Sample records for technology maturation plan

  1. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Broader source: Energy.gov (indexed) [DOE]

    is a guide for those involved in conducting TRAs and developing TMPs for DOE-EM. Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide More...

  2. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    SciTech Connect (OSTI)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30T23:59:59.000Z

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4.9 2017 2 3 3 2 4 2 9.8 2018 3 3 3 3 4 3 7.9 2019 3 3 3 3 4 3 5.1 2020 3 3 3 3 4 3 14.6 2021 3 3 3 3 4 3 7.3 2022 3 3 3 3 4 3 8.8 2023 4 4 4 4 4 4 9.1 2024 5 5 5 5 5 5 6.9 2025 6 6 6 6 6 6 6.9 CCC = canister cooling and crystallization; FMP = feeding, melting, and pouring; GCF = glass ceramic formulation; MSA = mixing, sampling, and analyses. This TMP is intended to guide the development of the glass ceramics waste form and process to the point where it is ready for industrialization.

  3. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  4. University Libraries Technology Plan

    E-Print Network [OSTI]

    Moore, Paul A.

    Libraries Bowling Green State University #12;Table of Contents Introduction ..................................................................19 Page 2 of 19 Technology Plan, 2003-2005 University Libraries Bowling Green State University #12University Libraries Technology Plan 2003-2005 Page 1 of 19 Technology Plan, 2003-2005 University

  5. Cost uncertainty for different levels of technology maturity

    SciTech Connect (OSTI)

    DeMuth, S.F. [Los Alamos National Lab., NM (United States); Franklin, A.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-07T23:59:59.000Z

    It is difficult at best to apply a single methodology for estimating cost uncertainties related to technologies of differing maturity. While highly mature technologies may have significant performance and manufacturing cost data available, less well developed technologies may be defined in only conceptual terms. Regardless of the degree of technical maturity, often a cost estimate relating to application of the technology may be required to justify continued funding for development. Yet, a cost estimate without its associated uncertainty lacks the information required to assess the economic risk. For this reason, it is important for the developer to provide some type of uncertainty along with a cost estimate. This study demonstrates how different methodologies for estimating uncertainties can be applied to cost estimates for technologies of different maturities. For a less well developed technology an uncertainty analysis of the cost estimate can be based on a sensitivity analysis; whereas, an uncertainty analysis of the cost estimate for a well developed technology can be based on an error propagation technique from classical statistics. It was decided to demonstrate these uncertainty estimation techniques with (1) an investigation of the additional cost of remediation due to beyond baseline, nearly complete, waste heel retrieval from underground storage tanks (USTs) at Hanford; and (2) the cost related to the use of crystalline silico-titanate (CST) rather than the baseline CS100 ion exchange resin for cesium separation from UST waste at Hanford.

  6. Technology Maturation Plans (TMPs) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H Treatment Project (TTP) | Department of

  7. APPLIED TECHNOLOGY Strategic Plan Summary

    E-Print Network [OSTI]

    Heller, Barbara

    and collaborative technology-based support for the proposed Innovation Center and the Entrepreneurship Academy. We research centers­CNR, CPI, and CSP. Establish a food safety and processing technology hub/incubator/innovationSCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan

  8. TECHNOLOGY MASTER PLAN 2013 2015

    E-Print Network [OSTI]

    TECHNOLOGY MASTER PLAN 2013 ­ 2015 Endorsed by Academic Senate On October 25, 2013 & College Council On November 8, 2013 #12;Information Technology Strategic Plan 2013-2015 Prepared by Willie Pritchard & Gene Spencer, Higher Education Technology Consultants on behalf of the many participants

  9. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; R. Bratton

    2007-09-01T23:59:59.000Z

    This technology development plan is designed to provide a clear understanding of the research and development direction necessary for the qualification of nuclear grade graphite for use within the Next Generation Nuclear Plant (NGNP) reactor. The NGNP will be a helium gas cooled Very High Temperature Reactor (VHTR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Considerable effort will be required to ensure that the graphite performance is not compromised during operation. Based upon the perceived requirements the major data needs are outlined and justified from the perspective of reactor design, reatcor performance, or the reactor safety case. The path forward for technology development can then be easily determined for each data need. How the data will be obtained and the inter-relationships between the experimental and modeling activities will define the technology development for graphite R&D. Finally, the variables affecting this R&D program are discussed from a general perspective. Factors that can significantly affect the R&D program such as funding, schedules, available resources, multiple reactor designs, and graphite acquisition are analyzed.

  10. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H Treatment Project (TTP) | Department of Energy

  11. Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - JanuaryTank 48H Treatment Project (TTP) |

  12. Technology Transfer Plan

    SciTech Connect (OSTI)

    None

    1998-12-31T23:59:59.000Z

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  13. Technology Support Strategic Plan MISSION STATEMENT

    E-Print Network [OSTI]

    Westfall, Peter H.

    1 Technology Support Strategic Plan MISSION STATEMENT Through collaboration and professionalism, the Technology Support Department provides the highest possible quality Information Technology (IT) services, support, and assistance to the University community. VISION STATEMENT Technology Support

  14. California Institute of Technology CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Faraon, Andrei

    California Institute of Technology CHEMICAL HYGIENE PLAN Caltech Environment, Health, and Safety: safety@caltech.edu Website: www.safety.caltech.edu #12;CHEMICAL HYGIENE PLAN ­ AUGUST 2013 Page 2 of 45 CHEMICAL HYGIENE PLAN Table of Contents INTRODUCTION

  15. NORTHWESTERN UNIVERSITY Information Technology Strategic Plan

    E-Print Network [OSTI]

    Shull, Kenneth R.

    conferencing technology into the Course Management System, allowing for virtual office hours, easier access mobile device and tablet support to core services of the Course Management SyNORTHWESTERN UNIVERSITY Information Technology Strategic Plan 2012 2014 #12;Information technology

  16. Design principles for the development of space technology maturation laboratories aboard the International Space Station

    E-Print Network [OSTI]

    Saenz Otero, Alvar, 1975-

    2005-01-01T23:59:59.000Z

    This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

  17. UNIVERSITY OF TECHNOLOGY, SYDNEY PRIVACY MANAGEMENT PLAN

    E-Print Network [OSTI]

    University of Technology, Sydney

    1 UNIVERSITY OF TECHNOLOGY, SYDNEY PRIVACY MANAGEMENT PLAN Title: A Management Plan to comply a Privacy Management Plan in operation by the effective date. A Plan is a statement of how the agency storage (such as paper files) but also electronic records, video recordings, biometric information

  18. Queens College Student Technology Fee Plan A Summary of the Plans for Student Technology Fee

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    ;Student Technology Fee Plan College: Queens College Recurring Cost: Instructional Resources MaintenanceQueens College Student Technology Fee Plan A Summary of the Plans for Student Technology Fee 2009-2010 Prepared by the Queens College Office of the Provost and Queens College Office of Converging Technologies

  19. Technology Strategic Plan 2013 2016 Office of Information Technology

    E-Print Network [OSTI]

    Brinkmann, Peter

    Technology Strategic Plan 2013 ­ 2016 Office of Information Technology June 2013 #12;2 T A B L E O F C O N T E N T S: - Introduction - - Executive Summary - - Terminology - - A Vision for Technology at the City College of New York - - The Mission of the Office for Technology (OIT) - - Technology Guiding

  20. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan...

  1. Information Technology Services (ITS) Strategic Plan

    E-Print Network [OSTI]

    Brownstone, Rob

    Information Technology Services (ITS) Strategic Plan Release Date August 2010 Empowering the University This is a document intended to guide strategy and operations for information technology at Dalhousie University. It will provide a framework for ITS and information technology deployed and used

  2. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January

  3. Business Plan Competitions and Technology Transfer

    SciTech Connect (OSTI)

    Worley, C.M.; Perry, T.D., IV

    2012-09-01T23:59:59.000Z

    An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

  4. 2010 Annual Planning Summary for National Energy Technology Laboratory...

    Energy Savers [EERE]

    Energy Technology Laboratory (NETL) 2010 Annual Planning Summary for National Energy Technology Laboratory (NETL) Annual Planning Summaries briefly describe the status of ongoing...

  5. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    Fusion Nuclear Science and Technology Program - Status and plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research...

  6. Hawaii Bioenergy Master Plan Bioenergy Technology

    E-Print Network [OSTI]

    technology assessment was conducted as part of the Hawaii Bioenergy Master Plan mandated by Act 253 collected in preparing this task and include: 1. The State should continue a bioenergy technology assessment-oil production X Y Charcoal production X X Y Bio-oil production for fuels X X Y Combustion X Y Renewable diesel

  7. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01T23:59:59.000Z

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  8. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP)...

  9. Decision support software technology demonstration plan

    SciTech Connect (OSTI)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01T23:59:59.000Z

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  10. SWAMI II technology transfer plan

    SciTech Connect (OSTI)

    Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

    1995-12-31T23:59:59.000Z

    Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

  11. National Security Technology Incubator Operations Plan

    SciTech Connect (OSTI)

    None

    2008-04-30T23:59:59.000Z

    This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

  12. National Security Technology Incubation Strategic Plan

    SciTech Connect (OSTI)

    None

    2007-01-01T23:59:59.000Z

    This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achieving sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company to succeed, it must have sustainable competitive advantages in seven key areas: geography, products and businesses, distribution, sales and service culture, efficiency, brand, and most important, people. The four strategic goals of the plan are to: 1. Identify and recruit small businesses with technology applications for national security. 2. Design and implement a national security incubator program that provides incubator services and physical space for the targeted businesses. 3. Provide business assistance and technical leadership to NSTI clients to assist in bringing their products to market. 4. Construct a new multi-tenant facility with dedicated physical space for businesses with technology applications for national security.

  13. National Security Technology Incubator Business Plan

    SciTech Connect (OSTI)

    None

    2007-12-31T23:59:59.000Z

    This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

  14. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  15. 2011 Annual Planning Summary for National Energy Technology Laboratory...

    Energy Savers [EERE]

    National Energy Technology Laboratory (NETL) 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) The ongoing and projected Environmental Assessments and...

  16. 2013 Annual Planning Summary for the National Energy Technology...

    Energy Savers [EERE]

    National Energy Technology Laboratory 2013 Annual Planning Summary for the National Energy Technology Laboratory The ongoing and projected Environmental Assessments and...

  17. 2012 Annual Planning Summary for EM Energy Technology Engineering...

    Energy Savers [EERE]

    EM Energy Technology Engineering Center 2012 Annual Planning Summary for EM Energy Technology Engineering Center The ongoing and projected Environmental Assessments and...

  18. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

  19. Technology Readiness Assessments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Documents Available for Download August 1, 2013 Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those involved in...

  20. Technology Portfolio Planning by Weighted Graph Analysis of System Architectures

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Technology Portfolio Planning by Weighted Graph Analysis of System Architectures Peter Davison and Bruce Cameron Massachusetts Institute of Technology, Cambridge, MA 02139 Edward F. Crawley Skolkovo Institute of Science and Technology, Skolkovo 143025, Russia Abstract5 Many systems undergo significant

  1. CEHS Technology Committee Strategic Plan March 1, 2012

    E-Print Network [OSTI]

    Farritor, Shane

    CEHS Technology Committee Strategic Plan 2012-13 March 1, 2012 Thomas Carrell ­ Special Education Gina Causin ­ Nutrition and Health Sciences Mary Sutton ­ Technology Services Jessica Hustad ­ Staff Council Al Steckelberg - CEHS Technology Committee Chair #12;Mission Statement Knowledge

  2. Information Technology Standards Program management plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This document presents a logical and realistic plan to implement the Information Technology (IT) Standards Program throughout the Department of Energy (DOE). It was developed by DOE Chief Information Officer (CIO) staff, with participation from many other individuals throughout the DOE complex. The DOE IT Standards Program coordinates IT standards activities Department-wide, including implementation of standards to support the DOE Information Architecture. The Program is voluntary, participatory, and consensus-based. The intent is to enable accomplishment of the DOE mission, and the Program is applicable to all DOE elements, both Federal and contractor. The purpose of this document is to describe the key elements of the DOE IT Standards Program.

  3. In Situ Mercury Stabilization (ISMS) Treatment: Technology Maturation Project Phase I Status Report

    SciTech Connect (OSTI)

    Kalb,P.D.; Milian, L.

