) in Small HVAC Applications: Analysis of Available Products and Technology  

E-Print Network (OSTI)

identify what type and where alarm conditions occurred in the system. Cool Guard Model ACM-88 Manufactured by Dencor, Inc. in Denver, Colorado. The ACM- 88 utilizes four temperature sensors installed on the air side only (no penetration of refrigerant...., 1450 West Evans, Denver, CO 80223, (800) 392-2690. 7 Manufacturer's data, "System Hardware - NC25-4", Danfoss Automatic Controls, 4971 Mercantile Road, Baltimore, MD 21236-5999,(414)931-8250. 8 Manufacturer's data. "The MMS- 1. A monitor for reducing...

Watt, J. B.

1994-01-01T23:59:59.000Z

274

Technology transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

275

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

276

Chlor-syngas: Coupling of Electrochemical Technologies for Production of Commodity Chemicals  

Science Journals Connector (OSTI)

This paper describes a novel electrolysis process called chlor-syngas, where synthesis gas is produced at the cathode and chlorine gas is produced at the anode. ... The process described here, chlor-syngas, produces two commodity gas streams, Cl2 and synthesis gas (syngas), using low-value chemicals, CO2 and HCl. ... The chlor-syngas process could replace two existing processes in current use: (1) chlor-alkali for the production of Cl2 and (2) gasification of fossil sources, such as natural gas or coal, to produce syngas. ...

Tedd E. Lister; Eric J. Dufek

2013-01-18T23:59:59.000Z

277

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

278

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

279

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

280

Long-term patterns of fruit production in five forest types of the South Carolina upper coastal plain.  

SciTech Connect

ABSTRACT Fleshy fruit is a key food resource for many vertebrates and may be particularly important energy source to birds during fall migration and winter. Hence, land managers should know how fruit availability varies among forest types, seasons, and years. We quantified fleshy fruit abundance monthly for 9 years (1995-2003) in 56 0.1-ha plots in 5 forest types of South Carolina's upper Coastal Plain, USA. Forest types were mature upland hardwood and bottomland hardwood forest, mature closed-canopy loblolly (Pinus taeda) and longleaf pine (P. palustris) plantation, and recent clearcut regeneration harvests planted with longleaf pine seedlings. Mean annual number of fruits and dry fruit pulp mass were highest in regeneration harvests (264,592 _ 37,444 fruits; 12,009 _ 2,392 g/ha), upland hardwoods (60,769 _ 7,667 fruits; 5,079 _ 529 g/ha), and bottomland hardwoods (65,614 _ 8,351 fruits; 4,621 _ 677 g/ha), and lowest in longleaf pine (44,104 _ 8,301 fruits; 4,102 _ 877 g/ha) and loblolly (39,532 _ 5,034 fruits; 3,261 _ 492 g/ha) plantations. Fruit production was initially high in regeneration harvests and declined with stand development and canopy closure (1995-2003). Fruit availability was highest June-September and lowest in April. More species of fruit-producing plants occurred in upland hardwoods, bottomland hardwoods, and regeneration harvests than in loblolly and longleaf pine plantations. Several species produced fruit only in 1 or 2 forest types. In sum, fruit availability varied temporally and spatially because of differences in species composition among forest types and age classes, patchy distributions of fruiting plants both within and among forest types, fruiting phenology, high inter-annual variation in fruit crop size by some dominant fruit-producing species, and the dynamic process of disturbance-adapted species colonization and decline, or recovery in recently harvested stands. Land managers could enhance fruit availability for wildlife by creating and maintaining diverse forest types and age classes. .

Greenberg, Cathryn H.; Levey, Douglas J.; Kwit, Charles; McCarty, John P.; Pearson, Scott F.; Sargent, Sarah; Kilgo, John

2012-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Production of potato minitubers using advanced environmental control technologies developed for growing plants in space  

Science Journals Connector (OSTI)

Development of plant growth systems for use in outer space have been modified for use on earth as the backbone of a new system for rapid growth of potato minitubers. The automation of this new biotechnology provides for a fully controllable method of producing pathogen-free nuclear stock potato minitubers from tissue cultured clones of varieties of potato in a biomanufacturing facility. These minitubers are the beginning stage of seed potato production. Because the new system provides for pathogen-free minitubers by the tens-of-millions rather than by the thousands which are currently produced in advanced seed potato systems a new-dimension in seed potato development breeding and multiplication has been achieved. The net advantage to earth-borne agricultural farming systems will be the elimination of several years of seed multiplication from the current system higher quality potato production and access to new potato varieties resistant to diseases and insects which will eliminate the need for chemical controls.

Robert G. Britt

1998-01-01T23:59:59.000Z

282

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-04-01T23:59:59.000Z

283

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

284

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

285

PROGRESS IN HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION USING PLANAR SOFC TECHNOLOGY  

SciTech Connect

A research program is under way at the Idaho National Laboratory to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900C. The research program includes both experimental and modeling activities. Selected results from both activities are presented in this paper. Experimental results were obtained from a ten-cell planar electrolysis stack, fabricated by Ceramatec , Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 m thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Stack performance is shown to be dependent on inlet steam flow rate. A three-dimensional computational fluid dynamics (CFD) model was also created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell as it would exist in the experimental electrolysis stack. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT1. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with the experimental results obtained from the ten-cell stack tested at INL.

O'Brien, J. E.; Herring, J. S.; Stoots, C. M.; Hawkes, G. L.; Hartvigsen, J., J.; Mehrdad Shahnam

2005-04-01T23:59:59.000Z

286

Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge  

SciTech Connect

This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

Fitzpatrick, Stephen W.

2002-04-23T23:59:59.000Z

287

EPIR Technologies | Open Energy Information  

Open Energy Info (EERE)

EPIR Technologies EPIR Technologies Jump to: navigation, search Name EPIR Technologies Place Bolingbrook, Illinois Zip 6044 Sector Solar Product EPIR develops a line of products targeted toward the infrared sensor, biosensor and solar photovoltaic industries. Coordinates 41.698175°, -88.081199° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.698175,"lon":-88.081199,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

289

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

Scott Hara

2000-02-18T23:59:59.000Z

290

Pilot-Scale Demonstration of Pefi's Oxygenated Transportation Fuels Production Technology  

SciTech Connect

Coal-cleaning processes have been utilized to increase the heating value of coal by extracting ash-forming minerals in the coal. These processes involve the crushing or grinding of raw coal followed by physical separation processes, taking advantage of the density difference between carbonaceous particles and mineral particles. In addition to the desired increase in the heating value of coal, a significant reduction of the sulfur content of the coal fed to a combustion unit is effected by the removal of pyrite and other sulfides found in the mineral matter. WRI is assisting PulseWave to develop an alternate, more efficient method of liberating and separating the undesirable mineral matter from the carbonaceous matter in coal. The approach is based on PulseWave's patented resonance disintegration technology that reduces that particle size of materials by application of destructive resonance, shock waves, and vortex generating forces. Illinois No.5 coal, a Wyodak coal, and a Pittsburgh No.8 coal were processed using the resonance disintegration apparatus then subjected to conventional density separations. Initial microscopic results indicate that up to 90% of the pyrite could be liberated from the coal in the machine, but limitations in the density separations reduced overall effectiveness of contaminant removal. Approximately 30-80% of the pyritic sulfur and 30-50% of the mercury was removed from the coal. The three coals (both with and without the pyritic phase separated out) were tested in WRI's 250,000 Btu/hr Combustion Test Facility, designed to replicate a coal-fired utility boiler. The flue gases were characterized for elemental, particle bound, and total mercury in addition to sulfur. The results indicated that pre-combustion cleaning could reduce a large fraction of the mercury emissions.

None

2005-05-01T23:59:59.000Z

291

The purpose of this chapter is to illustrate the types of guns and other products that are available at gun shows. Details on the  

E-Print Network (OSTI)

4 What's for Sale The purpose of this chapter is to illustrate the types of guns and other products that are available at gun shows. Details on the properties, use in crime, and lethality of particular firearms are available from many other sources. The Prominence of Assault Weapons All types of guns are available at gun

Leistikow, Bruce N.

