Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint  

SciTech Connect (OSTI)

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

2012-02-01T23:59:59.000Z

2

Emerging Water Heating Technologies Research & Development Roadmap...  

Broader source: Energy.gov (indexed) [DOE]

Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

3

RENEWABLES RESEARCH Boiler Burner Energy System Technology  

E-Print Network [OSTI]

RENEWABLES RESEARCH Boiler Burner Energy System Technology (BBEST) for Firetube Boilers PIER Renewables Research September 2010 The Issue Researchers at Altex Technologies Corporation in Sunnyvale, industrial combined heat and power (CHP) boiler burner energy system technology ("BBEST"). Their research

4

Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

5

Crosscutting Technology Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNaturalInstituteCrosscutting Technology

6

FY08 Engineering Research and Technology Report  

SciTech Connect (OSTI)

This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Minichino, C; McNichols, D

2009-02-24T23:59:59.000Z

7

Research & Development Roadmap: Emerging Water Heating Technologies...  

Energy Savers [EERE]

Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

8

Water Heating Technologies Research and Development Roadmap ...  

Energy Savers [EERE]

Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

9

Sandia Researchers Develop Promising Chemical Technology for...  

Energy Savers [EERE]

Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

10

Magnesium Research and Technology Development  

SciTech Connect (OSTI)

The Magnesium Research and Technical Development (MR&TD) project supports efforts to increase using magnesium in automotive applications, including improving technology, lowering costs and increasing the knowledge needed to enable alloy and manufacturing process optimization. MR&TD supports the U.S. Department of Energy (DOE)/United States Automotive Materials Partnership (USAMP) Magnesium Front End Research and Development (MFERD) project in collaboration with China and Canada. The MR&TD projects also maintains the magnesium bibliographic database at magnesium.pnl.gov.

Nyberg, Eric A.; Joost, William; Smith, Mark T.

2009-12-30T23:59:59.000Z

11

Hydrogen Fueling Infrastructure Research and Station Technology...  

Energy Savers [EERE]

Infrastructure Research and Station Technology Download presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure...

12

Hydrogen Technology Research at SRNL  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E.

2011-02-13T23:59:59.000Z

13

Building Technologies Research and Integration Center | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Integration Center October 02, 2014 Today, through the Building Technologies Research and Integration Center (BTRIC) and associated Centers of Excellence, ORNL applies...

14

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

15

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

16

Hydrogen Fueling Infrastructure Research and Station Technology  

Broader source: Energy.gov [DOE]

Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

17

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

18

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

19

Networking and Information Technology Research and Development...  

Office of Environmental Management (EM)

Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

20

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Modeling the technology mix  

SciTech Connect (OSTI)

The electricity industry is now actively considering which combination of advanced technologies can best meet CO{sub 2} emissions reduction targets. The fundamental challenge is to develop a portfolio of options that is technically feasible and can provide affordable electricity to customers. As the US industry considers its investments in research, development and demonstration projects, EPRI's PRISM and MERGE analyses address this challenge and point toward a solution that EPRI describes as 'The Full Portfolio'. The PRISM results show much greater use of nuclear power, renewable energy and coal with carbon capture and storage (CCS) towards 2030, and a sharply lower contribution from natural gas and coal without CCS. The MERGE analysis shows that, assuming CCS would not be available, the use of coal would fall off sharply in favour of natural gas and there would be a fall in electricity demand driven by very high prices. With the Full Portfolio, nuclear power and advanced coal generation with CCS reduce emissions to a point where a much lower demand reduction is needed. By 2050 the Full Portfolio will have decarbonized the electricity sector and reduced the impact on electricity prices to below a fifth that of the limited portfolio. 2 figs.

Douglas, J. [EPRI (United States)

2007-09-30T23:59:59.000Z

22

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

23

Load research manual. Volume 3. Load research for advanced technologies  

SciTech Connect (OSTI)

This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

None

1980-11-01T23:59:59.000Z

24

Information technology and sustained competitive advantage : a research model for the effect of information technology on sustained competitive advantage and an empirical analysis  

E-Print Network [OSTI]

Companies consider Information Technology (IT) to be a major factor for achieving sustained competitive advantage (SCA). The effect of IT on firm performance has been studied from two main perspectives: the market based ...

Saodekar, Sarvesh P. (Sarvesh Pramod)

2012-01-01T23:59:59.000Z

25

Nanoscale Science, Engineering and Technology Research Directions  

SciTech Connect (OSTI)

This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

1999-01-01T23:59:59.000Z

26

Aviation Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools PrintableCARIBUAuthorCausality

27

NREL: Geothermal Technologies - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo ofResearch Staff

28

Overview and Progress of the Exploratory Technology Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT) Overview and Progress of the Exploratory Technology...

29

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

30

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Fuel Cell Technologies Office Multi-Year Research,...

31

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and...

32

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research,...

33

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network [OSTI]

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de Investigación for Research Management & Technology Transfer #12;

Escolano, Francisco

34

UC Center for Information Technology Research in the Interest...  

Open Energy Info (EERE)

UC Center for Information Technology Research in the Interest of Society (CITRIS) Jump to: navigation, search Logo: UC Center for Information Technology Research in the Interest of...

35

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

36

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to...

37

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

38

Office of Industrial Technologies research in progress  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

39

Energy Center Center for Coal Technology Research  

E-Print Network [OSTI]

Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

Fernández-Juricic, Esteban

40

Health effects of coal technologies: research needs  

SciTech Connect (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

42

Energy Technology Division research summary - 1999.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

43

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year...

44

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

45

Energy Technology Division research summary 1997.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

46

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

47

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network [OSTI]

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

48

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

49

Artificial Lift Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone byDear Friend,Arthur J. Nozik - Research FellowTechnology:

50

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

51

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

52

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

53

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network [OSTI]

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

54

Research and development of fish passage technology  

SciTech Connect (OSTI)

Any fish passage provided at TVA's John Sevier Fossil Plant (JSF) would involve only warmwater species. Although some anadromous (marine) warmwater species (e.g., American shad, blueback herring) are currently passed upstream and downstream through structures deliberately built for that purpose, effectiveness of this technology for passage of adults and young of potential target species (e.g., paddlefish and sauger/walleye) in Cherokee Reservoir is unproven. Downstream passage is by far the larger and more poorly understood subject of fish migration and should be investigated first. Currently, the Electric Power Research Institute (EPRI) is conducting research on downstream fish passage (Project RP 2694). It will ultimately be necessary to adapt this information to the target species and site specificity at JSF.

Hackney, P.A.

1986-12-01T23:59:59.000Z

55

HELP SHAPE RESEARCH AND TECHNOLOGY DEVELOPMENT AT UTARI Needs Forum  

E-Print Network [OSTI]

HELP SHAPE RESEARCH AND TECHNOLOGY DEVELOPMENT AT UTARI TECHNOLOGY Needs Forum: Thursday, November areas of assistive technologies for persons with disabilities would help improve human performance in the future? How can technology help you in the future? What prospective assistive technologies would best

Huang, Haiying

56

Beryllium Technology Research in the United States  

SciTech Connect (OSTI)

While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

2005-02-01T23:59:59.000Z

57

Refining and Extending the Business Model with Information Technology: Dell Computer Corporation  

E-Print Network [OSTI]

of Dells Direct Business Model Fuels Fifteenth ConsecutiveAND EXTENDING THE REFINING AND EXTENDING THE BUSINESS MODELBUSINESS MODEL CENTER FOR RESEARCH ON INFORMATION TECHNOLOGY

Kraemer, Kenneth L; Dedrick, Jason; Yamashiro, Sandra

1999-01-01T23:59:59.000Z

58

Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities  

SciTech Connect (OSTI)

This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

Not Available

1993-09-30T23:59:59.000Z

59

Geospatial technologies and digital geomorphological mapping: Concepts, issues and research  

E-Print Network [OSTI]

Geospatial technologies and digital geomorphological mapping: Concepts, issues and research Michael visualization was primarily relied upon for analysis, introducing subjectivity and biases with respect and rapidly evolving geospatial technologies. Consequently, new capabilities exist but numerous issues have

James, L. Allan

60

Research and Application of RCF Technology in Public Building  

E-Print Network [OSTI]

, China, September 14-17, 2014 Research and Application of RCF Technology in Public Buildings 7. REFERENCES ASHRAE, 2013, 2013 Handbook-Fundamental, Thermal Comfort, American Society of Heating, refrigeration and Air-Conditioning Engineers, Inc...Radiant Ceiling plus Fresh Air Research and Application of RCF Technology in Public Buildings ???????????? AirStar Air Conditioning Technology Group (HK) Ltd ?????????? AirStar Environment Technology Group Ltd ?????????????? YanTong Zhu...

Yan, J.; Pan, D.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program...

62

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

63

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1.0 Introduction Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 1.0 Introduction Introduction section of the Fuel Cell...

64

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

65

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

66

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

67

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

68

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Systems Integration section of the...

69

agricultural technology research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

70

ancillary technologies research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

71

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Environmental Management (EM)

Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with...

72

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

73

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

74

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

75

A model technology transfer program for independent operators  

SciTech Connect (OSTI)

In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

Schoeling, L.G.

1996-08-01T23:59:59.000Z

76

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

77

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

78

Estimating the Economic Contributions Utah Science Technology and Research  

E-Print Network [OSTI]

Estimating the Economic Contributions of the Utah Science Technology and Research Initiative (USTAR Stambro Senior Research Economist Bureau of Economic and Business Research David Eccles School of Business University of Utah February 2012 © 2012 Bureau of Economic and Business Research, University of Utah #12

Tipple, Brett

79

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech, where technology transfer and knowledge-bridging will play a pivotal role in the industrial dynamics of the microelectronics sector. Keywords. Nanotechnology ­ biotechnology ­ microelectronics ­ technology transfer

Paris-Sud XI, Université de

80

Transportation Research Board AFN 10: Basic Research and Emerging Technologies in Concrete  

E-Print Network [OSTI]

Transportation Research Board AFN 10: Basic Research and Emerging Technologies in Concrete I will identify potential problems related to concrete materials, and develop research needs statement within STATEMENT AND BACKGROUND The chloride induced corrosion of steel reinforcement embedded in concrete

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Market Acceptance of Advanced Automotive Technologies Model ...  

Open Energy Info (EERE)

Automotive Technologies Model (MA3T) Consumer Choice Model AgencyCompany Organization: Oak Ridge National Laboratory OpenEI Keyword(s): EERE tool, Market Acceptance of Advanced...

82

Vehicle Technologies Office Research Partner Requests Proposals...  

Energy Savers [EERE]

a number of up-and-coming companies that have contributed to significant developments in battery technology. The group, which is a collaborative organization of FCA US LLC, Ford...

83

Research, Development, and Technology Licensing Opportunities  

E-Print Network [OSTI]

.............................................................................................................................................................. 8 IMPROVED FUEL CELL FUNCTION has a long history of working closely with industry in advancing technology and is a leader among its ............................................................................................................................................................................. 6 BODIPY DYES FOR SOLAR CELLS

84

Energy Technology Division research summary -- 1994  

SciTech Connect (OSTI)

Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

Not Available

1994-09-01T23:59:59.000Z

85

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

86

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

87

Research on advanced photovoltaic manufacturing technology  

SciTech Connect (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

88

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

89

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Appendix B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput...

90

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

91

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

92

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

93

Fuel Cell Technologies Office Multi-Year Research, Development...  

Broader source: Energy.gov (indexed) [DOE]

2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

94

Portfolio evaluation of advanced coal technology : research, development, and demonstration  

E-Print Network [OSTI]

This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

Naga-Jones, Ayaka

2005-01-01T23:59:59.000Z

95

Microscale combustion: Technology development and fundamental research Yiguang Ju a  

E-Print Network [OSTI]

of micro-thrusters, micro internal combustion engines, and micro chemical reactors summarized. ThirdlyReview Microscale combustion: Technology development and fundamental research Yiguang Ju a , Kaoru Maruta b,* a Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ

Ju, Yiguang

96

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429Indiana WindIndonesia|Indonesia:IndurTechnology

97

Small Hydropower Research and Development Technology Project  

SciTech Connect (OSTI)

The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

Blackmore, Mo [Near Space Systems, Inc.] [Near Space Systems, Inc.

2013-12-06T23:59:59.000Z

98

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

/ RECs #12;CGECTask 7. Biomass Gasification Technology Assessment · Task is still in progress · UpdateRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;Biomass/MSW Gap

California at Davis, University of

99

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

California at Davis, University of

100

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

102

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

103

Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)  

SciTech Connect (OSTI)

This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysis and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.

Blair, N.; Dobos, A.; Ferguson, T.; Freeman, J.; Gilman, P.; Whitmore, J.

2014-05-01T23:59:59.000Z

104

Engineering Research, Development and Technology, FY95: Thrust area report  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

NONE

1996-02-01T23:59:59.000Z

105

Natural Gas Pipeline Research: Best Practices in Monitoring Technology  

E-Print Network [OSTI]

Natural Gas Pipeline Research: Best Practices in Monitoring Technology Energy Systems Research/index.html January 2012 The Issue California is the secondlargest natural gas consuming state in the United States, just behind Texas. About 85% of the natural gas consumed in California is delivered on interstate

106

PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches  

E-Print Network [OSTI]

Developer University #12;8 FUEL CELL RESEARCH NEEDS MEA optimization should focus on new materials Pt (full1 PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches Tom Jarvi UTC Power South Windsor, CT 06074 23 January 2008 #12;2 UTC POWER MARKET FOCUS Transportation Fuel Cells On-Site Power Solutions #12

107

Institut Eurecom1 Institut Eurecom research is partially supported by its industrial members: BMW Group Research & Technology BMW Group  

E-Print Network [OSTI]

: BMW Group Research & Technology BMW Group Company, Bouygues Telecom, Cisco Systems, France Telecom

Gesbert, David

108

FY10 Engineering Innovations, Research and Technology Report  

SciTech Connect (OSTI)

This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

2011-01-11T23:59:59.000Z

109

On modeling pollution-generating technologies July 22, 2010 On modeling pollution-generating technologies.  

E-Print Network [OSTI]

On modeling pollution-generating technologies July 22, 2010 On modeling pollution modeling pollution-generating technologies July 22, 2010 Abstract We distinguish between intended with respect to inputs and intended outputs that cause pollution. We derive implications from the phenomenon

Bandyopadhyay, Antar

110

Vehicle Technologies Office: Exploratory Battery Materials Research |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport | DepartmentandResearchDepartment of

111

Advanced Lighting Technologies | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >

112

Advanced Water Technologies | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAbout Us >PortalWater We're

113

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar RegionalClimateResearchInteractions 4:Emission

114

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar RegionalClimateResearchInteractions 4:EmissionCenters:

115

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar RegionalClimateResearchInteractions

116

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar RegionalClimateResearchInteractionsCenters: Engineering

117

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar RegionalClimateResearchInteractionsCenters:

118

NREL: Photovoltaics Research - Emerging Technologies Engineering Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand Evaluation Emerging

119

NREL: Photovoltaics Research - Science and Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7 November 29,Science and

120

Research Activities Web Technologies Web Technologies include procedures that are used in order  

E-Print Network [OSTI]

Research Activities ­ Web Technologies Web Technologies include procedures that are used in order to enhance the services that are offered by the World Wide Web. They include both services that can be presented directly to the users of the World Wide Web and services that are transparent to the end user

Bouras, Christos

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Laboratory technology research - abstracts of FY 1997 projects  

SciTech Connect (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

NONE

1997-11-01T23:59:59.000Z

122

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

123

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation...