    2008-03-01T23:59:59.000Z

    Mercury (Hg) was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge in the 1950s and 1960s. As much as two million pounds of elemental mercury was 'lost' or unaccounted for and a large portion of that material is believed to have entered the environment. The DOE site office in Oak Ridge has identified Hg pollution in soils, sediments, and streams as the most significant environmental challenge currently faced. In industry, large amounts of mercury have been used to manufacture products (e.g., fluorescent light bulbs, thermometers) and for chemical processing (e.g., production of chlorine and alkali via mercury electrochemical cells) and many of these industrial sites are now polluted with mercury contaminated soil as a result of previous releases and/or inadvertent leaks. Remediation techniques for Hg contaminated soils are either based on thermal desorption and recovery of the mercury or excavation and shipping of large volumes of material to remote facilities for treatment and disposal. Both of these alternatives are extremely costly. The Brookhaven National Laboratory (BNL) Environmental Research & Technology Division (ERTD) has demonstrated, in laboratory-scale experiments, the viability of treating mercury contaminated soils by means of sulfide treatment rods inserted into the soil through a process known as In Situ Mercury Stabilization (ISMS). This approach is partly based on BNL's patented and successfully licensed ex situ process for Hg treatment, Sulfur Polymer Stabilization/Solidification (SPSS) which converts Hg to the more stable sulfide form. The original experiments showed that Hg homogeneously distributed in soil rapidly migrates to form a high concentration zone of chemically stable mercuric sulfide near the treatment rods while concentrations of Hg in surrounding areas away from the treatment rods are depleted to acceptable levels. BSA has subsequently filed for patent protection on the ISMS technology. If further developed it has the potential for large-scale in-situ treatment of contaminated soils that could substantially reduce the prohibitive cost of thermal desorption and/or excavation and disposal. Licensing and spin-off technology development opportunities would then be viable. Depending on performance and regulatory acceptance, the treated mercury could either be excavated for disposal elsewhere or left in place as a stable alternative. Excavated spent treatment rods could be processed by the SPSS process to reduce the potential for dispersion and lower leachability even further. The Phase I objectives of the In Situ Mercury Stabilization Treatment Process Technology Maturation Project were to: (1) replicate the original bench-scale results that formed the basis for BNL's patent application, i.e., mercury contamination in soil will migrate to and react with 'rods' containing sulfur and/or sulfur compounds, (2) provide enough information to evaluate a decision to conduct further development, and (3) establish some of the critical parameters that require further technology maturation during Phase II. The information contained in this report summarizes the work conducted in Phase I to meet these objectives.

  4. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A. [National Renewable Energy Lab., Golden, CO (United States); Burch, G. [USDOE, Washington, DC (United States); Chavez, J.M.; Mancini, T.R.; Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01T23:59:59.000Z

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  5. Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRoutingEnergy Technologist inKeyWestinghouse

  6. Information Services and Technology FY2009 Strategic Plan

    E-Print Network [OSTI]

    Gabrieli, John

    the best and most cost effective information services support and technology available; communicationInformation Services and Technology FY2009 Strategic Plan Page 1 of 2 Current as of June 18, 2008 Information Services and Technology (IS&T) enables MIT's core mission -- to advance knowledge and educate

  7. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15T23:59:59.000Z

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

  8. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19T23:59:59.000Z

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  9. Sodium-Bearing Waste Treatment, Applied Technology Plan

    SciTech Connect (OSTI)

    Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

    2003-06-01T23:59:59.000Z

    Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

  10. Technology and Consumer Products Branch: program plan

    SciTech Connect (OSTI)

    None

    1980-03-01T23:59:59.000Z

    The primary objective of the Technology and Consumer Products Branch (TCP) is to encourage the development and commercialization of energy-efficient technologies and equipment used in buildings and purchased by consumers. The TCP program conducts technical research, development, and demonstration efforts jointly funded with private industry, educational institutions, utilities, and other Federal and state agencies as appropriate. All contracts, grants, or interagency agreements have the major thrust of developing products and disseminating information that will accelerate commercial availability of energy-efficient, low-cost, reliable technologies, techniques, and products suitable for use by consumers and design professionals in the residential and commercial building sectors. Specifically, the technologies pursued by the branch include heating and cooling systems, consumer appliances, lighting design, and systems. Projects for each of these areas are summarized briefly, and publications resulting from the activities are listed.

  11. A planning framework for transferring building energy technologies

    SciTech Connect (OSTI)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-07-01T23:59:59.000Z

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

  12. A planning framework for transferring building energy technologies: Executive Summary

    SciTech Connect (OSTI)

    Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

    1990-08-01T23:59:59.000Z

    Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

  13. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A. (U.S. Department of Energy); Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01T23:59:59.000Z

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  14. CUNY EXPORT CONTROL PROCEDURES 8. Technology Control Plans (TCPs)

    E-Print Network [OSTI]

    Rosen, Jay

    CUNY EXPORT CONTROL PROCEDURES 8. Technology Control Plans (TCPs) This Section addresses and data from foreign nationals for whom the item is controlled, and would otherwise require an export; physical controls (laboratory security); IT controls (data file/computer access security); deemed export

  15. Geothermal drilling and completion technology development program plan

    SciTech Connect (OSTI)

    Varnado, S.G.; Kelsey, J.R.; Wesenberg, D.L.

    1981-02-01T23:59:59.000Z

    A long-range plan for the development of new technology that will reduce the cost of drilling and completing geothermal wells is presented. The role of this program in relation to the total Federal Geothermal Energy Program is defined and specific program goals are identified. Then, the current status of the program, initiated in FY 1978, is presented, and research and development activities planned through 1987 are described. Budget and milestone estimates for each task are provided. The management plan for implementing the program is also discussed. The goals of this program are to develop the technology required to reduce the cost of drilling and completing geothermal wells by 25% in the near term and by 50% in the long term. Efforts under this program to date have resulted in new roller bit designs that will reduce well costs by 2% to 4%, new drag bits that have demonstrated marked increases in penetration rate, and the field verification of the effectiveness of inert drilling fluids in reducing drill pipe corrosion. Activities planned for the next six years for achieving the program goals are described. Technical activities include work in the areas of drilling hardware, drilling fluids, lost circulation control methods, completion technology, advanced drilling systems, and supporting technology.

  16. Information Technology Services Strategic Plan 2013-14

    E-Print Network [OSTI]

    Moore, Paul A.

    is Our Vision In the spirit of innovation Bowling Green State University (BGSU) will be a national. The University Mission is Our Mission Bowling Green State University provides educational experiences Information Technology Services Strategic Plan 2013-14 The University Vision

  17. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    SciTech Connect (OSTI)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26T23:59:59.000Z

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  18. Marketing Plan for the National Security Technology Incubator

    SciTech Connect (OSTI)

    None

    2008-03-31T23:59:59.000Z

    This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubator program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.

  19. Office of Building Technologies evaluation and planning report

    SciTech Connect (OSTI)

    Pierce, B.

    1994-06-01T23:59:59.000Z

    The US Department of Energy (DOE) Office of Building Technologies (OBT) encourages increased efficiency of energy use in the buildings sector through the conduct of a comprehensive research program, the transfer of research results to industry, and the implementation of DOE`s statutory responsibilities in the buildings area. The planning and direction of these activities require the development and maintenance of database and modeling capability, as well as the conduct of analyses. This report summarizes the results of evaluation and planning activities undertaken on behalf of OBT during the past several years. It provides historical data on energy consumption patterns, prices, and building characteristics used in OBT`s planning processes, and summaries of selected recent OBT analysis activities.

  20. University of Hawai`i Strategic Plan for Information Technology 2000

    E-Print Network [OSTI]

    Olsen, Stephen L.

    of information technology as recurring costs that include stable budgets for computers, software, maintenanceUniversity of Hawai`i Strategic Plan for Information Technology 2000 Executive Summary This Strategic Plan for Information Technology outlines the vision and planning context for moving forward

  1. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

  2. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect (OSTI)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28T23:59:59.000Z

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  3. R and D plans for advanced computer and control technologies

    SciTech Connect (OSTI)

    Ipakchi, A.; Wong, D.J. (Science Applications International Corp., San Diego, CA (USA)); Wells, B. (Ohio Edison Co., Akron, OH (USA)); Skedzielewski, D. (Delmarva Power and Light Co., Wilmington, DE (USA)); Taft, C. (Southern Co. Services, Inc., Birmingham, AL (USA)); Valli, J. (Cleveland Electric Illuminating Co., OH (USA))

    1990-02-01T23:59:59.000Z

    Competition, rising cost, and changes in technology have prompted many US electric utilities to consider new methods of power plant operation. One approach is the introduction of automation in an effort to increase productivity, reliability, efficiency, flexibility, and performance. The rapid advancement of computer technology has opened new opportunities for more sophisticated control and monitoring than ever before. The application of automation, though, has been through the use of a deluge of independent, specialized systems dedicated to specific needs. The utilities' quick adoption of these systems for solving specific problems has created Islands of automation''. These islands cannot pass information or communicate with one another. Each requires their own separate computer and terminal. The redundancy of data and sensors in order to collect needed information for each independent system have added to the confusion in the plant. These independent systems have rapidly pushed the key issue of integration to the forefront for plant automation. There is still a need for further development of techniques and technologies for plant automation, but the key issue is integration. This report presents the results of an EPRI sponsored study and planning project. The purpose of this project was to identify the current automation issues facing the utility power industry, and to develop a seven year R D plan for EPRI in this area. In addition to the R D plan, the report presents the results of a survey, and discusses topics such as plant-wide automation systems' architecture, communications, and man-machine interface. 25 refs., 33 figs., 13 tabs.

  4. Venus Technology Plan: 2014 (Draft for Community Review--March 12, 2014)

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan: 2014 (Draft for Community Review--March 12, 2014) #12; ii Venus Technology Plan At the last VEXAG meeting in November 2013, it was resolved to update the scientific as Planetary Decadal Survey priorities, and (3) develop a white paper on technologies for Venus missions. Here

  5. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-088

  6. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon the PassingRoutingEnergy Technologist inKey

  7. Nuclear Fuel Cycle Technologies: Current Challenges and Future Plans - 12558

    SciTech Connect (OSTI)

    Griffith, Andrew [U.S. Department of Energy, Washington, DC (United States)

    2012-07-01T23:59:59.000Z

    The mission of the Office of Nuclear Energy's Fuel Cycle Technologies office (FCT program) is to provide options for possible future changes in national nuclear energy programs. While the recent draft report of the Blue Ribbon Commission on America's Nuclear Future stressed the need for organization changes, interim waste storage and the establishment of a permanent repository for nuclear waste management, it also recognized the potential value of alternate fuel cycles and recommended continued research and development in that area. With constrained budgets and great expectations, the current challenges are significant. The FCT program now performs R and D covering the entire fuel cycle. This broad R and D scope is a result of the assignment of new research and development (R and D) responsibilities to the Office of Nuclear Energy (NE), as well as reorganization within NE. This scope includes uranium extraction from seawater and uranium enrichment R and D, used nuclear fuel recycling technology, advanced fuel development, and a fresh look at a range of disposal geologies. Additionally, the FCT program performs the necessary systems analysis and screening of fuel cycle alternatives that will identify the most promising approaches and areas of technology gaps. Finally, the FCT program is responsible for a focused effort to consider features of fuel cycle technology in a way that promotes nonproliferation and security, such as Safeguards and Security by Design, and advanced monitoring and predictive modeling capabilities. This paper and presentation will provide an overview of the FCT program R and D scope and discuss plans to analyze fuel cycle options and support identified R and D priorities into the future. The FCT program is making progress in implanting a science based, engineering driven research and development program that is evaluating options for a sustainable fuel cycle in the U.S. Responding to the BRC recommendations, any resulting legislative changes, and meeting the needs of the commercial nuclear industry (including developing and evaluating fuel concepts that may enhance accident tolerance in light water reactors while possibly improving fuel performance) are program priorities. Continuing to build partnerships and collaborations with industry, universities, international organizations, and other DOE programs are essential to addressing the challenges facing the FCT program. (authors)

  8. Evolving technologies for disaster planning in U.S. Cities

    E-Print Network [OSTI]

    Ng, Vanessa Mei-Yee

    2011-01-01T23:59:59.000Z

    The rapid development of modem technology has increased access to and reliance on sophisticated communication and real time technology. These technologies, which have become embedded within everyday life, have significant ...

  9. Integrated method to create optimal dynamic strategic plans for corporate technology start-ups

    E-Print Network [OSTI]

    Mikati, Samir Omar

    2009-01-01T23:59:59.000Z

    This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

  10. Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan

    SciTech Connect (OSTI)

    Bruce Hallbert

    2012-09-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  11. Advanced Technology Planning for Energy Savings Performance Contracts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to deploy advanced technologies using energy savings performance contracts (ESPC). A federal project executive (FPE) will work with a project facilitator and a U.S....

  12. This introduction to wind power technology is meant to help communities in considering or planning wind

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    This introduction to wind power technology is meant to help communities in considering or planning wind power. It focuses on commercial and medium-scale wind turbine technology that is available in the United States. This fact sheet also discusses the integration of wind power into the electrical grid

  13. IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation and costs of the more complex experiments in NIF. I. Introduction One important class of issues concerning

  14. FY 1991--FY 1995 Information Technology Resources Long-Range Plan

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    The Department of Energy has consolidated its plans for Information Systems, Computing Resources, and Telecommunications into a single document, the Information Technology Resources Long-Range Plan. The consolidation was done as a joint effort by the Office of ADP Management and the Office of Computer Services and Telecommunications Management under the Deputy Assistant Secretary for Administration, Information, and Facilities Management. This Plan is the product of a long-range planning process used to project both future information technology requirements and the resources necessary to meet those requirements. It encompasses the plans of the various organizational components within the Department and its management and operating contractors over the next 5 fiscal years, 1991 through 1995.

  15. Core science and technology development plan for indirect-drive ICF ignition. Revision 1

    SciTech Connect (OSTI)

    Powell, H.T.; Kilkenny, J.D. [eds.

    1995-12-01T23:59:59.000Z

    To define the development work needed to support inertial confinement fusion (ICF) program goals, the authors have assembled this Core Science and Technology (CS and T) Plan that encompasses nearly all science research and technology development in the ICF program. The objective of the CS and T Plan described here is to identify the development work needed to ensure the success of advanced ICF facilities, in particular the National Ignition Facility (NIF). This plan is intended as a framework to facilitate planning and coordination of future ICF programmatic activities. The CS and T Plan covers all elements of the ICF program including laser technology, optic manufacturing, target chamber, target diagnostics, target design and theory, target components and fabrication, and target physics experiments. The CS and T Plan has been divided into these seven different technology development areas, and they are used as level-1 categories in a work breakdown structure (WBS) to facilitate the organization of all activities in this plan. The scope of the CS and T Plan includes all research and development required to support the NIF leading up to the activation and initial operation as an indirect-drive facility. In each of the CS and T main development areas, the authors describe the technology and issues that need to be addressed to achieve NIF performance goals. To resolve all issues and achieve objectives, an extensive assortment of tasks must be performed in a coordinated and timely manner. The authors describe these activities and present planning schedules that detail the flow of work to be performed over a 10-year period corresponding to estimated time needed to demonstrate fusion ignition with the NIF. Besides the benefits to the ICF program, the authors also discuss how the commercial sector and the nuclear weapons science may profit from the proposed research and development program.

