Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Readiness Assessment (TRA)/Technology Maturation Plan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...

2

Technology Maturation Plans (TMPs) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing » Tank Waste and Waste Processing » Technology Maturation Plans (TMPs) Technology Maturation Plans (TMPs) Documents Available for Download November 1, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. November 1, 2007 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation.

3

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

4

Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS ............................................................................................................

5

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse Savannah River Company LLC Westinghouse Savannah River Company LLC Savannah River Site Aiken, SC 29808 LWO-SPT-2007-00247 Rev. 1 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00247 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

6

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE))

This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation.

7

TECHNOLOGY MATURATION PLAN FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect

This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

SAMS TL; GUILLOT S

2011-01-27T23:59:59.000Z

8

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

9

Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics  

Science Conference Proceedings (OSTI)

A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTEs using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTEs and found relatively low TRLs for each of them: Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 Feeding, melting, and pouring: TRL-1 Glass ceramic formulation: TRL-1 Canister cooling and crystallization: TRL-1 Canister decontamination: TRL-4 Although the TRLs are low for most of these CTEs (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRLs are listed below: Complete this TMP Perform a preliminary engineering study Characterize, estimate, and simulate waste to be treated Laboratory scale glass ceramic testing Melter and off-gas testing with simulants Test the mixing, sampling, and analyses Canister testing Decontamination system testing Issue a requirements document Issue a risk management document Complete preliminary design Integrated pilot testing Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

2012-09-30T23:59:59.000Z

10

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

11

Technology Maturity and Market Penetration Assessment  

Science Conference Proceedings (OSTI)

This report presents technology maturity curves and market penetration charts that were developed to assess the current and future state of development for a range of technologies. Technology maturity curves were developed for 17 technology categories covering the generation, transmission, and distribution of electricity and customer technologies. Market penetration charts were then developed for a subset of "game-changing" technologies to show the key steps to market entry for these technologies. Antici...

2012-07-10T23:59:59.000Z

12

Graphite technology development plan  

Science Conference Proceedings (OSTI)

This document presents the plan for the graphite technology development required to support the design of the 350 MW(t) Modular HTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

NONE

1986-07-01T23:59:59.000Z

13

Pretreatment Technology Plan  

SciTech Connect

This technology plan presents a strategy for the identification, evaluation, and development of technologies for the pretreatment of radioactive wastes stored in underground storage tanks at the Hanford Site. This strategy includes deployment of facilities and process development schedules to support the other program elements. This document also presents schedule information for alternative pretreatment systems: (1) the reference pretreatment technology development system, (2) an enhanced pretreatment technology development system, and (3) alternative pretreatment technology development systems.

Barker, S.A. [Westinghouse Hanford Co., Richland, WA (US); Thornhill, C.K.; Holton, L.K. Jr. [Pacific Northwest Lab., Richland, WA (US)

1993-03-01T23:59:59.000Z

14

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

TURBINES U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States...

15

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SEPTEMBER 2013 CARBON STORAGE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the...

16

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

17

Building Technologies Office: Strategic Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plans to Strategic Plans to someone by E-mail Share Building Technologies Office: Strategic Plans on Facebook Tweet about Building Technologies Office: Strategic Plans on Twitter Bookmark Building Technologies Office: Strategic Plans on Google Bookmark Building Technologies Office: Strategic Plans on Delicious Rank Building Technologies Office: Strategic Plans on Digg Find More places to share Building Technologies Office: Strategic Plans on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center Partnerships Meetings Publications Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home

18

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SEPTEMBER 2013 SEPTEMBER 2013 CARBON STORAGE U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

19

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

COMBUSTION SYSTEMS COMBUSTION SYSTEMS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREfACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

20

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLID OXIDE FUEL CELLS SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of information and communications technology maturity level  

Science Conference Proceedings (OSTI)

The use of information and communications technology (ICT) turned out to be a key factor in the process of the wider development of a country. It is therefore very useful to estimate ICT evolution by the means of an appropriate metric. Based on statistical ... Keywords: ICT country ranking, ICT development, ICT maturity level index, ICT statistics, Structural equation modeling

Vagia Kyriakidou; Christos Michalakelis; Thomas Sphicopoulos

2013-02-01T23:59:59.000Z

22

Building Technologies Office: Plans and Schedules  

NLE Websites -- All DOE Office Websites (Extended Search)

and Schedules on Twitter Bookmark Building Technologies Office: Plans and Schedules on Google Bookmark Building Technologies Office: Plans and Schedules on Delicious Rank Building...

23

Technology Transfer Plan  

Science Conference Proceedings (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

24

Building Technologies Program Planning Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Program Planning Summary Building Technologies Program Planning Summary Introduction The U.S. Department of Energy's (DOE) Building Technologies Program (BTP) works in partnership with industry, state, municipal, and other federal organizations to achieve the goals of marketable net-zero energy buildings. Such buildings are extremely energy efficient, ideally producing as much energy as they use over the course of a year. BTP also works with stakeholders and federal partners to meet any remaining energy needs for their buildings through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy consumption in buildings to more than 50 quadrillion Btu (quads)

25

Cyber Security Technologies Call for Commercialization Plans  

Technology commercialization strategy (e.g., in-house manufacturing, partnering with industry leaders, sublicensing, etc.); Business and marketing plan;

26

Geothermal Technologies Program Strategic Plan  

SciTech Connect

This DOE/EERE program strategic plan builds upon previous program plans and R&D direction reviews with industry representatives and other stakeholders.

2004-08-01T23:59:59.000Z

27

NREL: Technology Deployment - Climate Action Planning Tool -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment - Climate Action Planning Tool Step 1 of 4 Step 1: Gather Baseline Energy Consumption Data Download the sample data sheet below, gather your numbers, and...

28

Alternative Transmission Technologies for Joint Planning Studies  

Science Conference Proceedings (OSTI)

This report describes a detailed analysis of joint transmission planning needs and capabilities, including an assessment of current research in the area. The report has value as a starting point and reference for transmission planners engaged in joint planning exercises because it focuses on technologies that could facilitate joint transmission planning of a bulk power grid. A joint planning exercise involves the collaboration of multiple transmission planning groups that may each have ...

2013-12-09T23:59:59.000Z

29

Measuring the maturity of a technology : guidance on assigning a TRL.  

Science Conference Proceedings (OSTI)

This report provides guidance on how to assign a technology readiness level (TRL). The method proposed assists in assigning TRLs through a series of questions that focus on a set of unambiguous maturation metrics. This method is slightly biased towards the environment and approach to technology maturation at Sandia National Laboratories where customers and suppliers are in very close proximity to one another, allowing for supplier-customer interactions at a very early stage in technology development. The hope is that this report can serve as a practical guide to anyone trying to understand the maturity of a specific technology. Risk is reduced in system acquisition by selecting mature technologies for inclusion in system development. TRLs are used to assess the maturity of evolving technologies and therefore become part of an overall risk reduction strategy in system development.

Mitchell, John Anthony

2007-10-01T23:59:59.000Z

30

2013 Annual Planning Summary for the National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory 2013 Annual Planning Summary for the National Energy Technology Laboratory 2013 Annual Planning Summary for the National Energy Technology...

31

Business Plan Competitions and Technology Transfer  

SciTech Connect

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

32

Design principles for the development of space technology maturation laboratories aboard the International Space Station  

E-Print Network (OSTI)

This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

Saenz Otero, Alvar, 1975-

2005-01-01T23:59:59.000Z

33

2012 Annual Planning Summary for EM Energy Technology Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home 2012 Annual Planning Summary for EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology...

34

Global Nuclear Energy Partnership Technology Development Plan  

Science Conference Proceedings (OSTI)

This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

David J. Hill

2007-07-01T23:59:59.000Z

35

Building Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Building Technologies Office: Program Plans, Implementation, and Results to someone by E-mail Share Building Technologies Office: Program Plans, Implementation, and Results on Facebook Tweet about Building Technologies Office: Program Plans, Implementation, and Results on Twitter Bookmark Building Technologies Office: Program Plans, Implementation, and Results on Google Bookmark Building Technologies Office: Program Plans, Implementation, and Results on Delicious Rank Building Technologies Office: Program Plans, Implementation, and Results on Digg Find More places to share Building Technologies Office: Program Plans, Implementation, and Results on AddThis.com... Key Activities Plans, Implementation, & Results

36

Geothermal exploration and assessment technology program plan. Final report  

DOE Green Energy (OSTI)

The following program plan elements are described: barriers to commercialization, cost/benefit analysis for exploration assessment technology (hydrothermal systems), goals, objectives, technical plan, management plan, budget, and procurement plan. (MHR)

Not Available

1978-10-30T23:59:59.000Z

37

Low-cost hydrogen sensors: Technology maturation progress  

SciTech Connect

The authors are developing a low-cost, solid-state hydrogen sensor to support the long-term goals of the Department of Energy (DOE) Hydrogen Program to encourage acceptance and commercialization of renewable energy-based technologies. Development of efficient production, storage, and utilization technologies brings with it the need to detect and pinpoint hydrogen leaks to protect people and equipment. The solid-state hydrogen sensor, developed at Oak Ridge National Laboratory (ORNL), is potentially well-suited to meet cost and performance objectives for many of these applications. Under a cooperative research and development Agreement and license agreement, they are teaming with a private company, DCH Technology, Inc., to develop the sensor for specific market applications related to the use of hydrogen as an energy vector. This report describes the current efforts to optimize materials and sensor performance to reach the goals of low-cost fabrication and suitability for relevant application areas.

Hoffheins, B.S.; Rogers, J.E.; Lauf, R.J.; Egert, C.M. [Oak Ridge National Lab., TN (United States); Haberman, D.P. [DCH Technology, Inc., Sherman Oaks, CA (United States)

1998-04-01T23:59:59.000Z

38

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

39

National Security Technology Incubator Operations Plan  

Science Conference Proceedings (OSTI)

This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

None

2008-04-30T23:59:59.000Z

40

National Security Technology Incubation Strategic Plan  

Science Conference Proceedings (OSTI)

This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achieving sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company to succeed, it must have sustainable competitive advantages in seven key areas: geography, products and businesses, distribution, sales and service culture, efficiency, brand, and most important, people. The four strategic goals of the plan are to: 1. Identify and recruit small businesses with technology applications for national security. 2. Design and implement a national security incubator program that provides incubator services and physical space for the targeted businesses. 3. Provide business assistance and technical leadership to NSTI clients to assist in bringing their products to market. 4. Construct a new multi-tenant facility with dedicated physical space for businesses with technology applications for national security.

None

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

National Security Technology Incubator Action Plan  

SciTech Connect

This report documents the action plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). This action plan serves as a tool in measuring progress in the development process and delivery of services for the NSTI program. Continuous review and evaluation of the action plan is necessary in the development process of the NSTI. The action plan includes detailed steps in developing the NSTI program based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Included are tasks required to implement the NSTI, developed within a work breakdown structure. In addition, a timeline is identified for each task.

2008-02-28T23:59:59.000Z

42

National Security Technology Incubator Business Plan  

SciTech Connect

This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

2007-12-31T23:59:59.000Z

43

2013 Annual Planning Summary for the Energy Technology Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home 2013 Annual Planning Summary for the Energy Technology Engineering Center 2013 Annual Planning Summary for the Energy...

44

Federal Energy Management Program: Advanced Technology Planning for Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Technology Planning for Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Facebook Tweet about Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Twitter Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Google Bookmark Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Delicious Rank Federal Energy Management Program: Advanced Technology Planning for Energy Savings Performance Contracts on Digg Find More places to share Federal Energy Management Program:

45

Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE))

This document has been developed to guide individuals and teams that will be involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the...

46

DOE G 413.3-4A, Technology Readiness Assessment Guide  

Directives, Delegations, and Requirements

The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for ...

2011-09-15T23:59:59.000Z

47

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

48

Fuel Cell Technologies Office: Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Key Activities Plans, Implementation, & Results Budget Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans, Implementation, and Results The Fuel Cell Technologies Office carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that support and document the program management process, and the results and public benefits that derive from it. Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities.

49

DOE Releases Climate Change Technology Program Strategic Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Climate Change Technology Program Strategic Plan Releases Climate Change Technology Program Strategic Plan DOE Releases Climate Change Technology Program Strategic Plan September 20, 2006 - 9:01am Addthis Plan Outlines Strategies for Reducing Greenhouse Gas Emissions through Development and Deployment of Advanced Technologies WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate Change Technology Program (CCTP) Strategic Plan, which details measures to accelerate the development and reduce the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions. CCTP is the technology component of a comprehensive U.S. strategy introduced by President Bush in 2002 to combat climate change that include measures to slow the growth of greenhouse gas emissions through

50

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

51

A long-term strategic plan for development of solar thermal electric technology  

DOE Green Energy (OSTI)

Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G. [USDOE, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

52

A long-term strategic plan for development of solar thermal electric technology  

DOE Green Energy (OSTI)

Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US Department of Energy (DOE) to develop a long-term strategy for the development of STE technologies (DOE, 1996). The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun-Lab (the cooperative Sandia National Laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capacity by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G.D. [Dept. of Energy, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

53

Building Technologies Office: Plans and Schedules  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans and Schedules The Appliances and Equipment Standards program maintains a multi-year rulemaking schedule. The currently scheduled rulemaking activities are described in the...

54

Advanced Technology Planning for Energy Savings Performance Contracts |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Planning for Energy Savings Performance Advanced Technology Planning for Energy Savings Performance Contracts Advanced Technology Planning for Energy Savings Performance Contracts October 7, 2013 - 1:40pm Addthis Call for Projects FEMP recently issued a notice of intent to release a Funding Opportunity Announcement that will provide grants to develop capital combined heat and power projects. Read the call for projects. Legislation emphasizes the implementation of energy-efficiency and renewable energy technologies in Federal agencies. The Federal Energy Management Program (FEMP) assists agencies in identifying and planning opportunities to deploy advanced technologies using energy savings performance contracts (ESPC). A Federal financing specialist (FFS) will work with a project facilitator and a U.S. Department of Energy (DOE) national laboratory team to identify

55

Vehicle Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Implementation, and Results Program Plans, Implementation, and Results The U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP) accelerates the deployment of advanced vehicle technologies and renewable fuels to strengthen the U.S. economy by creating jobs, while reducing petroleum consumption, air pollution, and greenhouse gas emissions. To accomplish these goals, VTP works with industry leaders, national laboratories, universities, and state and local governments in five strategic program areas. Program Overview Program Plans Program Implementation Program Results Program Overview Summary Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments, Dec. 2010 Key Program Overview Documents Program Fact Sheet Program Deep Dive Briefing Program Overview Legislative and Executive Guidance

56

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

57

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

58

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

within the EERE Fuel Cell Technologies Office and the DOE offices of Nuclear Energy, Fossil Energy, and Science. It describes the Program's activities, the specific obstacles...

59

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Motors Annual Progress Report The Advanced Power Electronics and Electric Motors (APEEM) program within the DOE Vehicle Technologies Office (VTO) provides support and...

60

Vehicle Technologies Office: Program Plans, Implementation, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle and Systems Simulation and Testing Annual Progress Report Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Fuel Technologies: Goals, Strategies,...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Project Management Plan for the INEL technology logic diagrams  

SciTech Connect

This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ``Technology Logic Diagrams For The INEL.`` The work on this project will be conducted by personnel in EG&G Idaho, Inc.`s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

Rudin, M.J.

1992-10-01T23:59:59.000Z

62

Project Management Plan for the INEL technology logic diagrams  

SciTech Connect

This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

Rudin, M.J.

1992-10-01T23:59:59.000Z

63

Sodium-Bearing Waste Treatment, Applied Technology Plan  

SciTech Connect

Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

2003-06-01T23:59:59.000Z

64

NREL: Technology Deployment - Climate Action Planning Tool -...  

NLE Websites -- All DOE Office Websites (Extended Search)

and technology options. Contact Us Complete the form below if you need help with the beta version of the tool. * Required field First name: Last name: Organization: *E-mail...

65

Quality assurance and standards plan for solar thermal technologies  

DOE Green Energy (OSTI)

The development of a Quality Assurance and Standards (QA and S) plan for the photovoltaic (PV) and domestic solar heating (SHAC) technologies preceded that for solar thermal technologies, permitting a review and lessons-learned approach to developing solar thermal QA and S plan. It is noted that the state of the art for solar thermal technology is not as complicated or novel as PV and is better suited to engineering dialogues for input and implementation than SHAC. It is important to recognize the differences in legislative directives that influence the US Department of Energy's approach to the process of developing a QA and S plan. Specific legislative directives to develop criteria for PV and SHAC are replaced for solar thermal with directives to develop standards using a commercial approach. Accordingly, a series of standards matrices are proposed as the keystone to the plan which will identify the functions of components, subsystems, and systems.

Cobb, H.R.W.

1981-07-01T23:59:59.000Z

66

Security Technology Demonstration and Validation Sustainability Plan  

SciTech Connect

This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

None

2008-08-31T23:59:59.000Z

67

In Situ Mercury Stabilization (ISMS) Treatment: Technology Maturation Project Phase I Status Report  

SciTech Connect

Mercury (Hg) was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge in the 1950s and 1960s. As much as two million pounds of elemental mercury was 'lost' or unaccounted for and a large portion of that material is believed to have entered the environment. The DOE site office in Oak Ridge has identified Hg pollution in soils, sediments, and streams as the most significant environmental challenge currently faced. In industry, large amounts of mercury have been used to manufacture products (e.g., fluorescent light bulbs, thermometers) and for chemical processing (e.g., production of chlorine and alkali via mercury electrochemical cells) and many of these industrial sites are now polluted with mercury contaminated soil as a result of previous releases and/or inadvertent leaks. Remediation techniques for Hg contaminated soils are either based on thermal desorption and recovery of the mercury or excavation and shipping of large volumes of material to remote facilities for treatment and disposal. Both of these alternatives are extremely costly. The Brookhaven National Laboratory (BNL) Environmental Research & Technology Division (ERTD) has demonstrated, in laboratory-scale experiments, the viability of treating mercury contaminated soils by means of sulfide treatment rods inserted into the soil through a process known as In Situ Mercury Stabilization (ISMS). This approach is partly based on BNL's patented and successfully licensed ex situ process for Hg treatment, Sulfur Polymer Stabilization/Solidification (SPSS) which converts Hg to the more stable sulfide form. The original experiments showed that Hg homogeneously distributed in soil rapidly migrates to form a high concentration zone of chemically stable mercuric sulfide near the treatment rods while concentrations of Hg in surrounding areas away from the treatment rods are depleted to acceptable levels. BSA has subsequently filed for patent protection on the ISMS technology. If further developed it has the potential for large-scale in-situ treatment of contaminated soils that could substantially reduce the prohibitive cost of thermal desorption and/or excavation and disposal. Licensing and spin-off technology development opportunities would then be viable. Depending on performance and regulatory acceptance, the treated mercury could either be excavated for disposal elsewhere or left in place as a stable alternative. Excavated spent treatment rods could be processed by the SPSS process to reduce the potential for dispersion and lower leachability even further. The Phase I objectives of the In Situ Mercury Stabilization Treatment Process Technology Maturation Project were to: (1) replicate the original bench-scale results that formed the basis for BNL's patent application, i.e., mercury contamination in soil will migrate to and react with 'rods' containing sulfur and/or sulfur compounds, (2) provide enough information to evaluate a decision to conduct further development, and (3) establish some of the critical parameters that require further technology maturation during Phase II. The information contained in this report summarizes the work conducted in Phase I to meet these objectives.

Kalb,P.D.; Milian, L.