124

Materials and Components Technology Division research summary, 1992  

SciTech Connect (OSTI)

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

125

Engineering research, development and technology. Thrust area report, FY93  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

Not Available

1994-05-01T23:59:59.000Z

126

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

127

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

128

Biological and chemical technologies research. FY 1995 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

None

1996-03-01T23:59:59.000Z

129

Laboratory technology research: Abstracts of FY 1998 projects  

SciTech Connect (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

NONE

1998-11-01T23:59:59.000Z

130

Thrust Area Report, Engineering Research, Development and Technology  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

Langland, R. T.

1997-02-01T23:59:59.000Z

131

Research and development of CWM technology toward clean coal use  

SciTech Connect (OSTI)

In this chapter, three subjects were presented from among our technical efforts to develop clean coal applications to improve environmental quality. The three subjects are briefly summarized as follows: development of technology aimed at producing and utilizing exclusively low ash CWM; development of technology to produce CWM from various pond coals; development of technology to upgrade LRC and utilize CWM for both a boiler fuel and a gasification feedstock. We are fully convinced that the first and second of the above technologies have reached the level of practical use through demonstration tests. As to the third, we have almost finished a 10 kg/h coal slurry bench-scale test and have a plan to construct an upgrading pilot plant of 350 kg/h which will be completed in the fall 1994. We will hopefully establish upgrading technology through pilot-scale demonstration testing in 1995. With this technology, not just utilization of LRCs will be expanded, but also highly efficient use of coal will be accelerated. Thus, C0{sub 2} emission will also be strongly reduced. In ending, we would like to stress our efforts on research and development of environmentally friendly technologies as well as COM and CWM technologies based on bituminous and steaming coals.

Shibata, Kazuhiro

1993-12-31T23:59:59.000Z

132

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network [OSTI]

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

133

MOT Applied Research Projects Where science, technology, and business meet  

E-Print Network [OSTI]

MOT Applied Research Projects Where science, technology, and business meet Project Details) Compensation: No charge for selected company projects Your Commitment: Involvement ranges from a few check Science Engineering Arts and Sciences Life Sciences Average age: 33 Typical work experience: 5 - 8 years

134

University of Maine Integrated Forest Product Refinery (IFPR) Technology Research  

SciTech Connect (OSTI)

This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

Pendse, Hemant P.

2010-11-23T23:59:59.000Z

135

LITHUANIAN FOREST RESEARCH INSTITUTE Studies on forestry, technology and  

E-Print Network [OSTI]

production in Rokiskis forest enterprise Final report Financed by Swedish Energy Agency Girionys ­ 2002 http1 LITHUANIAN FOREST RESEARCH INSTITUTE Studies on forestry, technology and economy of forest fuel ...........................................................................................................................................1 1. ASSESSMENT OF FOREST FUEL RESOURCES IN ROKISKIS FOREST ENTERPRISE (A.Kuliesis, J

136

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop.9 Williams, R. B., B. M. Jenkins and S. R. Kaffka (2014). An Assessment of Biomass Resources in California. An Assessment of Biomass Resources in California, 2012 ­ DRAFT. Contractor Report to the California Energy

California at Davis, University of

137

ResearchMICHIGAN TECHNOLOGICAL UNIVERSITY > 2012 The comeback ooze  

E-Print Network [OSTI]

MICHIGAN TECHNOLOGICAL UNIVERSITY > 2012 Sanctuary in paradise Rare Hawaiian birds find refuge in tiny island forests, Sarah Bird. Send your comments to the editor at mlgoodri@mtu.edu. Learn more about research at Michigan for bigger people--by design Rising sun A new dawn for solar power 16 19 20 3RESE ARCH 2012 | Michigan

138

Research and Technology in Wave Energy for Electric Mobility  

E-Print Network [OSTI]

generated by ocean current and energy extraction through ocean thermal conversion (OTEC). For wave energy renewable energy in the oceans, the utilization of such power has been far from full or even effectiveResearch and Technology in Wave Energy for Electric Mobility Reza Ghorbani Assistant Professor

Frandsen, Jannette B.

139

Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs  

SciTech Connect (OSTI)

A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

Not Available

1980-08-01T23:59:59.000Z

140

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect (OSTI)

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Future steelmaking technologies and the role of basic research  

SciTech Connect (OSTI)

The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

1996-12-31T23:59:59.000Z

142

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, R.J.; Laney, P.T.

2002-05-14T23:59:59.000Z

143

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, Robert John; Laney, Patrick Thomas

2002-06-01T23:59:59.000Z

144

Visualizing the Brain in a New Way USTAR Research Team #7: Imaging Technology  

E-Print Network [OSTI]

Visualizing the Brain in a New Way USTAR Research Team #7: Imaging Technology Learning to spot autism by creating models of healthy brains How do you know if you're looking at something unhealthy Gerig to study the development of brains in children from infancy to four-years-old. Using magnetic

Utah, University of

145

INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF C2  

E-Print Network [OSTI]

10TH INTERNATIONAL COMMAND AND CONTROL RESEARCH AND TECHNOLOGY SYMPOSIUM THE FUTURE OF C2 Modeling% of the responding organizations employed some form of access control mechanism [7]. Therefore, though insider users violations with the most damaging consequences take place through misuse of insider access privileges

Laskey, Kathryn Blackmond

146

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

147

Delphi research consortiumDelphi research consortium Delft University of TechnologyDelft University of Technology  

E-Print Network [OSTI]

://http://www.delphi.tudelft.nlwww.delphi.tudelft.nl Delft University of Technology Linking multiple removal and daylightLinking multiple removal and daylight imaging for active surface seismic dataimaging for active surface seismic data D.J.D.J. Verschuur ·Implicit relation primaries and multiples: P = P - P A P ; M = P A P ; A = RS-1 ·Iterative solution: Pi+1

148

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

149

BCTR: Biological and Chemical Technologies Research 1994 annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

Petersen, G.

1995-02-01T23:59:59.000Z

150

Turfgrass: Field to provide lab to research new technologies  

E-Print Network [OSTI]

lab to research new technologies 14 tx H2O Summer 2011 Turfgrass Continued (Left) Dr. Mark Hussey, vice chancellor and dean for agriculture and life sciences at Texas A&M University, and Jim Tates, Scotts Company southwest region president..., are joined by others showing a recognition plaque given to the Scotts Company. Photo courtesy of Texas A&M AgriLife. (Right) Dr. David Baltensperger and Dr. Richard White stand in front of the future Scotts Miracle-Gro Lawn and Garden Research...

Wythe, Kathy

2011-01-01T23:59:59.000Z

151

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

152

PROCEEDINGS OF THE 2004 NATIONAL OILHEAT RESEARCH RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.  

SciTech Connect (OSTI)

This meeting is the seventeenth oilheat industry technology meeting held since 1984 and the forth since the National Oilheat Research Alliance was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program under the United States Department of Energy, Building Technologies Program within the Office of Energy Efficiency and Renewable Energy. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2004-08-31T23:59:59.000Z

153

Competitive Analysis of Modeling Technology Handle noise/  

E-Print Network [OSTI]

&k - - - - - - - DRM Technologies - - - - - - - EMA INC - - - - - - - FLIR Systems, INC P - - - - - - Asset

Huang, Samuel H.

154

A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)  

SciTech Connect (OSTI)

This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

Schoeling, L.G.

1993-09-01T23:59:59.000Z

155

Supporting robotics technology requirements through research in intelligent machines  

SciTech Connect (OSTI)

{open_quotes}Safer, better, cheaper{close_quotes} are recurring themes in many robot development efforts. Significant improvements are being accomplished with existing technology, but basic research sets the foundations for future improvements and breakthrough discoveries. Advanced robots represent systems that integrate the three basic functions of sensing, reasoning, and acting (locomotion and manipulation) into one functional unit. Depending on the application requirements, some of these functions are implemented at a more or less advanced level than others. For example, some navigation tasks can be accomplished with purely reactive control and do not require sophisticated reasoning and planning methodologies. Robotics work at the Oak Ridge National Laboratory (ORNL) spans the spectrum from basic research to application-specific development and rapid prototyping of systems. This presentation summarizes recent highlights of the robotics research activities at ORNL.

Mann, R.C.

1995-02-01T23:59:59.000Z

156

SEMATECH: A Model for Advancing Solar Technology | Department...  

Broader source: Energy.gov (indexed) [DOE]

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them...

157

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

158

Fuels from microalgae: Technology status, potential, and research requirements  

SciTech Connect (OSTI)

Although numerous options for the production of fuels from microalgae have been proposed, our analysis indicates that only two qualify for extensive development - gasoline and ester fuel. In developing the comparisons that support this conclusion, we have identified the major areas of microalgae production and processing that require extensive development. Technology success requires developing and testing processes that fully utilize the polar and nonpolar lipids produced by microalgae. Process designs used in these analyses were derived from fragmented, preliminary laboratory data. These results must be substantiated and integrated processes proposed, tested, and refined to be able to evaluate the commercial feasibility from microalgae. The production of algal feedstocks for processing to gasoline or ester fuel requires algae of high productivity and high lipid content that efficiently utilize saline waters. Species screening and development suggest that algae can achieve required standards taken individually, but algae that can meet the integrated requirements still elude researchers. Effective development of fuels from microalgae technology requires that R and D be directed toward meeting the integrated standards set out in the analysis. As technology analysts, it is inappropriate for us to dictate how the R and D effort should proceed to meet these standards. We end our role by noting that alternative approaches to meeting the feasibility targets have been identified, and it is now the task of program managers and scientists to choose the appropriate approach to assure the greatest likelihood of realizing a commercially viable technology. 70 refs., 39 figs., 35 tabs.

Neenan, B.; Feinberg, D.; Hill, A.; McIntosh, R.; Terry, K.

1986-08-01T23:59:59.000Z

159

Research Profile Prof. Park's Professorship of Energy Technology will focus on  

E-Print Network [OSTI]

Research Profile Prof. Park's Professorship of Energy Technology will focus on fundamental having various experiences in fundamental nanoscale trans- port, applications in energy technology Engineering ETH Zurich Nanoscience for Energy Technology and Sustainability Sonneggstrasse 3 CH-8092 Zürich

Sandoghdar, Vahid

160

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect (OSTI)

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

Not Available

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electric Power Research Institute: Environmental Control Technology Center.  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified. The 1990 Clean Air Act Amendments have required that the Environmental Protection Agency (EPA) assess the health risks and environmental effects associated with air toxic emissions (primarily mercury) from fossil-fuel fired utility boilers. EPRI has sponsored research on environmental mercury since 1983 to determine the factors that may influence human health, and to determine the role of electric power generating stations in contributing to those factors. Over the last four years, EPRI`s Environmental Control Technology Center (ECTC) has conducted EPRI and DOE sponsored testing to develop and demonstrate appropriate measurement methods and control technologies for power plant atmospheric mercury emissions. Building upon the experience and expertise of the EPRI ECTC, a test program was initiated at the Center in July to further evaluate dry sorbent-based injection technologies upstream of a cold-side ESP for mercury control, and to determine the effects of such sorbents on ESP performance. The results from this program will be compared to the results from previous DOE/EPRI demonstrations, and to other ongoing programs. The primary objectives of this test program are to: (1) Determine the levels of mercury removal achievable by dry sorbent injection upstream of an electrostatic precipitator (ESP). The process parameters to be investigated include sorbent residence time, sorbent type, sorbent size, sorbent loading, and flue gas temperature. (2) Determine the impact of sorbent injection on ESP performance.

NONE

1997-07-01T23:59:59.000Z

162

Prof. Dr. Burkard Hillebrands Vice-President for Research and Technology  

E-Print Network [OSTI]

Kaiserslautern Germany www.uni-kl.de ContactTechnology TransferServices for young international researchers in the field of technology transfer and patenting. Information and Technology Transfer Office (KIT) The KITProf. Dr. Burkard Hillebrands Vice-President for Research and Technology Phone: +49 (0)631 205 2202

Berns, Karsten

163

Assessment of basic research needs for greenhouse gas control technologies  

SciTech Connect (OSTI)

This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

1998-09-01T23:59:59.000Z

164

Technology "Relay Race" Against Cancer | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GE Scientists in Technology "Relay Race" Against Cancer GE Scientists in Technology "Relay Race" Against Cancer GE technologies being developed to impact every stage of cancer...

165

PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.  

SciTech Connect (OSTI)

This is the PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, which was Held at Oilheat Visions Conference, Rhode Island Convention Center, Providence, Rhode Island, August 20-21, 2002. The specific objectives of this conference are to: (1) identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2002-08-20T23:59:59.000Z

166

Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

NONE

1995-06-01T23:59:59.000Z

167

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

168

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

169

CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights  

SciTech Connect (OSTI)

Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

Eto, Joseph

2003-07-30T23:59:59.000Z

170

How to explore new business models for technological innovations  

E-Print Network [OSTI]

How to explore new business models for technological innovations Valérie Chanal Grenoble University also involved business model innovation. Exploration of new business models is however particularly to target. This article proposes a scenario-based method for exploring business models for technological

Paris-Sud XI, Université de

171

Survey of biomass gasification. Volume III. Current technology and research  

SciTech Connect (OSTI)

This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

None

1980-04-01T23:59:59.000Z

172

Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint  

SciTech Connect (OSTI)

This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

Wagner, M. J.

2012-04-01T23:59:59.000Z

173

BPA seeks research partners to advance technology solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

174

Vehicle Technologies Office's Research Recognized by R&D 100...  

Broader source: Energy.gov (indexed) [DOE]

R&D Magazine recently recognized four technologies supported by the Vehicle Technologies Office as some of the most significant products introduced in the marketplace over the last...

175

Proposed Research Center Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO)  

E-Print Network [OSTI]

Proposed Research Center Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO of a Research Center in Biomedical Engineering for Advanced Technologies in Ophthalmology (BEATO) administered with the Department of Ophthalmology. The BEATO Center will focus on advanced technology and biomedical engineering

Rose, Michael R.

176

Technology and Education: Putting it in context A summary of the final Capital Research Project report  

E-Print Network [OSTI]

Technology and Education: Putting it in context A summary of the final Capital Research Project-00593093,version1-13May2011 #12;1 Box 1: Capital Project Capital (Curriculum and Pedagogy in Technology media and research claims such as these about the educational value of new technologies. But often

Paris-Sud XI, Université de

177

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network [OSTI]

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

178

PNNL's Community Science & Technology Seminar Series Biomedical Research  

E-Print Network [OSTI]

. Advances in modern technologies related to genomics (genes) and proteomics (proteins) promise to usher

179

A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research  

E-Print Network [OSTI]

provided an analysis of VRE from a technological standpoint and developed a conceptual model that identified factors facilitating collaboration effectiveness with a primary focus on technology. VRE portals were at the core of the investigation...

Ahmed, Iftekhar

2010-01-16T23:59:59.000Z

180

Edinburgh Research Explorer Agile Business Model Innovation  

E-Print Network [OSTI]

Edinburgh Research Explorer Agile Business Model Innovation Citation for published version: Bock, A & Gerard, G 2014, 'Agile Business Model Innovation' The European Business Review, vol May - June 2014. Link Publisher Rights Statement: © Bock, A., & Gerard, G. (2014). Agile Business Model Innovation. The European

Millar, Andrew J.

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.6 Technology Validation  

Broader source: Energy.gov [DOE]

Technology Validation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

182

Office of Industry Research and Technology Programs Greetings to Industry  

E-Print Network [OSTI]

Technologies in this issue. Includ- ed are technologies that involve synthetic liquid hydrocarbons, hydrogen bio-oil, crude distillation, chalcogenide nanoparticles, nanoparticle inks and photovoltaic printing (LEDs), photovoltaic (PV) cells, and batteries). Specifically, the ability to fabricate semiconducting

Ginzel, Matthew

183

Model-Inspired Research. TES research uses modeling, prediction, and synthesis to identify  

E-Print Network [OSTI]

in Earth system models (ESMs). TES supports research to advance fundamental understanding of terrestrial-process models, ecosystem models, and the Community Earth System Model). This emphasis on the capture of advanced in Earth system models to increase the quality of climate model projections and to provide the scientific

184

E-Print Network 3.0 - advanced technological research Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 96 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: . This is at the cutting edge research in...