  16. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  17. Technology Innovation Program Programmatic Plan: FY 2011 FY 2014

    E-Print Network [OSTI]

    Magee, Joseph W.

    , Repair Manufacturing (#2) Manufacturing Processes for Advanced Materials Critical Processes Intelligent) Sustainability Technologies for personalized medicine (#5) Complex networks Manufacturing Advanced sensing Funding Opportunity), and on the TIP website. For additional information on specific societal challenge

  18. Showing results, 3 Energy technology and energy planning

    E-Print Network [OSTI]

    loads, 6 ­ Energy materials and new energy technologies, 8 Fuel cells, 8 Superconductors, 8 Fusion progress of the fuel cell project deserves attention. The project which is managed by Risø is so far processing, 28 Optical materials, 28 Optical diagnostics and information processing, 28 ­ Departments

  19. 2012 Annual Planning Summary for Fossil Energy, National Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2 Annual Plan 2012Laboratory, RMOTC, and

  20. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  1. HTS Wire Development Group: Achievements, technology transfer, and plans

    SciTech Connect (OSTI)

    Riley, G.N. Jr. [American Superconductor Corp., Westborough, MA (United States)

    1994-07-29T23:59:59.000Z

    The objective of the HTS wire development group is to develop high performance HTS wire for use in electric power systems. The HTS wire development group personnel is listed. The HTS wire development group achievements are outlined. These achievements include: focusing on the development of high performance and cost effective HTS wire; HTS wires were fabricated in laboratory scale and production scale lengths; ACS has fabricated the only conductor in the world to meet or surpass the DOE FY94 goals for electric power applications development; these wire fabrication successes at ASC are a direct result of the long-term collaboration between ASC and the other HTS Wire Development Group members; and plans are in place for a successful FY95 program.

  2. Current status and future plan of uranium enrichment technology

    SciTech Connect (OSTI)

    Yonekawa, S.; Yamamoto, F.; Yato, Y.; Kishimoto, Y. [PNC, Ningyo-Toge (Japan)

    1994-12-31T23:59:59.000Z

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has been conducting extensive research and development (R&D) on the centrifuge process for more than a quarter of a century. This development program, designated as a national project in 1972, has resulted in the construction and operation of a pilot plant with a capacity of 50 t separative work unit (SWU) per year as well as a demonstration plant with a capacity of 200 t SWU/yr. Under the basic agreement of cooperation concluded in 1985, the technology developed in this program has been transferred to Japan Nuclear Fuel Limited (JNFL), which is now constructing and operating the commercial plant with a capacity of 1500 t SWU/yr at Rokkasho, Aomori. This paper describes the operational experiences of the demonstration plant, the status of a new material centrifuge, which will be introduced at a later stage of construction of the commercial plant, the development of an advanced centrifuge as a next-generation machine, and the research of a superadvanced centrifuge.

  3. If there is a discrepancy between this document and the official Plan Document the official Plan Document(s) will govern. Massachusetts Institute of Technology

    E-Print Network [OSTI]

    Reuter, Martin

    If there is a discrepancy between this document and the official Plan Document the official Plan Document(s) will govern. 1/01/2014 Massachusetts Institute of Technology Summary of 2014 Benefits to manage their healthcare. "In-network" benefits are also provided for employees and their dependents who

  4. Designing a model for the African Science and Innovation Facility to implement the Science and Technology Consolidated Plan of Action

    E-Print Network [OSTI]

    Designing a model for the African Science and Innovation Facility to implement the Science and Technology Consolidated Plan of Action A study commissioned by NEPAD's Office of Science and Technology been prepared in response to a request from NEPAD's Office of Science and Technology for a review

  5. IFE chamber technology testing program in NIF and chamber development test plan

    SciTech Connect (OSTI)

    Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31T23:59:59.000Z

    Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF.

  6. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program Appendices

  7. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program

  8. Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project

    SciTech Connect (OSTI)

    Blau, P.J.

    1991-11-01T23:59:59.000Z

    A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

  9. U.S. Department of Energy Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-10-12T23:59:59.000Z

    This Guide assists individuals and teams involved in conducting Technology Readiness Assessments and developing Technology Maturation Plans for the DOE capital acquisition asset projects subject to DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. Canceled by DOE G 413.3-4A. Does not cancel other directives.

  10. A technology transfer plan for the US Department of Energy's Electric Energy Systems Program

    SciTech Connect (OSTI)

    Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

    1986-11-01T23:59:59.000Z

    The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

  11. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08 2008

  12. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08

  13. SCIENCE AND TECHNOLOGY FACILITIES COUNCIL November 2008 SCIENCE IN SOCIETY STRATEGY 2008: A PLAN FOR PUBLIC ENGAGEMENT

    E-Print Network [OSTI]

    SCIENCE AND TECHNOLOGY FACILITIES COUNCIL November 2008 SCIENCE IN SOCIETY STRATEGY 2008: A PLAN FOR PUBLIC ENGAGEMENT SUMMARY The inspiration and importance of STFC's science and technology work provides a basis for public engagement with research. Our strategy aims to provide opportunities for every citizen

  14. COMPLEAT (Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies): A planning tool for publicly owned electric utilities. [Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies (Compleat)

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    COMPLEAT takes its name, as an acronym, from Community-Oriented Model for Planning Least-Cost Energy Alternatives and Technologies. It is an electric utility planning model designed for use principally by publicly owned electric utilities and agencies serving such utilities. As a model, COMPLEAT is significantly more full-featured and complex than called out in APPA's original plan and proposal to DOE. The additional complexity grew out of a series of discussions early in the development schedule, in which it became clear to APPA staff and advisors that the simplicity characterizing the original plan, while highly desirable in terms of utility applications, was not achievable if practical utility problems were to be addressed. The project teams settled on Energy 20/20, an existing model developed by Dr. George Backus of Policy Assessment Associates, as the best candidate for the kinds of modifications and extensions that would be required. The remainder of the project effort was devoted to designing specific input data files, output files, and user screens and to writing and testing the compute programs that would properly implement the desired features around Energy 20/20 as a core program. This report presents in outline form, the features and user interface of COMPLEAT.

  15. Scientific investigations planned for the lidar in-space technology experiment (LITE)

    SciTech Connect (OSTI)

    McCormick, M.P.; Winker, D.M.; Browell, E.V. (NASA/Langley Research Center, Hampton, VA (United States)); Coakley, J.A. (Oregon State Univ., Corvallis (United States)); Gardner, C.S. (Univ. of Illinois, Urbana (United States)); Hoff, R.M. (Center for Atmospheric Research Experiments, Egbert, Ontario (Canada)); Kent, G.S. (Science and Technology Corp., Hampton, VA (United States)); Melfi, S.H. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States)); Menzies, R.T. (Jet Propulsion Lab., Pasadena, CA (United States)); Platt, C.M.R. (CSIRO, Aspendale, Victoria (Australia)); Randall, D.A. (Colorado State Univ., Fort Collins (United States)); Reagan, J.A. (Univ. of Arizona, Tucson (United States))

    1993-02-01T23:59:59.000Z

    The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series off lights on the space shuttle beginning in 1994. Employing a three-wave-length ND:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

  16. Advanced energy design and operation technologies research: Recommendations for a US Department of Energy multiyear program plan

    SciTech Connect (OSTI)

    Brambley, M.R.; Crawley, D.B.; Hostetler, D.D.; Stratton, R.C.; Addision, M.S.; Deringer, J.J.; Hall, J.D.; Selkowitz, S.E.

    1988-12-01T23:59:59.000Z

    This document describes recommendations for a multiyear plan developed for the US Department of Energy (DOE) as part of the Advanced Energy Design and Operation Technologies (AEDOT) project. The plan is an outgrowth of earlier planning activities conducted for DOE as part of design process research under the Building System Integration Program (BSIP). The proposed research will produce intelligent computer-based design and operation technologies for commercial buildings. In this document, the concept is explained, the need for these new computer-based environments is discussed, the benefits are described, and a plan for developing the AEDOT technologies is presented for the 9-year period beginning FY 1989. 45 refs., 37 figs., 9 tabs.

  17. Case Study of Maturing and Reusing

    E-Print Network [OSTI]

    Christensen, Henrik Bærbak

    Case Study of Maturing and Reusing a Framework COT/3-32-V1.0 C O T * Centre for Object Technology concerned with research, application and implementation of object technology in Danish companies-data, Rambøll, Danfoss, Systematic Software Engineering, Odense Steel Shipyard, A.P. Møller, University

  18. Transition Plan for the K-1203 Sewage Treatment Plant, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Hoffmeister J.

    2008-10-05T23:59:59.000Z

    The K-1203 Sewage Treatment Plant (STP) was previously used to treat and process all sanitary sewage waste from the East Tennessee Technology Park (ETTP). The plant was shut down on May 29, 2008 as a result of the transition of sewage treatment for ETTP to the City of Oak Ridge. The City of Oak Ridge expanded the Rarity Ridge Sewage Treatment Plant (RRSTP) to include capacity to treat the waste from the ETTP and the Community Reuse Organization of East Tennessee (CROET) constructed a new ETTP lift station and force main to RRSTP. In preparation for the shutdown of K-1203, the US Department of Energy (DOE) in conjunction with Operation Management International (OMI) developed a shut down plan to outline actions that need to occur prior to the transition of the facility to Bechtel Jacob Company, LLC (BJC) for decontamination and demolition (D and D). This plan outlines the actions, roles, and responsibilities for BJC in order to support the transition of the K-1203 STP from OMI to the BJC Surveillance and Maintenance (S and M) and D and D programs. The D and D of the K-1203 Facilities is planned under the Comprehensive Environmental Response, Compensation, and Liability Act Remaining Facilities D and D Action Memorandum in the Balance of Site-Utilities D and D Subproject in fiscal year (FY) 2014.

  19. Page 1 | B.S.E.T. in Civil Engineering Technology | Academic Plan of Study Updated March 2014 B.S.E.T. in Civil Engineering Technology

    E-Print Network [OSTI]

    Raja, Anita

    of Engineering Technology and Construction Management et.uncc.edu PROGRAM SUMMARY · Credit Hours: 128 degree as a dual major with the B.S.C.M. in Construction Management. This plan of study typically takes in the areas of structures, construction, transportation, water resources, and geotechnics. In the first two

  20. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  1. Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

  2. HEMP emergency planning and operating procedures for electric power systems. Power Systems Technology Program

    SciTech Connect (OSTI)

    Reddoch, T.W.; Markel, L.C. [Electrotek Concepts, Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    Investigations of the impact of high-altitude electromagnetic pulse (HEMP) on electric power systems and electrical equipment have revealed that HEMP creates both misoperation and failures. These events result from both the early time E{sub 1} (steep-front pulse) component and the late time E{sub 3} (geomagnetic perturbations) component of HEMP. In this report a HEMP event is viewed in terms of its marginal impact over classical power system disturbances by considering the unique properties and consequences of HEMP. This report focuses on system-wide electrical component failures and their potential consequences from HEMP. In particular, the effectiveness of planning and operating procedures for electric systems is evaluated while under the influence of HEMP. This assessment relies on published data and characterizes utilities using the North American Electric Reliability Council`s regions and guidelines to model electric power system planning and operations. Key issues addressed by the report include how electric power systems are affected by HEMP and what actions electric utilities can initiate to reduce the consequences of HEMP. The report also reviews the salient features of earlier HEMP studies and projects, examines technology trends in the electric power industry which are affected by HEMP, characterizes the vulnerability of power systems to HEMP, and explores the capability of electric systems to recover from a HEMP event.

  3. Environmental issues in planning building energy technologies R D in the United States

    SciTech Connect (OSTI)

    Farhar, B.C. (Solar Energy Research Inst., Golden, CO (United States)); Abel, F.H. (USDOE, Washington, DC (United States)); Nicholls, A.K. (Pacific Northwest Lab., Richland, WA (United States)); Millhone, J.P. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Office of the Deputy Assistant Secretary for Building Technologies)

    1991-08-01T23:59:59.000Z

    The US Department of Energy's Office of Building Technologies (OBT) has begun studies on the relationship and impact of buildings energy use on the environment, particularly with respect to global climate change, acid rain, stratospheric ozone depletion, and indoor air quality. The paper presents an overview of international and US federal activity in global change to set OBT's activities in context. The paper then reviews briefly the contribution of buildings to atmospheric problems through building energy use. OBT's program primarily supports projects with indirect environmental impacts through energy efficiency (e.g., thermally activated heat pumps use natural gas instead of electricity) and the use of renewables in buildings. The paper briefly describes the OBT program and covers an inventory of projects that OBT has funded on environmental/building problems. Analyses have included three kinds of topics: (1) CFC substitutes for refrigeration equipment, (2) incorporating the cost of externalities into utility electricity generation, and (3) indoor air quality. The paper shows how environmental issues are being taken into account in planning the US R D program in building energy technologies. 27 refs.