2008-03-01T23:59:59.000Z

68

Large-scale production, harvest and logistics of switchgrass (Panicum virgatum L.) - current technology and envisioning a mature technology  

SciTech Connect

Switchgrass (Panicum virgatum L.) is a promising cellulosic biomass feedstock for biorefineries and biofuel production. This paper reviews current and future potential technologies for production, harvest, storage, and transportation of switchgrass. Our analysis indicates that for a yield of 10 Mg ha 1, the current cost of producing switchgrass (after establishment) is about $41.50 Mg 1. The costs may be reduced to about half this if the yield is increased to 30 Mg ha 1 through genetic improvement, intensive crop management, and/or optimized inputs. At a yield of 10 Mg ha 1, we estimate that harvesting costs range from $23.72 Mg 1 for current baling technology to less than $16 Mg 1 when using a loafing collection system. At yields of 20 and 30 Mg ha 1 with an improved loafing system, harvesting costs are even lower at $12.75 Mg 1 and $9.59 Mg 1, respectively. Transport costs vary depending upon yield and fraction of land under switchgrass, bulk density of biomass, and total annual demand of a biorefinery. For a 2000 Mg d 1 plant and an annual yield of 10 Mg ha 1, the transport cost is an estimated $15.42 Mg 1, assuming 25% of the land is under switchgrass production. Total delivered cost of switchgrass using current baling technology is $80.64 Mg 1, requiring an energy input of 8.5% of the feedstock higher heating value (HHV). With mature technology, for example, a large, loaf collection system, the total delivered cost is reduced to about $71.16 Mg 1 with 7.8% of the feedstock HHV required as input. Further cost reduction can be achieved by combining mature technology with increased crop productivity. Delivered cost and energy input do not vary significantly as biorefinery capacity increases from 2000 Mg d 1 to 5000 Mg d 1 because the cost of increased distance to access a larger volume feedstock offsets the gains in increased biorefinery capacity. This paper outlines possible scenarios for the expansion of switchgrass handling to 30 Tg (million Mg) in 2015 and 100 Tg in 2030 based on predicted growth of the biorefinery industry in the USA. The value of switchgrass collection operations is estimated at more than $0.6 billion in 2015 and more than $2.1 billion in 2030. The estimated value of post harvest operations is $0.6 $2.0 billion in 2015, and $2.0 $6.5 billion in 2030, depending on the degree of preprocessing. The need for power equipment (tractors) will increase from 100 MW in 2015 to 666 MW in 2030, with corresponding annual values of $150 and $520 million, respectively. 2009 Society of Chemical Industry and John Wiley & Sons, Ltd

Sokhansanj, Shahabaddine [ORNL; Turhollow, Jr., Anthony [ORNL; Mani, Sudhagar [University of Georgia, Athens, GA; Kumar, Amit [University of Alberta; Bransby, David [Auburn University, Auburn, Alabama; Lynd, L. [Dartmouth College; Laser, Mark [Dartmouth College

2009-03-01T23:59:59.000Z

69

Disaster Planning and Mitigation Technologies, Interim Technology Inventory Report  

Science Conference Proceedings (OSTI)

Natural and person-caused disasters are increasing in frequency and magnitude, and these disasters are taking an ever increasing economic and personal toll. This report identifies technologies that can help utilities, their customers, and their communities cope with disasters.

1998-12-03T23:59:59.000Z

70

A planning framework for transferring building energy technologies: Executive Summary  

Science Conference Proceedings (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

71

A planning framework for transferring building energy technologies  

SciTech Connect

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

72

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

73

Building Technologies Office: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Implementation, and Results Program Plans, Implementation, and Results The Building Technologies Office (BTO) carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that guide, support, and document the program management process and associated results and public benefits. Program Overview Program Plans Program Implementation Program Results Relevant Laws Program Overview Documents Better Buildings, Brighter Future: an overview of BTO activities. Program Presentation: outlines the program's priorities and goals for improving the energy efficiency of buildings. Building Energy Codes Overview Energy Efficiency Trends in Residential and Commercial Buildings report: provides an overview of trends in the construction industry, including profiles of buildings and the resulting impacts on energy consumption.

74

Disaster Planning and Mitigation Technologies: Interim Technology Inventory Report #6  

Science Conference Proceedings (OSTI)

Natural and man-caused disasters are inevitable, recurrent, and increasing in frequency and magnitude. They are taking a larger and larger economic and personal toll. This report identifies technologies and information that can assist utilities, their customers, and their communities in preventing, mitigating, and recovering from disasters.

2001-12-07T23:59:59.000Z

75

U.S. Department of Energy INFORMATION TECHNOLOGY CAPITAL PLAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy INFORMATION TECHNOLOGY CAPITAL PLAN September 2009 Office of the Chief Information Officer TABLE OF CONTENTS Introduction............................................................................................ 1 1.0 Existing Investment Management Governance Processes........................ 2 2.0 Lessons Learned............................................................................... 8 3.0 Enterprise Architecture Overview.......................................................... 9 4.0 Cyber Security Overview....................................................................12 5.0 Information Technology Budget Documents..........................................14

76

Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Multi-Year R&D Program Plan NATIONAL METHANE HYDRATE MULTI-YEAR R&D PROGRAM PLAN U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center...

77

Power Tower Technology Roadmap and cost reduction plan.  

DOE Green Energy (OSTI)

Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

2011-04-01T23:59:59.000Z

78

Office of Building Technologies evaluation and planning report  

SciTech Connect

The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

Pierce, B.

1994-06-01T23:59:59.000Z

79

Marketing Plan for the National Security Technology Incubator  

SciTech Connect

This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubator program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.

None

2008-03-31T23:59:59.000Z

80

National rf technology research and development program plan  

Science Conference Proceedings (OSTI)

This plan was prepared by the Oak Ridge National Laboratory at the request of the Office of Fusion Energy, Division of Development and Technology, to define the technology development needs and priorities. The US rf research and development community, with a wide representation from universities, laboratories and industries, participated in many discussions, meetings and in a three-day workshop in developing the needs and priorities definition. This very active and effective involvement of the rf leaders from all of these groups was an essential feature of the activity and results in the plan representing a broad consensus from the magnetic fusion energy development community. In addition, a number of scientists from Japan and Europe participated by providing data.

Not Available

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High-level waste management technology program plan  

Science Conference Proceedings (OSTI)

The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

Harmon, H.D.

1995-01-01T23:59:59.000Z

82

Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan  

Science Conference Proceedings (OSTI)

This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

Not Available

1993-12-01T23:59:59.000Z

83

Standards application and development plan for solar thermal technologies  

DOE Green Energy (OSTI)

The Solar Energy Research Institute, at the request of DOE, is developing a Quality Assurance and Standards (QA and S) Plan for solar thermal technologies. Unlike the legislative directives concerning standards for the Photovoltaic (PV) and Solar Heating and Cooling of Buildings (SHAC) programs, which required prior development of criteria, relevant legal requirements for ST involved developing sound commercial practices. Since standards development and implementation of PV and SHAC technologies were begun earlier, a lessons-learned approach is used to develop a QA and S plan for ST. Thus, the keystone of the plan is a series of functional and standards matrices, contained in this report, developed from input from ST users and from the industry that will be continually reviewed and updated as commercial aspects develop. The matrices highlight codes, standards, test methods, functions and definitions that need to be developed. They will be submitted through ANSI for development by national consensus bodies. A contingency action is proposed for standards development if specific input is lacking at the committee level or if early development of a standard would hasten commercialization or gain needed jurisdictional acceptance. Agency funding will be sought before consensus review to support development of draft standards by specialists, laboratories, and consultants where qualifying requirements apply.

Cobb, H.R.W.

1981-07-01T23:59:59.000Z

84

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

85

2010 Annual Planning Summary for National Energy Technology Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Planning Summary for National Nuclear Security Administration Service Center (NNSA-SC) 2010 Annual Planning Summary for Oak Ridge (OR) 2010 Annual Planning Summary for Idaho...

86

Fishman, B., Pinkard, N., & Bruce, C. (1998). Preparing schools for curricular reform: Planning for Technology vs. Technology Planning. In A. Bruckman, M. Guzdial, J. Kolodner, & A. Ram (Eds.), International Conference on the  

E-Print Network (OSTI)

Fishman, B., Pinkard, N., & Bruce, C. (1998). Preparing schools for curricular reform: Planning for Technology vs. Technology Planning. In A. Bruckman, M. Guzdial, J. Kolodner, & A. Ram (Eds.), International for Curricular Reform: Planning for Technology vs. Technology Planning Barry Fishman, Nichole Pinkard, Chris

Fishman, Barry

87

NREL: Technology Transfer - DOE Announces Plans for Future ...  

Technologies can include renewable energy and energy efficiency technologies, as well as advanced electricity transmission and distribution technologi ...

88

Determinants of Sourcing During Technology Growth and Maturity: An Empirical Study of e-Commerce Sourcing  

Science Conference Proceedings (OSTI)

This paper conducts a two-period dynamic analysis of sourcing mode choices for e-commerce projects implemented by large firms during 1999-2002. We differentiate e-commerce assets that are the focus of a sourcing decision in terms of whether they are ... Keywords: Asset Life Cycle, Content Analysis, E-Commerce Projects, E-Commerce Sourcing, Governance Forms, Project Strategic Intent, Project Task Complexity, Sourcing Determinants, Sourcing Modes, Technology Growth Phase

Rajiv Kishore; Manish Agrawal; H. Raghav Rao

2004-11-01T23:59:59.000Z

89

FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125  

SciTech Connect

Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

2012-01-26T23:59:59.000Z

90

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

91

Evolving technologies for disaster planning in U.S. Cities  

E-Print Network (OSTI)

The rapid development of modem technology has increased access to and reliance on sophisticated communication and real time technology. These technologies, which have become embedded within everyday life, have significant ...

Ng, Vanessa Mei-Yee

2011-01-01T23:59:59.000Z

92

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Validation Technology Validation Multi-Year Research, Development and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real-world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D required to move the technologies forward or to determine whether the technologies are ready for commercialization. Evaluations conducted include the following: * Applications - transportation; primary power; combined heat and power (CHP); combined

93

Visual Sample Plan (VSP) 6.0 - Available Technologies - PNNL  

Summary. Visual Sample Planor VSPis a software tool that helps users determine where sampling should be conducted and how many samples are needed ...

94

Multiyear program plan for 1998-2002. [U.S. DOE, Office of Heavy Vehicle Technologies (OHVT)  

DOE Green Energy (OSTI)

Based on the 1997 OHVT Technology Roadmap, this is the initial multiyear program plan for the U.S. Department of Energy's Office of Heavy Vehicle Technologies.

None

1998-08-01T23:59:59.000Z

95

2010 Annual Planning Summary for National Energy Technology Laboratory (NETL)  

Energy.gov (U.S. Department of Energy (DOE))

Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

96

Integrated method to create optimal dynamic strategic plans for corporate technology start-ups  

E-Print Network (OSTI)

This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

Mikati, Samir Omar

2009-01-01T23:59:59.000Z

97

DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES  

Science Conference Proceedings (OSTI)

This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

2007-12-12T23:59:59.000Z

98

Department of Energy Soil and Groundwater Science and Technology Needs, Plans and Initiatives  

Science Conference Proceedings (OSTI)

This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

Adams, V.; Chamberlain, G. M.; Stewart, Terri L.; Aylward, R. S.

2008-02-28T23:59:59.000Z

99

Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan  

SciTech Connect

Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

Bruce Hallbert

2012-09-01T23:59:59.000Z

100

Office of Building Technology, State and Community Programs (BTS) Strategic Plan  

SciTech Connect

This strategic plan is in direct response to the call by a broad array of interested parties, for the Office of Building Technology, State and Community Programs (BTS) to reduce fragmentation and increase focus. This plan outlines goals for saving energy, three key strategies to accomplish these goals, and a commitment to improving how they do business.

Brandegee

1999-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A review of path planning and mapping technologies for autonomous mobile robot systems  

Science Conference Proceedings (OSTI)

This paper presents a review of various technologies for autonomous movement of a robot. Path planning is the process of generating a collision free path to the goal. Simultaneous Localization And Mapping (SLAM) is the process of creating a map of the ... Keywords: SLAM, anytime search algorithm, hippocampus, hybrid map, incremental search algorithm, localization, mapping, path planning, topological map

Nitin Kumar Dhiman; Dipti Deodhare; Deepak Khemani

2012-01-01T23:59:59.000Z

102

2011 Annual Planning Summary for National Energy Technology Laboratory (NETL)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the National Energy Technology Laboratory (See Fossil Energy).

103

A Strategic Plan for Marketing Hot Dry Rock Technology  

DOE Green Energy (OSTI)

This appears to be run of the mill market analysis and planning. Its premature nature (there is no HDR on line in the U.S. in 2005) bespeaks the optimism of the managers of the LASL HDR program in its early year. ( DJE 2005)

None

1979-09-01T23:59:59.000Z

104

Summary, Long-Term Nuclear Technology Research and Development Plan  

Energy.gov (U.S. Department of Energy (DOE))

In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on...

105

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network (OSTI)

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program

Abdou, Mohamed

106

FY 1991--FY 1995 Information Technology Resources Long-Range Plan  

SciTech Connect

The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

Not Available

1989-12-01T23:59:59.000Z

107

Core science and technology development plan for indirect-drive ICF ignition. Revision 1  

SciTech Connect

To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

Powell, H.T.; Kilkenny, J.D. [eds.

1995-12-01T23:59:59.000Z

108

Hanford Permanent Isolation Barrier Program: Asphalt technology test plan  

SciTech Connect

The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

Freeman, H.D.; Romine, R.A.

1994-05-01T23:59:59.000Z

109

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

110

Vice President Biden Announces Plan to Put One Million Advanced Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan to Put One Million Advanced Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces advanced lithium-ion battery systems for electric vehicles, grid energy storage and industrial electronics. In his State of the Union address last night, President Obama highlighted his goal of making the United States the first country in the world to put one million advanced technology vehicles on the road by 2015. Following a

111

Vice President Biden Announces Plan to Put One Million Advanced Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vice President Biden Announces Plan to Put One Million Advanced Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 Vice President Biden Announces Plan to Put One Million Advanced Technology Vehicles on the Road by 2015 January 26, 2011 - 12:00am Addthis Washington, D.C. - Today, Vice President Biden, Chair of the Middle Class Task Force, took the "White House to Main Street Tour" to Greenfield, Indiana, where he visited leading manufacturer Ener1, Inc., which produces advanced lithium-ion battery systems for electric vehicles, grid energy storage and industrial electronics. In his State of the Union address last night, President Obama highlighted his goal of making the United States the first country in the world to put one million advanced technology vehicles on the road by 2015. Following a

112

Solar Energy Technologies Program: Multi-Year Technical Plan 2003-2007 and Beyond  

DOE Green Energy (OSTI)

This publication charts a 5-year planning cycle for the U.S. Department of Energy Solar Energy Technologies Program. The document includes anticipated technical plans for the next 5 years for photovoltaics, concentrating solar power, solar water and space heating, solar hybrid lighting, and other new concepts that can take advantage of the solar resource. Solar energy is described as a clean, abundant, renewable energy resource that can benefit the nation by diversifying our energy supply.

Not Available

2004-01-01T23:59:59.000Z

113

Fiscal years 1994--1998 Information Technology Strategic Plan. Volume 1  

SciTech Connect

A team of senior managers from across the US Nuclear Regulatory Commission (NRC), working with the Office of Information Resources Management (IRM), has completed an NRC Strategic Information Technology (IT) Plan. The Plan addresses three major areas: (1) IT Program Management, (2) IT Infrastructure, and (3) Information and Applications Management. Key recommendations call for accelerating the replacement of Agency workstations, implementing a new document management system, applying business process reengineering to selected Agency work processes, and establishing an Information Technology Council to advise the Director of IRM.

1993-11-01T23:59:59.000Z

114

Technologies for Plant Operations and Maintenance Support: A Plan for Technology Development and Implementation  

Science Conference Proceedings (OSTI)

Electronic performance support systems (EPSSs) have important potential for increasing the efficiency and quality of operations and maintenance (O&M) work. This report cites a series of rapidly evolving technologies for possible application in nuclear power plants, including technologies that can assist in the shrinking workforce problem for the nuclear power industry. Also included is a futuristic scenario of a maintenance technician using several of these new technologies to perform daily tasks efficie...

2002-03-25T23:59:59.000Z

115

3D Printing: High-impact Emerging Technology - What You Need to Know Definitions, Adoptions, Impact, Benefits, Maturity, Vendors  

Science Conference Proceedings (OSTI)

3D printing is a form of additive manufacturing technology where a three dimensional object is created by laying down successive layers of material. 3D printers are generally faster, more affordable and easier to use than other additive manufacturing ...

Kevin Roebuck

2011-05-01T23:59:59.000Z

116

The Investment Plan for the Alternative and Renewable Fuel and Vehicle Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

The Investment Plan The Investment Plan for the The Alternative and Renewable Fuel and Vehicle Technology Program Webcast for the Natural Gas Vehicle Technology Forum January 14, 2009 Peter F. Ward California Energy Commission C A L I F O R N I A E N E R G Y C O M M I S S I O N Program Purpose and Objectives - AB 118 Program Purpose: "develop and deploy innovative technologies that transform California's fuel and vehicle types to help attain the state's climate change policies" - Creating a Framework for Sustainability: "establish sustainability goals to ensure that alternative and renewable fuel and vehicle development projects, on a full fuel- cycle assessment basis, will not adversely impact natural resources, especially state and federal lands"

117

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

118

Disaster Planning and Mitigation Technologies: Interim Technology Inventory Report, Report #5  

Science Conference Proceedings (OSTI)

Natural and man-caused disasters are inevitable, recurrent, and increasing in frequency and magnitude. They are taking an ever larger economic and personal toll. This report identifies technologies and information that can assist utilities, their customers, and their communities in preventing, managing, and recovering from disasters.

2000-11-30T23:59:59.000Z

119

Disaster Planning and Mitigation Technologies, Interim Technology Inventory Report, Report #4  

Science Conference Proceedings (OSTI)

Natural and human-caused disasters are inevitable, recurrent, and increasing in frequency and magnitude. They are taking an ever-larger economic and personal toll. This report identifies technologies that can assist utilities, their customers, and their communities in preventing, managing, and recovering from disasters.

1999-11-22T23:59:59.000Z

120

Planning Workshop  

Science Conference Proceedings (OSTI)

Planning Workshop on Renewable Energy and Climate Science for the Americas: Metrology and Technology Challenges. ...

2013-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Office of Renewable Energy Technology Geothermal and Hydropower Technologies Division, FY 1983 Annual Operating Plan  

DOE Green Energy (OSTI)

There are between 700 and 3400 guads of recoverable geothermal energy in the US. Hydrothermal, geopressure and hot dry rock are the three principal types of geothermal resources (in order of technological readiness) which can supply large amounts of energy for electric power production and direct heat applications. Hydrothermal resources include water and steam trapped in fractured or porous rocks. A hydrothermal system is classified as either hot-water or vapor-dominated (steam), according to the principal physical state of the fluid. Geopressured resources consist of water at moderately high temperatures at pressures higher than normal hydrostatic pressure. This water contains dissolved methane. Geopressured sources in sedimentary formations along the Texas and Louisiana Gulf Coast are believed to be quite large. Geopressured formations also exist in sedimentary basins elsewhere in the US. Hot dry rock resources consist of relatively unfractured and unusually hot rocks at accessible depths that contain little or no water. To extract usable power from hot dry rock, the rock must be fractured and a confined fluid circulation system created. A heat transfer fluid is introduced, circulated, and withdrawn. The overall goal of the Geothermal Program is to build a technology base that will be used by the private sector to exploit geothermal resources which can supply large amounts of energy for electric power production and direct-heat applications.

None

1983-01-01T23:59:59.000Z

122

Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project  

DOE Green Energy (OSTI)

A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

Blau, P.J.

1991-11-01T23:59:59.000Z

123

A technology transfer plan for the US Department of Energy's Electric Energy Systems Program  

DOE Green Energy (OSTI)

The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

1986-11-01T23:59:59.000Z

124

Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

1993-09-01T23:59:59.000Z

125

Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan  

Science Conference Proceedings (OSTI)

This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

1988-12-01T23:59:59.000Z

126

Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment  

E-Print Network (OSTI)

The purpose of this study was to develop and test an optimization model that will provide a deployment plan of emission reduction technologies to reduce emissions from non-road equipment. The focus of the study was on the counties of Texas that have nonattainment (NA) and near-nonattainment (NNA) status. The objective of this research was to develop methodologies that will help to deploy emission reduction technologies for non-road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA). Combinations of technologies were also considered in the study, i.e. HE with FA, and SCR with FA. Two approaches were investigated in this research. The first approach was "Method 1" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties at the first stage. In the second stage the same technologies were deployed in the NNA counties with the remaining budget, if any. The second approach was called "Method 2" in which all the technologies, i.e. FA, HE and SCR were deployed in the NA counties along with deploying only FA in the NNA counties at the first stage. Then with the remaining budget, SCR and HE were deployed in the NNA counties in the second stage. In each of these methods, 2 options were considered, i.e. maximizing NOx reduction with and without fuel economy consideration in the objective function. Thus, the four options investigated each having different mixes of emission reduction technologies include Case 1A: Method 1 with fuel economy consideration; Case 1B: Method 1 without fuel economy consideration; Case 2A: Method 2 with fuel economy consideration; and Case 2B: Method 2 without fuel economy consideration and were programmed with Visual C++ and ILOG CPLEX. These four options were tested for budget amounts ranging from $500 to $1,183,000 and the results obtained show that for a given budget one option representing a mix of technologies often performed better than others. This is conceivable because for a given budget the optimization model selects an affordable option considering the cost of technologies involved while at the same time maximum emission reduction, with and without fuel economy consideration, is achieved. Thus the alternative options described in this study will assist the decision makers to decide about the deployment preference of technologies. For a given budget, the decision maker can obtain the results for total NOx reduction, combined diesel economy and total combined benefit using the four models mentioned above. Based on their requirements and priorities, they can select the desired model and subsequently obtain the required deployment plan for deploying the emission reduction technologies in the NA and NNA counties.