185

SunShot Initiative Researcher Wins National Medal of Technology and Innovation  

Broader source: Energy.gov [DOE]

Last week, President Obama recognized Dr. Rakesh Agrawal, who is currently a researcher with the Department's SunShot Initiative, with the National Medal of Technology and Innovation.

186

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center Technical Assessment of Small Hydro Power Technologies #12;California Renewable Energy Center Technical Assessment of In-conduit Small Hydro Power Technologies The goal of this study is to investigate and assess available small hydro power generation technologies and associated operating

California at Davis, University of

187

Institute for Software Technology Model-Based Testing  

E-Print Network [OSTI]

t Institute for Software Technology Model-Based Testing Ausgewählte Kapitel Softwaretechnologie 2 2013/14 B.K. Aichernig Model-Based Testing 1 / 38 #12;t Institute for Software Technology Testing Testing: checking or measuring some quality characteristics of an executing system by performing

188

Economic Modeling of Carbon Capture and Sequestration Technologies  

E-Print Network [OSTI]

Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

189

BEHAVIOURAL REALISM IN A TECHNOLOGY EXPLICIT ENERGY-ECONOMY MODEL: THE ADOPTION OF INDUSTRIAL COGENERATION IN CANADA  

E-Print Network [OSTI]

COGENERATION IN CANADA by Nicholas J. Rivers B.Eng., Memorial University of Newfoundland, 2000 RESEARCH PROJECT: Behavioural realism in a technology explicit energy-economy model: The adoption of industrial cogeneration the results. The model showed that industrial cogeneration is a relatively unknown technology to many firms

190

Expanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology  

E-Print Network [OSTI]

Forest Service research on recycling is being led by scientists at the Forest Products Laboratory (FPLExpanding Research Horizons: USDA Forest Service Initiative for Developing Recycled Paper Technology Theodore L. Laufenberg, Program Manager Forest Products Conservation and Recycling Said Abubakr

Abubakr, Said

191

Research Article Decomposition of Epoxy Model Compounds  

E-Print Network [OSTI]

-critical water (NCW) or subcritical water, i.e., water at 250­300 °C [20], turn out to be alternative candidatesResearch Article Decomposition of Epoxy Model Compounds in Near-Critical Water Two tpyes of epoxy water (NCW). In the case of model compound I, at low temperatures the water molecules behave

Guo, John Zhanhu

192

Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies  

SciTech Connect (OSTI)

The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1980-03-01T23:59:59.000Z

193

Disruptive technology business models in cloud computing  

E-Print Network [OSTI]

Cloud computing, a term whose origins have been in existence for more than a decade, has come into fruition due to technological capabilities and marketplace demands. Cloud computing can be defined as a scalable and flexible ...

Krikos, Alexis Christopher

2010-01-01T23:59:59.000Z

194

Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)  

SciTech Connect (OSTI)

The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

Not Available

2009-03-01T23:59:59.000Z

195

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

SciTech Connect (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

196

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

(EGI) - Demonstrate a low-impact rig technology with potential to reduce the cost of drilling temperature gradient wells (Aerospect) - Identify best locale within designated area...

197

Hydrogen and Fuel Cell Technologies Research, Development, and...  

Broader source: Energy.gov (indexed) [DOE]

June 4, 2015 Funding Organization: Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Funding Number: FOA DE-FOA-0001224 Summary The Fuel Cell...

198

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network [OSTI]

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

199

IllInoIs InstItute of technology's WInd energy research consortIum  

E-Print Network [OSTI]

IllInoIs InstItute of technology's WInd energy research consortIum Wanger Institute for Sustainable Energy Research (WISER) Illinois Institute of Technology On-campus wind turbine [OVER] The U.S. Department of Energy has invested $8 Million in the IIT-led Wind Energy Consortium to improve wind generation

Heller, Barbara

200

201202 Reservoir System Modeling Technologies Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Algorithm to Incorporate the Columbia River Non-Power Flow Requirements in the BC Hydro Generalized Optimization Model - University of British Columbia Hydrologic Modeling...

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network [OSTI]

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

202

LNG Safety Research: FEM3A Model Development  

SciTech Connect (OSTI)

The initial scope of work for this project included: (1) Improving the FEM3A advanced turbulence closure module, (2) Adaptation of FEM3A for more general applications, and (3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETL's FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTI's technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

Iraj A. Salehi; Jerry Havens; Tom Spicer

2006-09-30T23:59:59.000Z

203

LNG Safety Research: FEM3A Model Development  

SciTech Connect (OSTI)

The initial scope of work for this project included: 1) Improving the FEM3A advanced turbulence closure module, 2) Adaptation of FEM3A for more general applications, and 3) Verification of dispersion over rough surfaces, with and without obstacle using the advanced turbulence closure module. These work elements were to be performed by Chemical Hazards Research Center (CHRC), Department of Chemical Engineering, University of Arkansas as a subcontractor to Gas Technology Institute (GTI). The tasks for GTI included establishment of the scientific support base for standardization of the FEM3A model, project management, technology transfer, and project administration. Later in the course of the project, the scope of work was modified by the National Energy Technology Laboratories (NETL) to remove the emphasis on FEM3A model and instead, develop data in support of NETLs FLUENT modeling. With this change, GTI was also instructed to cease activities relative to FEM3A model. GTIs technical activities through this project included the initial verification of FEM3A model, provision of technical inputs to CHRC researchers regarding the structure of the final product, and participation in technical discussion sessions with CHRC and NETL technical staff. GTI also began the development of a Windows-based front end for the model but the work was stopped due to the change in scope of work. In the meantime, GTI organized a workshop on LNG safety in Houston, Texas. The workshop was very successful and 75 people from various industries participated. All technical objectives were met satisfactorily by Dr. Jerry Havens and Dr. Tom Spicer of CHRC and results are presented in a stand-alone report included as Appendix A to this report.

None

2006-09-30T23:59:59.000Z

204

TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain  

E-Print Network [OSTI]

TOOLS TO MODEL ROAD IMPACTS Providing scientific knowledge and technology to sustain our nation://www.fs.fed.us/rm/boise/AWAE_home.shtml BACKGROUND The Rocky Mountain Research Station has a long his- tory of developing tools that meet the needs. Existing tools have been optimized to answer particular man- agement questions at specific spatial scales

Fried, Jeremy S.

205

News From the 2012 Turbine Technology Symposium | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News From the 2012 Turbine Technology Symposium Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window)...

206

Small Business Innovation Research and Small Business Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to thin PV strips at the panel edge. One of the advantages of using this technology in a solar panel is that the holograms provide the ability to track the sun without any moving...

207

GE Launches Chinese Blog About Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is spicy and how to alleviate the burning it can cause, the technology behind cleaner coal energy, the breakthrough of a zero-emissions dual battery system for buses, ultrasonics...

208

University of Maine Researching Floating Technologies for Deepwater...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the commercial development of floating offshore wind technology. The gross U.S. offshore wind potential is more than 4,000 gigawatts (GW) - more than four times the combined...

209

Technology and Technical Change in the MIT EPPA Model  

E-Print Network [OSTI]

Potential technology change has a strong influence on projections of greenhouse gas emissions and costs of control, and computable general equilibrium (CGE) models are a common device for studying these phenomena. Using ...

Jacoby, Henry D.

210

Geothermal Electricity Technology Evaluation Model (GETEM) Development |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial TechnologyDepartment of

211

NREL: Technology Deployment - Models and Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NRELIncorporatesTechnologies

212

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

213

GETEM -Geothermal Electricity Technology Evaluation Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conversion systems. Previous version of the model included an option to change the tube material (and cost) in the geothermal heat exchangers. This option became inactive when...

214

Delft University of Technology Software Engineering Research Group  

E-Print Network [OSTI]

van Deursen and Ali Mesbah. Research Issues in the Automated Testing of Ajax Applications. In Proceedings 36th International Conference on Current Trend in Theory and Practice of Computer Science (SOFSEM permission of the authors. #12;Research Issues in the Automated Testing of Ajax Applications Arie van Deursen

Mesbah, Ali

215

Last updated: July 31, 2013 Page 1 of 3 CUNY HRPP Guidance: Internet or Mobile Technology Based Human Subject Research  

E-Print Network [OSTI]

or Mobile Technology Based Human Subject Research 1. Purpose The purpose responsibilities and considerations related to Internet or mobile technology based human of the Internet or mobile technology as a tool for subject recruitment; as a tool

Rosen, Jay

216

RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS  

E-Print Network [OSTI]

Renewable Energy Center California Energy Efficiency and GHG Goals · Integrated previous finding from Handbook #12;California Renewable Energy Center Resources: 1) Technology Roadmap: Energy Efficiency, Creamary, Plastics Cooking 60-100 Food and Beverages, Tinned Food, Paper, Meat Boiling 95-105 Food

California at Davis, University of

217

RESEARCH ACTIVITIES Division of Heat and Power Technology  

E-Print Network [OSTI]

Euro Necessary space Rig in use: 45m2 (9mx5m), storage: ca 14 m2 (7mx2m) General application Experimental to high subsonic operation Application for industry Testing of aerodynamic damping of blade rows Turbine - Division of Heat and Power Technology Object Cold Flow Test Turbine Brand name ABB STAL design

Kazachkov, Ivan

218

ResearchMICHIGAN TECHNOLOGICAL UNIVERSITY > 2011 APOCALYPSE THEN  

E-Print Network [OSTI]

, Medici recognized for fuel-cell discoveries 25 18 20 24 25 23 3Michigan Technological University #12 the strongest acids and alkalies. History of greed, power, and the Golden Gate receives accolades Historian history. Paying the Toll: Local Power, Regional Politics, and the Golden Gate Bridge tells the tale

219

Computational fire modeling for aircraft fire research  

SciTech Connect (OSTI)

This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

Nicolette, V.F.

1996-11-01T23:59:59.000Z

220

ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

PROJECT STAFF

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Data and Analysis for Transportation Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) in conjunction with the national laboratories conducts a wide range of statistical research on energy use, economics, and trends in transportation.

222

Cold Spray and GE Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

difference of the work done at GE Global Research is the development of cold spray for additive manufacturing, where we adapt this novel coating process to build 3D shapes....

223

The Importance of Photonics Technology | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

224

Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber)  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office supports research into magnesium and carbon fiber reinforced composites, which could reduce the weight of some components by 50-75 percent in the long-term.

225

Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

226

Resource allocation in applications research : challenges and strategies of small technology developing companies  

E-Print Network [OSTI]

This is a study into the allocation of resources in the early stages of research in a small commercial entity that develops innovative technologies. The premise is that resource allocation must focus on the implementation ...

Pretorius, Jacob v. R., 1969-

2004-01-01T23:59:59.000Z

227

Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Broader source: Energy.gov [DOE]

Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

228

Research and development of hydrogen separation technology with inorganic membranes  

SciTech Connect (OSTI)

Inorganic membrane technology has long been expected to provide new economical methods for industrial and waste management processes. At this time, the only commercially valuable inorganic membranes are the ultra filters derived from the French process that was used to produce the barrier for the French Gaseous Diffusion Plants. But these membranes are very expensive and have limited areas of application. Over the past fifteen years, scientists now in the Inorganic Membrane Technology Laboratory (IMTL) in Oak Ridge, Tennessee have developed theories and processes for inorganic membranes that can be used to design and produce inorganic membranes for a very broad range of applications. A part of the fabrication process is an adaptive spinoff from the still classified process used to manufacture barriers for the U.S. Gaseous Diffusion Process. Although that part of the process is classified, it is a very flexible and adaptable process and it can be used with a broad range of materials. With the theories and design capabilities developed in the last fifteen years, this new adaptive manufacturing technology can be used to manufacture commercial inorganic membranes that are not useful for the separation of uranium isotopes and they have little or no relation to the barriers that were used to separate uranium isotopes. The development and deployment of such inorganic membranes can be very beneficial to U.S. industry. Inorganic membranes can be specifically designed and manufactured for a large number of different applications. Such membranes can greatly improve the efficiency of a broad range of industrial processes and provide new technology for waste management. These inorganic membranes have the potential for major energy savings and conservation of energy. They can provide the means for significant improvements in the competitiveness of US Industry and improve the economy and health and welfare of the nation.

Fain, D.E.

1999-07-01T23:59:59.000Z

229

WASTE-TO-ENERGY RESEARCH & TECHNOLOGY COUNCIL www.wtert.gr PRESS RELEASE  

E-Print Network [OSTI]

WASTE-TO-ENERGY RESEARCH & TECHNOLOGY COUNCIL www.wtert.gr 1 PRESS RELEASE INTERNATIONAL INTENSIVE COURSE " Waste to Energy as an Integral Part of Sustainable Waste Management Worldwide: The case of Baku event focus on state of the art technologies for sustainable waste management, entitled "Waste to Energy

230

RESEARCH AT THE AUTOMATION AND CONTROL INSTITUTE OF TAMPERE UNIVERSITY OF TECHNOLOGY  

E-Print Network [OSTI]

22 5 RESEARCH AT THE AUTOMATION AND CONTROL INSTITUTE OF TAMPERE UNIVERSITY OF TECHNOLOGY should try to develop new solutions, methods and tools to improve the level of automation of the Finnish information technologies in automation. More than 50 % of the diploma theses (M.Sc. theses) are done

231

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

232

Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research  

SciTech Connect (OSTI)

Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

2012-09-01T23:59:59.000Z

233

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. Projects within each task area have begun to show results. Recently, NETL representatives and NASEO met with all Task Project Managers to discuss the progress of each project. Each project began slowly due to several unforeseen obstacles, which have now been overcome. Some projects may require an extension to complete project to full extent. Most tasks are now running smoothly and have or will soon acquire results.

Frank Bishop

2003-01-01T23:59:59.000Z

234

Sandia National Laboratories: Small Business Technology Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At theprogram Technology

235

Advanced Technology & Discovery at Niskayuna | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience ofTechnology & Discovery

236

Advanced Technology & Discovery at Shanghai | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation PortalScience ofTechnology &

237

Research and Development Roadmap for Water Heating Technologies  

SciTech Connect (OSTI)

Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

Goetzler, William [Navigant Consulting Inc.; Gagne, Claire [Navigant Consulting Inc.; Baxter, Van D [ORNL; Lutz, James [Lawrence Berkeley National Laboratory (LBNL); Merrigan, Tim [National Renewable Energy Laboratory (NREL); Katipamula, Srinivas [Pacific Northwest National Laboratory (PNNL)

2011-10-01T23:59:59.000Z

238

Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers  

SciTech Connect (OSTI)

Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

2000-01-12T23:59:59.000Z

239

A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves  

E-Print Network [OSTI]

The empirical and theoretical justification of Gartner hype curves is a very relevant open question in the field of Technological Life Cycle analysis. The scope of the present paper is to introduce a simple model describing the growth of scientific/technological research impact, in the specific case where science is the main source of a new idea driving a technological development, leading to hype-type evolution curves. The main idea of the model is that, in a first stage, the growth of the scientific interest of a new specific field (as can be measured by publication numbers) basically follows the classical logistic growth curve. At a second stage, starting at a later trigger time, the technological development based on that scientific idea (as can be measured by patent deposits) can be described as the integral (in a mathematical sense) of the first curve, since technology is based on the overall accumulated scientific knowledge. The model is tested through a bibliometric analysis of the publication and pat...