  4. Applying group technology in the operational planning of electronics assembly (multiple machine case)

    E-Print Network [OSTI]

    Awwad, Ghassan Samir

    1987-01-01T23:59:59.000Z

    This research investigates the operational planning problem for electronics assembly. The objective is to develop an analytical tool that is capable of performing the operational planning of Printed Circuit Board (PCB) assembly for a defined batch...

  5. Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle

    SciTech Connect (OSTI)

    McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

    2013-08-29T23:59:59.000Z

    The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

  6. A maturity model of evaluating requirements specification techniques

    E-Print Network [OSTI]

    Shin, Yonghee

    2004-11-15T23:59:59.000Z

    It is important to evaluate and understand the state-of-art technologies to position our research and invest our energy and resources in more effective ways. Unfortunately, no systematic approach has been introduced to evaluate the maturity...

  7. Maturity Model for Advancing Smart Grid Interoperability

    SciTech Connect (OSTI)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28T23:59:59.000Z

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  8. Multiagent Technology Solutions for Planning in Ambient Intelligence Nicola Gatti and Francesco Amigoni and Marco Rolando

    E-Print Network [OSTI]

    Amigoni, Francesco

    for Planning in AmI The proposed system, named "domotic agency" (DA),1 is based on LEAP [6] and implements

  9. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect (OSTI)

    Streit, R.D.; Couture, S.A.

    1995-03-01T23:59:59.000Z

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  10. SUPPLIER CAPACITY REQUIREMENT PLANNING USING WEB TECHNOLOGY: THE EXPERIENCE OF APRILIA IN ASIA V-

    E-Print Network [OSTI]

    Di Pillo, Gianni

    .8273 ABSTRACT The paper describes the production planning model of the whole supply chain and the ICT Italian motorcycle firm. The management model is based on a master production plan with increasing details as a mean to ensure flexible dispatch and control of finished product, leaving the manufacturing of all

  11. Buried Waste Integrated Demonstration Plan

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01T23:59:59.000Z

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  12. 2014 Annual Planning Summary for the Environmental Management Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2014 and 2015 within the Environmental Management Energy Technology Engineering Center.

  13. MASSACHUSETTS INSTITUTE OF TECHNOLOGY School of Architecture and Planning Faculty Personnel Record

    E-Print Network [OSTI]

    Technologies 1/06 Booz Allen Hamilton 11/08 Affectiva 1/10-4/13 (There are also several additional companies

  14. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 Chairs Meeting - AprilEvents Clean Energyof Energy Resourceof

  15. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D. [MSE Technology Applications, Inc., Montana (United States); Phillips, E. [U.S. Department of Energy, Oak Ridge Operations Office, Oak Ridge, Tennessee (United States)

    2008-07-01T23:59:59.000Z

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  16. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  17. Appropriate technology for planning hydroelectric power projects in Nepal: the need for assumption analysis

    SciTech Connect (OSTI)

    Chandler, C.G.

    1981-06-01T23:59:59.000Z

    The study focuses on the project development process for hydroelectric project planning in Nepal. Chapter I describes the contrast between the vast potential for hydroelectric power development in Nepal and the current energy shortage within the country, not only for electricity, but for firewood and other fuel sources as well. Chapter II explores some of the unknown factors facing hydropower project planners in Nepal, where data for hydrologic, geologic, environmental, and sociological project components are lacking. The chapter also examines institutional and fiscal factors which constrain the planning process. Chapter III describes the critical role of assumptions in the project development process, and details the stages that a project goes through as it is planned. The chapter introduces the concept of assumption analysis as a technique for project planning, listing the potential conflict between the assumptions of foreign consultants and the host-country users of project outputs as an ingredient in the project's success or failure. Chapter IV demonstrates the mechanics and usefulness of assumption analysis through an Assumption Analysis Chart, which shows the interaction among project objectives, project alternatives, project assumptions, and the project development process. Assumption analysis techniques are expected to be useful among bilateral and multilateral aid donors servicing less developed countries.

  18. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  19. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01T23:59:59.000Z

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  20. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment 

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12T23:59:59.000Z

    ................................................ 13 Emission Reduction Options .......................................................... 15 Exhaust Gas Aftertreatment Technologies for Emissions Reductions... Page Figure 15 Total NOx Reduction at the First Stage at Different Budget Amounts (Case 2A) ........................................................................... 66 Figure 16 Total NOx Reduction at the First and Second Stage...

  1. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12T23:59:59.000Z

    to trees, crops, plants, lakes, and animals. Therefore, air pollution is indeed a big concern for the environment (EPA 2008a). Impacts of Emissions Air pollution has significant health, environmental, and economic impacts. Inhaling polluted air... ............................................. 22 Fuel Technologies for Emissions Reductions ......................... 23 Low-Sulfur Diesel (LSD) and Ultra Low Sulfur Diesel (ULSD) ............................................................................. 23 Natural...

  2. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan:Demonstration Program

  3. DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan

    SciTech Connect (OSTI)

    Yow, J.L. Jr.

    1993-12-22T23:59:59.000Z

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.

  4. Georgia Institute of Technology chilled water system evaluation and master plan

    SciTech Connect (OSTI)

    NONE

    1996-05-15T23:59:59.000Z

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  5. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01T23:59:59.000Z

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  6. Sampling, preservation, and analytical methods research plan - liquid redox sulfur recovery technologies: Stretford process. Topical report

    SciTech Connect (OSTI)

    Trofe, T.W.

    1986-11-01T23:59:59.000Z

    GRI has developed a sampling, preservation, and analytical (SPandA) methods research plan for developing and validating analytical methodologies for liquid redox sulfur recovery processes (e.g., Stretford process). The document describes the technical approach which will be used to direct research activities to develop SPandA methodologies to analyze gaseous, aqueous, and solid process streams from the Stretford sulfur recovery process. The primary emphasis is on developing and validating methodologies for analyzing vanadium (IV) and vanadium (V), anthraquinone disulphonic acids (ADA), polysulfide-sulfur, sulfide-sulfur, thiosulfate, sulfate, thiocyanate, total soluble sulfur, alkalinity, pH, total dissolved solids, total suspended solids, and dissolved oxygen in aqueous process streams. The document includes descriptions of the process streams and chemical species, selection of candidate analytical methods, and technical approach for methods development and validation.

  7. Strategic plan for the utilization of remote sensing technologies in the environmental restoration program

    SciTech Connect (OSTI)

    King, A.D.; Doll, W.E.; Durfee, R.C.; Luxmoore, R.J.; Conder, S.R.; Nyquist, J.E.

    1993-12-01T23:59:59.000Z

    The objectives of the Environmental Restoration (ER) Remote Sensing and Special Surveys Program are to apply state-of-the-art remote sensing and geophysical technologies and to manage routine and remotely-sensed examinations of the Oak Ridge Reservation (ORR), the Paducah Gaseous Diffusion Plant (PGDP), the Portsmouth Gaseous Diffusion Plant (PORTS), and their adjacent off-site areas. Repeated multispectral scanner (MSS) imagery, gamma, and photographic surveys will allow monitoring of the degradation that might occur in waste containment vessels and monitoring (at a later stage in the remediation life cycle) of improvements from restoration efforts and cleanup. These technologies, in combination with geophysical surveys, will provide an effective means for identifying unknown waste sites and contaminant transport pathways. All of the data will be maintained in a data base that will be accessible to site managers in the ER Program. The complete analysis of collected data will provide site-specific data to the ER Program for characterizing and monitoring ER Program hazardous waste sites.

  8. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    SciTech Connect (OSTI)

    McLellan, G.W.

    1994-11-17T23:59:59.000Z

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development`s Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination.

  9. Electricity Subsector Cybersecurity Capability Maturity Model...

    Energy Savers [EERE]

    Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Electricity Subsector Cybersecurity...

  10. Electricity Subsector Cybersecurity Capability Maturity Model...

    Office of Environmental Management (EM)

    Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The...

  11. Buried Waste Integrated Demonstration Plan. Revision 1

    SciTech Connect (OSTI)

    Kostelnik, K.M.

    1991-12-01T23:59:59.000Z

    This document presents the plan of activities for the Buried Waste Integrated Demonstration (BWID) program which supports the environmental restoration (ER) objectives of the Department of Energy (DOE) Complex. Discussed in this plan are the objectives, organization, roles and responsibilities, and the process for implementing and managing BWID. BWID is hosted at the Idaho National Engineering Laboratory (INEL), but involves participants from throughout the DOE Complex, private industry, universities, and the international community. These participants will support, demonstrate, and evaluate a suite of advanced technologies representing a comprehensive remediation system for the effective and efficient remediation of buried waste. The processes for identifying technological needs, screening candidate technologies for applicability and maturity, selecting appropriate technologies for demonstration, field demonstrating, evaluation of results and transferring technologies to environmental restoration programs are also presented. This document further describes the elements of project planning and control that apply to BWID. It addresses the management processes, operating procedures, programmatic and technical objectives, and schedules. Key functions in support of each demonstration such as regulatory coordination, safety analyses, risk evaluations, facility requirements, and data management are presented.

  12. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01T23:59:59.000Z

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

  13. Information Technology Strategic Plan

    E-Print Network [OSTI]

    Hayes, Jane E.

    ;Applications Staci Allen Walter Arnett Terrielyn Ashley Steve Bainer John Baston Lisa Beard Barry Blakely Koula Broaddus Rob Canales Lana Cole Natalie Collett Teena Collins Chuck Combes Marilyn Cone Gary Coutts UK Kumar Debbie Kyle Carl Maggard Donna Manning Donna Miller Doris Miller Blake Mills Tommie Minnick Alan

  14. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SYSTEMS Gasi cation Systems Advanced Combustion Systems Advanced Turbines Solid Oxide Fuel Cells Plant Optimization Coal Utilization Sciences University Training and Research...

  15. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, RevisionTEI

  16. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3, RevisionTEICARBON

  17. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3,

  18. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3,SOLID OXIDE FUEL CELLS

  19. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposed Action(InsertAbout theSystems3,SOLID OXIDE FUEL

  20. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  2. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  3. CSIR TECHNOLOGY AWARDS -2013

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

  4. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01T23:59:59.000Z

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  6. Development and Implementation of a Program Management Maturity Model

    SciTech Connect (OSTI)

    Hartwig, Laura; Smith, Matt

    2008-12-15T23:59:59.000Z

    In 2006, Honeywell Federal Manufacturing & Technologies (FM&T) announced an updatedvision statement for the organization. The vision is “To be the most admired team within the NNSA [National Nuclear Security Administration] for our relentless drive to convert ideas into the highest quality products and services for National Security by applying the right technology, outstanding program management and best commercial practices.” The challenge to provide outstanding program management was taken up by the Program Management division and the Program Integration Office (PIO) of the company. This article describes how Honeywell developed and deployed a program management maturity model to drive toward excellence.

  7. INTERNATIONAL TRAVEL AND EXPORT CONTROL REGULATIONS When planning a trip abroad, individuals sometimes take information, technology and equipment with them.

    E-Print Network [OSTI]

    Farritor, Shane

    INTERNATIONAL TRAVEL AND EXPORT CONTROL REGULATIONS When planning a trip abroad, individuals to be aware of the impact of export control regulations when traveling internationally. Export control to most countries oftentimes does not raise any export control concerns. In some cases, an exclusion

  8. Mature weights and lean maturing patterns of diverse breedtypes of cattle

    E-Print Network [OSTI]

    Rajab, Mohammad Hasan

    1983-01-01T23:59:59.000Z

    MATURE WEIGHTS AND LEAN MATURING PATTERNS OF DIVERSE BREEDTYPES OF CATTLE A Thesis by MOHAMMAD HASAN RAJAB Submitted to the Graduate College of Texas ABM University in partial fulfullment of the requirement for the degree of MASTER... OF SCIENCE May 1983 Major Subject: Animal Breeding MATURE WEIGHTS AND LEAN MATURING PATTERNS OF DIVERSE BREEDTYPES OF CATTLE A Thesis by MOHAMMAD HASAN RAJAB Approved as to style and content by: (Co-Chairman of Committee) Gerald M. Smith (Co...

  9. Management Plan Management Plan

    E-Print Network [OSTI]

    Plan, Management Plan Page MP­ 1 #12;Management Plan water quality standards, instream flows, privateManagement Plan Management Plan "Management and restoration programs for native salmonids have communities" J. Lichatowich et al. 1998. A Conceptual Foundation for the Management of Native Salmonids

  10. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  11. Idaho HWMA/RCRA Closure Plan for Idaho Nuclear Technology and Engineering Center Tanks WM-182 and WM-183 - Rev. 2

    SciTech Connect (OSTI)

    Evans, Susan Kay; unknown

    2000-12-01T23:59:59.000Z

    This document presents the plan for the closure of the Idaho Nuclear Technology and Engineering Center Tank Farm Facility tanks WM-182 and WM-183 in accordance with Idaho Hazardous Waste Management Act/Resource Conservation and Recovery Act interim status closure requirements. Closure of these two tanks is the first in a series of closures leading to the final closure of the eleven 300,000-gal tanks in the Tank Farm Facility. As such, closure of tanks WM-182 and WM-183 will serve as a proof-of-process demonstration of the waste removal, decontamination, and sampling techniques for the closure of the remaining Tank Farm Facility tanks. Such an approach is required because of the complexity and uniqueness of the Tank Farm Facility closure. This plan describes the closure units, objectives, and compliance strategy as well as the operational history and current status of the tanks. Decontamination, closure activities, and sampling and analysis will be performed with the goal of achieving clean closure of the tanks. Coordination with other regulatory requirements, such as U.S. Department of Energy closure requirements, is also discussed.