292

Production of 1-m size uniform plasma by modified magnetron-typed RF discharge with a subsidiary electrode for resonance  

Science Journals Connector (OSTI)

A large-diameter uniform plasma of 1 m in size is produced using a modified magnetron-typed (MMT) RF plasma source at the frequency of 13.56 MHz. The construction and operation of the MMT RF plasma source are very simple and we can place two substrates simultaneously. To achieve an efficient production of high density plasma, a parallel resonance circuit is connected to one of the substrates which acts as a subsidiary RF electrode controlling the plasma parameters. In the case of the resonance the plasma density increases to approximately three times as much as that in case of non-resonance. The plasma density reaches?11011/cm3 in Ar at 1 mtorr when the RF input power is 2.8 kW. The MMT RF plasma source provides a plasma with uniformity within several percent over 1 m in diameter in front of the substrate in the low gas pressure regime.

Yuji Urano; Yunlong Li; Keiichi Kanno; Satoru Iizuka; Noriyoshi Sato

1998-01-01T23:59:59.000Z

293

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Technical progress report  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. This is the third quarterly technical progress report for the project. Significant technical achievements accomplished include the drilling of four horizontal wells (two producers and two steam injectors) utilizing a new and lower cost drilling program, the drilling of five observation wells to monitor the horizontal steamflood pilot, the installation of a subsurface harbor channel crossing for delivering steam to an island location, and a geochemical study of the scale minerals being created in the wellbore. Cyclic steam injection into the two horizontal injection wells began in mid-December 1995 utilizing the new 2400 ft steam line under the Cerritos channel and the wells will be placed on production in May. Cyclic steam injection into the two horizontal producers will start in May. Work on the basic reservoir engineering is expected to be completed in March 1996. The deterministic geologic model was improved to add eight layers to the previous ten.

Hara, S.

1996-05-06T23:59:59.000Z

294

Fault Current Limit (FCL) Technology (Magnetic Valve Controlled Reactor-Type Fault Current Limiter Principle and Simulation)  

Science Journals Connector (OSTI)

Summarized the FCL practical research which faces to the key technical problems, briefly introduces the study of magnetic valve controllable reactor type fault current limiter principle, and the simulation result...

Chunzhe Shi

2012-01-01T23:59:59.000Z

295

Greenwood Technologies | Open Energy Information  

Open Energy Info (EERE)

Greenwood Technologies Greenwood Technologies Jump to: navigation, search Name Greenwood Technologies Place Bellevue, Washington State Zip 98005 Sector Efficiency Product Greenwood Technologies sells high efficiency wood burning stoves Coordinates 47.61002°, -122.187549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.61002,"lon":-122.187549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Wakonda Technologies | Open Energy Information  

Open Energy Info (EERE)

Wakonda Technologies Wakonda Technologies Jump to: navigation, search Logo: Wakonda Technologies Name Wakonda Technologies Address 2A Gill Street Place Woburn, Massachusetts Zip 01801 Sector Solar Product High efficiency solar panels Year founded 2005 Number of employees 1-10 Website http://wakondatech.com/ Coordinates 42.5108195°, -71.1478095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5108195,"lon":-71.1478095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Pavilion Technologies | Open Energy Information  

Open Energy Info (EERE)

Pavilion Technologies Pavilion Technologies Jump to: navigation, search Name Pavilion Technologies Place Austin, Texas Zip TX 78759 Product Pavilion Technologies is a designer of model-based software to automate manufacturing processes. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Acrion Technologies | Open Energy Information  

Open Energy Info (EERE)

Acrion Technologies Acrion Technologies Jump to: navigation, search Name Acrion Technologies Place Cleveland, Ohio Zip 44125 Product Acrion Technologies focuses on landfill gas clean up and clean landfill gas use. The company developed the CO2 Wash Techology that cleans landfill gas. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Greenward Technologies | Open Energy Information  

Open Energy Info (EERE)

Greenward Technologies Greenward Technologies Jump to: navigation, search Name Greenward Technologies Address PO Box 203814 Place Austin, Texas Zip 78720 Sector Wind energy Product Developing a prototype energy-generating windmill design using 4 counter-rotating turbines Website http://www.greenward-technolog Coordinates 30.2669°, -97.7428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.2669,"lon":-97.7428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Albeo Technologies | Open Energy Information  

Open Energy Info (EERE)

Albeo Technologies Albeo Technologies Jump to: navigation, search Logo: Albeo Technologies Name Albeo Technologies Address 3125 Sterling Circle Place Boulder, Colorado Zip 80301 Sector Efficiency Product LED lighting Website http://www.albeotech.com/ Coordinates 40.031501°, -105.228587° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.031501,"lon":-105.228587,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Shorepower Technologies | Open Energy Information  

Open Energy Info (EERE)

Shorepower Technologies Shorepower Technologies Jump to: navigation, search Logo: Shorepower Technologies Name Shorepower Technologies Address 2351 NW York St. Place Portland, Oregon Zip 97210 Sector Services Product Transportation Electrification Infrastructure Year founded 2005 Number of employees 1-10 Phone number 5038927345 Website http://www.shorepower.com/ Coordinates 45.539256°, -122.700291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.539256,"lon":-122.700291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology  

SciTech Connect

Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

Dunham, Grant

2012-03-15T23:59:59.000Z

303

Automated construction technologies : analyses and future development strategies  

E-Print Network (OSTI)

Substandard productivity and the lack of skilled workers in the construction industry have led major corporations all over the world aiming to produce various types of automated construction technologies. During the process, ...

Hoang, Han (Han Mai)

2005-01-01T23:59:59.000Z

304

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

305

Production  

Science Journals Connector (OSTI)

Production is obtained from proved reserves but the determinants of the scale of production in the industry and country components of the world total are many and complex with some unique to the individual com...

D. C. Ion

1980-01-01T23:59:59.000Z

306

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

307

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

308

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

309

Green Purchasing & Green Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

310

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

311

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of...

312

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

Scott Hara

2001-05-07T23:59:59.000Z

313

Assessment of Carbon Dioxide Dissociation as a New Route for Syngas Production: A Comparative Review and Potential of Plasma-Based Technologies  

Science Journals Connector (OSTI)

Assessment of Carbon Dioxide Dissociation as a New Route for Syngas Production: A Comparative Review and Potential of Plasma-Based Technologies ... high alloy tubular reactor; furnace equipped with burners ... adiabatic refractory reactor; combustion chamber equipped with a burner and catalytic bed ...

Alexandre Lebouvier; Samuel A. Iwarere; Philippe dArgenlieu; Deresh Ramjugernath; Laurent Fulcheri

2013-03-29T23:59:59.000Z

314

Final Report - Development of New Pressure Swing Adsorption (PSA) Technology to Recover High Valued Products from Chemical Plant and Refinery Waste Systems  

SciTech Connect

Project Objective was to extend pressure swing adsorption (PSA) technology into previously under-exploited applications such as polyolefin production vent gas recovery and H2 recovery from refinery waste gases containing significant amounts of heavy hydrocarbons, aromatics, or H2S.