Bari, Muhammad Ehsanul

2009-08-01T23:59:59.000Z

127

Transition Plan for the K-1203 Sewage Treatment Plant, East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect

The K-1203 Sewage Treatment Plant (STP) was previously used to treat and process all sanitary sewage waste from the East Tennessee Technology Park (ETTP). The plant was shut down on May 29, 2008 as a result of the transition of sewage treatment for ETTP to the City of Oak Ridge. The City of Oak Ridge expanded the Rarity Ridge Sewage Treatment Plant (RRSTP) to include capacity to treat the waste from the ETTP and the Community Reuse Organization of East Tennessee (CROET) constructed a new ETTP lift station and force main to RRSTP. In preparation for the shutdown of K-1203, the US Department of Energy (DOE) in conjunction with Operation Management International (OMI) developed a shut down plan to outline actions that need to occur prior to the transition of the facility to Bechtel Jacob Company, LLC (BJC) for decontamination and demolition (D and D). This plan outlines the actions, roles, and responsibilities for BJC in order to support the transition of the K-1203 STP from OMI to the BJC Surveillance and Maintenance (S and M) and D and D programs. The D and D of the K-1203 Facilities is planned under the Comprehensive Environmental Response, Compensation, and Liability Act Remaining Facilities D and D Action Memorandum in the Balance of Site-Utilities D and D Subproject in fiscal year (FY) 2014.

Hoffmeister J.

2008-10-05T23:59:59.000Z

128

Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update  

SciTech Connect

The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

1994-09-01T23:59:59.000Z

129

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

130

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

131

Safety research plan for gas-supply technologies. Final report, March 1982-February 1983  

SciTech Connect

The objective of this study was to develop a multiyear research plan addressing the safety issues of the following gas supply technologies: conventional natural gas, including deep and sour gas wells; unconventional natural gas (Devonian shale, tight gas sands, coalbed methane, and geopressured methane); SNG from coal (surface and in situ), and SNG from biomass. A total of 51 safety issues were identified in the initial review. These safety issues were screened to eliminate those hazards which appeared to be relatively insignificant in terms of accident severity or frequency, or because the potential for resolving the problem through research was considered very low. Twenty-six remaining safety issues were prioritized, and of these, 9 were selected as priority research projects: two under conventional gas; one under unconventional natural gas; and six under SNG from coal. No safety research issues in the biomass area appear to warrant priority consideration.

Tipton, L.M.; Junkin, P.D.

1983-06-01T23:59:59.000Z

132

Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13  

SciTech Connect

This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

Richard P. Wells

2007-03-23T23:59:59.000Z

133

HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program  

SciTech Connect

Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

1991-12-31T23:59:59.000Z

134

Geothermal and geopressure blowout control. Phase I. Study of existing technology. Phase II. Program plan for geothermal and geopressure blowout control  

DOE Green Energy (OSTI)

Four papers on existing technology and program planning for blowout control in geothermal and geopressured systems are included. Separate abstracts were prepared for each. (MHR)

Rehm, W.A.; Goins, W.C. Jr.

1978-11-01T23:59:59.000Z

135

Prototype for innovation nodes networked with associated laboratories : an approach to programming and master planning for Joseph C. Wilson Center for Research and Technology  

E-Print Network (OSTI)

The research question in this thesis supports a master plan effort at the Wilson Center for Research and Technology in Webster, New York. It concerns workplace design, space and technology issues, within the business context ...

Cheng, Suon Kuo

1996-01-01T23:59:59.000Z

136

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

137

Case study: strategic planning process used by the Texas A&M University Career Center when creating technology initiative project  

E-Print Network (OSTI)

There is a plethora of research and literature focusing on strategic planning yet there few case studies have been done that describe the strategic planning process for university career centers. No effective strategic planning guide has been written to assist career center employees with building a strategic plan that will assist in reaching all Texas A&M University students with job skills training. The purpose of this study is to give a detailed account of the strategic planning process used by the Texas A&M Career Center to create the technology initiative. The study will also provide guidance to the researcher and others who will be developing similar initiatives in the future. In an effort to assist career centers nationwide it would be helpful for those career centers to look at others, like Texas A&M Career Center, who have already begun the strategic planning process. A descriptive case study design was chosen because it adds strength to what is already known and also helps explain complex issues. Case study research gives an in-depth contextual analysis of a limited number of events. The study of the planning process is very complex and case study research is one method that can be used to bring deeper understanding and add strength to what we already know about the planning process (Dooley, 2002). Following the lead of Rice (2002) a descriptive case study was chosen so that the researcher could describe the strategic planning process and interpret the findings in a way that would provide greater insight. Qualitative methods, including examination of documents, examination of journals, calendars and meeting notes, and interviews with a few members involved in the process to clarify any questions of memory, were used in this study. The study described the technology initiative and split the development into five stages: Conception, Birth, Toddling, Up and Running, and Adolescence (Rice, 2002). The researcher has completed the descriptive case study and analyzed the data according to the planning approach continuum. A new model has been created that provide insight to the researcher and hopefully other planners. Recommendations and conclusions have been provided that will hopefully be beneficial to other planners. The descriptive case study provides a story that highlights good and bad planning techniques and the researcher hopes that others will read and learn from this study. The purpose of the study has been fulfilled.

Vermillion, Mary Gail

2004-12-01T23:59:59.000Z

138

Program on Technology Innovation: Research Plan for Applying Visualization, Simulation, and Interactive Human System Interface Technologies to Sensor Information for Electric Power Industry Activities  

Science Conference Proceedings (OSTI)

This report presents a plan for a multi-year research program to identify, evaluate, and demonstrate visualization, simulation, and interactive human system interface (HSI) technologies to support electric power industry needs. The research program will include demonstrations and produce guidelines. These guidelines will aid not only in identifying and selecting electric power industry applications that are the most likely to provide benefits to the electric power industry from applying advances in visua...

2010-04-12T23:59:59.000Z

139

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

140

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 4.0 Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Multi-Year Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the FCT Program's decision- making process by evaluating technologies and pathways and determining technology gaps, risks, and benefits. The Systems Analysis sub-program works at all levels of the program, including technology analysis for specific sub-programs, policy and infrastructure analysis, and high-level implementation and

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multiyear Research, Development and Demonstration Plan  

DOE Green Energy (OSTI)

This plan includes goals, objectives, technical targets, tasks, and schedules for Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen Program.

Milliken, J.

2007-10-01T23:59:59.000Z

142

Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multiyear Research, Development and Demonstration Plan  

SciTech Connect

This plan includes goals, objectives, technical targets, tasks, and schedules for Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen Program.

Milliken, J.

2007-10-01T23:59:59.000Z

143

Rocky Flats Environmental Technology Site Treatment Plan Compliance Order, October 3, 1995 Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order Requiring Compliance with Site Treatment Plan Order Requiring Compliance with Site Treatment Plan No. 95-10-03-01 State Colorado Agreement Type Consent Order Legal Driver(s) FFCAct Scope Summary Approve with modifications the Proposed Site Treatment Plan for RFETS (MLLW); establish a Mixed Transuranic waste Agreement Parties DOE; Colorado Department of Public Health and Environment (CDPHE) Date 10/3/1995 SCOPE * In regard to Mixed Low-Level waste, approve with modifications the Proposed Site Treatment Plan for RFETS and require compliance by DOE with the modified and approved Site Treatment Plan. * In regard to Mixed Transuranic waste, establish and ensure compliance with an Agreement addressing compliance with the Hazardous and Solid Waste Amendments of 1984 to RCRA. ESTABLISHING MILESTONES

144

Technology Readiness Assessment Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Readiness Assessment Report Technology Readiness Assessment Report March 2010 U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t Technology Readiness Assessment (TRA) / Technology Maturation Plan (TMP) Process Guide March 2008 U.S. DOE Office of Environmental Management March 2008 TRA/TMP Process Guide Page 2 of 48 TABLE OF CONTENTS 1.0 INTRODUCTION ...................................................................................................................... 4 1.1 Document Purpose............................................................................................................................ 4 2.0 OVERVIEW OF TECHNOLOGY READINESS ASSESSMENTS AND TECHNOLOGY MATURATION PLANS

145

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel will require the use of diverse domestic energy sources and advanced fuels and technologies in all sectors of the economy. Achieving these goals requires a robust, comprehensive research and development (R&D) portfolio that balances short-term

146

Biennial Assessment of the Fifth Power Plan Assessment of Other Generating Technologies  

E-Print Network (OSTI)

. In combination with the aggressive 2010 target of the California, this will likely lead to a continued rapid rate generation since adoption of the Fifth Plan. The most feasible near-term uses of biofuels for electric power and animal manure energy recovery and chemical recovery boiler upgrades. Other possible sources of biofuels

147

Georgia Tech Emergency Action Plan November 1, 2010 GEORGIA INSTITUTE OF TECHNOLOGY  

E-Print Network (OSTI)

or simply a natural gas leak. 3.2 Plan the Search First, look for any obvious sign of a suspicious package ------------------------------------------------------------------------------------------------------------34 Dangerous Gas Alarm's "Unified Command System," and therefore complies with regulations outlined in the Annotated Code of Georgia

Löffler, Frank E.

148

Biennial Assessment of the Fifth Power Plan Assessment of Other Generating Technologies  

E-Print Network (OSTI)

and animal manure energy recovery and chemical recovery boiler upgrades. Other possible sources of biofuels generation since adoption of the Fifth Plan. The most feasible near-term uses of biofuels for electric power. The wood is more valuable as a fiber crop. The most significant development regarding biofuels since

149

Strategic planning in electric utilities: Using wind technologies as risk management tools  

Science Conference Proceedings (OSTI)

This paper highlights research investigating the ownership of renewable energy technologies to mitigate risks faced by the electric utility industry. Renewable energy technology attributes of fuel costs, environmental costs, lead time, modularity, and investment reversibility are discussed. Incorporating some of these attributes into an economic evaluation is illustrated using a municipal utility`s decision to invest in either wind generation or natural gas based generation. The research concludes that wind and other modular renewable energy technologies, such as photovoltaics, have the potential to provide decision makers with physical risk-management investments.

Hoff, T E [Pacific Energy Group, Stanford, CA (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States)

1996-06-01T23:59:59.000Z

150

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

DOE Green Energy (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z

151

Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)  

Science Conference Proceedings (OSTI)

This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D. [MSE Technology Applications, Inc., Montana (United States); Phillips, E. [U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee (United States)

2008-07-01T23:59:59.000Z

152

Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee  

SciTech Connect

The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

SAIC

2011-04-01T23:59:59.000Z

153

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

154

Strategic Planning of Communications and Knowledge Transfer for the Solar Energy Technologies Program  

SciTech Connect

The goal of the Solar Communications Team is to get the right information to the right people at the right time in the right form at the right cost, and to measure the effectiveness of projects and our strategic communications plan. Our communications efforts in FY 2005 emphasized the following: 1) Reaching the Buildings and Consumer audiences (e.g., Solar Decathlon, International Builders' Show). 2) Developing and distributing critical program documents to key stakeholders (e.g., Solar Program Review Meeting Proceedings, Industry Roadmap, second Multi-Year Program Plan). 3) Conducting a gap analysis of communications products and evaluating their effectiveness. 4) Working with our program management to streamline business processes and improve communications of management expectations. 5) Developing and maintaining content for all Solar Program Web sites that reflect research and program accomplishments. 6) Representing the interests of the Solar Program at strategic events (technical conferences, meetings, workshops, community events).

Pedigo, S.; Nahan, R.; Moon, S.; Gwinner, D.; Zuboy, J.; Brooks, C.; Wilson, T.; Hassett, R.; Burt, W. B.

2005-11-01T23:59:59.000Z

155

Homeostatic control: economic integration of solar technologies into electric power operations and planning  

DOE Green Energy (OSTI)

The economic and technical interfaces between the electrical utility and the distributed, nondispatchable electric generation systems are only minimally understood at the present time. The economic issues associated with the interface of new energy technologies and the electric utility grid are discussed. Then the concept of Homeostatic Control is introduced and the use of such an economic concept applied to the introduction of nondispatchable technologies into the existing utility system is discussed. The transition and potential impact of a Homoeostatic Control system working with the existing electric utility system is discussed.

Tabors, R.D.

1981-07-01T23:59:59.000Z

156

Scientific Investigations Planned for the Lidar In-Space Technology Experiment (LITE)  

Science Conference Proceedings (OSTI)

The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wave-length Nd:YAG laser and a 1-m-diameter telescope, the system ...

M. P. McCormick; D. M. Winker; E. V. Browell; J. A. Coakley; C. S. Gardner; R. M. Hoff; G. S. Kent; S. H. Melfi; R. T. Menzies; C. M. R. Platt; D. A. Randall; J. A. Reagan

1993-02-01T23:59:59.000Z

157

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms  

NLE Websites -- All DOE Office Websites (Extended Search)

E - Acronyms E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test ASTM American Society for Testing and Materials ATP Adenosine-5'-Triphosphate Bchl Bacteriochlorophyll BES (DOE Office of) Basic Energy Sciences BEV Battery Electric Vehicle BNL (DOE) Brookhaven National Laboratory BOP Balance of Plant

158

Georgia Institute of Technology chilled water system evaluation and master plan  

SciTech Connect

As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

NONE

1996-05-15T23:59:59.000Z

159

Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2  

SciTech Connect

The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

2005-12-01T23:59:59.000Z

160

Electricity Subsector Cybersecurity Capability Maturity Model...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cybersecurity Electricity Subsector Cybersecurity Capability Maturity Model Electricity Subsector Cybersecurity Capability Maturity Model Electricity Advisory Committee...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Section 180(c) of the Nuclear of Section 180(c) of the Nuclear Waste Policy Act, as amended National Transportation Stakeholder's Forum Buffalo, NY May 15, 2013 Section 180(c) Mandate "The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility]. * The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations. * Covers all modes of transport 2 Section 180(c) - Background  DOE nearly implemented Section 180(c) in the mid-

162

Maturity Model for Advancing Smart Grid Interoperability  

Science Conference Proceedings (OSTI)

AbstractInteroperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

2013-10-28T23:59:59.000Z

163

Instrumentation and Control, Human System Interface, and Information Technology Requirements Project Plan for Nuclear Power Plant Lo ng-Term Operation  

Science Conference Proceedings (OSTI)

Nuclear power plant owners are looking to extend the operating life of their plants to 80 years and potentially longer. Instrumentation and control, human system interface, and information technologies have changed drastically since the plants were built and will change even more drastically before the plants reach the end of their operating life. A project plan to develop requirements for these technologies is defined here. These requirements will enable plants to better identify future solutions that w...

2010-02-03T23:59:59.000Z

164

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

165

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

Science Conference Proceedings (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

166

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

167

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

168

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

169

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

170

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

171

TECHNOLOGY PROGRAM PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

humid gas sulfur cleanup would eliminate syngas reheating and thus improve the overall thermal efficiency of the IGCC power plant. In one project, TDA is developing a...

172

DISTRICT TECHNOLOGY PLAN  

E-Print Network (OSTI)

If you dont know where you are going, you will probably end up somewhere else. Lawrence J. Peter Ypsilanti School District established its school improvement process with the

Contact Person; Bob Wilkinson

2006-01-01T23:59:59.000Z

173

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

174

General Electric Uses an Integrated Framework for Product Costing, Demand Forecasting, and Capacity Planning of New Photovoltaic Technology Products  

Science Conference Proceedings (OSTI)

General Electric (GE) Energy's nascent solar business has revenues of over $100 million, expects those revenues to grow to over $1 billion in the next three years, and has plans to rapidly grow the business beyond this period. GE Global Research (GEGR), ... Keywords: capital budgeting, cost analysis, facilities planning, forecasting, mathematical programming, risk

Bex George Thomas; Srinivas Bollapragada

2010-09-01T23:59:59.000Z

175

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

176

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

177

Process Management Maturity Assessment Process Management Maturity Assessment  

E-Print Network (OSTI)

This paper outlines a Business Process Management implementation approach in a large international company. It introduces a Process Management Maturity Assessment (PMMA) which was developed to assess the implementation of Business Process Management. The maturity model is based on the assessment of nine categories which comprehensively cover all aspects which impact the success of Business Process Management. Some findings of the first assessment round are presented to illustrate the benefits of the PMMA approach.

Michael Rohloff; Michael Rohloff

2009-01-01T23:59:59.000Z

178

Exploratory Research for New Solar Electric Technologies  

SciTech Connect

We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

McConnell, R.; Matson, R.

2005-01-01T23:59:59.000Z

179

Exploratory Research for New Solar Electric Technologies  

DOE Green Energy (OSTI)

We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

McConnell, R.; Matson, R.

2005-01-01T23:59:59.000Z

180

130 The Journal of Ocean Technology Spindrift Copyright Journal of Ocean Technology 2012 Planning for oil spill response requires identifying key hazards that could cause an incident,  

E-Print Network (OSTI)

, GIS data, and personnel. It activated its Disaster Response Team to provide assistance to users and services through its disaster response web site. These included an online oil spill plume trajectory model Planning for oil spill response requires identifying key hazards that could cause an incident, an analysis

Wright, Dawn Jeannine

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners  

Science Conference Proceedings (OSTI)

The international planning competition (IPC) is an important driver for planning research. The general goals of the IPC include pushing the state of the art in planning technology by posing new scientific challenges, encouraging direct comparison of ... Keywords: Automated planning, Benchmarks for planning, Experimental evaluation of planning systems, International planning competition, Knowledge representation in planning, PDDL, Plan constraints, Planning languages, Planning systems, Preferences in planning

Alfonso E. Gerevini; Patrik Haslum; Derek Long; Alessandro Saetti; Yannis Dimopoulos

2009-04-01T23:59:59.000Z

182

2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office.

183

Planning, Budget, and Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

EERE Planning, Budget, and Analysis (Revised) Philip Patterson (Economist) and Jeff Dowd (Economist) DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems...

184

Electricity Subsector Cybersecurity Capability Maturity Model...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Program Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Program Electricity...

185

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.2 Hydrogen Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Plan - Delivery Technical Plan - Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles, back-up power sources, and distributed power generators, will likely depend on a hydrogen delivery infrastructure that provides the same level of safety, convenience, and functionality as existing liquid and gaseous fossil

186

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety, Codes and Standards Safety, Codes and Standards Multi-Year Research, Development and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use with market deployment and commercialization underway. The Safety, Codes and Standards sub-program (SCS) facilitates deployment and commercialization of fuel cell and hydrogen technologies by developing information resources for their safe use. SCS relies on extensive input from automobile

187

Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks  

Science Conference Proceedings (OSTI)

Patents constitute an up-to-date source of competitive intelligence in technological development; thus, patent analysis has been a vital tool for identifying technological trends. Patent citation analysis is easy to use, but fundamentally has two main ... Keywords: C63, C82, Natural language processing (NLP), Patent mining, Patent network, Research and development (R&D) trend, Semantic patent similarity, Subject-action-object (SAO) structures

Janghyeok Yoon; Kwangsoo Kim

2011-07-01T23:59:59.000Z

188

Segmenting the mature travel market by motivation  

Science Conference Proceedings (OSTI)

The purpose of this study was to segment mature travellers based on their motivations and to profile the similarities and differences between mature travel market segments according to their sociodemographic and travel-related characteristics. A ... Keywords: USA, United States, cluster analysis, data analysis, educational travellers, factor analysis, mature markets, mature travellers, personal travellers, segmentation, social travellers, sociodemographics, travel market segments, travel motivation

Yawei Wang; Yanli Zhang; John Xia; Zhongxian Wang

2008-11-01T23:59:59.000Z

189

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 5.0 Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 3.8 Page 3.8 2012 Systems Integration Multi-Year Research, Development and Demonstration Plan Page 5 - 1 5.0 Systems Integration The Systems Integration function of the DOE Hydrogen and Fuel Cells Program (the Program) provides independent, strategic, systems-level expertise and processes to enable system-level planning, data-driven decision-making, effective portfolio management, and program integration. System Integration ensures that system-level targets are developed, verified, and met and that the sub- programs are well-coordinated. Systems Integration provides tailored technical and programmatic support to ensure a disciplined approach to the research, design, development, and validation of complex systems. Systems Integration provides

190

Program on Technology Innovation: Using Scenario Planning to Stress Test EPRIs Research and Development Portfolio  

Science Conference Proceedings (OSTI)

Working closely with electricity industry, public advisors, and the Electric Power Research Institute (EPRI) Board of Directors, EPRI has developed a research and development (R&D) roadmap for overarching strategic issues that offers both opportunities and challenges to the continued delivery of reliable, affordable, and environmentally responsible electricity. EPRI has subsequently identified key R&D challenges and action plans to respond to this roadmap.This report summarizes a ...