  12. Maturing Software Engineering Knowledge through Classifications

    E-Print Network [OSTI]

    Basili, Victor R.

    Maturing Software Engineering Knowledge through Classifications: A Case Study on Unit Testing contribution to advancing knowledge in both science and engineering. It is a way of investigating Engineering knowledge, as classifications constitute an organized structure of knowledge items. Till date

  13. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Energy Savers [EERE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

  14. Hydrogen Storage Technologies Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen storage technology for transportation applications.

  15. Hydrogen Delivery Technology Roadmap, November 2005

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  16. Structure, Function and Dynamics in Adenovirus Maturation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mangel, Walter F.; San Martin, Carmen

    2014-11-01T23:59:59.000Z

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore »more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed.« less

  17. Structure, Function and Dynamics in Adenovirus Maturation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mangel, Walter F. [Brookhaven National Laboratory (BNL), Upton, NY (United States); San Martin, Carmen [Dept. of Macromolecular Structure and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Madrid (Spain)

    2014-11-01T23:59:59.000Z

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. Finally, possible roles for maturation of the terminal protein are discussed.

  18. WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM

    E-Print Network [OSTI]

    WYSS TECHNOLOGY DEVELOPMENT FELLOWSHIP NOMINATION FORM 1. Biographical Sketch _____________________________________________ ________________________________________ Wyss Enabling Technology Platform Focus research plans relative to Wyss Enabling Technology Platform. 3. Enclose supporting letter from nominator

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

  20. Source rock maturation, San Juan sag

    SciTech Connect (OSTI)

    Gries, R.R.; Clayton, J.L.

    1989-09-01T23:59:59.000Z

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  1. STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS...

    Broader source: Energy.gov (indexed) [DOE]

    also states that there are other competitive technologies, specifically amine-based absorption , which are mature and have significant advantages associated with their incumbency...

  2. Development of a fourth generation predictive capability maturity model.

    SciTech Connect (OSTI)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01T23:59:59.000Z

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  6. States & Emerging Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

  7. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

    Office of Environmental Management (EM)

    Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

  8. Environmental Education Strategic Plan

    SciTech Connect (OSTI)

    none,

    1991-12-01T23:59:59.000Z

    This document is designed to guide the Environmental Education and Development Branch (EM-522) of the EM Office of Technology (OTD) Development, Technology Integration and Environmental Education Division (EM-52) in planning and executing its program through EM staff, Operations Offices, National Laboratories, contractors, and others.

  9. Plans, Implementation, and Results

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office carries out technology research, development, and deployment through an ongoing process of planning and analysis, implementation, and review. This Web page includes links to documents that support and document the program management process, and the results and public benefits that derive from it.

  10. Building Technologies Program Planning Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and advances in renewable energy systems, could stabilize total primary energy consumption in the buildings sector to just below 2009 consumption levels by 2025. 2 In...

  11. Department of Information Technology

    E-Print Network [OSTI]

    Flener, Pierre

    Department of Information Technology Human-Computer Interaction http://www.it.uu.se/research/hci #12;InformationTechnology-HCI Department of Information Technology | www.it.uu.se Today's menu Who we and collaboration Teaching KoF 2007, effects? Vision and plans Challenges #12;InformationTechnology

  12. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) was...

  13. A study of CMOS technologies for image sensor applications

    E-Print Network [OSTI]

    Wang, Ching-Chun, 1969-

    2001-01-01T23:59:59.000Z

    CMOS (Complementary Metal-Oxide-Silicon) imager technology, as compared with mature CCD (Charge-Coupled Device) imager technology, has the advantages of higher circuit integration, lower power consumption, and potentially ...

  14. Trinity College, The university of Dublin Mature Student

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    Trinity College, The university of Dublin Mature Student GUIDE www.tcd.ie #12;#12;Peer Support Email: disab@tcd.ie Trinity Access Programme: Foundation Course for Higher Education Mature Students Web: www.tcd.ie/Trinity_Access/courses/mature_students.php Email: iboydell@tcd.ie Phone: (01) 896 2754

  15. DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas...

    Office of Environmental Management (EM)

    Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through...

  16. Master of Science in Engineering and Technology Management Engineering Management Concentration Management of Technology Concentration

    E-Print Network [OSTI]

    Selmic, Sandra

    ELEN 527 Optical Communication Systems INEN 516 Production Planning Production Planning and Sequencing Control MGMT 510 Contemporary Management ENTR 501 Technology Transfer

  17. Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    SciTech Connect (OSTI)

    Higley, B.A.

    1995-03-15T23:59:59.000Z

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

  18. Applying technology strategy with enterprise architecting : a case study in transformation planning for integrating Unmanned Aircraft Systems into the National Airspace

    E-Print Network [OSTI]

    Richardson, Kristina L. (Kristina Lynn)

    2009-01-01T23:59:59.000Z

    The research presented in this thesis combines Enterprise Architecture and Technology Strategy for analyzing, evaluating, and recommending appropriate solutions for integrating Unmanned Aircraft Systems (UAS) into the ...

  19. ash operations plan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology and Medicine Websites Summary: Information Services Operational Plan 2014 Environment We offer modern, technology rich032014 30092014 P1256 Showcase the technology...

  20. 2012 Annual Planning Summary for Fossil Energy, National Energy...

    Office of Environmental Management (EM)

    Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office 2012 Annual Planning Summary for Fossil Energy, National Energy Technology...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

  2. A study of advanced training technology: Emerging answers to tough questions

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This study reports the result of an extensive nationwide review of military, private sector, and other federal agencies and organizations that are implementing a wide variety of advanced training technologies. This report classifies the general categories of advanced training technologies found and provides an overview of each, including specific types and examples. In addition, the research findings present an organizational model for training development linking overall organizational maturity to readiness to implement specific kinds of advanced training technologies. It also presents proposed methods for selecting media, describes the organizations and the data gathered, and provides a summary of implementation success at each organization. This study is organized as a set of five topics. Each topic raises a number of important questions and provides complete or emerging answers. For organizations who have made advanced training selections, this study is a resource to benchmark their success with other organizations who have made similar selections. For new or developing training organizations, this study will help plan their future technology selections by comparing their level of organizational maturity to the documented experiences of similar organizations.

  3. Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report

    SciTech Connect (OSTI)

    Haas, J.C.; Olivo, C.A.; Wilson, K.B.

    1994-04-01T23:59:59.000Z

    An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

  4. Test Plan: Phase 1 demonstration of 3-phase electric arc melting furnace technology for vitrifying high-sodium content low-level radioactive liquid wastes

    SciTech Connect (OSTI)

    Eaton, W.C. [ed.

    1995-05-31T23:59:59.000Z

    This document provides a test plan for the conduct of electric arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384216] is the US Bureau of Mines, Department of the Interior, Albany Research Center, Albany, Oregon. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes feed preparation activities and melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a 3-phase electric arc (carbon electrode) furnace.

  5. Roadmap: Radiologic Technology Radiology Department Management Technology Associate of Technical Study

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Technology ­ Radiology Department Management Technology ­ Associate-Nov-13/LNHD This roadmap is a recommended semester-by-semester plan of study for this major. However

  6. hurricane plan UNO HURRICANE PLAN

    E-Print Network [OSTI]

    Li, X. Rong

    hurricane plan #12;UNO HURRICANE PLAN TABLE OF CONTENTS INTRODUCTION....................................................................................................................................................... 1 I. HURRICANE EMERGENCY TEAMS Hurricane Emergency Implementation Team (HEIT)......................................... 2 PPoosstt

  7. OHVT technology roadmap [2000

    SciTech Connect (OSTI)

    Bradley, R.A.

    2000-02-01T23:59:59.000Z

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  8. DOE Releases Maturity Model to Better Protect the Nation's Grid...

    Office of Environmental Management (EM)

    the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities...

  9. Aramco gears for mature saudi production

    SciTech Connect (OSTI)

    Bleakley, W.B.

    1983-07-01T23:59:59.000Z

    Aramco is encountering the condition of maturing production in some of its prolific fields. A new Exploration and Petroleum Engineering Center and other modern facilities will assist Aramco engineers in solving problems of water production, artificial lift, fluid injection, and others associated with normal reservoir depletion. The Aramco producing operation in Saudi Arabia is in 2 main parts--northern and southern. Reservoirs in the northern part (largely off shore) are generally sandstone, while those to the south are carbonate. The current trend is to produce fields according to reserves, which still gives Ghawar field a huge edge. However, offshore fields are being developed to increase production of medium to heavy crude to replace light from Ghawar to reach the goal of balanced production and reserves. Most of the older fields are under water injection to increase oil recovery. Permeabilities are high, and peripheral patterns are used, with injection wells safely outside the oil-water contacts.

  10. Baskin School of Engineering Revised Academic Plan 2006-2011

    E-Print Network [OSTI]

    Stuart, Josh

    , so the campus's graduates become contributing citizens in a high-technology society. #12 Computer Science Plan Electrical Engineering Plan Technology and Information Systems Plan Engineering ­ BS, MS, PhD Masters of Engineering ­ MS Technology and Information Management

  11. UC Santa Cruz Information Technology Strategic Plan 2014 The primary mission of ITS is to provide high quality infrastructure, support, and innovation in the delivery of information

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    support staff interaction. Outcome: · ITS services enhance faculty and student teaching and learning institution in the education of students. Over the past seven years, Information Technology is intentionally succinct and focused on what the campus can expect from ITS. Context

  12. The Economics of a Technology-Based

    E-Print Network [OSTI]

    98-2 Planning Report The Economics of a Technology-Based Service Sector Prepared by: TASC, Inc. for National Institute of Standards & Technology Program Office Strategic Planning and Economic Analysis Group January 1998 U.S Department of Commerce Technology Administration #12;#12;THE ECONOMICS OF A TECHNOLOGY

  13. CENTER FOR GEOSPATIAL TECHNOLOGY TEXAS TECH UNIVERSITY

    E-Print Network [OSTI]

    Rock, Chris

    1 CENTER FOR GEOSPATIAL TECHNOLOGY TEXAS TECH UNIVERSITY STRATEGIC PLAN MISSION STATEMENT The mission of the Center for Geospatial Technology is to promote, facilitate and support the application of geospatial technologies in interdisciplinary research, education and community service. VISION STATEMENT

  14. University of Connecticut Information Technology Security

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Information Technology Security Incident Response Plan #12;- i - Revision technology needs of the University. The Information Technology Security Office has created this Incident, affiliates, or students. Audience This document is primarily for University departmental information security

  15. Planning Tool for Strategic Evaluation of Facility Plans - 13570

    SciTech Connect (OSTI)

    Magoulas, Virginia; Cercy, Michael [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Hall, Irin [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)] [Newport News Shipbuilding, 4101 Washington Ave., Newport News, VA 23607 (United States)

    2013-07-01T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has developed a strategic planning tool for the evaluation of the utilization of its unique resources for processing and research and development of nuclear materials. The Planning Tool is a strategic level tool for assessing multiple missions that could be conducted utilizing the SRNL facilities and showcasing the plan. Traditional approaches using standard scheduling tools and laying out a strategy on paper tended to be labor intensive and offered either a limited or cluttered view for visualizing and communicating results. A tool that can assess the process throughput, duration, and utilization of the facility was needed. SRNL teamed with Newport News Shipbuilding (NNS), a division of Huntington Ingalls Industries, to create the next generation Planning Tool. The goal of this collaboration was to create a simulation based tool that allows for quick evaluation of strategies with respect to new or changing missions, and clearly communicates results to the decision makers. This tool has been built upon a mature modeling and simulation software previously developed by NNS. The Planning Tool provides a forum for capturing dependencies, constraints, activity flows, and variable factors. It is also a platform for quickly evaluating multiple mission scenarios, dynamically adding/updating scenarios, generating multiple views for evaluating/communicating results, and understanding where there are areas of risks and opportunities with respect to capacity. The Planning Tool that has been developed is useful in that it presents a clear visual plan for the missions at the Savannah River Site (SRS). It not only assists in communicating the plans to SRS corporate management, but also allows the area stakeholders a visual look at the future plans for SRS. The design of this tool makes it easily deployable to other facility and mission planning endeavors. (authors)

  16. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

  1. Smart Grid Interoperability Maturity Model Beta Version

    SciTech Connect (OSTI)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony; Houseman, Doug; Knight, Mark; Levinson, Alex; longcore, Wayne; Lowe, Randy; Mater, J.; Oliver, Terry V.; Slack, Phil; Tolk, Andreas; Montgomery, Austin

    2011-12-02T23:59:59.000Z

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across an information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.

  2. Environmental Technology Verification Program

    E-Print Network [OSTI]

    Activities.................4 Table 2.0 Records Management Responsibilities for the MMR CenterEnvironmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS

  3. Technological assessment and evaluation of high power batteries and their commercial values

    E-Print Network [OSTI]

    Teo, Seh Kiat

    2006-01-01T23:59:59.000Z

    Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

  4. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S. [Lawrence Berkeley Lab., CA (United States)

    1993-12-01T23:59:59.000Z

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  5. Building technological capability within satellite programs in developing countries

    E-Print Network [OSTI]

    Wood, Danielle Renee

    2012-01-01T23:59:59.000Z

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

  6. Evaluation of the commercial potential of novel organic photovoltaic technologies

    E-Print Network [OSTI]

    Barr, Jonathan (Jonathan Allan)

    2005-01-01T23:59:59.000Z

    Photovoltaic cells based on organic semiconducting materials have the potential to compete with the more mature crystalline and thin film based photovoltaic technologies in the future primarily due to the expectation of ...