Campani, Marco

2014-01-01T23:59:59.000Z

240

Norwegian Marine Technology Research Institute Partnership for the future  

E-Print Network [OSTI]

;Greener operations Offshore renewable energy Autonomous surveillance Oil & gas in deeper water involvement «Ulstein X-bow» Revolutionary ship design Ship Model Towing Tank (1939) Cavitation Tunnel (1965

Nørvåg, Kjetil

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

microorganisms Halophiles | recyclable waste | carotenoids | recombinant products | nonsterile process Halophilic concentrations. Industrial waste streams often contain diverse organic matter, which can be recovered to valuable are often rich in organic carbon. Disposal or recycling is then complex and expensive. The novel technology

Szmolyan, Peter

242

Assessment of research needs for wind turbine rotor materials technology  

SciTech Connect (OSTI)

Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

Not Available

1991-01-01T23:59:59.000Z

243

Nuclear Materials Research and Technology/Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy Nuclear011Researchers

244

Oil & Gas Technology at Oklahoma City | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 Office ofOffshore windResearch

245

Research & Technology Showcase in Albuquerque on September 12  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORVEnergy Request ForFormsResearch

246

Building Technologies Research and Integration Center | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareersEnergy,Services » PPPOAmericaS Feb 10,BuildingResearch

247

NREL: Research Facilities - Laboratories and Facilities by Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7WorkingWebmaster ToLaboratories

248

Small Business Technology Transfer (STTR) Programs Participating DOE Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural Resourcestepidum FMOSmallResearch

249

The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology  

SciTech Connect (OSTI)

The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

Gur, Ilan (Program Director and Senior Advisor, ARPA-E) [Program Director and Senior Advisor, ARPA-E

2014-03-07T23:59:59.000Z

250

The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology  

ScienceCinema (OSTI)

The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.

Gur, Ilan (Program Director and Senior Advisor, ARPA-E)

2014-04-11T23:59:59.000Z

251

ENERGY SMART SCHOOLS APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect (OSTI)

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. NASEO and its contractors continue to make progress on completion of the statement of work. The high watermark for this period is the installation and operation of the micro-turbine in the Canton School District. The school is pleased to begin the monitoring phase of the project and looks forward to a ribbon cutting this Spring. The other projects continue to move forward and NYSERDA has now begun work in earnest. We expect the NASEO/NYSERDA workshop sometime this Spring as well. By the time the next Annual Technical Progress Report is submitted, we plan to have finished all of the work. The next year should be filled with dissemination of information to interested parties on the success of the project in an effort to get others to duplicate the high performance, and energy smart schools initiatives. We expect all of the deliverables to be completed with the possible exception of the high-performance schools retrofits in California. We expect that 2 of the 3 campuses undergoing retrofits will be complete and the third will be nearly complete. All other activities are on schedule for 10/1/03 completion at this time.

Frank Bishop

2003-04-01T23:59:59.000Z

252

CoalWater Slurry technology: problems and modeling solutions  

E-Print Network [OSTI]

CoalWater Slurry technology: problems and modeling solutions A. Fasano, E. De Angelis, A viscosity reaches extremely high values and the product becomes useless. Sedimentation Firenze - 29 october viscosity reaches extremely high values and the product becomes useless. Sedimentation: it's also a long

Rosso, Fabio

253

Engineering Research and Development and Technology thrust area report FY92  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

Langland, R.T.; Minichino, C. [eds.

1993-03-01T23:59:59.000Z

254

Modeling and simulation for cyber-physical system security research, development and applications.  

SciTech Connect (OSTI)

This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

2010-02-01T23:59:59.000Z

255

Pixelligent Technologies granted innovation research award by Dept. of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory and ModelingPink Skies Coming ToFUEL.P8.01Energy

256

Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993  

SciTech Connect (OSTI)

This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

Not Available

1993-09-30T23:59:59.000Z

257

technology offer Vienna University of Technology | Research and Transfer Support | Angelika Valenta  

E-Print Network [OSTI]

and in cooling. Background Due to their high potential for thermoelectric applications intermetallic clathrates are the topic of intense research. They can be used in thermoelectric modules both for power generation Intermetallic clathrates rapid quenching thermoelectricity energy conversion A new preparation technique

Szmolyan, Peter

258

DOE Announces Up to $7.5 Million in Advanced Technology Research...  

Office of Environmental Management (EM)

experimental and numerical modeling, wave forecasting, environmental impacts, and corrosion-resistant materials research. Completed applications for this FOA are due June 16,...

259

Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

260

Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research  

SciTech Connect (OSTI)

Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs.

Pennell, W.E.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology and Research Requirements for Combating Human Trafficking: Enhancing Communication, Analysis, Reporting, and Information Sharing  

SciTech Connect (OSTI)

DHS Science & Technology Directorate directed PNNL to conduct an exploratory study on the domain of human trafficking in the Pacific Northwest in order to examine and identify technology and research requirements for enhancing communication, analysis, reporting, and information sharing activities that directly support efforts to track, identify, deter, and prosecute human trafficking including identification of potential national threats from smuggling and trafficking networks. This effort was conducted under the Knowledge Management Technologies Portfolio as part of the Integrated Federal, State, and Local/Regional Information Sharing (RISC) and Collaboration Program.

Kreyling, Sean J.; West, Curtis L.; Olson, Jarrod

2011-03-17T23:59:59.000Z

262

Researchers Model Impact of Aerosols Over California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

263

Notice of Intent to Issue FOA DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Broader source: Energy.gov [DOE]

The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations.

264

An advanced diffusion model to identify emergent research issues: the case of optoelectronic devices  

E-Print Network [OSTI]

1 An advanced diffusion model to identify emergent research issues: the case of optoelectronic of keywords in published articles. In this paper we show how emerging topics in the field of optoelectronic the identified keywords were used to technological topics in the field of optoelectronic devices

Boyer, Edmond

265

Consultancy The Tarbase Domestic Model, emanating from the Tarbase research project  

E-Print Network [OSTI]

, such as climate (i.e. allowing for future warming), carbon intensity of electricity and thermal comfortConsultancy The Tarbase Domestic Model, emanating from the Tarbase research project mentioned above of technological and behavioural changes (and, where necessary, climatic change and energy tariff variations

Painter, Kevin

266

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

267

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

268

The TEF modeling and analysis approach to advance thermionic space power technology  

SciTech Connect (OSTI)

Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency{close_quote}s (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development. {copyright} {ital 1997 American Institute of Physics.}

Marshall, A.C. [Defense Special Weapons Agency NMERI: 801 University Avenue SE Albuquerque, New Mexico 87106 (United States)

1997-01-01T23:59:59.000Z

269

The TEF modeling and analysis approach to advance thermionic space power technology  

SciTech Connect (OSTI)

Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M and A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M and A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M and A project, and a strategy for implementation was developed. All M and A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M and A project will provide a solid framework for future thermionic system development.

Marshall, Albert C. [Defense Special Weapons Agency NMERI: 801 University Avenue SE Albuquerque, New Mexico 87106 (United States)

1997-01-10T23:59:59.000Z

270

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

271

AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES  

SciTech Connect (OSTI)

CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

2004-03-01T23:59:59.000Z

272

Research on Captive Broodstock Technology for Pacific Salmon, 1995 Annual Report.  

SciTech Connect (OSTI)

This report summarizes research on captive broodstock technologies conducted during 1995 under Bonneville Power Administration Project 93-56. Investigations were conducted by the National Marine Fisheries Service (NMFS) in cooperation with the US Fish and Wildlife Service, University of Washington, and Northwest Biological Science Center (US Geological Survey). Studies encompassed several categories of research, including fish husbandry, reproductive physiology, immunology, pathology, nutrition, and genetics. Captive broodstock programs are being developed and implemented to aid recovery of endangered Pacific salmon stocks. Like salmon hatchery programs, however, captive broodstock programs are not without problems and risks to natural salmon populations. The research projects described in this report were developed in part based on a literature review, Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. The work was divided into three major research areas: (1) research on sockeye salmon; (2) research on spring chinook salmon; and (3) research on quantitative genetic problems associated with captive broodstock programs. Investigations of nutrition, reproductive physiology, fish husbandry, and fish health were integrated into the research on sockeye and spring chinook salmon. A description of each investigation and its major findings and conclusions is presented.

Swanson, Penny; Pascho, Ronald; Hershberger, William K. (Northwest and Alaska Fisheries Center, Coastal Zone and Estuarine Studies Division, Seattle, WA)

1996-01-01T23:59:59.000Z

273

Melt-Dilute Treatment Technology for Aluminum Based Research Reactor Spent Fuel  

SciTech Connect (OSTI)

The United States Department of Energy has selected the Savannah River Site (SRS) as the location to consolidate and store Aluminum Spent Nuclear Fuel (SNF), originating in the United States, from Foreign Research Reactor (FRR) and Domestic Research Reactor (DRR) through the Environmental Impact Statement (EIS) process. These SNF are either in service, being stored in water basins or in dry storage casks at the reactor sites, or have been transferred to SRS and stored in water basins. A portion of this inventory contains HEU. Since the fuel receipts would continue for several decades beyond projected SRS canyon operations, it is anticipated that it will be necessary to develop disposal technologies that do not rely on reprocessing. The Research Reactor Spent Nuclear Fuel Task Team, appointed by the Office of Spent Fuel Management of DOE, assessed and identified the most promising technology options for the alternative disposition of aluminum based domestic and foreign research reactor SNF in a geologic repository. The most promising options identified by the task team were direct/ co-disposal and melt-dilute technologies. The DOE through the SRS has evaluated the two options and has identified Melt-Dilute Treatment Technology as the preferred alternative in the Draft Environmental Impact Statement for the ultimate disposal of Al-SNF in the Mined Geologic Disposal System.

Adams, T.

1999-11-05T23:59:59.000Z

274

Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

275

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix C: Hydrogen Quality  

Broader source: Energy.gov [DOE]

Appendix C: Hydrogen Quality section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated February 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

276

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix E: Acronyms  

Broader source: Energy.gov [DOE]

Appendix E: Acronyms section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated April 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

277

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network [OSTI]

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption: systems (supermarket refrigeration, ground-source, CHP, multi-zone HVAC, wireless and other communications of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous

Oak Ridge National Laboratory

278

A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies  

SciTech Connect (OSTI)

Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energys Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

Ronald Boring; Jeffrey Joe; Bruce Hallbert; Kenneth Thomas; Katya Le Blanc

2014-12-01T23:59:59.000Z

279

Fuel-producing Geobacter receives support from new research May 3rd, 2010 in Technology / Energy  

E-Print Network [OSTI]

genetically modified the Geobacter bacterium so that it acts like a reverse fuel cell, using electricity electricity, Geobacter could be used as a microbial fuel cell, converting organic waste matter - includingFuel-producing Geobacter receives support from new research grant May 3rd, 2010 in Technology

Lovley, Derek

280

Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting  

SciTech Connect (OSTI)

The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

Geiling, D.W. (USDOE Morgantown Energy Technology Center, WV (USA)); Goldberg, P.M. (eds.) (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Modeling the Benefits of Storage Technologies to Wind Power  

SciTech Connect (OSTI)

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

Sullivan, P.; Short, W.; Blair, N.

2008-06-01T23:59:59.000Z

282

Geothermal completion technology life-cycle cost model (GEOCOM)  

SciTech Connect (OSTI)

GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

Mansure, A.J.; Carson, C.C.

1982-01-01T23:59:59.000Z

283

Relating to fossil energy resource characterization, research, technology development, and technology transfer  

SciTech Connect (OSTI)

Geological, geophysical and petroleum engineering aspects of oil recovery from low-permeability reservoirs have been studied over the past three years. Significant advances were made in using Formation Microscanner Surveys (FMS) data to extrapolate fracture orientation, abundance, and spacing from the outcrop to the subsurface. Highly fractured zones within the reservoir can be detected, thus the fracture stratigraphy defined. Multi-component,vertical-seismic profile (VSP), shear wave data were used to improve the detection of fractures. A balancing scheme was developed to improve the geophysical detection of fractures based on balanced source magnitudes and geophone couplings. Resistivity logs can be used to identify the zone of immature organic material, the zone of storage where oil is generated but held in the matrix and the zone of migration whee oil is expelled from the rock to fractures. Natural fractures can be detected in many wells by the response of density logs in combination with gamma-ray, resistivity, and sonic logs. Theoretical studies and analysis of daily production data, from field case histories, have shown the utility of the Chef Type Curves to derive reservoir character from production test data. This information is ordinarily determined from transient pressure data. Laboratory displacement as well as MI and CT studies show that the carbonated water imbibition oil displacement process significantly accelerates and increases recovery from saturated, low-permeability core material. The created gas drive, combined with oil shrinkage significantly increased oil recovery. A cyclic-carbonated-water-imbibition process improves oil recovery. A semi-analytical model (MOD) and a 3-dimensional, 3-phase, dual-porosity, compositional simulator (COMAS) were developed to describe the imbibition carbonated waterflood performance. MOD model is capable of computing the oil recovery and saturation profiles for oil/water viscosity ratios other than one.

Poston, S.W.; Berg, R.R.; Friedman, M.M.; Gangi, A.F.; Wu, C.H.

1993-12-01T23:59:59.000Z

284

Diurnal cool thermal energy storage: Research programs, technological developments, and commercial status  

SciTech Connect (OSTI)

This report presents an overview of the major federal and private research and development efforts in diurnal cool thermal energy storage for electric load management in buildings. Included are brief technical descriptions and research histories of the technologies and applications of cool thermal storage. The goals, accomplishments, and funding levels of major thermal storage research programs also are summarized. The report concludes with the results of recent field performance evaluations of cool thermal storage installations and a discussion of the current commercial status of thermal storage equipment, including utility participation programs. This report was sponsored by the Technology and Consumer Products (TCP) Division within the Office of Conservation of the US Department of Energy. This report is part of TCP's ongoing effort to examine and evaluate technology developments and research efforts in the areas of lighting, space heating and cooling, water heating, refrigeration, and other building energy conversion equipment. Information obtained through this effort is used as an input in developing the US research agenda in these areas.

Wise, M A

1992-01-01T23:59:59.000Z

285

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect (OSTI)

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

286

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

287

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies  

E-Print Network [OSTI]

System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After;System Modeling, Analysis, and Optimization Methodology for Diesel Exhaust After-treatment Technologies Developing new aftertreatment technologies to meet emission regulations for diesel engines is a growing

de Weck, Olivier L.

288

The Numerical Modelling Research and Development Division is responsible for research into and develop-  

E-Print Network [OSTI]

into and develop- ment of numerical weather prediction models and other meteorological applications, that are opera in the field of numerical weather prediction: atmospheric and oceanographic modelling, physical and statistical132 The Numerical Modelling Research and Development Division is responsible for research

Haak, Hein

289

CCSI Technology Readiness Levels Likelihood Model (TRL-LM) Users Guide  

SciTech Connect (OSTI)

This is the manual for the Carbon Capture Simulation Initiative (CCSI) Technology Readiness Level Likelihood model based on PNNL velo.

Engel, David W.; Dalton, Angela C.; Sivaramakrishnan, Chandrika; Lansing, Carina

2013-03-26T23:59:59.000Z

290

Exploratory technology research program for electrochemical energy storage. Annual report for 1995  

SciTech Connect (OSTI)

The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

Kinoshita, Kim [ed.

1996-06-01T23:59:59.000Z

291

Scaleup tests and supporting research for the development of duct injection technology  

SciTech Connect (OSTI)

Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE's Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

1989-05-01T23:59:59.000Z

292

A Practical Analytic Model for Daylight Category: research  

E-Print Network [OSTI]

A Practical Analytic Model for Daylight Category: research Abstract Sunlight and skylight that approximates full spectrum daylight for various atmospheric con­ ditions. These conditions are parameterized

Shirley, Peter

293

A Practical Analytic Model for Daylight Category: research  

E-Print Network [OSTI]

A Practical Analytic Model for Daylight Category: research Abstract Sunlight and skylight that approximates full spectrum daylight for various atmospheric con- ditions. These conditions are parameterized

Shirley, Peter

294

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network [OSTI]

AirConditionerTestinginWECC,IEEEPower EngineeringAirConditionerModeling,WECCLoadModelingTask Forceinpowersystemstudies:WECCprogressupdate,?Powerand

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

295

MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT  

SciTech Connect (OSTI)

The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

Vinson, D.