2013-05-14T23:59:59.000Z

191

Flight Plan  

E-Print Network (OSTI)

Developing broader linguistic capability and cultural understanding iscritical to prevail in the long war and meet 21 st Century challenges. The Department must dramatically increase the number of personnel proficient in key languagesand make these languages available at all levels of action and decision from the strategic to the tactical. 2006 Quadrennial Defense Review, p. 78 Due to the nature of immediate and likely future challenges, our Joint forces require Airmen capable of influencing the outcomes of US, allied, and coalition operations anywhere in the world. While we, the Air Force, have made considerable initial progress toward building the necessary cross-cultural skills, we recognize the existing processes for obtaining this forceenhancing capability (appropriate culture, region, language and negotiation skills) are not currently mature or robust enough to optimally meet immediate expectations or near-future requirements. Therefore, it is imperative that we tailor our cultural, regional, and language competency development to maximize our efforts and meet Air Force and Joint requirements informed by National guidance. To this end, the Air Force Culture, Region, and Language (CRL) Flight Plan represents our framework for implementing relevant National Security and National Defense strategies via Air Force programs. The dynamic global environment has made Cross-Cultural Competence a critical and necessary capability for the Total Force. The Air Force CRL Flight Plan supports the

unknown authors

2009-01-01T23:59:59.000Z

192

Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Strategic Plan Print ALS Strategic Plan Update: March 2013 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed...

193

JGI - CSP Sequencing Plans for 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

K90 mix) Why? Muyzer Delft Univ. of Technology Home > Sequencing > Sequencing Plans > CSP Sequencing Plans for 2007 UC logo DOE logo Contact Us Credits Disclaimer Access...

194

2011 Strategic Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nuclear challenges through transformative science and technology solutions. 2011DOEStrategicPlan.pdf DOE Strategic Plan2012 GPRA Addendum.PDF More Documents & Publications...

195

Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan  

SciTech Connect

This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99.

Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

1997-12-24T23:59:59.000Z

196

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Year Research, Development and Demonstration Plan* The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan* describes the goals,...

197

Development and Implementation of a Program Management Maturity Model  

SciTech Connect

In 2006, Honeywell Federal Manufacturing & Technologies (FM&T) announced an updatedvision statement for the organization. The vision is To be the most admired team within the NNSA [National Nuclear Security Administration] for our relentless drive to convert ideas into the highest quality products and services for National Security by applying the right technology, outstanding program management and best commercial practices. The challenge to provide outstanding program management was taken up by the Program Management division and the Program Integration Office (PIO) of the company. This article describes how Honeywell developed and deployed a program management maturity model to drive toward excellence.

Hartwig, Laura; Smith, Matt

2008-12-15T23:59:59.000Z

198

Energy Efficiency Planning Guidebook  

Science Conference Proceedings (OSTI)

Demand planning is an essential undertaking for utilities looking to understand and quantify the dispatchable resources associated with energy efficiency and demand response programs. Further, demand planning enables a utility to select the most appropriate, cost-effective suite of energy efficiency technologies, demand response technologies, and program delivery mechanisms for its unique market and operating conditions as well as the optimal level of investment. This guidebook reviews and explains a com...

2008-07-07T23:59:59.000Z

199

NREL: Technology Transfer - President Obama Unveils Climate ...  

National Renewable Energy Laboratory Technology Transfer President Obama Unveils Climate Action Plan

200

Hydrogen Storage Technologies Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen storage technology for transportation applications.

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Delivery Technology Roadmap, November 2005  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

202

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development and Demonstration Plan* to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Multi-Year Research, Development and...

203

Information management as an enabler of knowledge management maturity: A South African perspective  

Science Conference Proceedings (OSTI)

This paper explores the much ignored but critically important subject of the perceived relationship between information and communications technology (ICT), information management (IM) and knowledge management (KM). Defining the border between ICT, IM ... Keywords: Information and communications technology, Information management, Knowledge management, Knowledge management maturity

C. J. (Neels) Kruger; Roy D. Johnson

2010-02-01T23:59:59.000Z

204

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

205

Sandia Strategic Plan 1997  

SciTech Connect

Sandia embarked on its first exercise in corporate strategic planning during the winter of 1989. The results of that effort were disseminated with the publication of Strategic Plan 1990. Four years later Sandia conducted their second major planning effort and published Strategic Plan 1994. Sandia`s 1994 planning effort linked very clearly to the Department of Energy`s first strategic plan, Fueling a Competitive Economy. It benefited as well from the leadership of Lockheed Martin Corporation, the management and operating contractor. Lockheed Martin`s corporate success is founded on visionary strategic planning and annual operational planning driven by customer requirements and technology opportunities. In 1996 Sandia conducted another major planning effort that resulted in the development of eight long-term Strategic Objectives. Strategic Plan 1997 differs from its predecessors in that the robust elements of previous efforts have been integrated into one comprehensive body. The changes implemented so far have helped establish a living strategic plan with a stronger business focus and with clear deployment throughout Sandia. The concept of a personal line of sight for all employees to this strategic plan and its objectives, goals, and annual milestones is becoming a reality.

1997-12-01T23:59:59.000Z

206

Energy Technology Engineering Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Engineering Center Technology Engineering Center 41 00 Guardian Street, Suite # 160 Simi Valley, CA 93063 Memorandum for: Gregory H. Woods General Council January 30, 2013 FROM: John Jones EL\= Federal Proje� irector Energy Technology Engineering Center (ETEC) Project Office SUBJECT: Annual National Environmental Policy Act {NEPA) Planning Summary Attached is the 2013 Annual NEPA Planning Summary for the ETEC Project Office.

207

Building Technologies Program Planning Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

through on-site renewable energy systems. Drivers Population growth and economic expansion, along with an accompanying increase in energy demand, are expected to drive energy...

208

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

mixes, natural gas (methane, CNG/LNG), and electric power (gas: a fuel in compressed (CNG) or liquefied (LNG) form.The CNG form, more common in the transportation sector, is

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

209

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

Clean Air Program: Compressed Natural Gas Safety in Transitmay be higher. Natural gas: a fuel in compressed (CNG) or

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

210

Software maturity: design as dark art  

Science Conference Proceedings (OSTI)

What does it mean for a profession to be considered mature? How valid is the claim that software faults may be excused due to the immaturity of the field? In giving that claim serious consideration, one might assume that there are stages to maturity, ...

Robert Schaefer

2009-01-01T23:59:59.000Z

211

Smart Grid Interoperability Maturity Model  

Science Conference Proceedings (OSTI)

The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

2010-04-28T23:59:59.000Z

212

TEACHING PLAN FOR BUSINESS MARKETING  

E-Print Network (OSTI)

and demographic trends. Technological evolution 1 30 Work on Marketing Plan: Macroenvironment 2 30 8 Session 6 on Marketing Plan: Macroenvironment 2 30 9 Seminar 3 Friday 28 January Case preparation 1 30 Case study: Textiles Garcia 55 Work on Marketing Plan: Macroenvironment 2 30 #12;Class preparation T Activity in class

Catalonia, Technical University of

213

Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2  

SciTech Connect

This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program (July to December 1981).

Not Available

1982-08-01T23:59:59.000Z

214

Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRELIMINARY TECHNOLOGY PRELIMINARY TECHNOLOGY OF THE CALCINE Prepared by the U.S. Department of Energy ECHNOLOGY READINESS ASSESSMENT ALCINE DISPOSITION PROJECT VOLUME TWO Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC SSESSMENT ROJECT 412.09 (06/03/2009 - Rev. 11) CALCINE DISPOSITION PROJECT TECHNOLOGY MATURATION PLAN Identifier: Revision*: Page: PLN-1482 2 C-1 of C-317 Appendix C Appendix C Checklists for Critical Technology Elements and Technology Readiness Levels This appendix provides the CTE and TRL checklists for the CTEs. For the TRL questions that receive a "Y" (yes) response, the supporting documentation is provided with a complete reference at the

215

Lesson Plans!  

NLE Websites -- All DOE Office Websites (Extended Search)

you from other teachers, educators, and professionals. These lesson plans are provided free of charge, to help you planning a challenging curriculum that will instill a love of...

216

Medical Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Plans Retiree Medical Insurance Blue Cross Blue Shield of New Mexico (BCBSNM) is the provider of medical benefits. Contact Retiree Insurance Providers Medical plan options...

217

Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Transmission Planning We accept requests from electric utilities, firm-power customers, private power developers, and independent power generators to interconnect...

218

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

219

SunShot Initiative: Marketplace Maturity  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs Lowering Barriers Fostering Growth Marketplace Maturity Photo of houses with solar panels on the roof. DOE-funded projects are behind about 30% of more than 1,800...

220

Policy & Strategic Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Directed R&D Laboratory Directed R&D Office of Technology Commercialization and Partnerships Other Information BNL Site Index Can't View PDFs? Policy & Strategic Planning Directorate Policy and Strategic Planning (P&SP) Directorate coordinates development of the Laboratory Strategic Plan and annual business plans at the institutional and organizational Level. This function includes administration of the Laboratory Directed Research and Development (LDRD) program. The Directorate is also responsible for the Laboratory's technology transfer functions, including collaborations with industry and work for others; and for increasing funding from sources other than DOE. Organization Chart (pdf) Top of Page Last Modified: June 4, 2013 Please forward all questions about this site to: Teresa Baker

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

Science Conference Proceedings (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

222

Utilities expand baseload power plant plans  

Science Conference Proceedings (OSTI)

This article examines the plans being made by electric utilities to expand the number of baseload plants to accommodate increasing power demands. The results of a survey of utility's construction plans is presented. The topics include current construction, construction planning in the Southeast, current baseload technology, nuclear potential, and incorporation of environmental externalities impact in planning.

Smock, R.

1993-04-01T23:59:59.000Z

223

Applying technology strategy with enterprise architecting : a case study in transformation planning for integrating Unmanned Aircraft Systems into the National Airspace  

E-Print Network (OSTI)

The research presented in this thesis combines Enterprise Architecture and Technology Strategy for analyzing, evaluating, and recommending appropriate solutions for integrating Unmanned Aircraft Systems (UAS) into the ...

Richardson, Kristina L. (Kristina Lynn)

2009-01-01T23:59:59.000Z

224

Healthy technology  

Science Conference Proceedings (OSTI)

One of the biggest struggles user experience teams face is breaking through traditional notions of product strategy, planning and development to bring actionable awareness to the bigger picture around delivering full experiences that people really care ... Keywords: design management, design process, ethnography, experience, healthy technology, industry, lifecycle, metaphor, platform, reliability, research, security, strategy, sustainability

Ashwini Asokan; Michael .J. Payne

2008-04-01T23:59:59.000Z

225

Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report  

Science Conference Proceedings (OSTI)

An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

Haas, J.C.; Olivo, C.A.; Wilson, K.B.

1994-04-01T23:59:59.000Z

226

Development of a fourth generation predictive capability maturity model.  

Science Conference Proceedings (OSTI)

The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

2013-09-01T23:59:59.000Z

227

Gas6 Downregulation Impaired Cytoplasmic Maturation and Pronuclear Formation Independent to the MPF Activity  

E-Print Network (OSTI)

Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr 2+, Gas6-silenced MII oocytes had markedly reduced Ca 2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and

Kyeoung-hwa Kim; Eun-young Kim; Yuna Kim; Eunju Kim; Hyun-seo Lee; Sook-young Yoon

2011-01-01T23:59:59.000Z

228

2012 Annual Planning Summary for Fossil Energy, National Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy Technology...

229

Interconnection-Wide Transmission Planning Initiative - Meeting Calendars |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Transmission Planning » Technology Development » Transmission Planning » Recovery Act Interconnection Transmission Planning » Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to access each awardee's meeting and events calendar. Eastern Interconnection Topic A Awardee: Eastern Interconnection Planning Collaborative Topic B Awardee: Eastern Interconnection States' Planning Council Western Interconnection Topic A Awardee: Western Electricity Coordinating Council Topic B Awardee: Western Governors' Association Texas Interconnection Topic A and B Awardee: Electric Reliability Council of Texas Electricity Advisory Committee Technology Development Transmission Planning

230

BTS strategic plan executive summary  

SciTech Connect

This Strategic Plan positions the Office of Building Technology, State and Community Programs (BTS) to be more effective in reducing energy consumption in homes, offices, schools and other buildings, and in reducing environmental impacts associated with energy use.

1999-01-06T23:59:59.000Z

231

R&D Planning at NIST  

Science Conference Proceedings (OSTI)

Page 1. R&D Planning at NIST Visiting Committee on Advanced Technology ... 21 Page 22. FY12 Appropriated Funds for NIST R&D FY2012 Enacted ...

2013-06-16T23:59:59.000Z

232

Security Plans  

Science Conference Proceedings (OSTI)

... Appendix A Glossary - A glossary of security terms used within the security planning document. ... F, Glossary. None applicable.

2013-09-30T23:59:59.000Z

233

IT Capital Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IT Capital Planning IT Capital Planning and Architecture Division (IM-21) Carol Blackston, Director (Acting) IM Organization Structure (as of 1/13/2014) Chief Information Officer (IM-1) Robert Brese Deputy Chief Information Officer Donald Adcock Associate CIO for Cyber Security (IM-30) Paul Cunningham (Acting) Corporate IT Project Management Office (IM-40) Frank Husson, Director Associate CIO for IT Planning, Architecture, and E-Government (IM-20) Russell Pereira (Acting) Associate CIO for Technology Evaluation and Chief Technology Officer (IM-50) Peter Tseronis Associate CIO for IT Corporate Management (IM-10) Sarah Gamage Associate CIO for Energy IT Services (IM-60) Virginia Arreguin Deputy Associate CIO for Cyber Security Paul Cunningham Deputy Associate CIO for Energy IT Services Steve Cox (Acting)

234

Option pricing, maturity randomization and distributed computing  

Science Conference Proceedings (OSTI)

We price discretely monitored options when the underlying evolves according to different exponential Levy processes. By geometric randomization of the option maturity, we transform the n-steps backward recursion that arises in option pricing into an ... Keywords: Discrete monitoring, Grid computing, Integral equations, Lvy processes, Option pricing

Gianluca Fusai; Daniele Marazzina; Marina Marena

2010-07-01T23:59:59.000Z

235

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies October 7, 2013 - 10:20am Addthis The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Addthis FEMP Home

236

InterTechnology Corporation proposed systems level plan for solar heating and cooling commercial buildings. National Solar Demonstration Program. Executive summary  

DOE Green Energy (OSTI)

The goals of the National Solar Heating and Cooling Demonstration Program for non-residential buildings are embodied in the following: (1) Demonstrate the ultimate economic and technical feasibility of solar heating and combined heating and cooling. (2) Stimulate industry to produce and market solar equipment. (3) Stimulate a commercial market for solar systems. The systems level plan is designed to address the above stated goals as they relate to the building community associated with the commercial sector of the economy. (WDM)

None

1976-05-01T23:59:59.000Z

237

Solar Valuation in Utility Planning Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Valuation in Utility Planning Studies Solar Valuation in Utility Planning Studies Title Solar Valuation in Utility Planning Studies Publication Type Presentation Year of Publication 2013 Authors Mills, Andrew D., and Ryan H. Wiser Keywords electricity markets and policy group, energy analysis and environmental impacts department, renewable energy: policy Abstract This webinar was presented by the Clean Energy States Alliance and featured Andrew Mills of Lawrence Berkeley National Lab (LBNL) discussing new research on solar valuation that he and his colleague, Ryan Wiser, have recently published. As renewable technologies mature, recognizing and evaluating their economic value will become increasingly important for justifying their expanded use. In their report, Mills and Wiser used a unique investment and dispatch model to evaluate the changes in the long-run value of variable renewables with increasing penetration levels, based on a case study of California. They found that the value of solar is high at low penetration levels owing to the capacity and energy value of solar, even accounting for an increased need for ancillary services and imperfect forecastability. At higher penetration levels, the marginal value of additional PV and concentrating solar power (CSP) without thermal storage declines, largely due to a decrease in capacity value. The value of CSP with thermal storage remains higher for similar penetration levels owing to the ability to continue to produce energy for hours after the sun goes down. By way of comparison, in California the value of wind at low penetrations is less than the value of solar at low penetrations, but its value is less sensitive to penetration levels. In addition to discussing these findings, Mills reviewed a recent sample of utility planning studies and procurement processes to identify how current practices reflect these drivers of solar's economic value. The LBNL report found that many of the utilities have a framework to capture and evaluate solar's value, but approaches vary widely: only a few studies appear to complement the framework with detailed analysis of key factors such as capacity credits, integration costs, and tradeoffs between distributed and utility-scale photovoltaics. In particular Mills and Wiser found that studies account for the capacity value of solar, though capacity credit estimates with increasing penetration can be improved. Similarly, few planning studies currently reflect the full range of potential benefits from adding thermal storage and/or natural gas augmentation to concentrating solar power plants.

238

EMSL Strategic Plan 2008  

SciTech Connect

This Strategic Plan is EMSLs template for achieving our vision of simultaneous excellence in all aspects of our mission as a national scientific user facility. It reflects our understanding of the long-term stewardship we must work toward to meet the scientific challenges of the Department of Energy and the nation. During the next decade, we will implement the strategies contained in this Plan, working closely with the scientific community, our advisory committees, DOEs Office of Biological and Environmental Research, and other key stakeholders. This Strategic Plan is fully aligned with the strategic plans of DOE and its Office of Science. We recognize that shifts in science and technology, national priorities, and resources made available through the Federal budget process create planning uncertainties and, ultimately, a highly dynamic planning environment. Accordingly, this Strategic Plan should be viewed as a living document for which we will continually evaluate changing needs and opportunities posed by our stakeholders (i.e., DOE, users, staff, advisory committees), work closely with them to understand and respond to those changes, and align our strategy accordingly.

Campbell, Allison A.

2008-08-15T23:59:59.000Z

239

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

240

NICE Cybersecurity Capability Maturity Model White Paper  

Science Conference Proceedings (OSTI)

... gained by an organization practicing good 13 workforce planning is the strengthened ability to analyze the workforce in unconventional ways 14 ...

2012-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Natural gas strategic plan and program crosscut plans  

SciTech Connect

The natural gas strategic plan recognizes the challenges and opportunities facing increased U.S. natural gas use. Focus areas of research include natural gas supply, delivery, and storage, power generation, industrial, residential and commercial, natural gas vehicles, and the environment. Historical aspects, mission, situation analysis, technology trends, strategic issues, performance indicators, technology program overviews, and forecasting in the above areas are described.

1995-06-01T23:59:59.000Z

242

A study of CMOS technologies for image sensor applications  

E-Print Network (OSTI)

CMOS (Complementary Metal-Oxide-Silicon) imager technology, as compared with mature CCD (Charge-Coupled Device) imager technology, has the advantages of higher circuit integration, lower power consumption, and potentially ...

Wang, Ching-Chun, 1969-

2001-01-01T23:59:59.000Z

243

OHVT technology roadmap [2000  

DOE Green Energy (OSTI)

The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

Bradley, R.A.