  7. Guam Strategic Energy Plan

    SciTech Connect (OSTI)

    Conrad, M. D.

    2013-07-01T23:59:59.000Z

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  8. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29T23:59:59.000Z

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  9. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  10. Research on feline in vitro maturation and the cell cycle 

    E-Print Network [OSTI]

    Cox, Ashley Michelle

    2013-02-22T23:59:59.000Z

    The feline meiotic cycle is poorly understood. In order to elucidate the events occurring during meiosis in the cat oocyte, a study of the levels of Maturation Promoting Factor (MPF) and MAP Kinase (MAPK), enzymes thought ...

  11. A reservoir management study of a mature oil field

    E-Print Network [OSTI]

    Peruzzi, Tave

    1995-01-01T23:59:59.000Z

    to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments...

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development,...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  1. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  2. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Appendix E: Acronyms section of the Fuel Cell Technologies...

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

  7. Inheritance of mature green fruit color in cucumber

    E-Print Network [OSTI]

    Peterson, Gregory Calvin

    1986-01-01T23:59:59.000Z

    INHERITANCE OF MATURE GREEN FRUIT COLOR IN CUCUMBER A Thesis by GREGORY CALVIN PETERSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1986... Major Subject: plant Breeding INHERITANCE OF MATURE GREEN FRUIT COLOR IN CUCUMBER A Thesis by GREGORY CALVIN PETERSON Approved as to style and content by: Leonard M. Pike (Chairman of Committee) J. Creighton Miller, J (Member) James D. Smith...

  8. Proactive Planning

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01T23:59:59.000Z

    tx H2O | pg. 20 Landowners and agricultural producers in the Cedar Creek watershed are working with agency representatives and gov- ernment leaders on a proactive plan to help reduce pollution flowing into Cedar Creek Reservoir. The 34...-county watershed have an opportunity to voice their opinions and help draft the watershed protection plan for the reservoir. The plan, which will outline ways to reduce pollution and improve water quality, is an outgrowth of years of water quality monitoring...

  9. 1995-1996 Strategic Plan

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    In a rapidly changing world, effective governmental organizations must anticipate and plan for the future. Nowhere is this more true than in the realm of information generation and dissemination. The Energy Information Administration (EIA) faces a future of great opportunity and also significant challenge. Technological advances are providing opportunities to improve our work processes and the way we serve our customers. This year`s Strategic Plan was developed by an EIA Strategic Planning Group with a membership that spans the entire organization. The Strategic Plan provides both a broad vision and a clear map of EIA`s near-term future. The Strategic Planning Group conducted an analysis of the strengths and weaknesses of EIA as an organization, and of the opportunities and constraints facing EIA in the future. Opportunities exist in the future in technological advances and staff training; constraints lie in federal budget trends and staff demographics. This will require a Strategic Plan that recognizes the need to prioritize services and products across EIA, standardize technology across EIA where possible, lead with fewer layers of management, and be acutely aware of customer needs. Developing and training EIA employees to meet the challenges of rapidly changing technology and decreasing budgets were given high priority.

  10. Strategic Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a single BPA data repository * Data quality improvements * Improve model alignment with WECC planning data * Improve WECC base case coordination * Align the BPA data model with...

  11. Institutional Plan FY 2003 - 2007

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd

    2003-01-27T23:59:59.000Z

    The Fiscal Year (FY) 2003-2007 Institutional Plan describes the strategic directions and key issues that Lawrence Berkeley National Laboratory management must address with the Department of Energy (DOE) in charting its future as a multiprogram national laboratory. The Plan provides an overview of the Laboratory's mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Plan facilitates the Department of Energy's ongoing efforts to strengthen the Integrated Laboratory System. Preparation and review of the Institutional Plan is one element of the Department of Energy's strategic management planning activities, implemented through an annual planning process. The Plan supports the President's Management Agenda and the Government Performance and Results Act of 1993. The Plan complements the current performance-based contract between the Department of Energy and the Regents of the University of California, and summarizes Best Management Practices for a potential future results-based contract as a basis for achieving DOE goals and the Laboratory's scientific and operations objectives. It identifies technical and administrative directions in the context of national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Planning and Strategic Development Office from information contributed by Berkeley Lab's scientific and support divisions and DOE comments on prior years' plans. The Laboratory Mission section identifies the specific strengths of Berkeley Lab that contribute to the mission in general and the Integrated Laboratory System in particular. The Laboratory Strategic Plan section identifies the existing activities in support of DOE Office of Science and other sponsors; support for DOE goals; and the Laboratory Scientific Vision and operations goals. The Initiatives section describes some of the specific new research programs representing major long-term opportunities for the Department of Energy and Berkeley Lab. The Operations Strategic Planning section describes our strategic thinking in the areas of human resources; site and cyber security; workforce diversity; communications and trust; integrated safety management; and technology transfer activities. The Infrastructure Strategic Planning section describes Berkeley Lab's facilities planning process and our site and facility needs. The Summary of Major Issues section provides context for discussions at the Institutional Planning On-Site Review. The Resource Projections are estimates of required budgetary authority for Berkeley Lab's research programs.

  12. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    NONE

    1995-09-12T23:59:59.000Z

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  13. Risk-Based Comparison of Carbon Capture Technologies

    SciTech Connect (OSTI)

    Engel, David W.; Dalton, Angela C.; Dale, Crystal; Jones, Edward

    2013-05-01T23:59:59.000Z

    In this paper, we describe an integrated probabilistic risk assessment methodological framework and a decision-support tool suite for implementing systematic comparisons of competing carbon capture technologies. Culminating from a collaborative effort among national laboratories under the Carbon Capture Simulation Initiative (CCSI), the risk assessment framework and the decision-support tool suite encapsulate three interconnected probabilistic modeling and simulation components. The technology readiness level (TRL) assessment component identifies specific scientific and engineering targets required by each readiness level and applies probabilistic estimation techniques to calculate the likelihood of graded as well as nonlinear advancement in technology maturity. The technical risk assessment component focuses on identifying and quantifying risk contributors, especially stochastic distributions for significant risk contributors, performing scenario-based risk analysis, and integrating with carbon capture process model simulations and optimization. The financial risk component estimates the long-term return on investment based on energy retail pricing, production cost, operating and power replacement cost, plan construction and retrofit expenses, and potential tax relief, expressed probabilistically as the net present value distributions over various forecast horizons.

  14. 12010-10-21 ESDSWG -Technolgy Infusion Working Group Technology Infusion Process

    E-Print Network [OSTI]

    Christian, Eric

    12010-10-21 ESDSWG - Technolgy Infusion Working Group Technology Infusion Process Steve Olding 9th Infusion Working Group Technology Infusion Process 2009 Stakeholder needs identification Science needs End technologies Candidate technologies Known infusion barriers Infusion planning Technology matching Identified

  15. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  16. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect (OSTI)

    None,

    2003-09-30T23:59:59.000Z

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  17. Metering Plan: Monitoring Energy and Potable Water Use in PNNL EMS4 Buildings

    SciTech Connect (OSTI)

    Pope, Jason E.

    2012-07-25T23:59:59.000Z

    This Plan presents progress toward the metering goals shared by all national laboratories and discusses PNNL's contemporary approach to the installation of new meters. In addition, the Plan discusses the data analysis techniques with which PNNL is working to mature using endless data streams made available as a result of increased meter deployment.

  18. Sandia National Laboratories Institutional Plan FY1994--1999

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  19. DIGITAL ARCHITECTURE PROJECT PLAN

    SciTech Connect (OSTI)

    Thomas, Ken

    2014-09-01T23:59:59.000Z

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new technologies.

  20. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  1. ACQUISITION PLANNING

    Office of Environmental Management (EM)

    7.1 (May 2010) 1 ACQUISITION PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 7 Acquisition...

  2. Impaired response of mature adipocytes of diabetic mice to hypoxia

    SciTech Connect (OSTI)

    Hong, Seok Jong, E-mail: seok-hong@northwestern.edu; Jin, Da P.; Buck, Donald W.; Galiano, Robert D.; Mustoe, Thomas A., E-mail: tmustoe@nmh.org

    2011-10-01T23:59:59.000Z

    Adipose tissue contains various cells such as infiltrated monocytes/macrophages, endothelial cells, preadipocytes, and adipocytes. Adipocytes have an endocrine function by secreting adipokines such as interleukin (IL)-6, tumor necrosis factor (TNF)-{alpha}, leptin, and adiponectin. Dysregulation of adipokines in adipose tissues leads to a chronic low-grade inflammation which could result in atherosclerosis, hypertension, and type 2 diabetes. A sustained inflammatory state, which is characterized by prolonged persistence of macrophages and neutrophils, is found in diabetic wounds. In addition, subcutaneous adipocytes are enormously increased in amount clinically in type 2 diabetes. However, the function of subcutaneous adipocytes, which play an important role in injured tissue subjected to hypoxia, has not been well characterized in vitro due to the difficulty of maintaining mature adipocytes in culture using conventional methods because of their buoyancy. In this study, we established a novel in vitro culture method of mature adipocytes by enclosing them in a hyaluronan (HA) based hydrogel to study their role in response to stress such as hypoxia. BrdU labeling and Ki67 immunostaining experiments showed that hydrogel enclosed mature adipocytes proliferate in vitro. Both mRNA and protein expression analyses for hypoxia regulated genes, such as vascular endothelial growth factor (VEGF) and heme oxygenase 1 (HO1), showed that mature adipocytes of wild type mice respond to hypoxia. In contrast, mature adipocytes of diabetic db/db and TallyHo mice did not efficiently respond to hypoxia. Our studies suggest that mature adipocytes are functionally active cells, and their abnormal function to hypoxia can be one of underlining mechanisms in type 2 diabetes.

  3. EE Regional Technology Roadmap Includes comparison

    E-Print Network [OSTI]

    EE Regional Technology Roadmap Includes comparison against 6th Power Plan (Update cyclically Data Clearinghouse BPA/RTF NEEA/Regional Programs Group Update Regional EE Technology Roadmap Lighting

  4. Implementation of a manufacturing technology roadmapping initiative

    E-Print Network [OSTI]

    Johnson, Marcus Cullen

    2012-01-01T23:59:59.000Z

    Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

  5. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  6. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04T23:59:59.000Z

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  7. Environment, Safety and Health Progress Assessment of the Morgantown Energy Technology Center (METC)

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report documents the result of the US Department of Energy`s (DOE) Environment, Safety and Health (ES&H) Progress Assessment of the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. METC is currently a research and development facility, managed by DOE`s Office of Fossil Energy. Its goal is to focus energy research and development to develop engineered fossil fuel systems, that are economically viable and environmentally sound, for commercial application. There is clear evidence that, since the 1991 Tiger Team Assessment, substantial progress has been made by both FE and METC in most aspects of their ES&H program. The array of new and restructured organizations, systems, and programs at FE and METC; increased assignments of staff to support these initiatives; extensive training activities; and the maturing planning processes, all reflect a discernable, continuous improvement in the quality of the ES&H performance.

  8. Dnr TEKNAT 2011/85 General study plan

    E-Print Network [OSTI]

    Uppsala Universitet

    ___________________________________________________ 12 Licentiate seminars___________________________________________ 13 Examiners for courses of Science and Technology General A complete study plan for third-cycle (licentiate and doctoral) education

  9. Mercury Strategic Plan Outfall 200 Mercury Treatment Facility

    Office of Environmental Management (EM)

    Partial LMR * Alpha-5 LMR & Bldg Characterization * S&M mercury removal * Hg waterfishsediment studies * Technology Development Plan * Debris treatability study * Fate and...

  10. Chu, Locke, Browner Call for Comprehensive Energy Plan at Clean...

    Office of Environmental Management (EM)

    Clean Energy Business Plan Competition participant Superior Ecotech is installing its algae production technology at Upslope Brewing Company in Boulder, Colorado. | Photo...