2010-07-11T23:59:59.000Z

296

Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998  

SciTech Connect (OSTI)

The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

Kinoshita, K. (editor)

1999-06-01T23:59:59.000Z

297

(Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs  

SciTech Connect (OSTI)

Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

None

1988-02-01T23:59:59.000Z

298

Exploratory technology research program for electrochemical energy storage. Annual report for 1996  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

Kinoshita, K. [ed.

1997-06-01T23:59:59.000Z

299

A core competency model for aligning information technology with business objectives  

E-Print Network [OSTI]

Advances in Information Technology and Information Systems delivery over the past decades have restructured industries and created enormous value. Interestingly however, research shows companies traditionally have a very ...

Campbell, Kurt (Kurt A.)

2007-01-01T23:59:59.000Z

300

Weather Research and Forecasting Model 2.2 Documentation  

E-Print Network [OSTI]

................................................................................................. 20 3.1.2 Integrate's Flow of ControlWeather Research and Forecasting Model 2.2 Documentation: A Step-by-step guide of a Model Run .......................................................................................................................... 19 3.1 The Integrate Subroutine

Sadjadi, S. Masoud

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

SciTech Connect (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

302

Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by the program.

Peterson, G.

1998-03-01T23:59:59.000Z

303

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

SciTech Connect (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

304

Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084  

SciTech Connect (OSTI)

Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

Senor, David J.

2013-10-30T23:59:59.000Z

305

Energy Smart Schools--Applied Research, Field Testing, and Technology Integration  

SciTech Connect (OSTI)

The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

2004-12-01T23:59:59.000Z

306

Exploratory technology research program for electrochemical energy storage, annual report for 1997  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

Kinoshita, K. [ed.

1998-06-01T23:59:59.000Z

307

Technology transfer support services to the Carbon Dioxide Research Division, US Department of Energy  

SciTech Connect (OSTI)

The US Department of Energy (DOE) serves as the lead Federal agency with respect to atmospheric carbon dioxide (CO{sub 2}) and the greenhouse effect.'' Within DOE, the Carbon Dioxide Research Division (CDRD) has been responsible for leading the research effort investigating atmospheric CO{sub 2}, global warming, and other aspects of the greenhouse effect. Critical to CDRD's endeavors is accurate, effective communication of research findings -- not only to scientists, but to policymakers and the general public as well. The past three-and-a-half years, Walcoff Associates, Inc., (Walcoff) has supported CDRD in meeting this technology transfer challenge. Walcoff has drawn upon a wide range of technical and professional skills to support the CDRD in its technology transfer services. Underlying all tasks has been the need to communicate highly complex, information across scientific, political and economic disciplines. During the three and a half year contract period, Walcoff has successfully provided support to the CDRD to enhance its technology transfer resources and accomplishments. 5 figs., 1 tab.

Not Available

1990-01-13T23:59:59.000Z

308

Modeling of thermal plasma arc technology FY 1994 report  

SciTech Connect (OSTI)

The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

1995-03-01T23:59:59.000Z

309

Research utilization in the building industry: decision model and preliminary assessment  

SciTech Connect (OSTI)

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

310

Improved computer models support genetics research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simple computer models unravel genetic stress reactions in cells Integrated biological and computational methods provide insight into why genes are activated. February 8, 2013 When...

311

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network [OSTI]

like hardware (PMU), software and data communication. TheSpecifications and Technical Data PMU Model Number of NumberPMU Specifications and Technical Data ..

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

312

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-Print Network [OSTI]

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

313

Optimizing Low Temperature Diesel Combustion (LTC-D) "FreedomCAR and Vehicle Technologies Program Solicitation for University Research and Graduate Automotice Technology Education (GATE) Centers of Excellence"  

SciTech Connect (OSTI)

The engine industry is currently facing severe emissions mandates. Pollutant emissions from mobile sources are a major source of concern. For example, US EPA mandates require emissions of particulate and nitrogen oxides (NOx) from heavy-duty diesel engine exhaust to drop at least 90 percent between 1998 and 2010. Effective analysis of the combustion process is required to guide the selection of technologies for future development since exhaust after-treatment solutions are not currently available that can meet the required emission reduction goals. The goal of this project is to develop methods to optimize and control Low Temperature Combustion Diesel technologies (LTC-D) that offers the potential of nearly eliminating engine NOx and particulate emissions at reduced cost over traditional methods by controlling pollutant emissions in-cylinder. The work was divided into 5 Tasks, featuring experimental and modeling components: 1.) Fundamental understanding of LTC-D and advanced model development, 2.) Experimental investigation of LTC-D combustion control concepts, 3.) Application of detailed models for optimization of LTC-D combustion and emissions, 4.) Impact of heat transfer and spray impingement on LTC-D combustion, and 5.) Transient engine control with mixed-mode combustion. As described in the final report (December 2008), outcomes from the research included providing guidelines to the engine and energy industries for achieving optimal low temperature combustion operation through using advanced fuel injection strategies, and the potential to extend low temperature operation through manipulation of fuel characteristics. In addition, recommendations were made for improved combustion chamber geometries that are matched to injection sprays and that minimize wall fuel films. The role of fuel-air mixing, fuel characteristics, fuel spray/wall impingement and heat transfer on LTC-D engine control were revealed. Methods were proposed for transient engine operation during load and speed changes to extend LTC-D engine operating limits, power density and fuel economy. Low emissions engine design concepts were proposed and evaluated.

Rolf Reitz; P. Farrell; D. Foster; J. Ghandhi; C. Rutland; S. Sanders

2009-07-31T23:59:59.000Z

314

Quarterly Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: January-March 1998  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period January-March 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies.

Jubin, R.T.

1999-03-01T23:59:59.000Z

315

Statistical models and experimental designs for poultry research  

E-Print Network [OSTI]

STATISTICAL MODELS AND EXPERIMENTAL DESIGNS FOR POULTRY RESEARCH A Thesis by Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1973 Major Subject...: Statistics STATISTICAL MODELS AND EXPERIMENTAL DESIGNS FOR POULTRY RESEARCH A Thesis by ANWAR ARMED ABDEL BAKY Approved as to sty1e snd content by: Head of Department Member mber Member Msy 1973 4 36 6 i 1 Statistical Models and Experimental...

Abdel Baky, Anwar Ahmed

1972-01-01T23:59:59.000Z

316

Web 2.0 Wiki technology : enabling technologies, community behaviors, and successful business techniques and models  

E-Print Network [OSTI]

Many technologies fall under the umbrella of what is commonly known as "Web 2.0," including the Wiki, a software product which allows multiple users to review and edit documents online. Like all Web 2.0 technologies, Wikis ...

Davidi, Ilana

2007-01-01T23:59:59.000Z

317

Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

2009-09-21T23:59:59.000Z

318

Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

2011-09-13T23:59:59.000Z

319

Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2005-09-20T23:59:59.000Z

320

Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

2010-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2006-09-19T23:59:59.000Z

322

Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

2007-09-25T23:59:59.000Z

323

Advanced Technologies in Energy-Economy Models for Climate Change Assessment  

E-Print Network [OSTI]

Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when relevant policies ...

Morris, J.F.

324

1995 Federal Research and Development Program in Materials Science and Technology  

SciTech Connect (OSTI)

The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

None

1995-12-01T23:59:59.000Z

325

Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles  

E-Print Network [OSTI]

of electric vehicles Ren Bohnsacka , Jonatan Pinkseb , & Ans Kolka a University of Amsterdam Business School in the case of electric vehicles Abstract Sustainable technologies challenge prevailing business practices models for electric vehicles. Based on a qualitative analysis of electric vehicle projects of key

Paris-Sud XI, Universit de

326

Development of Fusion Nuclear Technologies at Japan Atomic Energy Research Institute  

SciTech Connect (OSTI)

An overview of the present status of development of fusion nuclear technologies at Japan Atomic Energy Research Institute is presented. A tritium handling system for the ITER was designed, and the technology for each component of this system was demonstrated successfully. An ultraviolet laser with a wavelength of 193 nm was found quite effective for removing tritium from in-vessel components of D-T fusion reactors. Blanket technologies have been developed for the test blanket module of the ITER and for advanced blankets for DEMO reactors. This blanket is composed of ceramic Li{sub 2}TiO{sub 3} breeder pebbles and neutron multiplier beryllium pebbles, whose diameter ranges from 0.2 to 2 mm, contained in a box structure made of a reduced-activation ferritic steel, F82H. Mechanical properties of F82H under a thermal neutron irradiation at up to 50 displacements per atom (dpa) were obtained in a temperature range from 200 to 500 deg. C. Design of the International Fusion Materials Irradiation Facility (IFMIF) has been developed to obtain engineering data for candidate materials for DEMO reactors under a simulated fusion neutron irradiation up to 100 to 200 dpa, and basic development of the key technologies to construct the IFMIF is now under way as an International Energy Agency international collaboration.

Seki, Masahiro; Yamanishi, Toshihiko; Shu, Wataru; Nishi, Masataka; Hatano, Toshihisa; Akiba, Masato; Takeuchi, Hiroshi; Nakamura, Kazuyuki; Sugimoto, Masayoshi; Shiba, Kiyoyuki; Jitsukawa, Shiro; Ishitsuka, Etsuo; Tsuji, Hiroshi [Japan Atomic Energy Research Institute (Japan)

2002-07-15T23:59:59.000Z

327

Beta Advection-Diffusion Model Columbia Basin Research  

E-Print Network [OSTI]

Beta Advection-Diffusion Model Jim Norris Columbia Basin Research University of Washington Box Model (SSM) is loosely called a Beta Advection-Diffusion model. The SSM estimates a single parameter this single parameter characterized fish migration. The purpose of this note is to define the Beta Advection

Washington at Seattle, University of

328

Representing energy technologies in top-down economic models using bottom-up information  

E-Print Network [OSTI]

This paper uses bottom-up engineering information as a basis for modeling new technologies within the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy. ...

McFarland, James R.; Reilly, John M.; Herzog, Howard J.

329

Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI?s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

None

1997-11-01T23:59:59.000Z

330

DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies  

SciTech Connect (OSTI)

The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

Deb, S. K.

2005-01-01T23:59:59.000Z

331

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

332

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network [OSTI]

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

333

It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers  

E-Print Network [OSTI]

window technology research and applied it to a solid-state, thin-film lithium battery. The researchers developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte's"buried-anode" technology and put it to work in solid-state lithium batteries. The company claims its large-format batteries

334

Webinar: Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations  

Broader source: Energy.gov [DOE]

Text version and video recording of the webinar titled "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations," originally presented on March 10, 2015.

335

1. Introduction Ad hoc networks are a hot research topic. The enabling technology for this field includes: (1)  

E-Print Network [OSTI]

1 1. Introduction Ad hoc networks are a hot research topic. The enabling technology for this field, with their computers turned on and connected. Ad hoc networks are a natural result of user demand meeting the enabling technology. Highly mobile devices that dynamically organize ad hoc networks, intercommunicate, pass

Yasinsac, Alec

336

Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

Jubin, R.T.

1999-06-01T23:59:59.000Z

337

Vehicle Technologies Office Merit Review 2014: Model Development and Analysis of Clean & Efficient Engine Combustion  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

338

Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes  

Broader source: Energy.gov [DOE]

Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

339

Vehicle Technologies Office Merit Review 2014: Atomistic models of LMRNMC Materials  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about atomistic models...

340

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: January--March 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division (CTD) at Oak Ridge National Laboratory (ORNL) during the period January--March 1997. Created in March 1997 when the CTD Chemical Development and Energy Research sections were combined, the Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within seven major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Separations and Materials Synthesis, Solution Thermodynamics, and Biotechnology Research. The name of a technical contact is included with each task described in the report, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conceptual design of an integrated technology model for carbon policy assessment.  

SciTech Connect (OSTI)

This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

2011-01-01T23:59:59.000Z

342

Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report  

SciTech Connect (OSTI)

Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

Not Available

1983-09-01T23:59:59.000Z

343

Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

NONE

1996-06-01T23:59:59.000Z

344

Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report  

SciTech Connect (OSTI)

Enhancing the performance of SciDAC applications on petascale systems has high priority within DOE SC. As we look to the future, achieving expected levels of performance on high-end com-puting (HEC) systems is growing ever more challenging due to enormous scale, increasing archi-tectural complexity, and increasing application complexity. To address these challenges, PERI has implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. The PERI performance modeling and prediction activity is developing and refining performance models, significantly reducing the cost of collecting the data upon which the models are based, and increasing model fidelity, speed and generality. Our primary research activity is automatic tuning (autotuning) of scientific software. This activity is spurred by the strong user preference for automatic tools and is based on previous successful activities such as ATLAS, which has automatically tuned components of the LAPACK linear algebra library, and other re-cent work on autotuning domain-specific libraries. Our third major component is application en-gagement, to which we are devoting approximately 30% of our effort to work directly with Sci-DAC-2 applications. This last activity not only helps DOE scientists meet their near-term per-formance goals, but also helps keep PERI research focused on the real challenges facing DOE computational scientists as they enter the Petascale Era.

Hall, Mary [University of Utah

2014-09-19T23:59:59.000Z

345

RESEARCH ARTICLE A model for improving microbial biofuel production using  

E-Print Network [OSTI]

RESEARCH ARTICLE A model for improving microbial biofuel production using a synthetic feedback loop be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels

Dunlop, Mary

346

ONGOING RESEARCH PROJECTS Model of tropical forest structure and dynamics  

E-Print Network [OSTI]

ONGOING RESEARCH PROJECTS Model of tropical forest structure and dynamics There is a need canopy structure and partitions dynamic rates for a tropical forest on Barro Colorado Island (BCI structure and partitions dynamic rates in a tropical forest. In Review. Journal of Ecology. #12;PPA model

Hill, Jeffrey E.

347

Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint  

SciTech Connect (OSTI)

Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

Bennion, K.; Kelly, K.

2009-08-01T23:59:59.000Z

348

Application of a New Structural Model and Exploration Technologies...  

Open Energy Info (EERE)

Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to:...

349

Vehicle Technologies Office Merit Review 2014: Unified Modeling...  

Energy Savers [EERE]

FASTSim and ADOPT Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review...

350

ew Mexico boasts a long tradition of pioneering research in science and technology, dating back to the  

E-Print Network [OSTI]

N ew Mexico boasts a long tradition of pioneering research in science and technology, dating back Mexico, the optics industrial cluster not surprisingly carries the highest prominence. The University of New Mexico (UNM; Albuquerque, NM), the state's largest research institution, has led the graduate

New Mexico, University of

351

Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling  

SciTech Connect (OSTI)

The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

Hadley, SW

2004-10-11T23:59:59.000Z

352

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network [OSTI]

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National. The bioenergy supply chain, from crop to customer, is a spatiotemporal process, and geospatial science provides. This includes geospatially integrated modeling to assess feedstock production, feedstock transportation

353

Networking technology adoption : system dynamics modeling of fiber-to-the-home  

E-Print Network [OSTI]

A system dynamics model is developed and run to study the adoption of fiber-to-the-home as a residential broadband technology. Communities that currently do not have broadband in the United States are modeled. This case ...