Keith Ludwig

2004-06-14T23:59:59.000Z

315

Digital Actuator Technology  

SciTech Connect

There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

2014-09-01T23:59:59.000Z

316

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

Scott Hara

2001-05-08T23:59:59.000Z

317

Triton Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc Technologies Inc Jump to: navigation, search Name Triton Technologies Inc Place Reston, Virginia Zip 20191 Sector Hydro, Solar Product Technology firm with activities in hydro microturbines and ethanol production. Merged with Solar Night Industries in March 2006. Coordinates 38.959374°, -77.354571° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.959374,"lon":-77.354571,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Juice Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Juice Technologies LLC Juice Technologies LLC Jump to: navigation, search Name Juice Technologies LLC Place Columbus, Ohio Zip 43212 Sector Vehicles Product Ohio-based provider of products and technologies in electric plug in hybrid vehicles. Coordinates 39.96196°, -83.002984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.96196,"lon":-83.002984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Clean Diesel Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Diesel Technologies Inc Diesel Technologies Inc Jump to: navigation, search Name Clean Diesel Technologies Inc Place Stamford, Connecticut Zip 6901 Product Clean Diesel Technologies Inc is a specialty chemical company with patented products that reduce emissions from diesel engines while simultaneously improving fuel economy and power. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

322

Production  

Energy.gov (U.S. Department of Energy (DOE))

Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

323

Energy Conservation in Fertilizer Production  

E-Print Network (OSTI)

oil. Table 1 shows current United States fertilizer production estimates. No. of Total Annual No. of PCR Annual Type of Plants in Plaot liSA Production lToos) PCR Type Plaots Production l,IoosJ NPKS 100 10 x 10 6 28 2.5 x 10 6 DAP/MAP 26... 10.9 x 10 6 4 3 x 10 6 . Table I USA Fertilizer Production - 1984, Estimated PCR Technology The Pipe-Cross Reactor was developed initially to contain the violent reaction in fertilizer pro duction which occurred during ammoniating of sulfu ric...

Mings, W. J.; Sonnett, W. M.

1984-01-01T23:59:59.000Z

324

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

325

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

326

Solar Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

327

Property:NrelPartnerType | Open Energy Information  

Open Energy Info (EERE)

NrelPartnerType NrelPartnerType Jump to: navigation, search Property Name NrelPartnerType Property Type String Description Partnership Type. Pages using the property "NrelPartnerType" Showing 25 pages using this property. (previous 25) (next 25) 1 1366 Technologies + Incubator + 3 3M + CRADA + A A.O. Smith + Test & Evaluation Partner + A123Systems + CRADA + AAON + Test & Evaluation Partner + AQUA Products + Test & Evaluation Partner + AVL Powertrain Engineering + Licensing Agreement + AWS Truewind + Test & Evaluation Partner + Abengoa Solar + CRADA + Abound Solar + Other Relationship + Advanced Energy Products + Test & Evaluation Partner + Affiliated International Management (AIM) + Test & Evaluation Partner + Affordable Comfort + Test & Evaluation Partner +

328

Current Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Technologies LLC Technologies LLC Jump to: navigation, search Name Current Technologies LLC Place Germantown, Maryland Zip 20874 Product Current Technologies develop smart grid technology for delivering intelligent and distribution over power lines. These developments are also designed to increase the safety of the energy supply. Coordinates 43.220985°, -88.118584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.220985,"lon":-88.118584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

MAK Technologies | Open Energy Information  

Open Energy Info (EERE)

MAK Technologies MAK Technologies Jump to: navigation, search Name MAK Technologies Place Lebanon, New Jersey Zip 8833 Sector Solar Product Designs and installs solar electric and solar thermal systems Coordinates 33.872452°, 35.876549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.872452,"lon":35.876549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

Electrogen Technologies | Open Energy Information  

Open Energy Info (EERE)

Electrogen Technologies Electrogen Technologies Jump to: navigation, search Name Electrogen Technologies Place Nairobi, Kenya Sector Solar Product A Kenyan firm who sets up a solar panel joint venture with a Chinese firm in Kenya. Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

SVTC Technologies | Open Energy Information  

Open Energy Info (EERE)

SVTC Technologies SVTC Technologies Jump to: navigation, search Name SVTC Technologies Address 3901 North First Street Place San Jose, California Zip 95134 Sector Solar Product Provides emiconductor process tools for new silicon developers Website http://www.svtc.com/ Coordinates 37.411854°, -121.950581° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.411854,"lon":-121.950581,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

LFG Technologies | Open Energy Information  

Open Energy Info (EERE)

LFG Technologies LFG Technologies Jump to: navigation, search Name LFG Technologies Place Fairport, New York Zip 14450 Product New York-based developer and provider of landfill gas and anaerobic digestion equipment and turnkey solutions. Coordinates 43.10106°, -77.441914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.10106,"lon":-77.441914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Hydrocarbon Technologies | Open Energy Information  

Open Energy Info (EERE)

Hydrocarbon Technologies Hydrocarbon Technologies Place Lawrenceville, New Jersey Zip 8648 Sector Efficiency Product String representation "Technology-base ... onmental risks." is too long. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Noveda Technologies | Open Energy Information  

Open Energy Info (EERE)

Noveda Technologies Noveda Technologies Jump to: navigation, search Name Noveda Technologies Address 31 Tannery Road Place Branchburg, NJ Zip 08876 Sector Services Product Real Time Data Monitoring system Year founded 2007 Number of employees 11-50 Phone number 908 534 8855 Website http://www.noveda.com Coordinates 40.607325°, -74.726874° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.607325,"lon":-74.726874,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Cogeneration Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Cogeneration Technologies Place Houston, Texas Zip 77070 Sector Biomass, Solar Product Provides efficient systems in the fields of demand management, biofuel, biomass and solar CHP systems. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Coulomb Technologies | Open Energy Information  

Open Energy Info (EERE)

Coulomb Technologies Coulomb Technologies Jump to: navigation, search Name Coulomb Technologies Address 1692 Dell Ave. Place Campbell, California Zip 95008 Sector Efficiency Product Networked charging stations for PHEV's Website http://www.coulombtech.com/ Coordinates 37.261444°, -121.957627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.261444,"lon":-121.957627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Unimicron Technology | Open Energy Information  

Open Energy Info (EERE)

Unimicron Technology Unimicron Technology Jump to: navigation, search Name Unimicron Technology Place Taoyuan, Taiwan Sector Solar Product Unimicron established solar venture jointly with United Microelectronic called NexPower that focuses on the development of thin-film PV. Coordinates 25.001909°, 121.304977° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.001909,"lon":121.304977,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Maxwell Technologies | Open Energy Information  

Open Energy Info (EERE)

Maxwell Technologies Maxwell Technologies Jump to: navigation, search Name Maxwell Technologies Address 9244 Balboa Avenue Place San Diego, California Zip 92123 Sector Efficiency Product Manufacturer of ultracapacitors, energy storage devices designed for use in power-generating windmills Website http://www.maxwell.com/ Coordinates 32.823193°, -117.13126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.823193,"lon":-117.13126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Membrane Technology Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012

340

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MHK Technologies/TREK | Open Energy Information  

Open Energy Info (EERE)

TREK TREK < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage TREK.jpg Technology Profile Primary Organization Renewable Energy Research Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 7 8 Open Water System Testing Demonstration and Operation Technology Description Each TREK turbine has a nameplate capacity of 250 kW However TREK is capable of outputting 333 kW Its benefits are many Requires no dam land conservation for wildlife agriculture and recreation Easily installed requiring minimal civil works structures Operates in many climate and river types Flexible Functions independently or can be connected to an isolated and or interconnected power grid Scalable more turbines can be added should demands increase helping communities with sustainable development Competitive electricity cost is on par with other renewable energy power production options

342

The UL45 gene product is required for herpes simplex virus type 1 glycoprotein B-induced fusion.  

Science Journals Connector (OSTI)

...required for herpes simplex virus type 1 glycoprotein B-induced fusion. E J Haanes C M Nelson C L Soule...required for herpes simplex virus type 1 glycoprotein B-induced fusion. | Herpes simplex virus type 1 (HSV-1) syncytial (syn...

E J Haanes; C M Nelson; C L Soule; J L Goodman

1994-09-01T23:59:59.000Z

343

A New Type Curve Analysis for Shale Gas/Oil Reservoir Production Performance with Dual Porosity Linear System  

E-Print Network (OSTI)

matching program.................. ...................... 46 6.2 Synthetic case generated with Stehfest to test the accuracy of the type curve shape................... ........................................................................... 47... 6.3 Synthetic case generated with CMG to test the accuracy of type curve results which show very close values.................... ................................ 48 6.4 Synthetic case generated with CMG to test the accuracy of type curve...