  11. Alternative D and D Planning Tool - 12466

    SciTech Connect (OSTI)

    Starling, D.A.; Schubert, A.L.; Bergener, T.W. [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, Tennessee 37831-7293 (United States)

    2012-07-01T23:59:59.000Z

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began cleanup of the East Tennessee Technology Park (ETTP). UCOR's $2.2 billion contract has an initial five-year term and a four-year option period for completing the cleanup of ETTP and performing surveillance and maintenance and waste management operations at both the Oak Ridge National Laboratory and the Y-12 National Security Complex. ETTP D and D work includes disposition of large, complex, contaminated, Manhattan Project-era facilities such as the K-25 and K-27 uranium enrichment facilities. At ETTP, UCOR views the D and D process as a 'Waste Factory' with waste production lines from the point-of-generation to the point-of-disposal. Safely transforming vertically-standing buildings into horizontally-lying waste in a disposal facility is the primary cleanup objective. Whereas a factory produces widgets, D and D produces waste-lots of waste. In support of the Waste Factory view, UCOR is developing a systems planning tool to help better plan how to effect cleanup by improving waste planning, uniting waste generator with waste dis-positioner, and represent the 'waste factory' in a computer model that allows the D and D and waste management teams to better understand available disposal paths, waste uncertainties and potential consequences, driving variables, and sensitivity to changes. Any model of reality represents a compromise. Part of the Waste Factory Model's value may be in providing standardization and relative direction for assisting decision making as opposed to absolute cost or schedule answers. From that relative direction, management can commission detailed planning and estimating. Also, the model's output credibility is tied directly to its input quality. That is why, as discussed above, the Waste Factory Model's key informational component will be the standardized waste streams (e.g., Structure/Debris disposed at EMWMF) and associated standardized unit costs. The model development process generally, and the development team's collaboration, specifically, is most important. Building-in this integrity up-front, transparently, will help ensure that the model outputs are known, understood, and credible (no mysterious 'black-box' components). The Waste Factory Model is envisioned to help improve understanding of a given project's waste implications; help reveal and suggest the important few variables out of the trivial many; reveal likely process bottlenecks, and help focus risk mitigation and assumption management efforts to better manage the projected total cost. In the long term, the UCOR team's goal is to incorporate an information feedback loop to help improve the accuracy of key model attributes, such as the standardized cost information. This way, by design, the model output should improve over time and thus help the model mature into both a credible scenario tool and a standardized project planning resource. The initial model capabilities may be narrow, but with time and effort it may prove to be a timely and cost-effective tool. (authors)

  12. Erroneous coal maturity assessment caused by low temperature oxidation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Erroneous coal maturity assessment caused by low temperature oxidation Y. Copard J. R. Disnar, J. F on different outcrop coals from the French Massif Central revealed abnormally high Tmax values, which initially observed for medium to low volatile bituminous coals (Rr1.5%), was accompanied by a very clear exponential

  13. Keys for growth in Japan's mature mobile market

    E-Print Network [OSTI]

    Oto, Hiroyuki

    2005-01-01T23:59:59.000Z

    The objective of this thesis is to identify key factors that will produce further growth for NTT DoCoMo in Japan's mature mobile market. Since the early 1990s, the mobile phone market in Japan has grown rapidly, and ...

  14. Demonstrating the improvement of predictive maturity of a computational model

    SciTech Connect (OSTI)

    Hemez, Francois M [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Atamturktur, Huriye S [CLEMSON UNIV.

    2010-01-01T23:59:59.000Z

    We demonstrate an improvement of predictive capability brought to a non-linear material model using a combination of test data, sensitivity analysis, uncertainty quantification, and calibration. A model that captures increasingly complicated phenomena, such as plasticity, temperature and strain rate effects, is analyzed. Predictive maturity is defined, here, as the accuracy of the model to predict multiple Hopkinson bar experiments. A statistical discrepancy quantifies the systematic disagreement (bias) between measurements and predictions. Our hypothesis is that improving the predictive capability of a model should translate into better agreement between measurements and predictions. This agreement, in turn, should lead to a smaller discrepancy. We have recently proposed to use discrepancy and coverage, that is, the extent to which the physical experiments used for calibration populate the regime of applicability of the model, as basis to define a Predictive Maturity Index (PMI). It was shown that predictive maturity could be improved when additional physical tests are made available to increase coverage of the regime of applicability. This contribution illustrates how the PMI changes as 'better' physics are implemented in the model. The application is the non-linear Preston-Tonks-Wallace (PTW) strength model applied to Beryllium metal. We demonstrate that our framework tracks the evolution of maturity of the PTW model. Robustness of the PMI with respect to the selection of coefficients needed in its definition is also studied.

  15. What is MRsa? The McGill Mature &

    E-Print Network [OSTI]

    Kambhampati, Patanjali

    What is MRsa? The McGill Mature & Re-entry Students' A s s o c i a t i o n (MRSA) facilitates from many different backgrounds and pursue various courses of study. All MRSA members are encouraged to use the office to meet others, study, or just decompress before the next class. Additionally, MRSA

  16. Developing a Maturity Matrix for Software Product Management

    E-Print Network [OSTI]

    Utrecht, Universiteit

    management (SPM) is a crucial area within many software companies. Good product management has a high impact, as it improves product quality and prevents release delays. To improve the SPM practice, we propose the maturity has to solve by getting experienced in the area. Hence, lifting the quality of the product

  17. HTI retrieval demonstration project execution plan

    SciTech Connect (OSTI)

    Ellingson, D.R.

    1997-09-04T23:59:59.000Z

    This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106.

  18. 11.123 Big Plans, Spring 2003

    E-Print Network [OSTI]

    de Monchaux, John

    This course explores social, technological, political, economic, and cultural implications of "Big Plans" in the urban context. Local and international case studies (such as Boston's Central Artery and Curitiba, Brazil's ...

  19. Clean Energy Jobs Plan Introduction

    E-Print Network [OSTI]

    times as many jobs per dollar as gas, oil or coal. And dollars invested in clean energy tend to stay. Investment in clean technology is also growing. Clean tech investment in California reached $3.3 billionClean Energy Jobs Plan Introduction When I was governor, California was the world leader

  20. PLANNING UNIT March 18, 2009

    E-Print Network [OSTI]

    Prasad, Sanjiva

    PLANNING UNIT March 18, 2009 Advertisement for IREDA Renewable Energy Chair in the Institute acclaimed credentials to its Chair positions. IREDA Renewable Energy Chair was established in the year 1997. The objectives of IREDA Renewable Energy Chair include Research and Development, upgradation of technology

  1. Energy Planning - R. J. Reynolds Style 

    E-Print Network [OSTI]

    Cooper, R. H., Jr.

    1983-01-01T23:59:59.000Z

    Technology Conference Volume II, Houston, TX, April 17-20, 1983 ? Development of general worldwide energy outlook planning information ? Development of an annual, five-year Energy Strategic Plan ? Technical training of plant-level energy engineers... on the corporate level which, in turn, cascade down to the lower operating company levels. The availability of uniform energy outlook information is important to providing a basis for consistent energy planning efforts throughout the corpo ration...

  2. Electricity market module: Electricity capacity planning submodule

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The purpose of this report is to describe modifications to the Electricity Capacity Planning Submodule (ECP) for the Annual Energy Outlook 1996. It describes revisions to enhance the representation of planned maintenance, incorporate technological improvements in operating efficiencies, revise the algorithm for determining international firm power imports, and include risk premiums for new plant construction.

  3. Office Technology RD&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is needed about the physiochemical properties, reactivities, and compatibilities of bio-oil intermediates for fuel finishing within an existing petroleum refinery. Ct-Q. Aqueous...

  4. Technology Planning in Smaller Organizations or Nonprofits

    E-Print Network [OSTI]

    Schweik, Charles M.

    Cycle (SDLC) IT Project Identification & Selection Requirements Analysis Logical Design Physical Design

  5. Traditional Information Technology Planning in Larger

    E-Print Network [OSTI]

    Schweik, Charles M.

    Development Life Cycle (SDLC) Often called "The Waterfall Method" (This material adapted from Hoffer, George Life Cycle (SDLC) IT Project Identification & Selection The Traditional Systems Development Life Cycle (SDLC) IT Project Identification & Selection Requirements Analysis #12;3 The Traditional Systems

  6. Office of Information Technology Strategic Planning Process

    E-Print Network [OSTI]

    Liu, Paul

    systems and applications. From the recent data center cooling and equipment enhancements to the 10 Gb of the university's primary data center facilities, which house mission-critical systems, applications and data center at NC State urgent. The university's central data facilities are at capacity in terms of cooling

  7. EMERGENCY RESPONSE PLAN TECHNOLOGICAL INSTITUTE BUILDING (TECH)

    E-Print Network [OSTI]

    Grzybowski, Bartosz A.

    SUCH AS INJURY, FIRE, EXPLOSION, SMOKE OR LIFE-THREATENING HAZARDOUS MATERIALS RELEASE, CALL EMERGENCY SERVICES by ________________________________________________ Date ___________ University Police #12;3 FACT SHEET 1 Calling for Emergency Assistance Fire, smoke, explosion, medical emergency, and life-threatening hazardous material spills/odors/leaks (including after

  8. EMERGENCY RESPONSE PLAN TECHNOLOGICAL INSTITUTE BUILDING (TECH)

    E-Print Network [OSTI]

    Mohseni, Hooman

    Assistance Fire, smoke, explosion, medical emergency, and life-threatening hazardous material spills V. BUILDING SAFETY SYSTEMS 21 VI. FIRE FIGHTING 24 VII. CLOTHING FIRE 25 VIII. CHEMICAL, BIOLOGICAL ALARM NOTIFICATION RESPONSIBILITIES 36 G. FIRE EXTINGUISHER 38 H. EMERGENCY GUIDELINES FOR INSTRUCTORS

  9. Office Technology RD&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEE of theOctober is Office of

  10. Bioenergy Technologies Office: Plans, Implementation, and Results

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments Energy RatingsDepartmentRevs Up Its

  11. University of Connecticut Information Technology Security

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Information Technology Security Incident Response Plan #12;- i - Revision requirements for the protection of that information on the University. The University has had security of the University. The Information Technology Security Office has created this Incident Response Plan to assist

  12. Revised GCFR safety program plan

    SciTech Connect (OSTI)

    Kelley, A.P.; Boyack, B.E.; Torri, A.

    1980-05-01T23:59:59.000Z

    This paper presents a summary of the recently revised gas-cooled fast breeder reactor (GCFR) safety program plan. The activities under this plan are organized to support six lines of protection (LOPs) for protection of the public from postulated GCFR accidents. Each LOP provides an independent, sequential, quantifiable risk barrier between the public and the radiological hazards associated with postulated GCFR accidents. To implement a quantitative risk-based approach in identifying the important technology requirements for each LOP, frequency and consequence-limiting goals are allocated to each. To ensure that all necessary tasks are covered to achieve these goals, the program plan is broken into a work breakdown structure (WBS). Finally, the means by which the plan is being implemented are discussed.

  13. Dezincing Technology

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01T23:59:59.000Z

    Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  14. Towards Mature IT Services Frank Niessink and Hans van Vliet

    E-Print Network [OSTI]

    van Vliet, Hans

    ) is the Information Technology Infrastructure Library (ITIL), which seeks to publish a standard of service quality

  15. Technological assessment of silicon on lattice engineered substrate (SOLES) for optical applications

    E-Print Network [OSTI]

    Leung, Man Yin

    2008-01-01T23:59:59.000Z

    Over the past decade, much effort had been placed to integrate optoelectronic and electronic devices. Silicon on lattice engineered substrate (SOLES) had been developed for such purpose. As SOLES technology mature, a ...

  16. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01T23:59:59.000Z

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  17. Energy planning and management plan

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This paper contains printed copies of 60FR 53181, October 12, 1995 and 60 FR 54151. This is a record of decision concerning the Western Area Power Administration`s final draft and environmental impact statement, and Energy Planning and Management Program.

  18. Institutional plan. FY 1997-2002

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The FY 1997-2002 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. Of particular significance this year is the role of computing sciences in supporting a broad range of research activities, at Berkeley Lab in particular and throughout the entire Department of Energy system in general. The Institutional Plan is a management report for integration with the Department of Energy`s mission and programs and is an element of Department of Energy`s strategic management planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives.

  19. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  20. Cohort variation in offspring growth and survival: prenatal and postnatal factors in a late-maturing

    E-Print Network [OSTI]

    Le Galliard, Jean-François

    of mark­recapture data collected at Mont Ven- toux, France. In this species, females are mature at the age

  1. Plan Your School Visit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Your School Visit For Teachers Teachers Visit the Museum We Visit You Teacher Resources Home Schoolers Plan Your School Visit invisible utility element Plan Your School Visit...

  2. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

  3. Mapping brain maturation Arthur W. Toga, Paul M. Thompson and Elizabeth R. Sowell

    E-Print Network [OSTI]

    Thompson, Paul

    Mapping brain maturation Arthur W. Toga, Paul M. Thompson and Elizabeth R. Sowell Laboratory 225, Los Angeles, CA 90095-7332, USA Human brain maturation is a complex, lifelong process that can. Introduction The dynamic course of brain maturation is one of the most fascinating aspects of the human

  4. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life

    E-Print Network [OSTI]

    Hebert, Daniel N.

    Tyrosinase maturation through the mammalian secretory pathway: bringing color to life Ning Wang-mail: dhebert@biochem.umass.edu Summary Tyrosinase has been extensively utilized as a model substrate to study in the matur- ation of tyrosinase from when it is first synthesized by cytosolic ribosomes until the mature

  5. Planning Report 01-1 Economic Impact Assessment

    E-Print Network [OSTI]

    Planning Report 01-1 Economic Impact Assessment of the NIST's Josephson Volt Standard Program and Economic Analysis Group July 2001 U.S Department of Commerce Technology Administration #12;Economic Impact of Standards and Technology Program Office Strategic Planning and Economic Analysis Group Prepared under

  6. Radiation Center Strategic Plan 2012 Mission, Vision, Goals and Strategies

    E-Print Network [OSTI]

    -term beneficial applications of nuclear science and technology. II. Planning Horizons Three planning horizons of applications of nuclear science and technology. To us this provides a vision that the Radiation Center will have widely recognized facilities and people who enable the application of nuclear analytical

  7. Natural Gas Multi-Year Program Plan

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  8. ERSC 230H 2008-09 Syllabus-1-Energy Science and Technology (ERSC 230H)

    E-Print Network [OSTI]

    Fox, Michael

    ) Group project (20%): Residential green energy plan. Assignment details to be provided later. #12;ERSC of solar photovoltaic technology · Social acceptance of green energy technology · Social friction

  9. SOCAP: System for Operations Crisis Action Planning Marie A. Bienkowski

    E-Print Network [OSTI]

    Wilkins, David E.