Kelic, Andjelka, 1972-

2005-01-01T23:59:59.000Z

354

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-09-01T23:59:59.000Z

355

Climate Models from the Joint Global Change Research Institute  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model is a process-based agricultural systems model composed of simulation components for weather, hydrology, nutrient cycling, pesticide fate, tillage, crop growth, soil erosion, crop and soil management and economics. Staff at PNNL have been involved in the development of this model by integrating new sub-models for soil carbon dynamics and nitrogen cycling.

356

Electric Power Research Institute, Environmental Control Technology Center report to the Steering Committee. Final technical report  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block, and a simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). At the end of the month, a series of Duct Injection tests began in a study to determine the efficiencies of alkaline injection for removing trace elements (mercury). On the Cold-Side Selective Catalytic Reduction (SCR) unit, low temperature performance testing continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the catalysts installed in the SCR reactor. This report describes the status of the facilities and test activities at the pilot and mini-pilot plants.

NONE

1995-07-01T23:59:59.000Z

357

Research gaps and technology needs in development of PHM for passive AdvSMR components  

SciTech Connect (OSTI)

Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Henagar, Chuck H. Jr. [Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352 (United States); Coble, Jamie B. [University of Tennessee, Knoxville, Department of Nuclear Engineering, 315 Pasqua Engineering Building, Knoxville, TN 37996 (United States); Bond, Leonard J. [Iowa State University, Center for Nondestructive Evaluation, 1915 Scholl Rd., Ames, IA 50011 (United States)

2014-02-18T23:59:59.000Z

358

Electric Power Research Institute: Environmental control technology. Final technical monthly report  

SciTech Connect (OSTI)

Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Trace Element Removal (TER) test block. A second phase of the lime Forced Oxidation process with DBA addition (LDG) was also conducted simultaneously on the Pilot System this month. This month the ECTC was off-line from 6/9 through 6/19 to complete a Facility retrofit project. During this brief outage, modifications were made to the ECTC Flue Gas Handling System to enhance the facility capabilities, and to prepare for future High Velocity Wet FGD Testing. On the Cold-Side Selective Catalytic Reduction (SCR) unit, the low temperature performance testing resumed this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and SO{sub 3} generation across the new SCR catalysts.

NONE

1995-06-01T23:59:59.000Z

359

Technology Characterization Models and Their Use in Designing Complex Systems  

E-Print Network [OSTI]

has two choices: the inventor?s photo-chromic window or an electro-chromic window (changes its optical properties to react to an applied voltage). I will assume that both technologies are completely customizable (size, shape, thickness, how...

Parker, Robert Reed

2011-08-08T23:59:59.000Z

360

Model for a web based medical technology assessment system  

E-Print Network [OSTI]

will form the backbone of this system. Various queries can be run to produce the desired results. This system will provide a means for assessing the currently available medical technology. Based on the information present in the system clinical engineers...

Prabhu, Gopal

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Examining pervasive technology practices in schools : a mental models approach  

E-Print Network [OSTI]

Studies of computers and education have failed to account for the relevance and importance of tacit assumptions and unquestioned expectations that underlie educational technology practices. A major premise of this dissertation ...

Vaikakul, Savalai, 1976-

2005-01-01T23:59:59.000Z

362

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect (OSTI)

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.) [ed.

1983-07-01T23:59:59.000Z

363

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: July--September 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July--September 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within nine major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Molten Salt Reactor Experiment (MSRE) Remediation Studies, Chemistry Research, Biotechnology, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-07-01T23:59:59.000Z

364

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect (OSTI)

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

Not Available

1992-12-01T23:59:59.000Z

365

Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. [comps.

1992-12-01T23:59:59.000Z

366

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect (OSTI)

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

367

Health and environmental effects of oil and gas technologies: research needs  

SciTech Connect (OSTI)

This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

Brown, R. D.

1981-07-01T23:59:59.000Z

368

ADOPTION AND APPROPRIATION: TOWARDS A NEW THEORETICAL FRAMEWORK AN EXPLORATORY RESEARCH ON MOBILE TECHNOLOGIES IN FRENCH  

E-Print Network [OSTI]

FRAMEWORK AN EXPLORATORY STUDY ON MOBILE TECHNOLOGIES IN FRENCH COMPANIES 1 INTRODUCTION The technological individuals use mobile technologies on a daily basis though companies have been slower to adopt them (Worthen, 2002). At the same time, however, mobile technologies can be used by individuals for their own

Paris-Sud XI, Universit de

369

Edition No 35 October 2007 Miss Hannah Chalmers, Research Assistant in the Energy Technology for  

E-Print Network [OSTI]

in the Energy Technology for Sustainable Development Group started on 1st October. Mr Georgios Charalampous

370

The Sandia MEMS Passive Shock Sensor : FY08 testing for functionality, model validation, and technology readiness.  

SciTech Connect (OSTI)

This report summarizes the functional, model validation, and technology readiness testing of the Sandia MEMS Passive Shock Sensor in FY08. Functional testing of a large number of revision 4 parts showed robust and consistent performance. Model validation testing helped tune the models to match data well and identified several areas for future investigation related to high frequency sensitivity and thermal effects. Finally, technology readiness testing demonstrated the integrated elements of the sensor under realistic environments.

Walraven, Jeremy Allen; Blecke, Jill; Baker, Michael Sean; Clemens, Rebecca C.; Mitchell, John Anthony; Brake, Matthew Robert; Epp, David S.; Wittwer, Jonathan W.

2008-10-01T23:59:59.000Z

371

Power Plant Modeling and Simulation  

ScienceCinema (OSTI)

The National Energy Technology Laboratory's Office of Research and Development provides open source tools and expetise for modeling and simulating power plants and carbon sequestration technologies.

None

2010-01-08T23:59:59.000Z

372

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division, April--June 1997  

SciTech Connect (OSTI)

The Chemical and Energy Research Section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and thermodynamics, Separations and Materials Synthesis, Solution Thermodynamics, biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information.

Jubin, R.T.

1998-06-01T23:59:59.000Z

373

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease  

E-Print Network [OSTI]

RESEARCH ARTICLE Climate change model predicts 33 % rice yield decrease in 2100 in Bangladesh parameters on rice. The effects of climate change on yield of a popular winter rice cultivar in Bangladesh online: 12 June 2012 # INRA and Springer-Verlag, France 2012 Abstract In Bangladesh, projected climate

Boyer, Edmond

374

Towards Modelling the research in Green IT with Agents  

E-Print Network [OSTI]

­ reliability Now: Green IT and new-Energy consumption ­ energy consumption awareness ­ interestingTowards Modelling the research in Green IT with Agents Christina Herzog, Jean-Marc Pierson, Laurent Lefevre #12;Page 2 Many questions There are many unanswered questions: · Why is Green IT important? What

Lefèvre, Laurent

375

Research Article Modeling Nest Survival of Cavity-Nesting  

E-Print Network [OSTI]

Research Article Modeling Nest Survival of Cavity-Nesting Birds in Relation to Postfire Salvage forests often have direct effects on species associated with dead trees, particularly cavity-nesting birds. As such, evaluation of postfire management practices on nest survival rates of cavity nesters is necessary

376

RESEARCH ARTICLE Open Access Computational modelling elucidates the  

E-Print Network [OSTI]

to the digestive, reproductive and respiratory systems of vertebrates [1]. Mobile or immotile cilia exist on everyRESEARCH ARTICLE Open Access Computational modelling elucidates the mechanism of ciliary regulation, nephronophthisis, situs inversus pathology or infertility. The mechanism of cilia beating regulation is complex

Paris-Sud XI, Universit de

377

Effective reuse of coupling technologies for Earth System Models.  

E-Print Network [OSTI]

??Designing and implementing coupled Earth System Models (ESMs) is a challenge for climate scientists and software engineers alike. Coupled models incorporate two or more independent (more)

Dunlap, Ralph S.

2013-01-01T23:59:59.000Z

378

Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981  

SciTech Connect (OSTI)

This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

Bradley, R.A. (comp.) [comp.

1981-12-01T23:59:59.000Z

379

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect (OSTI)

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

380

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

382

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network [OSTI]

Farland , Howard J. Herzog Massachusetts Institute of Technology, USA Available online 7 July 2006 Abstract Low change has accounted for a significant portion of economic growth and is, in part, responsible economy-wide interactions, including international trade, energy supply and demand, inter-industry supply

383

HYBRID ENERGY-ECONOMY MODELS AND ENDOGENOUS TECHNOLOGICAL CHANGE  

E-Print Network [OSTI]

, etc.) from any fossil fuel source in- cluding unconventional oil and gas, oil sands, orimulsion that include economy-wide emissions charges and technology-specific regulations and subsidies. Recent of renewable energy and nuclear power could satisfy global energy needs almost single-handedly. Even fossil

384

One Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design  

E-Print Network [OSTI]

to this problem. The development of energy-efficient technol- ogy (e.g. cars, homes, appliances) is one approach. While important, this is only a partial solution as people do not always use this technology in energy-efficientOne Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design

Greenberg, Saul

385

Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute Final Report  

SciTech Connect (OSTI)

Enhancing the performance of SciDAC applications on petascale systems had high priority within DOE SC at the start of the second phase of the SciDAC program, SciDAC-2, as it continues to do so today. Achieving expected levels of performance on high-end computing (HEC) systems is growing ever more challenging due to enormous scale, increasing architectural complexity, and increasing application complexity. To address these challenges, the University of Southern California?s Information Sciences Institute organized the Performance Engineering Research Institute (PERI). PERI implemented a unified, tripartite research plan encompassing: (1) performance modeling and prediction; (2) automatic performance tuning; and (3) performance engineering of high profile applications. Within PERI, USC?s primary research activity was automatic tuning (autotuning) of scientific software. This activity was spurred by the strong user preference for automatic tools and was based on previous successful activities such as ATLAS, which automatically tuned components of the LAPACK linear algebra library, and other recent work on autotuning domain-specific libraries. Our other major component was application engagement, to which we devoted approximately 30% of our effort to work directly with SciDAC-2 applications. This report is a summary of the overall results of the USC PERI effort.

Lucas, Robert

2013-04-20T23:59:59.000Z

386

Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

None

2007-09-30T23:59:59.000Z

387

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 1.0 Introduction  

Broader source: Energy.gov [DOE]

Introduction section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated March 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

388

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.9 Market Transformation  

Broader source: Energy.gov [DOE]

Market Transformation technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

389

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 5.0 Systems Integration  

Broader source: Energy.gov [DOE]

Systems Integration section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

390

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.1 Hydrogen Production  

Broader source: Energy.gov [DOE]

Hydrogen Production technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

391

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.5 Manufacturing R&D  

Broader source: Energy.gov [DOE]

Manufacturing R&D technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

392

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 6.0 Program Management  

Broader source: Energy.gov [DOE]

Program Management section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

393

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 4.0 Systems Analysis  

Broader source: Energy.gov [DOE]

Systems Analysis section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

394

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.8 Education and Outreach  

Broader source: Energy.gov [DOE]

Education and Outreach technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

395

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.0 Technical Plan  

Broader source: Energy.gov [DOE]

Technical Plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated May 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

396

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 2.0 Program Benefits  

Broader source: Energy.gov [DOE]

Program Benefits section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated August 2012. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

397

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.2 Hydrogen Delivery  

Broader source: Energy.gov [DOE]

Hydrogen Delivery technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

398

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.3 Hydrogen Storage  

Broader source: Energy.gov [DOE]

Hydrogen Storage technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

399

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Appendix B: Input/Output Matrix  

Broader source: Energy.gov [DOE]

Appendix B: Input/Output Matrix section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

400

10/12/2009 www.wtert.gr 1 Waste-to-Energy Research and Technology Council  

E-Print Network [OSTI]

10/12/2009 www.wtert.gr 1 Waste-to-Energy Research and Technology Council SYNERGIA Dr. Efstratios MANAGEMENT IN GREECE & POTENTIAL FOR WASTE - TO - ENERGY ISWA Beacon Conference - Strategic Waste Management Planning in SEE, Middle East and Mediterranean Region #12;10/12/2009 www.wtert.gr 2 The Waste-to-Energy

Columbia University

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Labora-  

E-Print Network [OSTI]

Research turbine supports sustained technology development. For more than three decades, engineers, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC

402

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- 3.4 Fuel Cells  

Broader source: Energy.gov [DOE]

Fuel Cells technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated November 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

403

Gasification advanced research and technology development (AR and TD) cross-cut meeting and review. [US DOE supported  

SciTech Connect (OSTI)

The US Department of Energy gasification advanced research and technology development (AR and TD) cross-cut meeting and review was held June 24 to 26, 1981, at Germantown, Maryland. Forty-eight papers from the proceedings have been entered individually into EDB and ERA. (LTN)

Not Available

1981-01-01T23:59:59.000Z

404

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

405

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

406

Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling  

E-Print Network [OSTI]

This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric...

Weijo, R. O.; and Brown, D. R.

1988-01-01T23:59:59.000Z

407

Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan  

SciTech Connect (OSTI)

This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

1988-12-01T23:59:59.000Z

408

Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

Ian McKirdy

2011-07-01T23:59:59.000Z

409

Fusion Materials Science and Technology Research Needs: Now and During the ITER era  

SciTech Connect (OSTI)

The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

2013-09-30T23:59:59.000Z

410

Interpersonal traits and the technology acceptance model: applying the interpersonal circumplex model as a nomological net for understanding user perceptions within human-to-computer interaction  

E-Print Network [OSTI]

This study examines the effects that individual personality traits have on technology acceptance. Previous research on technology acceptance focuses primarily on exogenous variables such as trustors perceptions, attitudes, computer anxiety...

Brown, Houghton Gregory

2009-05-15T23:59:59.000Z

411

THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL  

SciTech Connect (OSTI)

Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

BERRY J; GALLAHER BN

2011-01-13T23:59:59.000Z

412

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and Innovation »NREL's improvedResearch

413

Vehicle Technologies Office Merit Review 2014: Emissions Modeling...  

Energy Savers [EERE]

More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of VehicleFuel Systems Fuel-Cycle Energy and Emissions Analysis with the GREET Model...

414

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

415

Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. (comps.)

1992-04-01T23:59:59.000Z

416

Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. ofUSAPotentiallyDepartment ofUsingTechnologyLife Cycle

417

Technology commercialization cost model and component case study. Final report  

SciTech Connect (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen & Hamilton Inc. and Michael A. Cobb & Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb & company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

418

Technology commercialization cost model and component case study  

SciTech Connect (OSTI)

Fuel cells seem poised to emerge as a clean, efficient, and cost competitive source of fossil fuel based electric power and thermal energy. Sponsors of fuel cell technology development need to determine the validity and the attractiveness of a technology to the market in terms of meeting requirements and providing value which exceeds the total cost of ownership. Sponsors of fuel cell development have addressed this issue by requiring the developers to prepare projections of the future production cost of their fuel cells in commercial quantities. These projected costs, together with performance and life projections, provide a preliminary measure of the total value and cost of the product to the customer. Booz-Allen Hamilton Inc. and Michael A. Cobb Company have been retained in several assignments over the years to audit these cost projections. The audits have gone well beyond a simple review of the numbers. They have probed the underlying technical and financial assumptions, the sources of data on material and equipment costs, and explored issues such as the realistic manufacturing yields which can be expected in various processes. Based on the experience gained from these audits, the DOE gave Booz-Allen and Michael A. Cobb company the task to develop a criteria to be used in the execution of future fuel cell manufacturing cost studies. It was thought that such a criteria would make it easier to execute such studies in the future as well as to cause such studies to be more understandable and comparable.

Not Available

1991-12-01T23:59:59.000Z

419

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

420

Utilizing spatial technologies to understand and model wildlife species distributions  

E-Print Network [OSTI]

, and slopes found on Gus Engeling Wildlife Management Area (GEWMA) and Richland Creek Wildlife Management Area (RCWMA). The resulting model output was displayed as a map, depicting the spatial distribution of habitat suitability for each of the 3 species...