Abdulal, Haider Jaffar

2012-02-14T23:59:59.000Z

344

Modified Atmosphere Packaged Cheddar Cheese Shreds:? Influence of Fluorescent Light Exposure and Gas Type on Color and Production of Volatile Compounds  

Science Journals Connector (OSTI)

Modified Atmosphere Packaged Cheddar Cheese Shreds:? Influence of Fluorescent Light Exposure and Gas Type on Color and Production of Volatile Compounds ... The cheese block was shredded with a hand shredder. ... Aldehydes were the major constituent of the volatile fraction of shredded Cheddar cheese packaged under CO2. ...

Llori M. Colchin; Sandra L. Owens; Galina Lyubachevskaya; Elizabeth Boyle-Roden; Estelle Russek-Cohen; Scott A. Rankin

2001-04-13T23:59:59.000Z

345

Up to $1.15 Million Available to Small Businesses for New Products or Technologies that Expand Geothermal Markets  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department announced funds targeted to small businesses in two separate geothermal subtopics: a) innovations to develop under-utilized markets and b) a technology transfer opportunity...

346

MHK Technologies/Finavera Buoy | Open Energy Information  

Open Energy Info (EERE)

Finavera Buoy Finavera Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Finavera Buoy.jpg Technology Profile Primary Organization Oregon Iron Works Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description MARINE DIVISION Oregon Iron Works Inc OIW has a globally recognized Marine Division with a wide range of advanced accomplishments from custom design prototype development Fabricate OPT Power Take Off 2007 Design Build Finavera Buoy 2007 Fabricate OPT Next Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic

347

Partnering Institution Name Partnering Institution Name Place Type  

Open Energy Info (EERE)

Partnering Institution Name Partnering Institution Name Place Type Partnering Institution Name Partnering Institution Name Place Type of Partnership Partner Center Partner Year Partner Description Link Technologies Technologies North Lexington Massachusetts Incubator National Center for Photovoltaics M M St Paul Minnesota CRADA http www nrel gov pv pv manufacturing html A O Smith A O Smith Milwaukee Wisconsin Test Evaluation Partner Electricity Resources Building Systems Integration A123Systems A123Systems Watertown Massachusetts CRADA Transportation Technologies and Systems http www nrel gov news press html AAON AAON Tulsa Oklahoma Test Evaluation Partner Electricity Resources Building Systems Integration AQUA Products AQUA Products Prosperity South Carolina Test Evaluation Partner Electricity Resources Building Systems Integration

348

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pathways: Cost, Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A1-46612 September 2009 Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Prepared under Task No. HS07.1002 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393

349

Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies | Open  

Open Energy Info (EERE)

Fuel Systems Technologies Worldwide Inc Quantum Technologies Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place Irvine, California Zip CA 92614 Sector Hydro, Hydrogen, Solar, Vehicles, Wind energy Product A California-based company with new energy activities in powertrains for hybrid vehicles, gas and hydrogen storage equipment manufacturing, and wind and solar energy. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

GT Solar Technologies formerly GT Equipment Technologies | Open Energy  

Open Energy Info (EERE)

GT Solar Technologies formerly GT Equipment Technologies GT Solar Technologies formerly GT Equipment Technologies Jump to: navigation, search Name GT Solar Technologies (formerly GT Equipment Technologies) Place Merrimack, New Hampshire Zip 3054 Product US-based manufacturer of turnkey multicrystalline PV wafer, cell, and module fabrication lines; also offers EFG and dentritic growth furnaces. Coordinates 42.872517°, -71.490603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.872517,"lon":-71.490603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Sustainable Green Technologies | Open Energy Information  

Open Energy Info (EERE)

Green Technologies Green Technologies Place Escondido, California Zip 92025 Sector Biofuels Product Creating technology to use hydrogen as an alternative fuel, bio-hydrogen and algal oil production Website http://sgth2.com/ Coordinates 33.0864488°, -117.0441009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0864488,"lon":-117.0441009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Micron Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Micron Technology Inc Micron Technology Inc Jump to: navigation, search Name Micron Technology Inc Place Boise, Idaho Zip 83707-0006 Sector Solar Product Solid state flash memory and CMOS maker exploring LED lighting production and rumoured to be mulling solar manufacturing. Coordinates 43.60698°, -116.193409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.60698,"lon":-116.193409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Amulaire Thermal Technology | Open Energy Information  

Open Energy Info (EERE)

Amulaire Thermal Technology Amulaire Thermal Technology Jump to: navigation, search Name Amulaire Thermal Technology Address 11555 Sorrento Valley Road Place San Diego, California Zip 92121 Sector Efficiency Product Makes heat-dissipation products used in liquid cooling systems Website http://www.amulaire.com/ Coordinates 32.912393°, -117.231201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.912393,"lon":-117.231201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4)  

Energy.gov (U.S. Department of Energy (DOE))

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core...

355

Vehicle Technologies Office Merit Review 2014: Scale-Up of Magnesium Production by Fully Stabilized Zirconia Electrolysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by INFINIUM, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scale-up of magnesium...

356

DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3)  

Energy.gov (U.S. Department of Energy (DOE))

The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core...

357

Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies  

Science Journals Connector (OSTI)

The purpose of this study was to enhance the efficiency of anaerobic co-digestion with sewage sludge using pretreatment technologies and food waste. We studied the effects of various pretreatment methods (thermal...

Seungjin Kim; Kwangkeun Choi; Jong-Oh Kim; Jinwook Chung

2013-11-01T23:59:59.000Z

358

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

359

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)

1996-12-01T23:59:59.000Z

360

Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas  

SciTech Connect

This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for enhanced H2 production profiles using selected culture conditions and inhibitors of specific pathways in WT cells and an NDH-1 mutant; 3. Create Synechocystis PCC 6803 mutant strains with modified hydrogenases exhibiting increased O2 tolerance and greater H2 production; and 4. Integrate enhanced hydrogenase mutants and culture and metabolic factor studies to maximize 24-hour H2 production.

Ely, Roger L.; Chaplen, Frank W.R.

2014-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

362

Study of the Distribution of News Releases Produced by the Oklahoma Food and Agricultural Products Research and Technology Center.  

E-Print Network (OSTI)

??The purpose of this study was to evaluate how Oklahoma newspapers use the Food and Agricultural Products Center news releases. A descriptive analysis approach was (more)

Jones, Amanda Faith

2005-01-01T23:59:59.000Z

363

Advanced coal technology by-products: Long-term results from landfill test cells and their implications for reuse or disposal applications  

SciTech Connect

New air pollution regulations under the 1991 Clean Air Act and other legislation are motivating continued development and implementation, of cleaner, more efficient processes for converting coal to electrical power. These clean coal processes produce solid by-products which differ in important respects from conventional pulverized coal combustion ash. Clean coal by-products` contain both residual sorbent and captured SO{sub 2} control products, as well as the mineral component of the coal. The Department of Energy/Morgantown Energy Technology Center has contracted Radian Corporation to construct and monitor landfill test cells with a several different advanced coal combustion by-products at three locations around the US; data from these sites provide a unique picture of the long-term field behavior of clean coal combustion by-products. The field testing sites were located in western Colorado, northern Ohio, and central Illinois. Fluidized bed combustion and lime injection residues are characterized by high lime and calcium sulfate contents` contributed by reacted and unreacted sorbent materials, and produce an leachate, when wetted. Compared with conventional coal fly ash, the clean coal technology ashes have been noted for potential difficulties when wetted, including corrosivity, heat generation, cementation, and swelling on hydration. On the other hand, the high lime content and chemical reactivity of clean coal residues offer potential benefits in reuse as a cementitious material.The results of three years of data collection suggest a fairly consistent pattern of behavior for the calcium-based dry sorbent systems involved in the project, despite differences in the initial of the by-products, differences in the methods of placement, and differences in climate at the test sites.

Weinberg, A. [Radian Corp., Austin, TX (United States); Harness, J.L. [USDOE, Washington, DC (United States)

1994-06-01T23:59:59.000Z

364

Multiple-part-type systems in high volume manufacturing : long-term capacity planning & time-based production control  

E-Print Network (OSTI)

This project examines a production station that faces fluctuating demand with seasonal pattern. The cumulative capacity exceeds the cumulative demand in a one year period; however, its weekly capacity is not able to meet ...