2000-02-01T23:59:59.000Z

244

Task Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Plans Task Plans This page contains links to a tentative listing of active and closed TEC Task Plans. Final status of these task plans will be determined after the July 2000 TEC meeting. Task Plan Number/Title DOE Lead Staff Last Update Comment Status/ New No. After 7/27/00 GP-1, Section 180(c) Coordination (begun 1/96) C. Macaluso 7/98 DOE published a Revised Proposed Policy and Procedures in April 1998; no final policy will be issued until a definitive date for NWPA shipments is determined, based on site suitability or other legislative direction. To the extent that any issues related to Section 180(c) arise in TEC meetings, they are being discussed in the context of the consolidated grant topic group which is covered by another task plan. Closed

245

EMSL Contribution Plan  

Science Conference Proceedings (OSTI)

This Contribution Plan is EMSLs template for achieving our vision of simultaneous excellence in all aspects of our mission as a national scientific user facility. It reflects our understanding of the long-term stewardship we must work toward to meet the scientific challenges faced by the Department of Energy (DOE) and the nation. During the next decade, we will implement the strategies contained in this Plan, working closely with the scientific community, our advisory committees, DOEs Office of Biological and Environmental Research, and other key stakeholders. This Plan is fully aligned with the strategic plans of DOE, its Office of Science, and the Pacific Northwest National Laboratory (PNNL). We recognize that shifts in science and technology, national priorities, and resources made available through the Federal budget process create planning uncertainties and, ultimately, a highly dynamic planning environment. Accordingly, this Plan should be viewed as a living document and we continually evaluate the changing needs and opportunities posed by our stakeholders (i.e., DOE, users, staff, advisory committees), work closely with them to understand and respond to those changes, and align our strategy accordingly. This Plan is organized around two sections. Section 1 describes our vision and four strategic outcomes: 1) Scientific Innovation, 2) Capabilities that Transform Science, 3) Outstanding Management and Operations, and Engaged and Proactive Users. These outcomes provide the framework for seven critical actions we must take during the next 3 to 5 years: 1) Establishing leadership in EMSL science themes, 2) building and deploying transformational capabilities, 3) integrating computation with experiment, 4) ensuring EMSLs workforce meets the scientific challenges of the future, 5) creating partnerships, 6) attracting and engaging users in EMSLs long-term strategy, and 7) building a research infrastructure that meets emerging scientific needs. Section 2 describes EMSLs detailed business plan, including an analysis of opportunity, organizational investments, and actionable milestones.

Campbell, Allison A.

2008-12-01T23:59:59.000Z

246

ARM Science Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

ER-ARM-0402 ER-ARM-0402 Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program Thomas P. Ackerman, Lead Author Anthony D. Del Genio Gregory M. McFarquhar Robert G. Ellingson Peter J. Lamb Richard A. Ferrare Charles N. Long Steve A. Klein Johannes Verlinde October 2004 United States Department of Energy Office of Science, Office of Biological and Environmental Research Executive Summary The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative

247

Decommissioning Planning  

Science Conference Proceedings (OSTI)

The purpose of this EPRI Technical Report is to provide a series of pre-planning guidance documents for the decommissioning of a nuclear power plant. This guidance is based in part upon Nuclear Decommissioning Plans (NDPs) developed by Commonwealth Edison (now Exelon) following the premature closure of Zion Station in 1998 as well as from other industry references and experience. These NDPs focus on the planning activities over the period from prior to final shutdown through the transition period into de...

2006-11-15T23:59:59.000Z

248

Management Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Plan (SSMP) to be submitted to Congress after the April 2010 release of the Nuclear Posture Review Report. It is aligned with the President's National Security Strategy...

249

Emergency Plans  

Science Conference Proceedings (OSTI)

... Early Dismissal (Early Closing) Due to Inclement Weather - Snow/Ice or Emergency Situation. ... Emergency Situation - "Shelter-in-Place" Plan. ...

2013-02-18T23:59:59.000Z

250

ORISE: Operations Support and Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Securing the Golden State Amber Waves 2012 Bureau of Reclamation Emergency Management Issues Special Interest Group Golden Guardian Joint Information Center Preventing Nuclear Smuggling Program Training and Technology Support Resources How to Work With Us Contact Us Oak Ridge Institute for Science Education Operations Support and Planning Operations Support and Planning The Oak Ridge Institute for Science and Education (ORISE) provides operations and planning support to the U.S. Department of Energy (DOE), Federal Emergency Management Agency and other government agencies for their counterterrorism and emergency response readiness programs. ORISE's planning, logistical and administrative support areas are focused on enhancing the radiological preparedness and response coordination

251

EMSL Strategic Plan 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

7753 7753 EMSL Strategic Plan 2008 AA Campbell August 2008 Prepared for the U.S. Department of Energy's Office of Biological and Environmental Research under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Environmental Molecular Sciences Laboratory Strategic Plan Our Mission EMSL, a U.S. Department of Energy national scientific user facility located at Pacific Northwest National Laboratory, provides integrated experimental and computational resources for discovery and technological innovation in the environmental molecular

252

Guam Strategic Energy Plan  

SciTech Connect

Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

Conrad, M. D.

2013-07-01T23:59:59.000Z

253

Engineering and Technology who wants to help plan and build the first resort on the imaginary, earth-like planet Goldilocks? At the ExxonMobil  

E-Print Network (OSTI)

school child can do this and more. Each day, campers will attend highly-interactive classes in the natural sciences, engineering, mathematics and technology, taught by a teaching team of secondary classroom teachers and USA faculty. All camp activities will culminate in designing and building a model sustainable resort on Planet Goldilocks. Who may apply EXX-Treme Engineering is open to rising 6 th, 7 th, and 8 th graders enrolled in Baldwin, Choctaw,

Bernard Harris; Summer Science Camp; Marcy Matherne; Marcy Matherne

2012-01-01T23:59:59.000Z

254

Primer on gas integrated resource planning  

Science Conference Proceedings (OSTI)

This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

1993-12-01T23:59:59.000Z

255

Identifying Infill Locations and Underperformer Wells in Mature Fields using  

E-Print Network (OSTI)

Identifying Infill Locations and Underperformer Wells in Mature Fields using Monthly Production wells rather than the entire field. #12;Introduction Objective Methodology Results Conclusion Objective field. Identify opportunities in mature fields: Sweet spots for infill drilling. Underperformer wells

Mohaghegh, Shahab

256

Enterprise mobile product strategy using scenario planning  

Science Conference Proceedings (OSTI)

The Mobile industry is changing at a rapid pace and so is the behavior of enterprise workforce which uses mobile technologies. When planning for a long-term product roadmap, one has to consider a myriad of evolution trends and forecasts to determine ... Keywords: Mobile enterprise, product strategy, scenario planning, strategic framework, wireless technology

Sami Muneer; Chetan Sharma

2008-04-01T23:59:59.000Z

257

Climate Action Planning Tool | Open Energy Information  

Open Energy Info (EERE)

Planning Tool Planning Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Action Planning Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate, Energy Focus Area: Renewable Energy, Buildings, Energy Efficiency, Greenhouse Gas, Industry, - Industrial Processes, People and Policy, Transportation Phase: Prepare a Plan, Develop Finance and Implement Projects Resource Type: Guide/manual, Online calculator User Interface: Website Website: www.nrel.gov/applying_technologies/planning_tool/ Web Application Link: www.nrel.gov/applying_technologies/planning_tool/gather_data.cfm Cost: Free Overview This tool is a step by step calculator to find the impact of various technologies to an overall action plan. The target of the tool is research

258

Case studies of technology roadmapping in mining  

Science Conference Proceedings (OSTI)

Mining is a long established art with legacy processes and institutional structures that face rapidly changing technological environments. The perception is that technology planning and forecasting receives priority attention only as far as they may ... Keywords: L23, O31, Mining, Technology planning and forecasting, Technology roadmapping

Joe Amadi-Echendu; Obbie Lephauphau; Macks Maswanganyi; Malusi Mkhize

2011-03-01T23:59:59.000Z

259

Gasification Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coal-to-substitute natural gas and coal-to-liquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies have responded to this market b...

2011-12-30T23:59:59.000Z

260

Gasification Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coal-to-chemicals industry and plans to add major coaltosubstitute natural gas and coaltoliquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology companies ...

2012-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

IT Capital Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IT Capital Planning IT Capital Planning and Architecture Division (IM-21) Peter Lenentine, Director IM Organization Structure (as of 12/19/2013) Chief Information Officer (IM-1) Robert Brese Deputy Chief Information Officer Donald Adcock Associate CIO for Cyber Security (IM-30) Paul Cunningham (Acting) Corporate IT Project Management Office (IM-40) Frank Husson, Director Associate CIO for IT Planning, Architecture, and E-Government (IM-20) TheAnne Gordon Technology Evaluation Office (IM-50) Peter Tseronis, Director (Acting) Associate CIO for IT Corporate Management (IM-10) Sarah Gamage Associate CIO for Energy IT Services (IM-60) Virginia Arreguin Deputy Associate CIO for Cyber Security Paul Cunningham Deputy Associate CIO for Energy IT Services John Berthiaume (Acting) Human Capital and Administrative

262

MITIGATION ACTION PLAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MITIGATION ACTION PLAN MITIGATION ACTION PLAN KEMPER COUNTY IGCC PROJECT KEMPER COUNTY, MISSISSIPPI U.S. Department of Energy National Energy Technology Laboratory September 2010 2 INTRODUCTION The Department of Energy (DOE) issued a Final Environmental Impact Statement (EIS) for the Kemper County IGCC Project (Project) (DOE/EIS-0409) in May 2010 and a Record of Decision (ROD) in August 2010 (75 FR 51248). The ROD identified commitments to mitigate potential adverse impacts associated with the project. This Mitigation Action Plan (MAP) describes the monitoring and mitigation actions the recipient must implement during the design, construction, and demonstration of the Project. DOE prepared this MAP in accordance with 10 CFR § 1021.331. PURPOSE Section 1021.331 of the DOE regulations implementing NEPA (10 CFR Part 1021) provides

263

Institutional Plan FY 2003 - 2007  

Science Conference Proceedings (OSTI)

The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

Chartock, Michael; Hansen, Todd

2003-01-27T23:59:59.000Z

264

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

265

1995-1996 Strategic Plan  

SciTech Connect

In a rapidly changing world, effective governmental organizations must anticipate and plan for the future. Nowhere is this more true than in the realm of information generation and dissemination. The Energy Information Administration (EIA) faces a future of great opportunity and also significant challenge. Technological advances are providing opportunities to improve our work processes and the way we serve our customers. This year`s Strategic Plan was developed by an EIA Strategic Planning Group with a membership that spans the entire organization. The Strategic Plan provides both a broad vision and a clear map of EIA`s near-term future. The Strategic Planning Group conducted an analysis of the strengths and weaknesses of EIA as an organization, and of the opportunities and constraints facing EIA in the future. Opportunities exist in the future in technological advances and staff training; constraints lie in federal budget trends and staff demographics. This will require a Strategic Plan that recognizes the need to prioritize services and products across EIA, standardize technology across EIA where possible, lead with fewer layers of management, and be acutely aware of customer needs. Developing and training EIA employees to meet the challenges of rapidly changing technology and decreasing budgets were given high priority.

1995-09-01T23:59:59.000Z

266

Technology Commercialization Program 1991  

Science Conference Proceedings (OSTI)

This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

Not Available

1991-11-01T23:59:59.000Z

267

Aerocapacitor commercialization plan  

DOE Green Energy (OSTI)

The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

NONE

1995-09-12T23:59:59.000Z

268

A study of advanced training technology: Emerging answers to tough questions  

Science Conference Proceedings (OSTI)

This study reports the result of an extensive nationwide review of military, private sector, and other federal agencies and organizations that are implementing a wide variety of advanced training technologies. This report classifies the general categories of advanced training technologies found and provides an overview of each, including specific types and examples. In addition, the research findings present an organizational model for training development linking overall organizational maturity to readiness to implement specific kinds of advanced training technologies. It also presents proposed methods for selecting media, describes the organizations and the data gathered, and provides a summary of implementation success at each organization. This study is organized as a set of five topics. Each topic raises a number of important questions and provides complete or emerging answers. For organizations who have made advanced training selections, this study is a resource to benchmark their success with other organizations who have made similar selections. For new or developing training organizations, this study will help plan their future technology selections by comparing their level of organizational maturity to the documented experiences of similar organizations.

NONE

1995-03-01T23:59:59.000Z

269

GRIPS Plan  

DOE Green Energy (OSTI)

The GRIPS (Geothermal Resources Impact Projection Study) Commission was established by a Joint Powers Agreement between the California Counties of Lake, Mendocino, Napa, and Sonoma. The objectives of GRIPS are primarily to develop and use a cooperative environmental data collection and use system including natural, social, and economic considerations to facilitate their independent decisions and those of State and Federal agencies related to the environmental effects of geothermal development. This GRIPS Plan was prepared from a wide range of studies, workshops, and staff analyses. The plan is presented in four parts: summary and introduction; environmental data status report; planned programs; and budget. (MHR)

Not Available

1978-07-31T23:59:59.000Z

270

Test plan  

U.S. Energy Information Administration (EIA)

3.0 TEST PLAN METHODOLOGY 8. 3.1 Assumptions 8. 3.2 Methodology 8. 4.0 COMMENTS ON INITIAL VIEW OF THE DATA 16 1.0 INTRODUCTION. EIA tasked Allied ...

271

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

272

2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup  

SciTech Connect

The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Projects sprawling scientific and industrial complex.

None,

2003-09-30T23:59:59.000Z

273

CFN Ops Plan | Work Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Plan Operations Plan Work Planning & Control for Experiments and Operations All experimental work will be conducted in accordance with Work Planning and Control for Experiments and Operations, which ensures proper design and operation of all experiments prior to their commencement. CFN will use the SBMS provided standard form for the formal documentation. The Lead Experimenter/Responsible person will notify the Experimental Safety Review Committee of any new experiments or modifications to existing experiments. CFN will appoint an Experimental Safety Review Committee. This committee will consist of the Experiment Review Coordinator, CFN personnel, Facility Support Representative (FSR), Environmental Compliance Representative (ECR). Additional subject matter experts may be appointed on an ad-hoc

274

Supplemental Radiological Survey Plan for the Lease of the Rooms Associated with C107 of Building K-1006 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect

In 1998, a portion of Bldg. K-1006 was leased to the Community Reuse Organization of East Tennessee (CROET) as part of the reindustrialization efforts at the East Tennessee Technology Park (ETTP). The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include rooms C107, C107-A, C107-B, C107-C, and C107-D. The lease of these rooms is now desired. These rooms comprise the area to be surveyed. The building was constructed as a laboratory facility to support the gaseous diffusion uranium enrichment process. It also contains offices and administrative spaces for laboratory personnel. After the gaseous diffusion process was shut down in the mid-1980s, the building was used to provide research and development support to ETTP environmental, safety, and health programs; the Toxic Substances Control Act Incinerator; the Central Neutralization Facility; and other multi-site waste treatment activities. It also served as the chemistry laboratory for the Environmental Technology Technical Services Organization. The activities currently conducted in Bldg. K-1006 utilize a variety of analytical techniques. Some of the major techniques being employed are X-ray analysis, electron microanalysis, and spectrochemical analysis. In 1998, a portion of Bldg. K-1006 was leased to CROET as part of the reindustrialization efforts at ETTP. The facility was subleased and is being used as an analytical laboratory. The 1998 lease did not include Rooms C107, C107-A, C107-B, C107-C, and C107-D. Some demolition of furniture and decontamination activities has taken place for Rooms C 107 and C 107-B since the last radiological survey of those rooms. In March 2009, a final remedial action (RA) was performed for the Bldg. K-1006 north basement sump. The Bldg. K-1006 north basement sump is a nominal 30-in.-diameter, 36-in.-deep concrete structure in the north corner of room C107B. The building receives groundwater in-leakage that is periodically pumped to the sewer system via this float-controlled pump. Solids in the bottom of the sump consisted of an estimated 1-ft{sup 3} coarse-grained material that varied in thickness from 0 to 4 in. with no suspended fraction. The RA consisted of removing the water in the sump and then removing and sampling the solids. The solids were mixed with grout after removal and allowed to set. The solids were then disposed off-site at an approved disposal facility. The building sump will remain until the K-1006 building is demolished. The actions for the K- 1006 sump are described in the revised Phased Construction Completion Report for Exposure Unit (EU) Z2-33, which received regulatory approval in December 2009.

Blevins M.F.

2010-09-01T23:59:59.000Z

275

Floor Plan  

Science Conference Proceedings (OSTI)

VAW Aluminium. Technology. EDAX/TSL. KHD Humboldt. Wedag AG. Moeller. GmbH. SciDoc. Inc. Kluwer Academic. Publishers. Edison. Welding Inst. Resco.

276

PROPOSAL FOR CONTINGENT TRANSMISSION PLANS  

E-Print Network (OSTI)

How should the WECCs RTEP process develop a 10-year transmission plan based upon transmission studies completed over the past several years? This paper explores the notion of a plan that consists of a package containing a small number of contingent plans that would correspond to a limited number of future states of the world by 2020. The rationale for developing transmission plans on a contingent basis is based on the following observations. Contingencies. Insights from TEPPC transmission planning over the past several years indicate that the demand for future transmission expansion in the West is contingent upon a number of important drivers including: (1) Levels of state renewable portfolio standards (RPS); (2) Development of remote versus local renewable generation; (3) Load growth given DSM policies and economic growth; (4) Policies to reduce greenhouse gas (GHG) emissions; (5) Shifts of innovation and cost competitiveness between wind and solar energy; (6) Advances in distributed generation technologies;

unknown authors

2010-01-01T23:59:59.000Z

277

Alaska Strategic Energy Plan and Planning Handbook | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook Alaska Strategic Energy Plan and Planning Handbook The Alaska Strategic Energy Plan and Planning Handbook, published by the...

278

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2011) January 2011) 2 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR Subpart 17.6 Management and Operating Contracts 11. FAR Part 19 Small Business Programs 12. FAR 25.802(a)(2) Other International Agreements and Coordination Guiding Principles  Sound acquisition planning ensures that the contracting process is

279

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OCTOBER 2010) OCTOBER 2010) 2 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR Subpart 17.6 Management and Operating Contracts 11. FAR Part 19 Small Business Programs 12. FAR 25.802(a)(2) Other International Agreements and Coordination Guiding Principles  Sound acquisition planning ensures that the contracting process is

280

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 7.1 (May 2012 second revision) Chapter 7.1 (May 2012 second revision) 2 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR 17.5 Interagency Acquisitions 11. FAR Subpart 17.6 Management and Operating Contracts 12. FAR Part 19 Small Business Programs Guiding Principles  Sound acquisition planning ensures that the contracting process is

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-Chapter 7.1 (May 2012) -Chapter 7.1 (May 2012) 2 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR 17.5 Interagency Acquisitions 11. FAR Subpart 17.6 Management and Operating Contracts 12. FAR Part 19 Small Business Programs Guiding Principles  Sound acquisition planning ensures that the contracting process is

282

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PLANNING PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 6 Competition Requirements 4. FAR Part 7 Acquisition Planning 5. FAR Part 8 Required Sources of Supply 6. FAR Part 9 Contractor Qualifications 7. FAR Part 10 Market Research 8. FAR Part 11 Describing Agency Needs 9. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 10. FAR Subpart 16.1 Selecting Contract Types 11. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 12. FAR 17 Special Contracting Methods 13. FAR Part 19 Small Business Programs 14. FAR 25.802(a)(2) Other International Agreements and Coordination 15. FAR 34.004 Acquisition Strategy

283

Electricity Subsector Cybersecurity Capability Maturity Model (May 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Subsector Cybersecurity Capability Maturity Model (May Subsector Cybersecurity Capability Maturity Model (May 2012) Electricity Subsector Cybersecurity Capability Maturity Model (May 2012) The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2), which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements from existing cybersecurity efforts into a common tool that can be used consistently across the industry. The Maturity Model was developed as part of a White House initiative led by the Department of Energy in partnership with the Department of Homeland Security (DHS) and involved close collaboration with industry, other Federal agencies, and other stakeholders. Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) -

284

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

285

Sandia National Laboratories Institutional Plan FY1994--1999  

Science Conference Proceedings (OSTI)

This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

Not Available

1993-10-01T23:59:59.000Z

286

Green Growth Planning | Open Energy Information  

Open Energy Info (EERE)

Planning Planning Jump to: navigation, search Name Green Growth Planning Agency/Company /Organization Global Green Growth Institute (GGGI) Partner Korea International Cooperation Agency (KOICA) Sector Climate Focus Area Renewable Energy, Economic Development Topics Finance, Low emission development planning, -LEDS, -NAMA, Market analysis, Technology characterizations Website http://www.gggi.org/project/ma Program Start 2011 Program End 2016 Country Cambodia, Ethiopia, Jordan, Peru, Thailand South-Eastern Asia, Eastern Africa, Western Asia, South America, South-Eastern Asia References Global Green Growth Institute[1] Cambodia Green Growth Planning[2] Overview "GGGI supports emerging and developing countries that seek to develop rigorous green growth economic development strategies. It does so by

287

Natural gas sdtrategic plan  

SciTech Connect

The US Department of Energy`s natural gas program is aimed at meeting simultaneously our national energy needs, reducing oil imports, protecting our environment, and improving our economy The Natural Gas Strategic Plan for 1995 represents a Department-wide effort to articulate the key issues related to the expanded development and utilization of natural gas, and defines the roles of the federal government and US industry in partnering to accomplish the strategic goals defined. The four overarching goals of the Natural Gas Strategic Plan are to: foster the development of advanced natural gas technologies; encourage the adoption of advanced natural gas technologies in new and existing markets; support the removal of policy impediments to natural gas use in new and existing markets; and foster technologies and policies to maximize the environmental benefits of natural gas use. DOE`s proposed fiscal year (FY) 1996 budget represents a commitment to natural gas research, development, and demonstration (RD&D) from reservoir to end use. DOE has redirected and increased funding for its natural gas exploration, production, delivery and storage, processing, and utilization RD&D programs, shifting funds from other energy programs to programs that will enhance efficiency and advance the role of natural gas in our domestic energy resources portfolio.