Daugherty, Brad Ellis

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.  

SciTech Connect (OSTI)

The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

Barone, Matthew Franklin; White, Jonathan

2011-09-01T23:59:59.000Z

422

Scaleup tests and supporting research for the development of duct injection technology. Topical report No. 1, Literature review  

SciTech Connect (OSTI)

Gilbert Commonwealth, Southern Research Institute and the American Electric Power Service Corporation have embarked on a program to convert DOE`s Duct Injection Test Facility located at the Muskingum River Power Plant of Ohio Power Company to test alternate duct injection technologies. The technologies to be tested include slurry sorbent injection of hydrated lime using dual fluid nozzles, or a rotary atomizer and pneumatic injection of hydrated lime, with flue gas humidification before or after sorbent injection. The literature review and analysis contained in this report is a part of the preparatory effort for the test program.

Gooch, J.P.; Dismukes, E.B.; Dahlin, R.S.; Faulkner, M.G. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Buchanan, T.L.; Hunt, J.E. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1989-05-01T23:59:59.000Z

423

Vehicle Technologies Office Merit Review 2014: High Efficiency GDI Engine Research, with Emphasis on Ignition Systems  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

424

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

425

Vehicle Technologies Office Merit Review 2014: Advanced Lean-Burn DI Spark Ignition Fuels Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced lean...

426

Vehicle Technologies Office Merit Review 2014: Collaborative Combustion Research with BES  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about collaborative...

427

Vehicle Technologies Office Merit Review 2014: Fuel Injection and Spray Research Using X-Ray Diagnostics  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel injection...

428

Vehicle Technologies Office Merit Review 2014: Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about large eddy...

429

Vehicle Technologies Office Merit Review 2014: Spray Combustion Cross-Cut Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about spray conbustion...

430

Legal Issues and Risks Associated with Building Information Modeling Technology  

E-Print Network [OSTI]

Dimensional Interactive Application CIFE Center for Integrated Facility Engineering, Stanford University EJCDC Engineers Joint Contract Documents Committee GSA General Services Administration HVAC Heating, Ventilating and Air Conditioning IAI... of the project. Figure 2-2. Site Planning and Site Utilization (Mortenson 3D Image) ?4D? Scheduling and Sequencing. When the 3D model is combined with the CPM schedule, it creates a ?4D? model, using time as the fourth dimension. This is done to visualize...

Foster, Leon Lewis

2008-07-22T23:59:59.000Z

431

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. [comp.

1993-05-01T23:59:59.000Z

432

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993  

SciTech Connect (OSTI)

Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

Carlson, P.T. (comp.)

1993-01-01T23:59:59.000Z

433

LNG SAFETY RESEARCH: FEM3A MODEL DEVELOPMENT  

SciTech Connect (OSTI)

This quarterly report for DE-FG26-04NT42030 covers a period from October 1, 2004 to December 31, 2004. On December 9, 2004 a meeting was held in Morgantown to rescope the LNG safety modeling project such that the work would complement the DOE's efforts relative to the development of the intended LNG-Fluent model. It was noted and discussed at the December 9th meeting that the fundamental research being performed on surface to cloud heat transfer and low wind speed issues will be relevant to the development of the DOE LNG/Fluent Model. In general, it was decided that all research to be performed from December 9th through the remainder of the contract is to be focused on the development of the DOE LNG/Fluent model. In addition, all GTI activities for dissemination and transfer of FEM3A will cease and dissemination activities will focus on the new DOE LNG/Fluent model. The proposed new scope of work is presented in section 4 of this report. The work reported in the present document relates to the original scope of work which was in effect during the reporting period. The future work will be re-scoped to meet the requirements of the new scope of work. During the report period work was underway to address numerical problems present during simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 and 2 in the plan outlined in the first Quarterly report are complete and steps 3 and 4 are in progress. During this quarter, the University of Arkansas has been investigating the effect upon numerical stability of the heat transfer model used to predict the surface-to-cloud heat transfer, which can be important for LNG vapor dispersion. Previously, no consideration has been given to ground cooling as a result of heat transfer to the colder gas cloud in FEM3A.

Jerry Havens; Iraj A. Salehi

2005-02-21T23:59:59.000Z

434

Additional Research Needs to Support the GENII Biosphere Models  

SciTech Connect (OSTI)

In the course of evaluating the current parameter needs for the GENII Version 2 code (Snyder et al. 2013), areas of possible improvement for both the data and the underlying models have been identified. As the data review was implemented, PNNL staff identified areas where the models can be improved both to accommodate the locally significant pathways identified and also to incorporate newer models. The areas are general data needs for the existing models and improved formulations for the pathway models. It is recommended that priorities be set by NRC staff to guide selection of the most useful improvements in a cost-effective manner. Suggestions are made based on relatively easy and inexpensive changes, and longer-term more costly studies. In the short term, there are several improved model formulations that could be applied to the GENII suite of codes to make them more generally useful. Implementation of the separation of the translocation and weathering processes Implementation of an improved model for carbon-14 from non-atmospheric sources Implementation of radon exposure pathways models Development of a KML processor for the output report generator module data that are calculated on a grid that could be superimposed upon digital maps for easier presentation and display Implementation of marine mammal models (manatees, seals, walrus, whales, etc.). Data needs in the longer term require extensive (and potentially expensive) research. Before picking any one radionuclide or food type, NRC staff should perform an in-house review of current and anticipated environmental analyses to select dominant radionuclides of interest to allow setting of cost-effective priorities for radionuclide- and pathway-specific research. These include soil-to-plant uptake studies for oranges and other citrus fruits, and Development of models for evaluation of radionuclide concentration in highly-processed foods such as oils and sugars. Finally, renewed studies of radionuclide cleanup in various modern types of municipal water treatment facilities such as advanced filtration or reverse-osmosis processes may be performed without development of any new or costly experimental facilities.

Napier, Bruce A.; Snyder, Sandra F.; Arimescu, Carmen

2013-11-30T23:59:59.000Z

435

Supporting technology for enhanced oil recovery: Polymer predictive model  

SciTech Connect (OSTI)

The Polymer Flood Predictive Model (PFPM) was developed by Scientific Software-Intercomp for the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The PFPM is switch-selectable for either polymer or waterflooding, and an option in the model allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. The architecture of the PFPM is similar to that of the other predictive models in the series: in-situ combustion, steam drive (Aydelotte and Pope, 1983), chemical flooding (Paul et al., 1982) and CO/sub 2/ miscible flooding (Paul et al., 1984). In the PFPM, an oil rate versus time function for a single pattern is computed and then is passed to the economic calculations. Data for reservoir and process development, operating costs, and a pattern schedule (if multiple patterns are desired) allow the computation of discounted cash flow and other measures of profitability. The PFPM is a three-dimensional (stratified, five-spot), two-phase (water and oil) model which computes water from breakthrough and oil recovery using fractional flow theory, and models areal and vertical sweeps using a streamtube approach. A correlation based on numerical simulation results is used to model the polymer slug size effect. The physical properties of polymer fluids, such as adsorption, permeability reduction, and non-Newtonian effects, are included in the model. Pressure drop between the injector and producer is kept constant, and the injectivity at each time step is calculated based on the mobility in each streamtube. Heterogeneity is accounted for by either entering detailed layer data or using the Dykstra-Parsons coefficient for a reservoir with a log-normal permeability distribution. 24 refs., 27 figs., 59 tabs.

Not Available

1986-12-01T23:59:59.000Z

436

Technology Control Plan Grigg Hall houses most of the University's optical and optoelectronic research facilities,  

E-Print Network [OSTI]

Technology Control Plan Grigg Hall Grigg Hall houses most of the University's optical) and subject to export control regulations. This Technology Control Plan has been developed to ensure for Optoelectronics and Optical Communications (in the case of Center labs). Additionally, Clean Room facilities

Howitt, Ivan

437

Ris DTU 09-06-08 Waste-to-energy technologies in TIMES models  

E-Print Network [OSTI]

(focusing on Denmark) Long tradition for waste incineration for district heating How to model waste that supply base-load district heating. #12;Ris DTU 09-06-08 13 Modelling new Waste for Energy Technologies station for households and businesses. Some electricity is generated, but most energy is used for district

438

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

439

Research and development separation technology: The DOE Industrial Energy Conservation Program  

SciTech Connect (OSTI)

This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

Not Available

1987-07-01T23:59:59.000Z

440

Texas A&M AgriLife Research Procedures 29.01.99.A0.05 Information Technology Account Management Procedures Page 1 of 5 Texas A&M AgriLife Research Procedures  

E-Print Network [OSTI]

Texas A&M AgriLife Research Procedures 29.01.99.A0.05 Information Technology Account Management Procedures Page 1 of 5 Texas A&M AgriLife Research Procedures 29.01.99.A0.05 Information Technology Account Management Procedures Approved: July 9, 2012 Next Scheduled Review: July 9, 2014 PROCEDURE STATEMENT

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Argonne National Laboratory Smart Grid Technology Interactive Model  

SciTech Connect (OSTI)

As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

Ted Bohn

2009-10-13T23:59:59.000Z

442

Argonne National Laboratory Smart Grid Technology Interactive Model  

ScienceCinema (OSTI)

As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid to not only handle the new load, but make electricity cheap and efficient for everyone? Argonne engineer Ted Bohn explains a model of a "smart grid" that gives consumers the power to choose their own prices and sources of electricity.

Ted Bohn

2010-01-08T23:59:59.000Z

443

LNG Safety Research: FEM3A Model Development  

SciTech Connect (OSTI)

Work continued to address numerical problems experienced with simulation of low-wind-speed, stable, atmospheric conditions with FEM3A. Steps 1 through 8 in the plan outlined in the first Quarterly report have been completed successfully for the FEM3A model utilizing the Planetary Boundary Layer (PBL) turbulence closure model. Researchers at the University of Arkansas have solved the problems related to stability of the simulations at regulatory conditions of low wind speed and stable atmospheric conditions with FEM3A using the PBL model, and are continuing our program to verify the operation of the model using an updated, verified, version of the k-epsilon turbulence closure model which has been modified to handle dense gas dispersion effects. This quarterly report for DE-FG26-04NT42030 covers a period from January 1, 2006 to March 31, 2006. GTI's activities during the report quarter were limited to administrative work. The work at the University of Arkansas continued in line with the initial scope of work and the identified questions regarding surface to cloud heat transfer as being largely responsible for the instability problems previously encountered. A brief summary of results is discussed in this section and the complete report from University of Arkansas is attached.

Iraj A Salehi; Jerry Havens; Tom Spicer

2006-05-01T23:59:59.000Z

444

High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology  

SciTech Connect (OSTI)

This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

Bernacki, Bruce E.

2012-10-05T23:59:59.000Z

445

Publications of the Fossil Energy Advanced Research and Technology Development Materials Program: April 1, 1993--March 31, 1995  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.

Carlson, P.T. [comp.

1995-04-01T23:59:59.000Z

446

Supporting technology for enhanced oil recovery: Chemical flood predictive model  

SciTech Connect (OSTI)

The Chemical Flood Predictive Model (CFPM) was developed by Scientific Software-Intercomp for the US Department of Energy and was used in the National Petroleum Council's (NPC) 1984 survey of US enhanced oil recovery potential (NPC, 1984). The CFPM models micellar (surfactant)-polymer (MP) floods in reservoirs which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option is available in the model which allows a rough estimate of oil recovery by caustic (alkaline) or caustic-polymer processes. This ''caustic'' option, added for the NPC survey, is not modeled as a separate process. Rather, the caustic and caustic-polymer oil recoveries are computed simply as 15% and 40%, respectively, of the MP oil recovery. In the CFPM, an oil rate versus time function for a single pattern is computed and the results are passed to the economic routines. To estimate multi-pattern project behavior, a pattern development schedule must be specified. After-tax cash flow is computed by combining revenues with capital costs for drilling, conversion and upgrading of wells, chemical handling costs, fixed and variable operating costs, injectant costs, depreciation, royalties, severance, state, federal, and windfall profit taxes, cost and price inflation rates, and the discount rate. A lumped parameter uncertainty routine is used to estimate risk, and allows for variation in computed project performance within an 80% confidence interval. The CFPM uses theory and the results of numerical simulation to predict MP oil recovery in five-spot patterns. Oil-bank and surfactant breakthrough and project life are determined from fractional flow theory. A Koval-type factor, based on the Dykstra-Parsons (1950) coefficient, is used to account for the effects of reservoir heterogeneity on surfactant and oil bank velocities. 18 refs., 17 figs., 27 tabs.

Ray, R.M.; Munoz, J.D.

1986-12-01T23:59:59.000Z

447

Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development  

Broader source: Energy.gov [DOE]

Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

448

Limei Ran Research Associate, Center for Environmental Modeling for Policy Development  

E-Print Network [OSTI]

the Community Multiscale Air Quality Model (CMAQ) with the Environmental Policy Integrated Limei Ran Research Associate, Center for Environmental Modeling for Policy Development

McLaughlin, Richard M.

449

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

Jubin, R.T.

1999-02-01T23:59:59.000Z

450

Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986  

SciTech Connect (OSTI)

During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

Sendlein, L.V.A.

1987-06-29T23:59:59.000Z

451

Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems  

SciTech Connect (OSTI)

Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

Wetter, Michael

2009-02-12T23:59:59.000Z

452

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

SciTech Connect (OSTI)

The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

Not Available

2009-01-01T23:59:59.000Z

453

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

454

Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research  

SciTech Connect (OSTI)

This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

1981-05-26T23:59:59.000Z

455

Business model transformation for the international division of a fortune 100 high technology company  

E-Print Network [OSTI]

Raytheon Canada in Waterloo, Ontario offers a very interesting but challenging research case. As one of the international divisions of Raytheon Corporation, the company has a business model similar to its parent company. ...

Mokhtari Dizaji, Reza, 1968-

2008-01-01T23:59:59.000Z

456

Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model  

E-Print Network [OSTI]

capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

Lang, K.

1982-01-01T23:59:59.000Z

457

GE Technology to Help Canada Province Meet Growing Energy Needs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

funding and collaboration models at its European Global Research Center near Munich, Germany. Mark Little, GE's Senior Vice President and Chief Technology Officer, and thought...

458

Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies  

SciTech Connect (OSTI)

This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

Zhang, Yabei; Smith, Steven J.

2007-08-16T23:59:59.000Z

459

Technical and economic assessment of processes for the production of butanol and acetone. Phase two: analysis of research advances. Energy Conversion and Utilization Technologies Program  

SciTech Connect (OSTI)

The initial objective of this work was to develop a methodology for analyzing the impact of technological advances as a tool to help establish priorities for R and D options in the field of biocatalysis. As an example of a biocatalyzed process, butanol/acetone fermentation (ABE process) was selected as the specific topic of study. A base case model characterizing the technology and economics associated with the ABE process was developed in the previous first phase of study. The project objectives were broadened in this second phase of work to provide parametric estimates of the economic and energy impacts of a variety of research advances in the hydrolysis, fermentation and purification sections of the process. The research advances analyzed in this study were based on a comprehensive literature review. The six process options analyzed were: continuous ABE fermentaton; vacuum ABE fermentation; Baelene solvent extraction; HRI's Lignol process; improved prehydrolysis/dual enzyme hydrolysis; and improved microorganism tolerance to butanol toxicity. Of the six options analyzed, only improved microorganism tolerance to butanol toxicity had a significant positive effect on energy efficiency and economics. This particular process option reduced the base case production cost (including 10% DCF return) by 20% and energy consumption by 16%. Figures and tables.