Hua, Xia, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

365

United Technologies Corp | Open Energy Information  

Open Energy Info (EERE)

Technologies Corp Technologies Corp Jump to: navigation, search Name United Technologies Corp Place Hartford, Connecticut Zip CT 06101 Sector Hydro, Hydrogen Product UTC is a global technology corporation with activities in aerospace, aviation, helicopter design, climate control, elevator design and hydrogen fuel cells. Coordinates 41.763325°, -72.674069° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.763325,"lon":-72.674069,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

TRC Advanced Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

TRC Advanced Technologies Inc TRC Advanced Technologies Inc Jump to: navigation, search Logo: TRC Advanced Technologies Inc Name TRC Advanced Technologies Inc Address 8700 Commerce Park Place Houston, Texas Zip 77036 Sector Solar Product Remote power PV systems Website http://www.trcat.com/ Coordinates 29.685775°, -95.535791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.685775,"lon":-95.535791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Premier Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: Premier Solar Technologies Name Premier Solar Technologies Place Dubai, United Arab Emirates Sector Renewable Energy Product Integrated Storage Collector Website http://premiersolartechnologie Coordinates 24.985960773822°, 55.194025039673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.985960773822,"lon":55.194025039673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Power Tagging Technologies | Open Energy Information  

Open Energy Info (EERE)

Tagging Technologies Tagging Technologies Jump to: navigation, search Name Power Tagging Technologies Place Superior, Colorado Zip 80027 Product Colorado-based developer of advanced digital signal processing technologies that enable real-time "power tagging" on the grid. Coordinates 41.761495°, -108.967894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.761495,"lon":-108.967894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Efun Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Efun Technology Co Ltd Efun Technology Co Ltd Jump to: navigation, search Name Efun Technology Co Ltd. Place Tainan, Taiwan Zip 70955 Sector Solar Product Efun Technology principally engaged in the manufacture of optical film and is diversifying into the thin film solar sector. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

LUCA Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

LUCA Technologies Inc LUCA Technologies Inc Jump to: navigation, search Logo: LUCA Technologies Inc Name LUCA Technologies Inc Address 500 Corporate Circle, Suite C Place Golden, Colorado Zip 80401 Sector Biofuels Product Biofuels developer Website http://www.lucatechnologies.co Coordinates 39.720088°, -105.192312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.720088,"lon":-105.192312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Porous Power Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Porous Power Technologies LLC Porous Power Technologies LLC Jump to: navigation, search Logo: Porous Power Technologies LLC Name Porous Power Technologies LLC Address 2765 Dagny Way, Suite 200 Place Lafayette, Colorado Zip 80026 Sector Efficiency Product Laminable, porous, absorbent Li-ion batteries Website http://www.porouspower.com/ Coordinates 40.0130129°, -105.1327972° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0130129,"lon":-105.1327972,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Protium Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

Protium Energy Technologies Protium Energy Technologies Jump to: navigation, search Name Protium Energy Technologies Place Emmaus, Pennsylvania Zip 18049 Sector Hydro, Hydrogen Product A business, and technology consultancy service in the field of hydrogen, fuel cells and alternative energy. Coordinates 40.534985°, -75.491144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.534985,"lon":-75.491144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

Leadis Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Leadis Technology Inc Leadis Technology Inc Jump to: navigation, search Name Leadis Technology Inc. Place Sunnyvale, California Zip 94086-4834 Product Leadis Technology is a semiconductor company engaged in LED and OLED drivers. Coordinates 32.780338°, -96.547405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.780338,"lon":-96.547405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Allied Sun Technologies | Open Energy Information  

Open Energy Info (EERE)

Sun Technologies Sun Technologies Jump to: navigation, search Logo: Allied Sun Technologies Name Allied Sun Technologies Address 6881 Alvarado Road, Suite 4 Place San Diego, California Zip 92120 Sector Solar Product solar power systems Phone number (888-765-2740) Website http://www.alliedsun.com Coordinates 32.775565°, -117.051215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.775565,"lon":-117.051215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Alternative Concepts and Technology | Open Energy Information  

Open Energy Info (EERE)

and Technology and Technology Jump to: navigation, search Logo: Alternative Concepts and Technology Name Alternative Concepts and Technology Place Orlando, Florida Sector Solar Product solar power, water catchments, organic gardening Year founded 2007 Website http://www.alternativeconcepts Coordinates 28.5383355°, -81.3792365° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5383355,"lon":-81.3792365,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Leading Edge Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Leading Edge Technologies Inc Leading Edge Technologies Inc Jump to: navigation, search Name Leading Edge Technologies Inc Place Lakeland, Florida Product Profitable manufacturer of lithium ion batteries for consumer electronics makers that merged with Skylab Technologies Group Inc in September 2001 to form Solicore. Coordinates 35.264796°, -89.724114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.264796,"lon":-89.724114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

KLD Energy Technologies | Open Energy Information  

Open Energy Info (EERE)

KLD Energy Technologies KLD Energy Technologies Jump to: navigation, search Name KLD Energy Technologies Place Austin, Texas Zip 78746 Sector Efficiency, Vehicles Product Austin, Texas-based KLD Energy Technologies designs and licenses a high-frequency, low RPM, transmissionless motor system that increases the speed and efficiency of electric vehicles. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Collier Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc Technologies Inc Jump to: navigation, search Name Collier Technologies Inc Place Reno, Nevada Zip NV 89502 Sector Hydro, Hydrogen Product Collier is a low emissions technology development and licensing company, specializing in patented hydrogen and mixed gas applications for internal combustion engines. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Mechanical Technologies Inc MTI | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc MTI Technologies Inc MTI Jump to: navigation, search Name Mechanical Technologies Inc (MTI) Place Albany, New York Zip 12205 Product The company is dedicated to developing and commercializing new technologies. Coordinates 42.707237°, -89.436378° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.707237,"lon":-89.436378,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Rive Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Rive Technology Inc Rive Technology Inc Jump to: navigation, search Name Rive Technology Inc Address One Canal Park Place Cambridge, Massachusetts Zip 02141 Sector Biofuels Product Catalyst technology for petroleum refining to dramatically increase the yield of transportation fuels Website http://www.rivetechnology.com/ Coordinates 42.369496°, -71.07676° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.369496,"lon":-71.07676,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Border Security Comprehensive...

382

Siemens Technology Accelerator | Open Energy Information  

Open Energy Info (EERE)

Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary Division ) References: Siemens Technology Accelerator1...

383

Reducing Heavy-Haul Railcar Maintenance Costs and Improving Terminal Performance Using Technology: A Lean Production Approach  

E-Print Network (OSTI)

operations. This research applies Lean Manufacturing methods to the railcar maintenance process industries to improve production and manufacturing efficiency. In the 2000s, various production management with terminal dwell [3,4]. In addition, Logan suggested that for every 15% reduction in systemwide average

Illinois at Urbana-Champaign, University of

384

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

cost-effective) techniques to remotely detect hydrate deposits, and to monitor their changes in the course of gas production.production of gas from hydrates occurring in the Gulf of Mexico because, despite of the substantially increased complexity and cost

Moridis, George J.

2008-01-01T23:59:59.000Z

385

Towards a desalination initiative using cogeneration with an advanced reactor type and uranium recovered from Moroccan phosphoric acid production  

Science Journals Connector (OSTI)

Morocco is known to be among the first few countries to produce phosphate and phosphoric acid. Moroccan phosphate contains substantial amounts of uranium. This uranium can be recovered from the phosphate ore as a by-product during the production of phosphoric acid. Uranium extraction processes linked with phosphoric acid fabrication have been used industrially in some countries. This is done mainly by solvent extraction. Although, the present price of uranium is low in the international market, such uranium recovery could be considered as a side product of phosphoric acid production. The price of uranium has a very small impact on the cost of nuclear energy obtained from it. This paper focuses on the extraction of uranium salt from phosphate rock. If uranium is recovered in Morocco in the proposed manner, it could serve as feed for a number of nuclear power plants. The natural uranium product would have to be either enriched or blended as mixed-oxide fuel to manufacture adequate nuclear fuel. Part of this fuel would feed a desalination initiative using a high temperature reactor of the new generation, chosen for its intrinsic safety, sturdiness, ease of maintenance, thermodynamic characteristics and long fuel life between reloads, that is, good economy. ?n international cooperation based on commercial contract schemes would concern: the general project and uranium extraction; uranium enrichment and fuel fabrication services; the nuclear power plant; and the desalination plant. This paper presents the overall feasibility of the general project with some quantitative preliminary figures and cost estimates.