1995-06-01T23:59:59.000Z

288

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

289

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

290

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Technology Development Transmission Planning Smart Grid Energy Delivery Systems Cybersecurity Control Systems Security News Archive Control...

291

Pacific Northwest National Laboratory institutional plan: FY 1996--2001  

SciTech Connect

This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

1996-01-01T23:59:59.000Z

292

Energy planning and management plan  

Science Conference Proceedings (OSTI)

This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

NONE

1996-01-01T23:59:59.000Z

293

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Chapter 7.1 (JUNE 2010) --Chapter 7.1 (JUNE 2010) 2 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR Subpart 17.6 Management and Operating Contracts 11. FAR Part 19 Small Business Programs 12. FAR 25.802(a)(2) Other International Agreements and Coordination Guiding Principles

294

ACQUISITION PLANNING  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.1 (May 2010) 7.1 (May 2010) 1 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition Planning 4. FAR Part 8 Required Sources of Supply 5. FAR Part 10 Market Research 6. FAR 11.402 Factors to Consider in Establishing Schedules 7. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 8. FAR Subpart 16.1 Selecting Contract Types 9. FAR 16.504(c) Indefinite-Quantity Contracts - Multiple Award Preference 10. FAR Subpart 17.6 Management and Operating Contracts 11. FAR Part 19 Small Business Programs 12. FAR 25.802(a)(2) Other International Agreements and Coordination 13. FAR 34.004 Acquisition Strategy Guiding Principles

295

Smart Grid Interoperability Maturity Model Beta Version  

SciTech Connect

The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

2011-12-02T23:59:59.000Z

296

Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Page 1 Hydrogen and Fuel Cell Activities, Progress, and Plans: Report to Congress o Developing technologies for the production of hydrogen from coal that will enable...

297

President Obama Announces New Plan to Create STEM Master Teaching...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on WhiteHouse.gov's Office of Sience and Technology Policy by Phil Larson. Today, the Obama Administration announced the President's plan to create a national Science, Math,...

298

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Marketing Administration Other Agencies You are here Home DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology...

299

Process Chemistry and Operations Planning for Hanford Waste ...  

Process Chemistry and Operations Planning for Hanford Waste Alternatives L. T. Smith,* R. K. Toghiani, and J. S. Lindner Institute for Clean Energy Technology (ICET ...

300

Green Power Purchase Plan (Connecticut) | Open Energy Information  

Open Energy Info (EERE)

Name Green Power Purchase Plan Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Biomass, Fuel Cells, Landfill Gas, Ocean Thermal,...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Berkeley Lab Strategic Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development (LDRD) BER Review Annual Lab Plan Notable Outcomes Division-Level Strategic Planning Related Links Strategic Planning Laboratory Directed Research and...

302

Plan Descriptions & Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Descriptions & Summaries Retiree Insurance Plans Retiree health and welfare benefits are managed by AonHewitt and Associates. Contact Retiree Insurance Providers Plan...

303

Photovoltaic system planning tool with internet access  

Science Conference Proceedings (OSTI)

This paper presents advanced planning models integrated into a GIS-computational tool, based on a Geographic Information System, for evaluating solar energy resources, selecting the most suitable photovoltaic technology, and calculating the cost associated ... Keywords: distributed generation planning, internet GIS services, photovoltaic systems

I. J. Ramrez-Rosado; P. J. Zorzano-Santamara; L. A. Fernndez-Jimnez; E. Garca-Garrido

2007-01-01T23:59:59.000Z

304

Lessons for the future: experiences with the installation and use of today's domestic sensors and technologies  

Science Conference Proceedings (OSTI)

Domestic environments are receiving increasing attention as sites of deployment for pervasive technologies, as evidenced by the growing number of studies of homes and maturing technologies in prototype aware/smart homes. The challenge now is to move ...

Mark Stringer; Geraldine Fitzpatrick; Eric Harris

2006-05-01T23:59:59.000Z

305

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

306

Strategic Plan | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plan Strategic Plan Strategic Plan Strategic Plan A modern, reliable, secure, affordable and environmentally sensitive national energy infrastructure is fundamental to our quality of life and energy future. Yet since 1982, growth in peak demand for electricity has exceeded the growth and development of our electric grid. This demand growth will continue due to a growing population; larger homes with burgeoning IT requirements and more elaborate appliances; and the growth of electric vehicles; as well as, the day-to-day energy required to power our hospitals, schools, industries and other necessities of life. The electricity we use today is delivered via an electric infrastructure built with 19th and 20th century technologies which are inadequate to keep pace

307

STRATEGIC PLAN 2010 OPTICAL TECHNOLOGY DIVISION  

Science Conference Proceedings (OSTI)

... as staff members, postdoctoral fellows, support contractors, and guest ... k = 1) relative uncertainty for top-of-the ... in the re- flected solar band from 250 ...

2010-09-09T23:59:59.000Z

308

Annual Planning Summaries: National Energy Technology Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of NEPA Policy and Compliance Search form Search Office of NEPA Policy and Compliance Services NEPA Documents Status & Schedules Guidance &...

309

Plan for Accelerating Technology Transfer at NASA  

Science Conference Proceedings (OSTI)

... solar- and wind-generated energy; the cameras ... A Strategy for American Innovation, Securing our Economic ... companies and is America's largest net ...

2012-11-14T23:59:59.000Z

310

Computer Security Technology Planning Study (Volume II)  

Science Conference Proceedings (OSTI)

... the two-state machine is forced to enter ... of multilevel secure computers for the Air Force. ... needed to provide a centralized protection mechanism, for ...

2013-04-12T23:59:59.000Z

311

Hawaii Bioenergy Master Plan Bioenergy Technology  

E-Print Network (OSTI)

from his recent conversations at Solazyme, a company currently growing algae commercially for secondary

312

Building Technologies Office: Building America Research Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meeting on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science...

313

Argonne National Laboratory - Office of Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

at Argonne on or before November 15, 2013. Download the commercialization plan worksheet Tech Transfer Information for Employees Technology Corner Recent News Report an invention...

314

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

315

Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings  

SciTech Connect

This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

Pope, Jason E.

2012-07-25T23:59:59.000Z

316

Alaska Strategic Energy Plan and Planning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence...

317

The new frontier of web search technology: seven challenges  

Science Conference Proceedings (OSTI)

The classic Web search experience, consisting of returning "ten blue links" in response to a short user query, is powered today by a mature technology where progress has become incremental and expensive. Furthermore, the "ten blue links" represent only ...

Ricardo Baeza-Yates; Andrei Z. Broder; Yoelle Maarek

2011-01-01T23:59:59.000Z

318

Evaluation of the commercial potential of novel organic photovoltaic technologies  

E-Print Network (OSTI)

Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

Barr, Jonathan (Jonathan Allan)

2005-01-01T23:59:59.000Z

319

Building technological capability within satellite programs in developing countries  

E-Print Network (OSTI)

Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

Wood, Danielle Renee

2012-01-01T23:59:59.000Z

320

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies The Federal Energy Management Program (FEMP) offers information about energy-efficient and renewable energy technologies through the following areas. Energy-Efficient Product Procurement: Find energy-efficient product requirements and technology, purchasing specifications, energy cost savings calculators, model contract language, and resources. Technology Deployment: Look up information about developing, measuring, and implementing new and underutilized technologies for energy management in the Federal Government. Renewable Energy: Read about renewable energy requirements, resources and technologies, project planning, purchasing renewable power, and more. See FEMP's other program areas. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Section 999: Annual Plans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section 999: Annual Plans Section 999: Annual Plans Section 999: Annual Plans October 2, 2013 URTAC Meeting - October 2013 Federal Register Notice for October 10, 2013 URTAC Meeting The 24th Meeting of the Unconventional Resources Technology Advisory Committee (URTAC), previously scheduled for October 10, 2013, is postponed until further notice due to a lapse in Federal funding. October 2, 2013 UDAC Meeting - October 2013 Federal Register Notice for October 8, 2013 UDAC Meeting The 24th Meeting of the Ultra-Deepwater Advisory Committee (UDAC), previously scheduled for October 8, 2013, is postponed until further notice due to a lapse in Federal funding. September 10, 2013 Draft 2014 Annual Plan Section 999: Draft 2014 Annual Plan July 8, 2013 2013 Annual Plan Section 999: 2013 Annual Plan

322

NERSC Strategic Plan Is Now Online  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategic Plan Strategic Plan Is Now Online NERSC Strategic Plan Is Now Online June 3, 2013 The NERSC Strategic Plan for FY2014-2023 is now available for download (PDF | 3.2MB). Requested by the DOE Office of Advanced Scientific Computing Research as input for ASCR's long-term planning, the strategic plan discusses NERSC's mission, goals, science drivers, planned initiatives, and technology strategy, among other topics. ≫More NERSC publications and reports. About NERSC and Berkeley Lab The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy's Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than

323

Institutional plan. FY 1997-2002  

SciTech Connect

The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

1996-06-01T23:59:59.000Z

324

Implementation of a manufacturing technology roadmapping initiative  

E-Print Network (OSTI)

Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

Johnson, Marcus Cullen

2012-01-01T23:59:59.000Z

325

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

326

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

327

Strategic Plan Comments  

Science Conference Proceedings (OSTI)

... of maturing isolation and energy dissipation device ... programs that reinforce the market to augment ... perfect time-dependent forecasts of earthquakes ...

2007-03-01T23:59:59.000Z

328

Gasification Users Association: Technology Status - December 2012  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China, where national policy has established a major coaltochemicals industry and plans to add major coaltosubstitute natural gas and coaltoliquid transportation fuels in the next five-year plan. Gasification is being deployed to a lesser extent in other Asian countries and elsewhere. Gasification technology ...

2012-12-31T23:59:59.000Z

329

Cogeneration Planning  

E-Print Network (OSTI)

Cogeneration, the sequential use of a fuel to generate electricity and thermal energy, has become a widely discussed concept in energy engineering. American-Standard, a world-wide diversified manufacturing corporation, has actively been pursuing cogeneration projects for its plants. Of concern to us are rapidly escalating electrical costs plus concern about the future of some utilities to maintain reserve capacity. Our review to date revolves around (1) obtaining low-cost reliable fuel supplies for the cogeneration system, (2) identifying high cost/low reserve utilities, and (3) developing systems which are base loaded, and thus cost-effective. This paper will be an up-to-date review of our cogeneration planning process.

Mozzo, M. A. Jr.

1985-05-01T23:59:59.000Z

330

Natural Gas Multi-Year Program Plan  

SciTech Connect

This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

1997-12-01T23:59:59.000Z

331

Software maintenance maturity model (smmm): the software maintenance process model  

E-Print Network (OSTI)

This paper summarizes the research work leading to a Phd thesis that addresses the assessment and improvement of the software maintenance function by proposing a maturity model for daily software maintenance activities: Software Maintenance Maturity Model (SM mm) as well as its supporting knowledge based system SM Xpert. The software maintenance function suffers from a scarcity of management models to facilitate its evaluation, management, and continuous improvement. The SM mm addresses the unique activities of software maintenance while preserving a structure similar to that of the CMMi 1 maturity model. It is designed to be used as a complement to this model. The SM mm is based on practitioners experience, international standards, and the seminal literature on software maintenance. This paper presents the models purpose, scope, foundation, and architecture, followed by a knowledgebased system to help software maintainers learn and use the maturity model. 1.

Alain April; Jean-marc Desharnais

2005-01-01T23:59:59.000Z

332

Plans, Implementation and Results | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans, Implementation and Results Plans, Implementation and Results Plans, Implementation and Results The Office of Energy Efficiency and Renewable Energy (EERE) works to strengthen the United States' energy security, environmental quality, and economic vitality in public-private partnerships. It supports this goal through (1) enhancing energy efficiency and productivity; and (2) bringing clean, reliable and affordable energy technologies to the marketplace. This area of the EERE website provides direct links to hundreds of pages and documents that collectively demonstrate and explain: How EERE and its programs make their plans How they implement, control and adjust these plans, and The technological, commercial and other outputs and outcomes that result from the public funds appropriated to the Office and its programs

333

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

334

Building technology roadmaps  

SciTech Connect

DOE's Office of Building Technology, State and Community Programs (BTS) is facilitating an industry-led initiative to develop a series of technology roadmaps that identify key goals and strategies for different areas of the building and equipment industry. This roadmapping initiative is a fundamental component of the BTS strategic plan and will help to align government resources with the high-priority needs identified by industry.

1999-01-27T23:59:59.000Z

335

Institutional plan. FY 1998--2003  

SciTech Connect

This Institutional Plan for Argonne National Laboratory contains central elements of Argonne`s strategic plan. Chapter II of this document discusses the Laboratory`s mission and core competencies. Chapter III presents the Science and Technology Strategic Plan, which summarizes key features of the external environment, presents Argonne`s vision, and describes how the Laboratory`s strategic goals and objectives map onto and support DOE`s four business lines. The balance of the chapter comprises the science and technology area plans, organized by the four DOE business lines. Chapter IV describes the Laboratory`s ten major initiatives, which cover a broad spectrum of science and technology. Our proposal for an Exotic Beam Facility aims at, among other things, increased understanding of the processes of nuclear synthesis during and shortly after the Big Bang. Our Advanced Transportation Technology initiative involves working with US industry to develop cost-effective technologies to improve the fuel efficiency and reduce the emissions of transportation systems. The Laboratory`s plans for the future depend significantly on the success of its major initiatives. Chapter V presents our Operations and Infrastructure Strategic Plan. The main body of the chapter comprises strategic plans for human resources; environmental protection, safety, and health; site and facilities; and information management. The chapter concludes with a discussion of the business and management practices that Argonne is adopting to improve the quality and cost-effectiveness of its operations. The structure and content of this document depart from those of the Institutional Plan in previous years. Emphasis here is on directions for the future; coverage of ongoing activities is less detailed. We hope that this streamlined plan is more direct and accessible.

1997-07-01T23:59:59.000Z

336

Technology Catalogue. First edition  

SciTech Connect

The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

Not Available

1994-02-01T23:59:59.000Z

337

Program Plans, Implementation, and Results | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About » Program Plans, Implementation, and Results About » Program Plans, Implementation, and Results Program Plans, Implementation, and Results The Building Technologies Office (BTO) carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that guide, support, and document the program management process and associated results and public benefits. Program Overview Program Plans Program Implementation Program Results Relevant Laws Program Overview Documents Better Buildings, Brighter Future: an overview of BTO activities. Program Presentation: outlines the program's priorities and goals for improving the energy efficiency of buildings. Building Energy Codes Overview Energy Efficiency Trends in Residential and Commercial Buildings

338

Institutional Plan FY 2001-2005  

SciTech Connect

The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

Chartock, Michael; Hansen, Todd, editors

2000-07-01T23:59:59.000Z

339

Institutional Plan FY 2001-2005  

SciTech Connect

The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

Chartock, Michael; Hansen, Todd, editors

2000-07-01T23:59:59.000Z

340

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technology Transfer Overview | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

342

PROJECT MANAGEMENT PLANS Project Management Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

343

Building Technologies Office: Regulatory Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Processes to Regulatory Processes to someone by E-mail Share Building Technologies Office: Regulatory Processes on Facebook Tweet about Building Technologies Office: Regulatory Processes on Twitter Bookmark Building Technologies Office: Regulatory Processes on Google Bookmark Building Technologies Office: Regulatory Processes on Delicious Rank Building Technologies Office: Regulatory Processes on Digg Find More places to share Building Technologies Office: Regulatory Processes on AddThis.com... About History & Impacts Statutory Authorities & Rules Regulatory Processes Plans & Schedules Reports & Publications Standards & Test Procedures Implementation, Certification & Enforcement Rulemakings & Notices Further Guidance ENERGY STAR® Popular Links Success Stories

344

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions  

E-Print Network (OSTI)

Biennial Assessment of the Fifth Power Plan Gas Turbine Power Plant Planning Assumptions October 17, 2006 Simple- and combined-cycle gas turbine power plants fuelled by natural gas are among the bulk-emission and efficient gas turbine technology made combined-cycle gas turbine power plants the "resource of choice

345

Marketing Plan for Demonstration and Validation Assets  

Science Conference Proceedings (OSTI)

The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

None

2008-05-30T23:59:59.000Z

346

STRATEGIC PLANNING  

E-Print Network (OSTI)

The National Academy of Public Administration is an independent, nonprofit organization chartered by Congress to improve governance at all levelslocal, regional, state, national, and international. The Academys membership of more than 550 Fellows includes current and former members of Congress, cabinet-level appointees, senior federal executives, state and local practitioners, businesspeople, nonprofit leaders, and scholars with distinguished records in public management. Since its establishment in 1967, the Academy has assisted hundreds of federal agencies, congressional committees, state and local governments, civic organizations, and institutions overseas through problemsolving, research, analysis, information sharing, developing strategies for change, and connecting people and ideas. Most reports and papers issued by Academy panels respond to specific requests and needs of public agencies. Projects also address governmentwide and broader societal topics identified by the Academy. In addition to government institutions, the Academy is also supported by businesses, foundations, and nonprofit organizations. A Final Report by a Panel of the NATIONAL ACADEMY OF PUBLIC ADMINISTRATION for the Office of Strategic Planning

Hale Champion; Mary Jane England; Harry Hatry

2001-01-01T23:59:59.000Z

347

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

348

Wind Program: Program Plans, Implementation, and Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Program Wind Program HOME ABOUT RESEARCH & DEVELOPMENT DEPLOYMENT FINANCIAL OPPORTUNITIES INFORMATION RESOURCES NEWS EVENTS EERE » Wind Program » About Key Activities Plans, Implementation, & Results Budget Contacts Plans, Implementation, and Results Here you'll find an overview of the Wind Program and links to its program planning, implementation, and results documents. This list summarizes the program's wind power research, development, and demonstration activities. Read more about: Overview Learn more about this EERE Office. Plans Discover the plans, budgets, and analyses that set the direction of office priorities and activities. Implementation Find out how the office controls, implements, and adjusts its plans and manages its activities. Results Learn about the technological, commercial, and other outputs and outcomes

349

Hanford Site Development Plan  

SciTech Connect

The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

1990-01-01T23:59:59.000Z

350

Asotin Creek Model Watershed Plan  

DOE Green Energy (OSTI)

The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

1995-04-01T23:59:59.000Z

351

Y-12 Site Sustainability Plan  

SciTech Connect

The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

Spencer, Charles G

2012-12-01T23:59:59.000Z

352

GEND planning report  

Science Conference Proceedings (OSTI)

The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bank organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.

None

1980-10-01T23:59:59.000Z

353

Offshore Technology  

E-Print Network (OSTI)

This report, and the roadmapping exercise that produced it, is the result of a series of transparent workshops held across the nation. A wealth of information was produced to compliment internal sources like the Energy Information Administration. The active participation of the Department's stakeholders is greatly appreciated. Walter Rosenbusch, Director of the Minerals Management Service (MMS) deserves special recognition. His partnership, participation and input were instrumental to the success of this effort. I also would like to thank my friend Governor Mark White for his participation and support of this effort. In addition, I thank the following workshop chairs and moderators for their participation and contribution to the roadmapping efforts: Mary Jane Wilson, WZI, Inc.; Ron Oligney, Dr. Michael Economides, and Jim Longbottom, University of Houston; John Vasselli, Houston Advanced Research Center; and Art Schroeder, Energy Valley. This report, however, does not represent the end of such long-range planning by the Department, its national labs, and its stakeholders. Rather it is a roadmap for accelerating the journey into the ultradeepwater Western Gulf of Mexico. The development of new technologies and commercialization paths, discoveries by marine biologists, and the fluctuations of international markets will continue to be important influences. With that in mind, let the journey begin. Emil Pea Deputy Assistant Secretary for Natural Gas and Petroleum Technology OFFSHORE TECHNOLOGY ROADMAP FOR THE ULTRA-DEEPWATER GULF OF MEXICO U.S. Department of Energy Maximumhistm,183 oil product,0 ratd for Gulf of Mexico wells. Taller barsindicat higherproduct44 ratdu The dat show numerous deepwat, oil wells producedat significant2 higherrate tt ever seen in t, Gulf of ...