None

1984-08-01T23:59:59.000Z

460

FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

Not Available

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FTT:Power : A global model of the power sector with induced technological change and natural resource depletion  

E-Print Network [OSTI]

This work introduces a model of Future Technology Transformations for the power sector (FTT:Power), a representation of global power systems based on market competition, induced technological change (ITC) and natural resource use and depletion. It is the first component of a family of sectoral bottom-up models of technology, designed for integration into the global macroeconometric model E3MG. ITC occurs as a result of technological learning produced by cumulative investment and leads to highly nonlinear, irreversible and path dependent technological transitions. The model uses a dynamic coupled set of logistic differential equations. As opposed to traditional bottom-up energy models based on systems optimisation, such differential equations offer an appropriate treatment of the times and structure of change involved in sectoral technology transformations, as well as a much reduced computational load. Resource use and depletion are represented by local cost-supply curves, which give rise to different regional...

Mercure, J -F

2012-01-01T23:59:59.000Z

462

Office of Advanced Nuclear Research Office of Nuclear Energy, Science and Technology  

E-Print Network [OSTI]

Integrate applicable work conducted in programs in the Offices of Nuclear Energy (Gen IV, NERI, I · FY 2010: Complete the design of a commercial-scale nuclear hydrogen production system · FY 2015 to budget uncertainties (risk/benefit) · Guide the development of technology to support decisions Develop

463

The Market Acceptance of Advanced Automotive Technologies (MA3T) Model  

E-Print Network [OSTI]

vehicles (PHEV), extended-range electric vehicle (EREV), battery electric vehicles (BEV) and fuel cell Vehicles by 2015 Using MA3T Model." The 26th International Battery, Hybrid and Fuel Cell Electric Vehicle: Energy Environment Safety Security Vehicle Technologies T he Market Acceptance of Advanced Automotive

464

SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy  

E-Print Network [OSTI]

, the United States needs to transition to an energy system with much lower carbon emissions and reduced), and the balance of energy carriers such as electricity, hydrogen, alcohol and synthetic fuels, and endSMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy

Powell, Warren B.

465

SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy  

E-Print Network [OSTI]

. Introduction Over the next few decades, the United States needs to transition to an energy system with much, renewable, sequestered fossil), and the balance of energy carriers including electricity, hydrogen, alcoholSMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy

Powell, Warren B.

466

Leveraging The Open Provenance Model as a Multi-Tier Model for Global Climate Research  

SciTech Connect (OSTI)

Global climate researchers rely upon many forms of sensor data and analytical methods to help profile subtle changes in climate conditions. The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program provides researchers with curated Value Added Products (VAPs) resulting from continuous sensor data streams, data fusion, and modeling. The ARM operations staff and software development teams (data producers) rely upon a number of techniques to ensure strict quality control (QC) and quality assurance (QA) standards are maintained. Climate researchers (data consumers) are highly interested in obtaining as much provenance (data quality, data pedigree) as possible to establish data trustworthiness. Currently all the provenance is not easily attainable or identifiable without significant efforts to extract and piece together information from configuration files, log files, codes, and status information from ARM databases. The need for a formalized approach to managing provenance became paramount with the planned addition of 120 new instruments, new data products, and data collection scaling to half a terabyte daily. Last year our research identified the need for a multi-tier provenance model to enable the data consumer easy access to the provenance for their data. This year we are leveraging the Open Provenance Model as a foundational construct that serves the needs of both the VAP producers and consumers, we are organizing the provenance in different tiers of granularity to model VAP lineage, causality at the component level within a VAP, and the causality for each time step as samples are being assembled within the VAP. This paper shares our implementation strategy and how the ARM operations staff and the climate research community can greatly benefit from this approach to more effectively assess and quantify VAP provenance.

Stephan, Eric G.; Halter, Todd D.; Ermold, Brian D.

2010-12-08T23:59:59.000Z

467

Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Warren, N. Jill [Editor

1999-09-21T23:59:59.000Z

468

SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS) is a technology with the potential  

E-Print Network [OSTI]

#12;SUPERCONDUCTIVITY PROGRAM RESEARCH AND DEVELOPMENT High Temperature Superconductivity (HTS-of-way. The Department of Energy's efforts to advance High Temperature Superconductivity combine major national strengths: the Superconductivity Partnership Initiative (SPI), the 2nd Generation Wire Initiative

469

Aerosol Science and Technology, 47:818830, 2013 Copyright C American Association for Aerosol Research  

E-Print Network [OSTI]

concentrations (mean mid October 2012; accepted 29 January 2013. This research was funded by NSF ATM-0723582 and ATM- 0919189, DOE, and thermal shifts in gas-particle partitioning. Wet deposition was estimated to be an order of magnitude

470

Information visualization for in-car communication processes Michael Sedlmair, BMW Group Research and Technology, Germany, Michael.Sedlmair@bmw.de  

E-Print Network [OSTI]

Information visualization for in-car communication processes Michael Sedlmair, BMW Group Research and Technology, Germany, Michael.Sedlmair@bmw.de Supervisor: Andreas Butz, University of Munich, Germany, Andreas

471

Cooperative Research and Development Agreement between the California Air Resources Board and Lockheed Martin Idaho Technologies Company. Final report  

SciTech Connect (OSTI)

This report summarizes the activities under a Cooperative Research and Development Agreement (CRADA) between Lockheed-Martin Idaho Technologies Company (LMITCO) and the California Air Resources Board (CARB). The activities were performed at the Idaho National Engineering and Environmental Laboratory (INEEL) between June 1995 and December 1997. Work under this agreement was concentrated in two task areas as defined in the California Air Resources Board`s contract number 94-908 having an approval date of June 9, 1995: Task 1--EV and HEV Vehicle Testing and Assessment and Task 4--Advanced Battery Testing.

Cole, G.H.

1998-04-01T23:59:59.000Z

472

Sharing the excitement of deep ocean research The UK has long prided itself on its achievements in science, engineering and technology. They contribute  

E-Print Network [OSTI]

Sharing the excitement of deep ocean research The UK has long prided itself on its achievements in science, engineering and technology. They contribute directly to the country's prosperity and benefit Select Committee on Science and Technology produced its Investigating the Oceans report. It noted

Anderson, Jim

473

Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015  

SciTech Connect (OSTI)

Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)

Ouzounian, P. [ANDRA, Chatenay-Malabry (France); Palmu, Marjatta [Posiva Oy, Eurajoki (Finland); Eng, Torsten [SKB, Stockholm (Sweden)

2012-07-01T23:59:59.000Z

474

Research | Center for Gas SeparationsRelevant to Clean Energy Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas OurLANLSoftware & ToolsResearch|

475

A Study of Scientometric Methods to Identify Emerging Technologies via Modeling of Milestones  

SciTech Connect (OSTI)

This work examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, patents, news archives, and online mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain we investigated.

Abercrombie, Robert K [ORNL; Udoeyop, Akaninyene W [ORNL; Schlicher, Bob G [ORNL

2012-01-01T23:59:59.000Z

476

Oil and Gas Technology at Rio de Janeiro | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 Office ofOffshoreTechnology &

477

Oil and Natural Gas Program Commericialized Technologies and Significant Research Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy's 10 Office ofOffshoreTechnology

478

5 Top Trends From the Women and Technology Symposium | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025Steps to Making Your Windows5 Top

479

Aerosol Science and Technology, 40:10021015, 2006 Copyright c American Association for Aerosol Research  

E-Print Network [OSTI]

; Pope et al. 1995; Wichmann et al. 2000). Emission from internal combustion vehicles is one of the major Research ISSN: 0278-6826 print / 1521-7388 online DOI: 10.1080/02786820600919408 Studies of Diesel Engine Particle Emissions During Transient Operations Using an Engine Exhaust Particle Sizer Jian Wang,1 John

480

Baseline information development for Energy Smart Schools -applied research, field testing and technology integration  

E-Print Network [OSTI]

Center (FSEC, FL), Energy Center of Wisconsin (ECW, WI), New York State Energy Research & Development our communications with NYSERDA, there is no K-12 energy usage information from New York state readily and emerging data in four states: California, Florida, New York, and Wisconsin. The goal of this data

Note: This page contains sample records for the topic "technology modelers research" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

C.14 PLANETARY SCIENCE & TECHNOLOGY THROUGH ANALOG RESEARCH 1. Scope of Program  

E-Print Network [OSTI]

) Science Operations: PSTAR seeks systems-level terrestrial field campaigns which are conducted exploration requires the development of relevant, miniaturized instrumentation capable of extensive operations environments on Earth in order to develop a sound technical and scientific basis to conduct planetary research

Rathbun, Julie A.

482

INTRODUCTION The U.S. Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research  

E-Print Network [OSTI]

Jonghe and P. Ross of the Materials Sciences Division. #12;2 RESEARCH PROJECT SUMMARIES OPTIMIZED LITHIUM. The objective of this task is to investigate the full realm of interactions that occur in a Li-ion battery, from surface interactions of electrodes with electrolytes, to system interactions in the case of thermal

Kwak, Juhyoun

483

Water Power Technologies Oak Ridge National Laboratory (ORNL) supports the Department of Energy's mission to research,  

E-Print Network [OSTI]

://nhaap.ornl.gov) is an integrated research effort to advance sustainable hydroelectricity generation and water management. The NHAAP construction and operation. The Basin-Scale Opportunity Assessment emphasizes an integrative approach and reservoir passage stresses and predicting the responses of a wide range of fish species to those stresses

484

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority Fusion Technology at  

E-Print Network [OSTI]

, very challenging heat transfer and material problem critical to the success of fusion which drives 10 of 11 Some current research at CCFE · "Heat Transfer enhancement for fusion power plant divertors at CCFE David Hancock #12;PhD and Masters Open Day 15th November 2012slide 2 of 11 Objectives · The role

485

Fermilab Industrial Affiliates roundtable on research technology in the twenty-first century  

SciTech Connect (OSTI)

This collection of articles presents views on the future of physics research by leading experts in the field. Topics discussed include particle physics, the Superconducting Super Collider, and the development of new superconducting materials. The articles have been abstracted and indexed separately.

Carrigan, R.A. Jr.; Fenner, R.B. (eds.)

1987-05-01T23:59:59.000Z

486

Aerosol Science and Technology, 47:9398, 2013 Copyright C American Association for Aerosol Research  

E-Print Network [OSTI]

and the specific surface area of the composite also increased from 122 to 146 m2 /g. Also, the intensity of the GR higher performance on methanol oxidation than a commercial 20 wt% Pt/carbon black catalyst. 1 Research Project of the Korea Institute of Geoscience and Mineral Resources funded by the Ministry

Huang, Jiaxing

487

The Need for Meta-Analytic Thinking in Educational Technology Research  

E-Print Network [OSTI]

with accompanying means and standard deviations or covariance matrices. In the second study, the author conducted a meta-analysis to offer a glimpse of where the field could go once researchers begin to think meta-analytically. The author cumulated findings from...

Ritter, Nicola L.

2014-05-19T23:59:59.000Z

488

Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

489

Technology's Impact on Production  

SciTech Connect (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

490

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

491

Integrated Graduate Education & Research Traineeships (IGERT): Transportation Technology & Policy Final Grant Report  

E-Print Network [OSTI]

1999) PEM Fuel Cell System Optimization. 2nd InternationalFuel cells, hydrogen generation, emissions Networks, system optimization,optimization Development and use of behavioral models of consumer purchase decisions Federation Electric and hybrid vehicle design, batteries, ultracapacitors, fuel cells,

Mokhtarian, Patricia L; Tolentino, Joan S.

2005-01-01T23:59:59.000Z

492

Integrated Graduate Education & Research Traineeships: Transportation Technology & Policy Final Grant Report  

E-Print Network [OSTI]

1999) PEM Fuel Cell System Optimization. 2nd InternationalFuel cells, hydrogen generation, emissions Networks, system optimization,optimization Development and use of behavioral models of consumer purchase decisions Federation Electric and hybrid vehicle design, batteries, ultracapacitors, fuel cells,

Mokhtarian, Patricia L; Tolentino, Joan

2005-01-01T23:59:59.000Z

493

Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report  

SciTech Connect (OSTI)

GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

Trofe, T.W.

1986-11-01T23:59:59.000Z

494

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

495

Economic Development Activities at the Young - Rainey Science, Technology, & Research (STAR) Center  

SciTech Connect (OSTI)

Project mission was to mitigate the adverse economic effects of closing the U.S. Department of Energy's Pinellas Plant in Largo, Florida. This project was to facilitate the physical renovation of the plant and to help maintain and create jobs for the employees that worked at the plant when DOE terminated its operations. It also included finding and attracting high technology, industrial manufacturing and related firms to utilize the space and high tech equipment to remain at the plant. Stakeholders included the affected plant employees, local government and related public organizations, and businesses and universities in the Tampa Bay Florida area. The $17.6 million funded for this project helped produce 2,780 jobs at the Young - Rainey STAR Center at an average cost of $6,328. Rental income from STAR Center tenants and third party cash input amounted to approximately $66 million over the project period of 13.3 years.

Paul S. Sacco; Carl Smeigh; John Caponiti, Jr.

2008-06-30T23:59:59.000Z

496

Northwestern University Information Technology  

E-Print Network [OSTI]

... Integrated Technology Classrooms Online Lectures Collaborative Course Management Tools ...in any teaching environment Classroom Laptop Mobile Device www.it.northwestern.edu NUITAcademic&ResearchTechnologiesNorthwestern University Information Technology (NUIT) is committed to supporting faculty research

Shull, Kenneth R.

497

ImSET 3.1: Impact of Sector Energy Technologies Model Description and User's Guide  

SciTech Connect (OSTI)

This 3.1 version of the Impact of Sector Energy Technologies (ImSET) model represents the next generation of the previously-built ImSET model (ImSET 2.0) that was developed in 2005 to estimate the macroeconomic impacts of energy-efficient technology in buildings. In particular, a special-purpose version of the Benchmark National Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE)developed energy-saving technologies. In comparison with the previous versions of the model, this version features the use of the U.S. Bureau of Economic Analysis 2002 national input-output table and the central processing code has been moved from the FORTRAN legacy operating environment to a modern C++ code. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act. While it does not include the ability to model certain dynamic features of markets for labor and other factors of production featured in the more complex models, for most purposes these excluded features are not critical. The analysis is credible as long as the assumption is made that relative prices in the economy would not be substantially affected by energy efficiency investments. In most cases, the expected scale of these investments is small enough that neither labor markets nor production cost relationships should seriously affect national prices as the investments are made. The exact timing of impacts on gross product, employment, and national wage income from energy efficiency investments is not well-enough understood that much special insight can be gained from the additional dynamic sophistication of a macroeconomic simulation model. Thus, we believe that this version of ImSET is a cost-effective solution to estimating the economic impacts of the development of energy-efficient technologies.

Scott, Michael J.; Livingston, Olga V.; Balducci, Patrick J.; Roop, Joseph M.; Schultz, Robert W.

2009-05-22T23:59:59.000Z

498

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect (OSTI)

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

499

Improving Life through Science and Technology Texas AgriLife Research  

E-Print Network [OSTI]

into water Improve agricultural and urban water use efficiency Address Storm Water issues · Investments and Quantity ($4M) Detect and model water contaminants Develop management practices to reduce loadings 0.5M acre-feet/year of water from Edwards Aquifer Developed preventative measures for golden algae

500

ISTUM PC: industrial sector technology use model for the IBM-PC  

SciTech Connect (OSTI)

A project to improve and enhance the Industrial Sector Technology Use Model (ISTUM) was originated in the summer of 1983. The project had dix identifiable objectives: update the data base; improve run-time efficiency; revise the reference base case; conduct case studies; provide technical and promotional seminars; and organize a service bureau. This interim report describes which of these objectives have been met and which tasks remain to be completed. The most dramatic achievement has been in the area of run-time efficiency. From a model that required a large proportion of the total resources of a mainframe computer and a great deal of effort to operate, the current version of the model