Michel Lung; Abdelaali Kossir; Driss Msatef

2005-01-01T23:59:59.000Z

386

Type B Accident Investigation Board Report on the March 26, 1999, Worker Injury at the East Tennessee Technology Park Three-Building Decontamination and Decommissioning and Recycle Project Site  

Energy.gov (U.S. Department of Energy (DOE))

This report is an independent product of the Type B Investigation Board appointed by Steven D. Richardson, Acting Manager, Oak Ridge Operations Office, U.S. Department of Energy (DOE). The Board was appointed to perform a Type B investigation of these incidents and to prepare an investigation report in accordance with DOE Order 225.1A, Accident Investigations.

387

Assessing the effect of requirement definition and management on performance outcomes: Role of interpersonal conflict, product advantage and project type  

Science Journals Connector (OSTI)

Abstract Early planning in many cases is not performed well in new product development (NPD). Most NPD literature has focused more on the product rather than on the development process (Funk, 1992). Thus, the primary purpose of this research was to investigate the relationships among requirement definition and management (RDM) practice, interpersonal conflict, product advantage, and NPD performance in terms of project and market performance. The structural equation modeling (SEM) approach was used to validate the research model. The results suggest that RDM practice in terms of RDM implementation process and training & improvement is associated with requirement quality and stability. The findings also indicate that the number of groups moderates the relationship between requirement quality & stability and project performance.

Li-Ren Yang; Jieh-Haur Chen; Xing-Liang Wang

2014-01-01T23:59:59.000Z

388

Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004  

SciTech Connect

The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

None listed

2005-06-01T23:59:59.000Z

389

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

390

Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes  

SciTech Connect

Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

1995-04-01T23:59:59.000Z

391

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect

GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility were established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.

George Rizeq; Janice West; Raul Subia; Arnaldo Frydman; Parag Kulkarni; Jennifer Schwerman; Valadimir Zamansky; John Reinker; Kanchan Mondal; Lubor Stonawski; Hana Loreth; Krzysztof Piotrowski; Tomasz Szymanski; Tomasz Wiltowski; Edwin Hippo

2005-02-28T23:59:59.000Z

392

Conservation Technologies | Open Energy Information  

Open Energy Info (EERE)

Logo: Conservation Technologies Name Conservation Technologies Address 4804 Oneota St Place Duluth, Minnesota Zip 55807 Sector Solar Product solar electric systems Phone number (218) 722-9003 Website http://www.conservtech.com/ Coordinates 46.7398823°, -92.1566468° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.7398823,"lon":-92.1566468,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Nano Tune Technologies Corp | Open Energy Information  

Open Energy Info (EERE)

Tune Technologies Corp Jump to: navigation, search Name: Nano Tune Technologies Corp. Place: Mountain View, California Product: Nano Tune use sol-gel processing technology to...

394

Ardica Technologies | Open Energy Information  

Open Energy Info (EERE)

Name: Ardica Technologies Place: San Francisco, California Zip: 94107 Product: Micro fuel cell company focused on customer-centric applications of fuel cell technologies....

395

Design of a photochemical water electrolysis system based on a W-typed dye-sensitized serial solar module for high hydrogen production  

Science Journals Connector (OSTI)

Abstract A W-typed dye-sensitized serial solar module (W-typed DSSM) was designed for hydrogen production from water electrolysis. The optimal thickness and width of the TiO2 electrode film were 12?m and 5mm, and the optimal thickness of Pt counter electrode film was 4nm, respectively. The photocurrent density, open circuit voltage, and fill factor were 2.13mAcm?2, 3.51V, and 0.61, respectively, for a serial module assembled from five unit cells, which resulted in an overall conversion efficiency of 4.56%. The obtained voltage increased with increasing number of unit cells connected, and was 3.51V in the five column fabricated W-typed DSSM. 2.1mLh?1 of hydrogen gas was emitted when a W-typed DSSM assembled from five columns was connected to carbon electrodes in a water electrolysis system. The rate of hydrogen evolution in the five columned W-typed DSSM was 0.00213Lh?1. Therefore, the actual light-hydrogen conversion was calculated to be 2.02%.

Byeong Sub Kwak; Jinho Chae; Misook Kang

2014-01-01T23:59:59.000Z

396

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

397

The Management of Manure Production Units at the College of Zoo-Technology and Ecology in Chihuahua, Mexico  

E-Print Network (OSTI)

Abstract: Residues management environmental problematic is complex, due to the lack of environmental education and participation capacity in the community and government. The hardly livestock activities planification contribute to the excretes accumulation leading to the environment degradation and putting the public health and livestock at risk. The first objective was to propose a manure management plan at the animal production units in the Facultad de Zootecnia y Ecologia. A second objective was to evaluate the biogas production from a manure mixture (pig, chicken, rabbit and cattle) produced in an anaerobic reactor and a third objective assess whether to implement a production scale biogas digester that support the provision of energy demands in production units. To accomplish the first objective a diagnostic was conducted on the recollection, disposition and use common practices of the mixture and its implications in two neighboring urban communities. In order to identify the impact an inquiry was applied in houses randomly selected within a 50, 100 and 200 m distance from the production units, Microsoft Excel and SAS 8.0 Proc Jeans XP were used to perform statistical analysis. To evaluate the mixture biogas generation rate and methane composition, an ascendant flow bioreactor was operated (UASB) with 5l capacity using mesophilic temperatures between neutral 3 1 pH ranges with an organic charge (OC) of 1.9 kg SV m d. The methane content estimation CH 4 ( g), biogas

S. Cristina Velez; C. Ricardo Soto; A. Carmelo Pinedo; Hector Rubio Arias

398

Silicon carbide grains of type C provide evidence for the production of the unstable isotope $^{32}$Si in supernovae  

E-Print Network (OSTI)

Carbon-rich grains are observed to condense in the ejecta of recent core-collapse supernovae, within a year after the explosion. Silicon carbide grains of type X are C-rich grains with isotpic signatures of explosive supernova nucleosynthesis have been found in primitive meteorites. Much rarer silicon carbide grains of type C are a special sub-group of SiC grains from supernovae. They show peculiar abundance signatures for Si and S, isotopically heavy Si and isotopically light S, which appear to to be in disagreement with model predictions. We propose that C grains are formed mostly from C-rich stellar material exposed to lower SN shock temperatures than the more common type X grains. In this scenario, extreme $^{32}$S enrichments observed in C grains may be explained by the presence of short-lived $^{32}$Si ($\\tau$$_{1/2}$ = 153 years) in the ejecta, produced by neutron capture processes starting from the stable Si isotopes. No mixing from deeper Si-rich material and/or fractionation of Si from S due to mole...

Pignatari, M; Bertolli, M G; Trappitsch, R; Hoppe, P; Rauscher, T; Fryer, C; Herwig, F; Hirschi, R; Timmes, F X; Thielemann, F -K

2013-01-01T23:59:59.000Z

399

Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis  

Science Journals Connector (OSTI)

There are many approaches to study the environmental and sustainability aspects of production and consumption. Some of these reside at the level of concepts, e.g., industrial ecology, design for environment, and cleaner production. Other approaches are based on the use of quantitative models, e.g., life cycle assessment, material flow accounting and strategic environmental assessment. This paper focuses on the development of a framework that is able to incorporate different models for environmental analysis, with the option of a broader scope that also includes economic and social aspects, thus covering the three pillars of sustainability. This framework builds on the ISO-framework for life cycle assessment, but takes a broader view, and allows us to move from micro questions on specific products, via meso questions on life styles up to macro questions in which the entire societal structure is part of the analysis.