Roadmap For The; Deepwater Gulf; Of Mexico

2000-01-01T23:59:59.000Z

354

New Production Reactors Program Plan  

SciTech Connect

Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

1990-12-01T23:59:59.000Z

355

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

356

Incorporating qualitative objectives in integrated resource planning: Application of analytic hierarchy process and compromise programming  

SciTech Connect

This article proposes a multiobjective methodology for the integrated resource planning (IRP) problem using a combined analytic hierarchy process (AHP)-compromise programming (CP) model. Six objectives, of which five are qualitative in nature, have been considered to select demand and supply-side resources for meeting future electricity demand. The quantitative objective (viz., cost) is employed directly in the CP model. AHP priorities are derived for the qualitative objectives (e.g., technological maturity) after eliciting expert judgments. These priorities are employed as coefficients of the decision variables in the objective functions corresponding to the qualitative objectives of the model. The two distinct advantages of this method are (1) explicit consideration of all important qualitative and quantitative aspects of demand-side management (DSM) and supply-side options, and (2) consideration of specific characteristics of various types of DSM options. An illustrative application is provided for an Indian utility (Maharashtra State Electricity System) for its integrated resource plan for the period 1990--2000. The results show that the AHP-CP model incorporating qualitative objectives selects a different portfolio of DSM and supply options, as compared with single-criterion solutions. Compromise among the conflicting objectives leads to significant cost savings as well as qualitative benefits like improved system reliability, reduced environmental impact, fewer problems related to fuel supply, and shorter project installation times.

Koundinya, S.; Chattopadhyay, D.; Ramanathan, R. [Indira Gandhi Inst. of Development Research, Bombay (India)

1995-09-01T23:59:59.000Z

357

Standard Review Plan (SRP) Modules | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance » Standard Quality Assurance » Standard Review Plan (SRP) Modules Standard Review Plan (SRP) Modules Standard Review Plan - Critical Decision Handbook Overview Project Management Project Execution Plan Review Module (RM) Risk Management RM Integrated Project Team RM Earned Value Management System RM Acquisition Strategy RM Decommissioning Plan RM Site Transition Guidance Engineering and Design Conceptual Design RM Preliminary Design RM Final Design RM Construction Readiness RM Checkout, Testing, and Commissioning Plan RM Readiness Review RM Seismic Design Expectations Report Technology Readiness Assessment Report External Technical Review Report Preparation for Facility Operations RM Safety Safety Design Strategy RM Conceptual Safety Design RM Preliminary Safety Design RM Facility Disposition Safety Strategy RM

358

LANS DB PENSION PLAN  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2010 December 2010 u:\my documents\pension plan\revised tcp1 db plan spd dec 2010.doc LANS Defined Benefit Pension Plan Summary Plan Description This Summary Plan Description (SPD) is intended to provide a summary of the principal features of the LANS Defined Benefit Pension Plan ("Plan") and is not meant to interpret, extend or change the Plan in any way. This SPD will continue to be updated. Please check back on a regular basis for the most recent version. Nothing in the Plan and/or this SPD shall be construed as giving any member the right to be retained in service with LANS or any affiliated company, or as a guarantee of any rights or benefits under the Plan. LANS, in its sole discretion, reserves the right to amend the SPD or Plan, or to terminate the Plan, at any time.

359

ENERGY EMERGENCY RESPONSE PLAN  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY EMERGENCY RESPONSE PLAN COMMISSIONREPORT October 2006 CEC-600 Deputy Director FUELS AND TRANSPORTATION DIVISION #12;The Energy Emergency Response Plan is prepared, safety, and welfare. #12;ACKNOWLEDGEMENTS The Energy Emergency Response Plan was prepared from

360

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

Oliver, Douglas L.

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

Kim, Duck O.

362

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

363

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

364

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

365

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

366

Integrated Planning and Performance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

DOESC Scientific Facilities Strategic Plan (20 years, major capital projects) * DOE Strategic Plan (7-10 years) * DOE (HEP)Fermilab Strategic Plan (10 years) * FRAFNAL Plan for...

367

NSLS Work Planning & Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Work Planning & Controls NSLS Work Planning and Control Procedure Lead Working Guidelines Information on Working in Areas Subject to Radiation from VUV Injection Procedure for...

368

NEHRP - Final Plan Development  

Science Conference Proceedings (OSTI)

... However, NEHRP funds do not support targeted ... FEMA does provide linkage of ongoing work in ... Plan discussion about Strategic Planning Principles ...

369

Progressive cavity pumps prove more efficient in mature waterflood tests  

Science Conference Proceedings (OSTI)

For mature waterflood wells, field tests in the Permian basin indicate that progressive cavity (PC) pumps provide greater mechanical efficiency and use less electricity than beam and electric submersible pumps (ESP). The field tests are being conducted in wells that produce 500--1,000 b/d from 3,800--5,000 ft. The testing started in 1991 and will continue through 1993. The paper describes the environment of a mature waterflood, test objectives, primary and secondary concerns, test design, and three of the four phases of the test.

Wright, D.W. (Amoco Production Co., Odessa, TX (United States)); Adair, R.L. (Highland Pump Co., Odessa, TX (United States))

1993-08-09T23:59:59.000Z

370

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

371

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

372

DOE Announces Up to $7.5 Million in Advanced Technology Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development projects in support of water power technology. DOE plans to award industry-led partnerships to research, develop andor field test advanced water power technologies...

373

Gasification Users Association - Technology Status - December 2011  

Science Conference Proceedings (OSTI)

This report addresses the worldwide market and technology status of gasification technologies. The market for gasification technologies is primarily in China where national policy has established a major coal-to-chemicals industry and plans to add major plants for coal-to-substitute natural gas (SNG) and coal-to-liquid transportation fuels in the next five-year plan. Gasification is also being deployed to some extent in other Asian countries (for example, Korea and India) and elsewhere. Gasification tech...

2011-12-30T23:59:59.000Z

374

Fossil Technology Newsletter, Summer 2007  

Science Conference Proceedings (OSTI)

The Fossil Technology News newsletter covers the activities and research for I&C and Automation for Improved Plant Operations (Program 68), Maintenance Management and Technology (Program 69), Operations Management and Technology (Program 108), and Energy Workforce Planning and Performance Interest Group (EWPPIG). The feature article for this issue is Outage Scope Management. Other features in this issue include the following: The Benefit of Equipment Risk Management On-Line Monitoring Update Contacts Wir...

2007-11-21T23:59:59.000Z

375

Concentrating Solar Power strategic plan summary  

SciTech Connect

A strategic plan for Concentrating Solar Power (CSP) -- A Bright Path to the Future -- was completed and released by the US Department of Energy`s Office of Solar Thermal, Biomass Power, and Hydrogen Technologies in December 1996. This strategic plan document will help bring CSP (formerly solar thermal electric) technologies to the marketplace over the course of the next 20 years (1996--2015) -- taking us from the current pre-competitive status closer to full commercialization. The plan, developed in concert with stakeholders, is a living document and will undergo periodic reevaluation as well as revision to reflect changes in the market environment, the progress of the technologies, and the development of new concepts and ideas.

1998-05-01T23:59:59.000Z

376

FY 1974 program plan for geothermal project  

SciTech Connect

The Program Plan specifies the basic plan for the utilization of FY-74 funds allocated by the AEC Division of Applied Technology and contributions from other participants for the development of geothermal energy in southern Idaho. Funding priorities are dictated by the Construction Data Package submission deadline and the October 1, 1974, site selection. Tasks not funded during FY-74 will be pursued during FY-75. (auth)

1974-02-05T23:59:59.000Z

377

Office Safety System Oversight Staffing Plan - Filled  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos Site Office Safety System Oversight Staffing Plan" Los Alamos Site Office Safety System Oversight Staffing Plan" "December 2008" "ACTIVITIES","Days for Activity in each Fiscal Year",,,,,,"Notes" ,"FY09","FY10","FY11","FY12","FY13","FY14" "Task Based",,,,,,,"Integrated Assessment Schedule items, SET lead, 15 days per assessment for team leader, based on 8 hour days, 7 days for team member (30 SC, 82 SS systems). Formal assessments can be reduced as CAS matures & Shadow assessments increased. (NA-1 SD 226.1A)" "7 SC Assessments",154,154,154,132,132,110 "10 SS System Assessments",220,220,220,198,198,176 "12 Shadow Assessments",48,48,48,68,68,92,"4 days per normal shadow assessment (NA-1 SD 226.1A)"

378

An Agent-Based Simulation of Smart Metering Technology Adoption  

Science Conference Proceedings (OSTI)

Based on the classic behavioural theory the "Theory of Planned Behaviour," the authors have developed an agent-based model to simulate the diffusion of smart metering technology in the electricity market. The authors simulate the emergent adoption of ... Keywords: Agent-Based Simulation, Behavioural Theory, Smart Metering Technology, Technology Diffusion, Theory of Planned Behaviour

Tao Zhang; William J. Nuttall

2012-01-01T23:59:59.000Z

379

Average Outgoing Quality of CSP-C Continuous Sampling Plan under Short  

E-Print Network (OSTI)

Average Outgoing Quality of CSP-C Continuous Sampling Plan under Short Run Production Processes S and Technology, Pohang, South Korea ABSTRACT A CSP-C continuous sampling plan is a new single-level continuous number to the CSP-1 plan for the application of continuous production processes. In this new plan

Jun, Chi-Hyuck

380

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Remedial action planning for Trench 1  

SciTech Connect

The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J. [Rocky Mountain Remediation Services, LLC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Greengard, T. [Kaiser Hill/SAIC, Golden, CO (United States). Rocky Flats Environmental Technology Site; Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Environmental Technology Site

1998-07-01T23:59:59.000Z

382

CMC Bench Scale Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 3.5 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed this test plan with technical assistance from ceramic scientists at the Dept. of Energy Oak Ridge National Laboratory and Albany Research Center who will perform the environmental exposure tests.

Mark Fitzsimmons; Gerard Pelletier; Dave Grimmett

2006-05-30T23:59:59.000Z

383

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

384

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

385

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

386

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

387

Erroneous coal maturity assessment caused by low temperature oxidation  

E-Print Network (OSTI)

Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

Paris-Sud XI, Université de

388

Pricing Discretely Monitored Asian Options by Maturity Randomization  

Science Conference Proceedings (OSTI)

We present a new methodology based on maturity randomization to price discretely monitored arithmetic Asian options when the underlying asset evolves according to a generic Lvy process. Our randomization technique considers the option expiry ... Keywords: Asian option, Lvy process, discrete monitoring, fast Fourier transform, integral equation, option pricing, quadrature formula

Gianluca Fusai; Daniele Marazzina; Marina Marena

2011-01-01T23:59:59.000Z

389

Evaluating Sustainability and Greening Methods: A Conceptual Model for Information Technology Management  

Science Conference Proceedings (OSTI)

Recently much has been written about sustainability and greening and the issue is likely to continue to resurface on the agendas of decision makers. This paper addresses one aspect of the topic: that of sustainability and greening through information ... Keywords: Capability Maturity Model, Green Maturity Assessment GMA, Greening, Information Technology, Sustainability

Olga Petkova, A.T. Jarmoszko, Marianne D'Onofrio, Joo Eng Lee-Partridge

2013-07-01T23:59:59.000Z

390

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

391

A description of the physical capabilities of a mature workforce  

E-Print Network (OSTI)

The purpose of this study was to 1) describe and evaluate the physical capabilities and personal factors of a mature workforce, 2) to determine the relationship between identified risk factors and musculoskeletal morbidity 3) to compare the physical capabilities of the target group to young manual material handlers (MMHs) and 50th percentile U.S. male sample populations. The components related to the functional capacity of the individual workers were anthropometrics, aerobic capacity, muscular strength, muscular endurance, and flexibility. This study was comprised of 42 male surface mine and power plant employees working different jobs: mechanics, heavy equipment operators, maintenance, and pump operators. Each worker's physical capabilities were evaluated using a standardized physical testing protocol: submaximal graded step-test, dynamic lift test (floor to knuckle, knuckle to acromial. and acromial to functional overhead reach), hand grip dynamometer strength test, sit-and-reach flexibility test, push-up test, and bent knee sit-up test. There were no reported incidents of musculoskeletal morbidity during the past three years of employment', therefore, there was no morbidity assessment. Compared to the younger MMHs, the physical capabilities of aerobic capacity, dynamic lifting (all three regions), flexibility, sit-ups, and push-ups were significantly lower for the mature workforce. However, handgrip strength was significantly greater for the mature workforce compared to the young MMHs. Compared to the 50th percentile U.S.male population, aerobic capacity, dynamic lift (acromial to functional overhead reach), and flexibility were significantly lower for the mature workforce. Push-ups, handgrip strength, and dynamic lift (floor to knuckle and knuckle to acromial) were significantly greater for the mature workforce. There was no significant difference for the physical capability of sit-ups between these two groups. The results of this study provide a database that may enhance job design/redesign, worker selection, work hardening programs, exercise programs, and manual material handling performance.

Bartels, Kendra Lynn

1999-01-01T23:59:59.000Z

392

CMM Technology  

SciTech Connect

This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

Ward, Robert C.

2008-10-20T23:59:59.000Z

393

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

394

Conversion Technology and the San Jose Zero Waste Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Technology and the Conversion Technology and the San José Zero Waste Initiative DOE Webinar - April 16, 2013 Michele Young - Organics Manger - City of San Jose San Jose's Green Vision Plant Master Plan Climate Protection Plan Zero Waste Strategic Plan Organics-to-Energy Strategic Work Plan Integrated Strategic Planning Zero Waste San José Green Vision Renewable Energy 75% Diversion by 2013 Zero Waste by 2022 100% Renewable by 2022 100% Green City Fleet by 2022 Infrastructure - Technology Type - Processing costs

395

Information Technology for Enterprise Asset Management  

Science Conference Proceedings (OSTI)

Enterprise asset management is a maturing discipline that facilitates business decisions about long-term planning, asset replacement, capital investments, maintenance priorities, and risk management. The growing number of new business processes and applications that support asset management depend on successful interaction with data and information in enterprise systems such as work management, operations data historians, graphical information systems, and financial systems. Concurrently, business applic...

2008-03-10T23:59:59.000Z

396

Plan - Data Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Plan Data Management for Data Providers Click an arrow to follow the data management path of a data set from planning to curation. plan Overview plan Plan manage Manage archive Archive curation DAAC Curation Data Management Overview Plan Manage Archive DAAC Curation Related Links DAAC Help Best Practices PDF Workshops DataONE ESIP Data Management Plans NASA's Terrestrial Ecology Program now requires that each proposal include a Data Management Plan (DMP) of up to two pages. A DMP for a proposal is a brief document that outlines what you will do with your data during and after your research, to ensure your data will be safe, documented, and accessible now and in the future. A DMP - developed early and used throughout the research project - will increase research efficiency by making the data understandable and usable in the future and

397

Guidance for Planning Exercises  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Planning, Conducting and Evaluating for Planning, Conducting and Evaluating Transportation Emergency Preparedness Tabletops, Drills and Exercises Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-10.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools Guidance f Guidance f Guidance f Guidance f Guidance for Planning, Conducting and Ev or Planning, Conducting and Ev or Planning, Conducting and Ev or Planning, Conducting and Ev or Planning, Conducting and Evaluating aluating aluating aluating aluating T T T T Tr r r r ransportation Emer ansportation Emer ansportation Emer ansportation Emer ansportation Emergenc genc genc genc gency Pr y Pr y Pr y Pr y Prepar epar epar epar eparedness T

398

Drilling technology/GDO  

DOE Green Energy (OSTI)

The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

Kelsey, J.R.

1985-01-01T23:59:59.000Z

399

DEEP VADOSE ZONE TREATABILITY TEST PLAN  

Science Conference Proceedings (OSTI)

{sm_bullet} Treatability test plan published in 2008 {sm_bullet} Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) {sm_bullet} Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

GB CHRONISTER; MJ TRUEX

2009-07-02T23:59:59.000Z

400

Department of Energy Customer Service Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer Service Plan Customer Service Plan Department of Energy Customer Service Plan The U.S. Department of Energy (DOE) strives to ensure America's security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. Through this work, the Department serves a range of internal and external customers including DOE's employee and contractor workforce, students, scientists and researchers, businesses and other branches of federal, state and local government, among many others. With this diverse audience in mind, the Department of Energy's Customer Service Plan focuses on improving customers' access to user-friendly, effective information and resources. DOE_Customer_Service_Plan.pdf More Documents & Publications

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

In the Matter of National Broadband Plan Request for Information:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In the Matter of National Broadband Plan Request for Information: In the Matter of National Broadband Plan Request for Information: Communications Requirements In the Matter of National Broadband Plan Request for Information: Communications Requirements The American Public Power Association ("APPA") appreciates this opportunity to respond to the Department of Energy ("the Department" or "DOE") regarding its Request for Information ("RFI") on Implementing the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy. In the Matter of National Broadband Plan Request for Information: Communications Requirements More Documents & Publications Communications Requirements of Smart Grid Technologies RE: NBP RFI: Communications Requirements

402

Argonne National Laboratory institutional plan FY 2001--FY 2006.  

SciTech Connect

This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes strategic plans for human resources; environmental protection, safety, and health; site and facilities; security, export control, and counterintelligence; information management; communications, outreach, and community affairs; performance-based management; and productivity improvement and overhead cost reduction. Finally, Chapter VI provides resource projections that are a reasonable baseline for planning the Laboratory's future.

Beggs, S.D.

2000-12-07T23:59:59.000Z

403

After Sandy, Rebuilding Smarter with Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

called for in the President's Climate Action Plan. Challenging Innovators to Design New Disaster-Response Solutions In August, the White House Office of Science and Technology...

404

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175 Quarterly Research Performance Progress Report (Period ending 06302013) PLANNING OF A MARINE...

405

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

failure modes. (4) DOE targets are for real-world applications; refer to Hydrogen, Fuel Cells, & Infrastructure Technologies Program Plan. 3 On Road Durability Through the...

406

Technology qualification for IGCC power plant with CO2 Capture.  

E-Print Network (OSTI)

?? Summary:This thesis presents the technology qualification plan for the integrated gasification combined cycle power plant (IGCC) with carbon dioxide capture based on DNV recommendations. (more)

Baig, Yasir

2011-01-01T23:59:59.000Z

407

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

Oliver, Douglas L.

408

Microsoft Word - prjct planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning Checklist Planning Checklist The following checklist is intended to provide system owners, project managers, and other information system development and maintenance professionals with guidance in identifying and preparing project planning activities. The checklist reflects recognized project planning activities to be performed throughout the information systems project life cycle. Project planning is generally characterized as a process for selecting the strategies, policies, programs, and procedures for achieving the objectives and goals of the project. The objectives of project planning for information systems projects are summarized as the following: C User's environment is analyzed. C Project objectives and scope are defined. C High-level functional requirements are estimated.

409

OHVT technology roadmap  

DOE Green Energy (OSTI)

The Office of Heavy Vehicle Technologies (OHVT) Technology Roadmap presents the OHVT multiyear program plan. It was developed in response to recommendations by DOE`s heavy vehicle industry customers, including truck and bus manufacturers, diesel engine manufacturers, fuel producers, suppliers to these industries, and the trucking industry. The technical plan is presented for three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); and (3) class 1-2 (pickups, vans, and sport utility vehicles). The Roadmap documents program goals, technical targets, and technical approaches. Issues addressed include engine efficiency, fuel efficiency, power requirements, emissions, and fuel flexibility. 8 figs., 9 tabs.