Reinout Heijungs; Gjalt Huppes; Jeroen B. Guine

2010-01-01T23:59:59.000Z

400

MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information  

Open Energy Info (EERE)

WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Shanghai ST Solar Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

ST Solar Technology Co Ltd ST Solar Technology Co Ltd Jump to: navigation, search Name Shanghai ST Solar Technology Co Ltd Place Jiading, Shanghai Municipality, China Zip 201800 Sector Solar Product A company engaged in a-Si and crystalline silicon solar module production, solar system design, production and sale. Coordinates 31.3825°, 121.2603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3825,"lon":121.2603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Zhejiang Guangyi Light Energy Technologies Co Gytech | Open Energy  

Open Energy Info (EERE)

Zhejiang Guangyi Light Energy Technologies Co Gytech Zhejiang Guangyi Light Energy Technologies Co Gytech Jump to: navigation, search Name Zhejiang Guangyi Light Energy Technologies Co (Gytech) Place Zhuji, Zhejiang Province, China Sector Solar Product Solar products company engaged in PV cell and module as well solar heating and lighting systems production. Coordinates 29.71121°, 120.245216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.71121,"lon":120.245216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Research needs and data acquisition to apply US technology to foreign coals: Annual report, July 1, 1986-June 30, 1987. [Production and consumption of each indexed country  

SciTech Connect

Extensive data on the coal resources, characteristics, demand and supply, coal production and plans for coal utilization to meet the energy needs in the countries of the Pacific Basin and Asia have been gathered. Two databases have been prepared based on this information which are compatible with the database on domestic coals available at NCTDC, PETC on coal resources and characteristics. Coal technologies and coal preparation methods currently in use in the Pacific Basin and Asia have also been addressed. In the second phase of this project, an assessment of the information obtained will be conducted and, wherever possible, this data will be compared with domestic data on coals and coal conversion practices so as to highlight similarities or differences. High quality and useful data will be enumerated in the form of graphs, tables and matrices for quick review. Conclusions from this data will depict work areas of potential mutual interest and areas of technology transfer. US products and services which can be exported will be emphasized.

Joseph, S.; Kulkarni, A.; Saluja, J.

1987-01-01T23:59:59.000Z

404

The Role of Emerging Energy-Efficient Technology in PromotingWorkplace Productivity and Health: Final Report  

SciTech Connect

Research into indoor environmental quality (IEQ) and itseffects on health, comfort, and performance of occupants is becoming anincreasing priority as interest in high performance buildings andorganizational productivity advances. Facility managers are interested inIEQ's close relationship to energy use in facilities and employers wantto enhance employee comfort and productivity, reduce absenteeism andhealth costs, and reduce or even eliminate litigation by providingexcellent indoor environments to employees. The increasing interest inthis field as architects, engineers, facility managers, buildinginvestors, health officials, jurists, and the public seek simple andgeneral guidelines on creating safe, healthy, and comfortable indoorenvironment, has put additional pressure on the research community. Inthe last twenty years, IEQresearchers have advanced our understanding ofthe influence of IEQ on health and productivity, but many uncertaintiesremain. Consequently, there is a critical need to expand research in thisfield, particularly research that is highly multidisciplinary. Inaddition, there is a strong need to better communicate knowledgecurrently documented in research publications to building professionalsin order to encourage implementation of designs and practices thatenhance health and productivity. Against this background, the IndoorHealth and Productivity (IHP) project aims to develop a fullerunderstanding of the relationships between physical attributes of theworkplace (e.g. thermal, lighting, ventilation, and air quality) innon-residential and non-industrial buildings and the health andproductivity of occupants. A particular emphasis of the IHP project is toidentify and communicate key research findings, with their practical andpolicy implications, to policymakers, design practitioners, facilitymanagers, construction and energy services companies, and buildinginvestors.The IHP project has a steering committee of sponsors and seniorscientists. Advisory committees are also established for specificefforts. NIST provides an administrative role for some federallysupported efforts, i.e., sponsors provide money to NIST which then fundsthe work. The preferred mode of operation of the IHP Project is to poolmodest amounts of support from multiple sponsors to achieve objectives,with projects selected by the IHP Steering Committee. Additionalinformation on the IHP Project is available at the project web sitewww.IHPCentral.org.

Kumar, Satish; Fisk, William J.

2002-02-13T23:59:59.000Z

405

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

406

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

407

MHK Technologies/MotorWave | Open Energy Information  

Open Energy Info (EERE)

MotorWave MotorWave < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage MotorWave.jpg Technology Profile Primary Organization Motor Wave Group Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The MotorWave device is composed of about 70 float modules with each float measuring about 4 m3 Each MotorWave is designed to pump water ashore for onshore applications or energy production Technology Dimensions Device Testing Date Submitted 45:49.5 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/MotorWave&oldid=681609

408

MHK Technologies/Jiangxia Tidal Power Station | Open Energy Information  

Open Energy Info (EERE)

Jiangxia Tidal Power Station Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary Organization China Guodian Corporation Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 9 Commercial Scale Production Application Technology Description There are 6 bulb turbine generator units operating in both ebb and flood tides with a total installed capacity up to 3 9 MW Technology Dimensions Technology Nameplate Capacity (MW) 3 9 Device Testing Date Submitted 14:15.7 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Jiangxia_Tidal_Power_Station&oldid=681601

409

Siluria Technologies | Open Energy Information  

Open Energy Info (EERE)

of biological nanotechnology-enabled products for clean energy products such as solar cells and light emitting devices. References: Siluria Technologies1 This article...

410

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

411

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

412

Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities  

SciTech Connect

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

2004-01-13T23:59:59.000Z

413

Composite Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Composite Technology Corporation Composite Technology Corporation Place Irvine, California Zip 92614 Product Designs, manufacturers and markets a diversified line of composite products for the power industry. Website http://www.compositetechcorp.c Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Riverside Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc Technologies Inc Address 10650 Treena Street Place San Diego, California Zip 92131 Product Uses scrap tires as the raw material in the production of SynBlack oil, gas, and steel Website http://www.rtiworldwide.com/ Coordinates 32.912063°, -117.114827° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.912063,"lon":-117.114827,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

New and Emerging Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

This power point presentation provides an overview of CHP technologies and how they can be used in industrial manufacturing plants to increase productivity and reduce energy and costs.

416

Opto Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Opto Technology Inc Opto Technology Inc Jump to: navigation, search Name Opto Technology Inc Place Wheeling, Illinois Zip 60900 Product US-based subsidiary of PerkinElmer which designs and develops LED based light sources. Coordinates 40.063965°, -80.721424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.063965,"lon":-80.721424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Relume Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Relume Technologies Inc Relume Technologies Inc Jump to: navigation, search Name Relume Technologies Inc Place Oxford, Michigan Zip 48371 Product Michigan-based LED street, commercial and signage lighting maker. Coordinates 43.781517°, -89.571699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.781517,"lon":-89.571699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Green Fuel Technologies Corporation | Open Energy Information  

Open Energy Info (EERE)

Technologies Corporation Technologies Corporation Jump to: navigation, search Name Green Fuel Technologies Corporation Address 29 Smith Place Place Cambridge, Massachusetts Zip 02138 Sector Biofuels Product Recycles CO2 from flue gases to produce biofuels Website http://www.greenfuelonline.com Coordinates 42.3911653°, -71.150853° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3911653,"lon":-71.150853,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Polymer Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Polymer Technology Corp Polymer Technology Corp Jump to: navigation, search Name Polymer Technology Corp Place Menomonie, Wisconsin Zip 54751 Sector Services Product A provider of contract engineering services Coordinates 44.8805°, -91.929559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.8805,"lon":-91.929559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Precision Energy Technology | Open Energy Information  

Open Energy Info (EERE)

Energy Technology Energy Technology Jump to: navigation, search Name Precision Energy & Technology Place Kettering, Ohio Zip 45420 Product Dayton-based, fuel cell designer and manufacturer. Coordinates 39.69525°, -84.162974° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.69525,"lon":-84.162974,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "technology product type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Zenith Materials Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Materials Technology Corp Materials Technology Corp Jump to: navigation, search Name Zenith Materials Technology Corp. Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar ingot puller and wafer wire-saw. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

SunLed Technologies | Open Energy Information  

Open Energy Info (EERE)

SunLed Technologies SunLed Technologies Jump to: navigation, search Name SunLed Technologies Place Hyderabad, Andhra Pradesh, India Zip 500 034 Sector Solar Product Hyderabad-based end-to-end energy efficient lighting solution provider and ESCO focused on LEDs and solar power. Coordinates 17.6726°, 77.5971° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.6726,"lon":77.5971,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Radiant Technology Corporation RTC | Open Energy Information  

Open Energy Info (EERE)

Technology Corporation RTC Technology Corporation RTC Jump to: navigation, search Name Radiant Technology Corporation (RTC) Place Fullerton, California Zip 92831 Product Provides infrared furnaces, primarily used in the photovoltaic manufacturing industry. Coordinates 46.16041°, -98.420506° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.16041,"lon":-98.420506,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Fat Spaniel Technologies | Open Energy Information  

Open Energy Info (EERE)

Fat Spaniel Technologies Fat Spaniel Technologies Jump to: navigation, search Name Fat Spaniel Technologies Address 2 W. Santa Clara Street Place San Jose, California Zip 95113 Sector Efficiency Product Monitoring systems for renewable energy generation Website http://www.fatspaniel.com/ Coordinates 37.3361841°, -121.8905474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.3361841,"lon":-121.8905474,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Advanced Capacitor Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Capacitor Technologies Inc Capacitor Technologies Inc Jump to: navigation, search Name Advanced Capacitor Technologies Inc Place Tokyo, Japan Zip 196-8558 Sector Carbon Product Japanese manufacturer of ultracapacitors from nano-carbon materials. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Shanghai Yung Qiang Technology | Open Energy Information  

Open Energy Info (EERE)

Shanghai Yung Qiang Technology Shanghai Yung Qiang Technology Jump to: navigation, search Name Shanghai Yung-Qiang Technology Place Shanghai, Shanghai Municipality, China Zip 200000 Sector Hydro, Hydrogen Product Working with Palcan Fuel Cells on manufacturing and developing various hydrogen and air fuel subsystem components for Palcan fuel cells. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Pan African Technologies | Open Energy Information  

Open Energy Info (EERE)

Pan African Technologies Pan African Technologies Jump to: navigation, search Name Pan African Technologies Place Nairobi, Kenya Sector Solar Product A Kenya-based solar panel manufacturer Coordinates -1.277298°, 36.806261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1.277298,"lon":36.806261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

GWS Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

GWS Technologies Inc GWS Technologies Inc Jump to: navigation, search Name GWS Technologies Inc Place Scottsdale, Arizona Zip 85260 Product Arizona-based clean energy developer. Coordinates 33.494°, -111.920694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.494,"lon":-111.920694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Precision Flow Technologies | Open Energy Information  

Open Energy Info (EERE)

Precision Flow Technologies Precision Flow Technologies Jump to: navigation, search Name Precision Flow Technologies Place Saugerties, New York Zip 12477 Product New York-based, firm focused on the design and manufacture of ultra high purity gas and control systems. Coordinates 42.07778°, -73.952459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.07778,"lon":-73.952459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Five Star Technologies | Open Energy Information  

Open Energy Info (EERE)

Star Technologies Star Technologies Jump to: navigation, search Name Five Star Technologies Place Independence, Ohio Zip 44131 Sector Solar Product US manufacturer of inks and pastes for the electronics industry; in solar, manufactures silver paste for screen printing PV cells. Coordinates 44.356672°, -91.421315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.356672,"lon":-91.421315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Essential Innovations Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Technology Corp Technology Corp Jump to: navigation, search Name Essential Innovations Technology Corp Place Bellingham,, Washington State Zip 98225 Sector Geothermal energy, Services Product String representation "Manufactures an ... r applications." is too long. Coordinates 48.75235°, -122.471219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.75235,"lon":-122.471219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

GEO2 Technologies | Open Energy Information  

Open Energy Info (EERE)

GEO2 Technologies GEO2 Technologies Jump to: navigation, search Name GEO2 Technologies Address 12-R Cabot Road Place Woburn, Massachusetts Zip 01801 Product Materials science company working in advanced filtration and complex chemical reactions Website http://www.geo2tech.com/ Coordinates 42.509246°, -71.134124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.509246,"lon":-71.134124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Amperex Technology Limited ATL | Open Energy Information  

Open Energy Info (EERE)

Amperex Technology Limited ATL Amperex Technology Limited ATL Jump to: navigation, search Name Amperex Technology Limited (ATL) Place N.T., Hong Kong Product Designer and manufacturer of Lithium Ion Polymer (LIP) battery cells and batteries for OEM customers making cell phones, PDA, notebook PC, earphone, and smart card applications. Coordinates 44.994023°, -72.407693° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.994023,"lon":-72.407693,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Advanced AMR Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced AMR Technologies Inc Advanced AMR Technologies Inc Jump to: navigation, search Name Advanced AMR Technologies Inc Address 285 Newbury Street Place Peabody, Massachusetts Zip 01960 Sector Efficiency Product Energy management solutions Website http://www.advancedamr.com/ Coordinates 42.5547616°, -70.9800841° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5547616,"lon":-70.9800841,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Jerusalem College of Technology | Open Energy Information  

Open Energy Info (EERE)

Jerusalem College of Technology Jerusalem College of Technology Jump to: navigation, search Name Jerusalem College of Technology Place Jerusalem, Israel Sector Solar Product Researching solar cells and their improvement. Coordinates 31.7736°, 35.224998° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.7736,"lon":35.224998,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Inventure Chemical Technology | Open Energy Information  

Open Energy Info (EERE)

Inventure Chemical Technology Inventure Chemical Technology Jump to: navigation, search Name Inventure Chemical Technology Address P.O. Box 530 Place Gig Harbor, Washington Zip 98335 Sector Biofuels Product Operates a prototype algae fuel processing plant Year founded 2007 Website http://www.inventurechem.com/ Coordinates 47.3163876°, -122.6151128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.3163876,"lon":-122.6151128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Aonex Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Aonex Technologies Inc Aonex Technologies Inc Jump to: navigation, search Name Aonex Technologies Inc Place Pasadena, California Zip 91106 Sector Solar Product Focused on commercialising a manufacturing method for semiconductor nanomaterials - specifically solar cells. Coordinates 29.690847°, -95.196308° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.690847,"lon":-95.196308,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Axis Technologies Group Inc | Open Energy Information  

Open Energy Info (EERE)

Axis Technologies Group Inc Axis Technologies Group Inc Jump to: navigation, search Name Axis Technologies Group, Inc Place Lincoln, Nebraska Zip 68522 Product Designs, manufactures, and markets energy-saving and daylight harvesting electronic dimming ballasts for the commercial lighting industry. Coordinates 47.829403°, -118.419202° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.829403,"lon":-118.419202,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Recaptured Energy Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Recaptured Energy Technologies LLC Recaptured Energy Technologies LLC Jump to: navigation, search Name Recaptured Energy Technologies LLC Place Chicago, Illinois Zip 60602-4270 Sector Vehicles Product Chicago-based company providing energy solutions for fleet, commercial and transit vehicles. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

SSP Technology A S | Open Energy Information  

Open Energy Info (EERE)

SSP Technology A S SSP Technology A S Jump to: navigation, search Name SSP Technology A/S Place Broby, Denmark Zip DK-5672 Sector Wind energy Product Danish wind turbine blade manufacturer. Coordinates 55.22995°, 10.25757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.22995,"lon":10.25757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}