NONE

1997-10-01T23:59:59.000Z

410

Transformational Energy Technologies  

SciTech Connect

Broad Funding Opportunity Announcement Project: In 2009, ARPA-E issued an open call for the most revolutionary energy technologies to form the agencys inaugural program. The first open solicitation was open to ideas from all energy areas and focused on funding projects already equipped with strong research and development plans for their potentially high-impact technologies. The 37 projects chosen received a level of financial support that could accelerate technical progress and catalyze additional investment from the private sector. After only 2 months, ARPA-Es investment in these projects catalyzed an additional $33 million in investments.

None

2010-09-01T23:59:59.000Z

411

Technology development life cycle processes.  

SciTech Connect

This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

Beck, David Franklin

2013-05-01T23:59:59.000Z

412

Solid-State Lighting: Technology Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

413

Transportation Electrification: A Technology Overview  

Science Conference Proceedings (OSTI)

This report provides a detailed status on the commercial rollout of plug-in vehicles. It describes the key vehicle and infrastructure technologies and outlines a number of potential roles for electric utilities to consider when developing electric transportation readiness plans. These roles have been formulated with the objectives of enabling utilities to demonstrate regional leadership in planning for transportation electrification, to support customer adoption of plug-in vehicles and their supporting c...

2011-07-18T23:59:59.000Z

414

Modelling and Experimental Study of Methane Catalytic Cracking as a Hydrogen Production Technology.  

E-Print Network (OSTI)

??Production of hydrogen is primarily achieved via catalytic steam reforming, partial oxidation,and auto-thermal reforming of natural gas. Although these processes are mature technologies, they are (more)

Amin, Ashraf Mukhtar Lotfi

2011-01-01T23:59:59.000Z

415

Technological assessment of silicon on lattice engineered substrate (SOLES) for optical applications  

E-Print Network (OSTI)

Over the past decade, much effort had been placed to integrate optoelectronic and electronic devices. Silicon on lattice engineered substrate (SOLES) had been developed for such purpose. As SOLES technology mature, a ...

Leung, Man Yin

2008-01-01T23:59:59.000Z

416

Inexpensive technologies enabling widespread utilization of image-predicated cell sorting  

E-Print Network (OSTI)

The most mature, widespread sorting technology, fluorescence-activated cell sorting (FACS), offers high throughput and sorts predicated on a wide range of phenotypes that can be conveyed through average cellular fluorescence ...

Kova?, Joseph (Joseph R.)

2010-01-01T23:59:59.000Z

417

Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward  

SciTech Connect

This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

John Collins

2009-01-01T23:59:59.000Z

418

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

419

Vehicle Technologies Office: Discover Magazine Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Discover Magazine Awards Discover Magazine Awards to someone by E-mail Share Vehicle Technologies Office: Discover Magazine Awards on Facebook Tweet about Vehicle Technologies Office: Discover Magazine Awards on Twitter Bookmark Vehicle Technologies Office: Discover Magazine Awards on Google Bookmark Vehicle Technologies Office: Discover Magazine Awards on Delicious Rank Vehicle Technologies Office: Discover Magazine Awards on Digg Find More places to share Vehicle Technologies Office: Discover Magazine Awards on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary Discover Magazine Awards 1999 Microplasmatron (Onboard Refinery) for Technological Innovation in

420

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

422

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports to someone by E-mail Share Vehicle Technologies Office: Annual Progress Reports on Facebook Tweet about Vehicle Technologies Office: Annual Progress Reports on Twitter Bookmark Vehicle Technologies Office: Annual Progress Reports on Google Bookmark Vehicle Technologies Office: Annual Progress Reports on Delicious Rank Vehicle Technologies Office: Annual Progress Reports on Digg Find More places to share Vehicle Technologies Office: Annual Progress Reports on AddThis.com... Publications Key Publications Plans & Roadmaps Partnership Documents Annual Progress Reports Success Stories Conferences Proceedings Newsletters Analysis Software Tools Awards & Patents Glossary Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review

423

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

424

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

425

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

426

Available Technologies  

The technologys subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE ...

427

Trusted Computing Technologies, Intel Trusted Execution Technology.  

Science Conference Proceedings (OSTI)

We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

Guise, Max Joseph; Wendt, Jeremy Daniel

2011-01-01T23:59:59.000Z

428

Wellness Planning Session Report  

E-Print Network (OSTI)

Wellness Planning Session Report September 12, 2008 #12;Wellness Planning Session Report Printed.............................................................................1 Explored what wellness program should look like at NMSU .......................2 Considered for the Wellness committee..................................2 Identified the next meeting date and meeting agenda

Castillo, Steven P.

429

Strategic Planning History  

NLE Websites -- All DOE Office Websites (Extended Search)

Strategy for Global Change Research Related Federal Climate Efforts Strategic Planning History Print E-mail Below is a timeline of past strategic plans that have guided The U.S....

430

Decommissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The Decommissioning Plan Review (DPR) Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the decommissioning plan prior to approval of the associated CD.

431

Business Continuity Planning  

Science Conference Proceedings (OSTI)

This article considers various strategies for protecting an organisation from both natural and man-made disasters. The differences between business continuity planning, and disaster recovery planning are recognised. 1997 John Wiley & Sons, ...

Martin Nemzow

1997-07-01T23:59:59.000Z

432

Hydrogen Posture Plan  

Fuel Cell Technologies Publication and Product Library (EERE)

The Hydrogen Posture Plan, published in December 2006, outlines a coordinated plan for activities under the Hydrogen Fuel Initiative, both at the Department of Energy and the Department of Transportat

433

RM Capital Investment Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital Investment Plans FY 2004 (568kb pdf) FY 2005 (625kb pdf) FY 2006 (625kb pdf) FY 2007 (1.45mb pdf) Meter policy Capital Investment Plans...

434

DOE Announces Plans for Future Loan Guarantee Solicitations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans for Future Loan Guarantee Solicitations Plans for Future Loan Guarantee Solicitations DOE Announces Plans for Future Loan Guarantee Solicitations April 11, 2008 - 10:50am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced plans to issue loan guarantee solicitations in two stages this summer for up to $38.5 billion for projects that employ advanced technologies that avoid, reduce or sequester emissions of air pollutants and greenhouse gases. This will mark the second and third rounds of solicitations for DOE's Loan Guarantee program, which encourages the development of new energy technologies and is an important step in paving the way for clean energy projects. In a Fiscal Year (FY) 2008 loan guarantee implementation plan sent to Congress, DOE outlined plans to issue its second round of solicitations

435

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

436

Developing digital cartography in rural planning applications  

Science Conference Proceedings (OSTI)

The main objective of the present study is to develop an efficient methodology at a reasonable cost, that will allow the use of the latest technological developments in the areas of image analysis and geographical information systems (GIS) for the generation, ... Keywords: Cartography updating, Digital aerial photogrammetry, GIS, High resolution satellite, Rural planning and development

Fernando J. Aguilar; Fernando Carvajal; Manuel A. Aguilar; Francisco Agera

2007-02-01T23:59:59.000Z

437

Tank Deployment Plan Overview for Next Generation Melter at WTP  

Primary NGM Decisions (DOE-EM R&D Plan) Time Frame Select NGM Test Platforms for R&D 2011 Down-Select NGM Melter Technologies 2013/14 Select HLW and LAW NGM

438

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

439

Managing the integration of technology into the product development pipeline  

E-Print Network (OSTI)

Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

Barretto, Eduardo F., 1971-

2005-01-01T23:59:59.000Z

440

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Department of Energy Releases 2011 Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Office of Public Affairs News Media Contact: (202) 586-4940 For Immediate Release: Tuesday, May 10, 2011 Department of Energy Releases 2011 Strategic Plan Washington, D.C.� The Department of Energy today released its 2011 Strategic Plan, a comprehensive blueprint to guide the agency�s core mission of ensuring America�s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. In the opening of the DOE Strategic Plan, Secretary Chu writes: �The Department of Energy plays an important and unique role in the U.S. science and technology community. The Department�s missions and programs are designed to bring the best scientific minds and capabilities to bear on

442

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

443

Draft 2013 Annual Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft 2013 Annual Plan Draft 2013 Annual Plan Section 999: Draft 2013 Annual Plan Section 999 - Draft 2013 Annual Plan...

444

Research of sludge compost maturity degree modeling method based on wavelet neural network for sewage treatment  

Science Conference Proceedings (OSTI)

Because of the complicated interaction of the sludge compost components, it makes the compost maturity degree judging system appear the nonlinearity and uncertainty. According to the physical circumstances of sludge compost, a compost maturity degree ...

Meijuan Gao; Jingwen Tian; Wei Jiang; Kai Li

2007-09-01T23:59:59.000Z

445

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

446

HR Fundamentals Retirement Plans  

E-Print Network (OSTI)

FY 12-13 #12;Professional & Faculty Retirement · TIAA/CREF · Defined Contribution Retirement Plan 401 & State Taxes are deferred · Immediate Vesting · www.tiaa-cref.org (800) 842-2776 FY 12-13 #12;TIAA - Public Employee's Retirement System "Defined Contribution Plan" 3) TIAA/CREF ­ Defined Contribution Plan

Dyer, Bill

447

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

448

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

449

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

450

Institutional Plan FY 2003 - 2007  

E-Print Network (OSTI)

III. LABORATORY STRATEGIC PLAN DOE Program Focus on ResultsInstitutional Plan addresses the strategic goals of DOE andbelow does not support those elements of the strategic plan

Chartock, Michael; Hansen, Todd

2002-01-01T23:59:59.000Z

451

Strategic Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home About Us Strategic Plan Strategic Plan Leadership Budget Our Organization Strategic Plan Careers Our...

452

Training Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training Plan Training Plan This template is used to define the plan, scope, environment, roles and responsibilities for training needs for systemsoftware development and...

453

Ceramic Technology Project  

DOE Green Energy (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

454

Plan competitions reveal entrepreneurial talent  

Science Conference Proceedings (OSTI)

Monthly economic diversity column for Tri-City Herald business section. Excerpt below: Theres something to be said for gaining valuable real-world experience in a structured, nurturing environment. Take for instance learning to scuba dive in the comfort of my resort pool rather than immediately hanging out with sharks while I figure out little things like oxygen tanks and avoiding underwater panic attacks. Likewise, graduate students are getting some excellent, supportive real-world training through university business plan competitions. These competitions are places where smart minds, new technologies, months of preparation and coaching, and some healthy pre-presentation jitters collide to reveal not only solid new business ideas, but also some promising entrepreneurial talent. In fact, professionals from around our region descend upon college campuses every spring to judge these events, which help to bridge the gap between academics and the real technology and business-driven economy.

Madison, Alison L.

2011-05-15T23:59:59.000Z

455

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

456

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

457

General Renewable Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

General Renewable Energy Technology Module General Renewable Energy Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: General Renewable Energy Technology Module[1] Resource Generation and Transmission Interconnection Process Overview, PJM Manual, Transmission and Interconnection Planning Department, System Planning Division, PJM Interconnection, LLC References ↑ "General Renewable Energy Technology Module" Retrieved from "http://en.openei.org/w/index.php?title=General_Renewable_Energy_Technology_Module&oldid=328701

458

Strategic Information Systems Planning: A Review  

E-Print Network (OSTI)

Information has emerged as an agent of integration and the enabler of new competitiveness for today's enterprise in the global marketplace. However, has the paradigm of strategic planning changed sufficiently to support the new role of information systems and technology? We reviewed the literature for commonly used or representative information planning methodologies and found that a new approach is needed. There are six methodologies reviewed in this paper. They all tend to regard planning as a separate stage which does not connect structurally and directly to the information systems development. An integration of planning with development and management through enterprise information resources - which capture and characterize the enterprise - will shorten the response cycle and even allow for economic evaluation of information system investment.

Somendra Pant; Cheng Hsu

1995-01-01T23:59:59.000Z

459

Planning, Programming, and Budgeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Planning, Programming, and Budgeting Planning, Programming, and Budgeting Planning, Programming, and Budgeting October 16, 2013 - 5:13pm Addthis Planning, Programming & Budgeting Building Design Project Construction During the initial phases of Federal new construction and major renovation projects, agencies inevitably ask the same question: When in the process should I start considering renewable energy? The short answer is that it is never too early. Early decisions on goals, siting, budgets, and the members of the project team can greatly affect the agency's ability to effectively integrate energy efficiency and renewable energy into the project. It is important to note that incorporating renewable energy technology is just one of many goals that a successful project must meet, and that compromises may be required to satisfy

460

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

462

Data Warehouse (DW) Maturity Assessment Questionnaire Catalina Sacu -csacu@students.cs.uu.nl  

E-Print Network (OSTI)

Data Warehouse (DW) Maturity Assessment Questionnaire Catalina Sacu - csacu@students.cs.uu.nl Marco;2 The DW Maturity Assessment Questionnaire Catalina Sacu1 ­ caitlin.shacu@gmail.com, Marco Spruit1 - m presents the data warehouse (DW) maturity assessment questionnaire developed by (Sacu et al., 2010) as part

Utrecht, Universiteit

463

Modeling of Sludge Compost Maturity Degree Based on Radial Basic Function Network for Sewage Treatment  

Science Conference Proceedings (OSTI)

Because of the complicated interaction of the sludge compost components, it makes the compost maturity degree judging system appear the non-linearity and uncertainty. According to the physical circumstances of sludge compost, a compost maturity degree ... Keywords: Compost, Maturity degree, Radial basic function network, Modeling

Jingwen Tian; Meijuan Gao; Yanxia Liu; Shiru Zhou; Fan Zhang

2008-10-01T23:59:59.000Z

464

[Technology transfer of building materials by ECOMAT  

Science Conference Proceedings (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

465

Overview of Advanced Technology Transportation, 2004 Update  

DOE Green Energy (OSTI)

Document offers a ''snapshot'' of current vehicle technologies and trends. DOE program managers use this document to plan test and evaluation activities that focus resources where they have the greatest impact.

Eudy, L.; Zuboy, J.

2004-08-01T23:59:59.000Z

466

Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

467

Alaska Strategic Energy Plan and Planning Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alaska Strategic Energy Alaska Strategic Energy Plan and Planning Handbook A. Dane and L. Doris National Renewable Energy Laboratory U.S. Department of Energy | Office of Indian Energy 1000 Independence Ave. SW, Washington DC 20585 | 202-586-1272 energy.gov/indianenergy | indianenergy@hq.doe.gov Alaska Strategic Energy Plan and Planning Handbook ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

468

Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

Michael W. Patterson

2008-05-01T23:59:59.000Z

469

Report: EM Strategic Planning  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STRATEGIC PLANNING STRATEGIC PLANNING September 25, 2008 Submitted by the EMAB Strategic Planning Subcommittee Background In Fiscal Year (FY) 2008, the Environmental Management Advisory Board (EMAB) was tasked to assess EM's strategic planning capabilities/processes and, in particular, to review the status of the initiatives pursued by the Office of Strategic Planning and Analysis (EM-32). This charge was derived from the Board's work pertaining to the topics of Discretionary Budgeting and Technical Uncertainty and Risk Reduction, which were addressed in previous reports and recommendations to the Assistant Secretary. The EMAB Strategic Planning Committee was formed to expand on this earlier work and pursue dialogues with the EM Office of Program Planning and Budget (EM-30) in

470

Operating plan FY 1998  

SciTech Connect

This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

1997-10-01T23:59:59.000Z

471

Reliabilit PlanningReliability Planning David Duebner, Expansion Planningp g  

E-Print Network (OSTI)

EE552 Reliabilit PlanningReliability Planning David Duebner, Expansion Planningp g September 27, 2010 #12;Reliability Planning OverviewReliability Planning Overview · Midwest ISO Transmission Expansion Plan (MTEP)p ( ) · MTEP Reliability Study Process ­ Planning Criteriag ­ Reliability Analysis

McCalley, James D.

472

Emerging Grid Reliability Improvement Technologies  

Science Conference Proceedings (OSTI)

The initial phase of a planned comprehensive Eastern Interconnection (EI) segmentation study is complete. As part of the preparations for completion of the EI study, and to carry out a similar effort for the Western Interconnection (WI), it was necessary to first investigate the potential of other technologies to compete with segmentation. This report discusses emerging grid reliability improvement technologies, providing a perspective on the pros and cons of segmentation, the grid shock absorber concept...

2007-10-29T23:59:59.000Z

473

New connections for new technologies  

SciTech Connect

New energy technologies are fast converging on utility electricity networks, but these networks are designed for alternating current (ac) power from large central power plants. Research is needed in direct current (dc)-to-ac power conditioning, appropriate generation planning, revised operation and control strategies, and institutional issues before technologies, such as fuel cells, storage batteries, photovoltaic arrays, and wind turbines can produce electricity for customers. 6 figures.

Lihach, N.; Ferraro, R.

1982-01-01T23:59:59.000Z

474

Environmental Monitoring Plan  

SciTech Connect

Environmental monitoring personnel from Lawrence Livermore National Laboratory (LLNL) prepared this ''Environmental Monitoring Plan'' (EMP) to meet the requirements in the U.S. Department of Energy (DOE) ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' (DOE 1991) and applicable portions of DOE Orders 5400.1 and 5400.5 (see WSS B93 and B94 in Appendix B). ''Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance'' is followed as a best management practice; under Work Smart Standards, LLNL complies with portions of DOE Orders 5400.1 and 5400.5 as shown in Appendix B. This document is a revision of the May 1999 EMP (Tate et al. 1999) and is current as of March 1, 2002. LLNL is one of the nation's premier applied-science national security laboratories. Its primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable, and to prevent the spread and use of nuclear weapons worldwide. LLNL's programs in advanced technologies, energy, environment, biosciences, and basic science apply LLNL's unique capabilities and enhance the competencies needed for this national security mission. LLNL's mission also involves working with industrial and academic partners to increase national competitiveness and improve science education. LLNL's mission is dynamic and has changed over the years to meet new national needs. In keeping with the Laboratory's mission, the environment, safety, and health (ES&H) have top priority. LLNL's policy is to perform work in a manner that protects the health and safety of employees and the public, preserves the quality of the environment, and prevents property damage. The environment, safety, and health are to be priority considerations in the planning and execution of all work activities at the Laboratory (LLNL 2001). Furthermore, it is the policy of LLNL to comply with applicable ES&H laws, regulations, and requirements. Under Contract 48, Appendix F, the Laboratory commits to minimizing its waste streams and to avoiding adverse impacts to the environment from its operations (UC/DOE 2001).

Althouse, P E; Biermann, A; Brigdon, S L; Brown, R A; Campbell, C G; Christofferson, E; Clark, L M; Folks, K J; Gallegos, G M; Gouveia, F J; Grayson, A; Harrach, R J; Hoppes, W G; Jones, H; Mathews, S; Merrigan, J R; Peterson, S R; Revelli, M; Rueppel, D; Sanchez, L; Tate, P J; Vellinger, R J; Ward, B; Williams, R

2006-01-10T23:59:59.000Z

475

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

476

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

477

Software Technology Readiness for the Smart Grid  

Science Conference Proceedings (OSTI)

Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

2011-06-13T23:59:59.000Z

478

LBNL Institutional Plan, FY 1996--2001. Draft  

SciTech Connect

The FY 1996-2001 Institutional Plan provides an overview of the Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

1995-06-01T23:59:59.000Z

479

Maine DOE/EPSCoR: 5-year planning grant  

SciTech Connect

Maine EPSCoR has developed a five year plan to further improve Maine`s research and education capacity in the field of Energy. The initiatives of this Energy Education and Research Plan are integrated with other major science policy initiatives in the state, specifically the state`s Science and Technology Strategic Plan (1992), the NSF Statewide Systemic Initiative (1992), and the Report of the Maine Commission on Comprehensive Energy Planning. The plan was developed with the support of US Department of Energy and State of Maine funds. The planning process was led by the Maine DOE EPSCoR planning committee of Maine EPSCoR. Researchers, educators, and business people assisted the committee in the development of the plan. This plan draws from priorities established by focus groups, the strengths and weaknesses revealed by the resource assessment, and the suggestions offered in the solicited research and education briefs. The plan outlines strategies for the improvement of energy education, communication networks, support of individual research, and the formation of collaborative research groups in targeted areas. Five energy-related areas have been targeted for possible development of collaborative research groups: Energy Technology Research, Energy and the Environment, the Gulf of Maine and Its Watershed, the Human Genome, and Renewable Energy. The targeted areas are not boundaries limiting the extent of collaborations to be pursued but represent research themes through which the state`s resources can be combined and improved.

Hawk, B.

1992-09-28T23:59:59.000Z

480

DOE Plans | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Certifications and Professional Development Real Estate History DOE Strategic Plans Strategic Plan for the Department of Energy Environmental Restoration...

Note: This page contains sample records for the topic "technology maturation plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.