    ), to the problem of generating crisis action operations plans in a joint military domain* . We describe our technology to the general problem of planning and executing joint military operations including supporting or development activity has integrated a generative planning system into an operational military environment

  10. Marketing Plan for Demonstration and Validation Assets

    SciTech Connect (OSTI)

    None

    2008-05-30T23:59:59.000Z

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  11. Institutional plan. FY 1998--2003

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This Institutional Plan for Argonne National Laboratory contains central elements of Argonne`s strategic plan. Chapter II of this document discusses the Laboratory`s mission and core competencies. Chapter III presents the Science and Technology Strategic Plan, which summarizes key features of the external environment, presents Argonne`s vision, and describes how the Laboratory`s strategic goals and objectives map onto and support DOE`s four business lines. The balance of the chapter comprises the science and technology area plans, organized by the four DOE business lines. Chapter IV describes the Laboratory`s ten major initiatives, which cover a broad spectrum of science and technology. Our proposal for an Exotic Beam Facility aims at, among other things, increased understanding of the processes of nuclear synthesis during and shortly after the Big Bang. Our Advanced Transportation Technology initiative involves working with US industry to develop cost-effective technologies to improve the fuel efficiency and reduce the emissions of transportation systems. The Laboratory`s plans for the future depend significantly on the success of its major initiatives. Chapter V presents our Operations and Infrastructure Strategic Plan. The main body of the chapter comprises strategic plans for human resources; environmental protection, safety, and health; site and facilities; and information management. The chapter concludes with a discussion of the business and management practices that Argonne is adopting to improve the quality and cost-effectiveness of its operations. The structure and content of this document depart from those of the Institutional Plan in previous years. Emphasis here is on directions for the future; coverage of ongoing activities is less detailed. We hope that this streamlined plan is more direct and accessible.

  12. Worker safety in a mature carbon capture and storage industry in the United States based upon analog industry experience

    E-Print Network [OSTI]

    Jordan, P.D.

    2014-01-01T23:59:59.000Z

    attributable to carbon capture and storage in 2050.safety in a mature carbon capture and storage industry insafety in a mature carbon capture and storage (CCS) industry

  13. Plans, Updates, Regulatory Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewardship Environmental Protection Obeying Environmental Laws Individual Permit Documents Individual Permit: Plans, Updates, Regulatory Documents1335769200000Plans...

  14. Annual Training Plan Template

    Broader source: Energy.gov [DOE]

    The Annual Training Plan Template is used by an organization's training POC to draft their organization's annual training plan.

  15. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  16. Disability Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDieselDirectionsDirectorateDisability Plans

  17. Vision Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilize AvailableMedia1.1 The History of theVision Plan

  18. Plans, Procedures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysics Physics Oursources |VisitPlans,

  19. Strategic Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariateSiteSeparationsRelevantStrategic Plan

  20. Medical Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home andDispositionMechanical R&DMakingMedical Plans

  1. Institutional Plan FY 2001-2005

    SciTech Connect (OSTI)

    Chartock, Michael; Hansen, Todd, editors

    2000-07-01T23:59:59.000Z

    The FY 2001-2005 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the Plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cells Program. View other sections of the MYRD&D Plan. MYRD&D Plan Section 5.0 Systems Integration, 2012 More Documents & Publications Fuel Cell Technologies Office...

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Manufacturing R&D technical plan section...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

  5. Influence of modeling and simulation on the maturation of plasma technology: Feature evolution and reactor design

    E-Print Network [OSTI]

    Kushner, Mark

    requires fluxes from reactor scale phenom- ena. To achieve the goal of using MS for first principles design and reactor design David B. Gravesa) Department of Chemical Engineering, University of California, Berkeley and future potential of MS for feature evolution and plasma reactor design. © 2003 American Vacuum Society

  6. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01T23:59:59.000Z

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  7. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Spencer, Charles G

    2012-12-01T23:59:59.000Z

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) vision for a commitment to energy effi ciency and sustainability and to achievement of the Guiding Principles. Specifi cally, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan, while promoting overall sustainability and reduction of greenhouse gas emissions. The mission of the Y-12 Energy Management program is to incorporate energy-effi cient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. The plan addresses greenhouse gases, buildings, fleet management, water use, pollution prevention, waste reduction, sustainable acquisition, electronic stewardship and data centers, site innovation and government-wide support.

  8. CMM Technology

    SciTech Connect (OSTI)

    Ward, Robert C.

    2008-10-20T23:59:59.000Z

    This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

  9. Software Technology Readiness for the Smart Grid

    SciTech Connect (OSTI)

    Tugurlan, Maria C.; Kirkham, Harold; Chassin, David P.

    2011-06-13T23:59:59.000Z

    Abstract Budget and schedule overruns in product development due to the use of immature technologies constitute an important matter for program managers. Moreover, unexpected lack of technology maturity is also a problem for buyers. Both sides of the situation would benefit from an unbiased measure of technology maturity. This paper presents the use of a software maturity metric called Technology Readiness Level (TRL), in the milieu of the smart grid. For most of the time they have been in existence, power utilities have been protected monopolies, guaranteed a return on investment on anything they could justify adding to the rate base. Such a situation did not encourage innovation, and instead led to widespread risk-avoidance behavior in many utilities. The situation changed at the end of the last century, with a series of regulatory measures, beginning with the Public Utility Regulatory Policy Act of 1978. However, some bad experiences have actually served to strengthen the resistance to innovation by some utilities. Some aspects of the smart grid, such as the addition of computer-based control to the power system, face an uphill battle. It is our position that the addition of TRLs to the decision-making process for smart grid power-system projects, will lead to an environment of more confident adoption.

  10. New Production Reactors Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    Part I of this New Production Reactors (NPR) Program Plan: describes the policy basis of the NPR Program; describes the mission and objectives of the NPR Program; identifies the requirements that must be met in order to achieve the mission and objectives; and describes and assesses the technology and siting options that were considered, the Program's preferred strategy, and its rationale. The implementation strategy for the New Production Reactors Program has three functions: Linking the design, construction, operation, and maintenance of facilities to policies requirements, and the process for selecting options. The development of an implementation strategy ensures that activities and procedures are consistent with the rationale and analysis underlying the Program. Organization of the Program. The strategy establishes plans, organizational structure, procedures, a budget, and a schedule for carrying out the Program. By doing so, the strategy ensures the clear assignment of responsibility and accountability. Management and monitoring of the Program. Finally, the strategy provides a basis for monitoring the Program so that technological, cost, and scheduling issues can be addressed when they arise as the Program proceeds. Like the rest of the Program Plan, the Implementation Strategy is a living document and will be periodically revised to reflect both progress made in the Program and adjustments in plans and policies as they are made. 21 figs., 5 tabs.

  11. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  12. Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories

    SciTech Connect (OSTI)

    Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

  13. advanced technologies based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ramezan 135 A backcast methodology for planning and justification of advanced manufacturing technology acquisition: A model of capability building process. Open Access Theses...

  14. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08T23:59:59.000Z

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

  1. Information Technology Specialist (System Analysis/Information Security)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will provide the technical direction, planning, programming, implementation and operations of the Information Technology (IT) program for the Carlsbad Field...

  2. GEND planning report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    The Three Mile Island (TMI) Unit 2 accident on March 28, 1979 was and is of great concern to the nuclear industry; electric power generating companies and their customers, regulatory and other government agencies, the entire nuclear community, and to the country as a whole. While the accident resulted in only limited external plant radiation exposure, the plant itself suffered extensive damage with high radiation contamination within the reactor and auxiliary system facilities. The GEND Planning Report for cleanup activities at TMI-2 covers the areas of: instrumentation and electrical equipment survivability; fission product transport; decontamination/radiation dose reduction technology; data bank organization and sample archive facility; characterization of primary system pressure boundary and mechanical components; core damage assessment; and fuel handling, removal, examination and disposal.

  3. Crossing the Valley of Death: Policy Options to Advance the Uptake of Energy-Efficient Emerging Technologies in US Industry

    E-Print Network [OSTI]

    Harris, J.; Bostrom, P.; Lung, R. B.

    2011-01-01T23:59:59.000Z

    and health of American manufacturers. This paper examines the market conditions and policy measures that affect the commercialization and adoption rate of promising, new energy-efficient industrial technologies. Market maturity, macroeconomic health, public...

  4. Hanford Site Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01T23:59:59.000Z

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  5. 2030 OCARTS Plan Report

    E-Print Network [OSTI]

    Association of Central Oklahoma Governments

    ......................................Director of Planning & Program Development Pearlie Tiggs................................................................... Community Planner 2030 OCARTS Plan Report Table of Contents PART 1 INTRODUCTION........................................................................ 1 Federal Legislation.......................................................................... 1 Purpose of the Plan Report and Relationship to other Plan Documents............. 3 Organization of the Transportation Planning Process...

  6. Relationship between bitumen maturity and organic facies in Devonian shales from the Appalachian basin

    SciTech Connect (OSTI)

    Daly, A.R.

    1988-01-01T23:59:59.000Z

    Variation in several bitumen maturity parameters was studied in a core of Devonian shale from the central Appalachian basin. Kerogens in the shales are at maturity levels equivalent to the early stages of oil generation and range in composition from Type III-IV to Type II-III. Maturity parameters based on steranes, terpanes, and n-alkanes exhibit fluctuations that are unrelated to thermal maturity changes in the core. The parameters correlate with one another to a high degree and appear to be directly or indirectly related to the organic facies of the shales. The maturity level indicated by each parameter increases with total organic carbon (TOC) content and hydrogen index value. The greatest variation occurs in rocks with TOC values below 2% and hydrogen index values below 250. The data provide a good opportunity to examine the dependency of bitumen maturity on organic facies, and they highlight a caveat to be considered during interpretation.

  7. Managing the integration of technology into the product development pipeline

    E-Print Network [OSTI]

    Barretto, Eduardo F., 1971-

    2005-01-01T23:59:59.000Z

    Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

  8. Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Li, Mo

    Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF FINANCIAL SERVICES ADMINSTRATION Cash/Investment Management Debt Management Georgia Tech Facilities, Inc. Georgia Advanced Technology Ventures, Inc. Project Accounting Cost Accounting Rate Studies Negotiations Salary, Planning

  9. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01T23:59:59.000Z

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  10. PLAN100%DIGITAL PLAN100%DIGITAL

    E-Print Network [OSTI]

    en un conjunto d e servicios digitales. RAZONES DEL PLAN: Existe un nú mero importante de institu tos

  11. Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.

    E-Print Network [OSTI]

    Aamodt, Agnar

    Advances in Drilling Technology - E-proceedings of the First International Conference on Drilling of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling PÃ¥l The drilling process is getting increasingly more complex as oil fields mature and technology evolves

  12. Summary. Mature nests of the Neotropical myrmicine ant Blepharidatta conops are short blind vertical cylinders, in

    E-Print Network [OSTI]

    Villemant, Claire

    Summary. Mature nests of the Neotropical myrmicine ant Blepharidatta conops are short blind of intranidal phragmosis in ants. The ergatoid queen of Blepharidatta conops (Formicidae, Myrmicinae) blocks

  13. Management Plan Supplement Yakima Subbasin Plan

    E-Print Network [OSTI]

    #12;Management Plan Supplement Yakima Subbasin Plan November 26, 2004 Prepared for the Presented's subbasin planning process is iterative and designed within an adaptive management framework. Management is comprised of elected officials from local governments throughout the subbasin, and meets regularly to work

  14. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Oliver, Douglas L.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

  15. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

  16. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  17. Innovative SQA Service Maturity Model using CMMI and ITIL

    E-Print Network [OSTI]

    Shankar, G

    2012-01-01T23:59:59.000Z

    This Journal details a maturity model for SQA services which has been developed during QMS implementation in the IT division of a large multinational organization. The scope of the engagement was to establish a standard set of processes based on CMMI\\textregistered and ITIL\\textregistered Framework across four business verticals scattered in Europe, United States and Asia. The services of Software Quality Analyst (SQA) from different vendors were leveraged to facilitate implementation of processes which was referred to as the Quality Management System (QMS). To co-ordinate and support QMS implementation, a Software Quality Assurance Group (SQAG) was established at the organizational level. Considering the large number of applications, the business verticals proposed that process implementation should be owned and managed by practitioners themselves so that the mass deployment of QMS can be achieved at a faster rate with the same SQA capacity. This called for a need to devise an innovative implementation solut...

  18. DWPF Development Plan. Revision 1

    SciTech Connect (OSTI)

    Holtzscheiter, E.W.

    1994-05-09T23:59:59.000Z

    The DWPF Development Plan is based on an evaluation process flowsheet and related waste management systems. The scope is shown in Figure 1 entitled ``DWPF Process Development Systems.`` To identify the critical development efforts, each system has been analyzed to determine: The identification of unresolved technology issues. A technology issue (TI) is one that requires basic development to resolve a previously unknown process or equipment problem and is managed via the Technology Assurance Program co-chaired by DWPF and SRTC. Areas that require further work to sufficiently define the process basis or technical operating envelop for DWPF. This activity involves the application of sound engineering and development principles to define the scope of work required to complete the technical data. The identification of the level of effort and expertise required to provide process technical consultation during the start-up and demonstration of this first of a kind plant.

  19. 11.479 Water and Sanitation Infrastructure Planning in Developing Countries, Spring 2004

    E-Print Network [OSTI]

    Davis, Jennifer

    Policy and planning for the provision of water supply and sanitation services in developing countries. Reviews available technologies, but emphasizes the planning and policy process, including economic, social, environmental, ...

  20. Accidental Death & Dismemberment Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Death & Dismemberment Plan A comprehensive benefits package with plan options for health care and retirement to take care of our employees today and tomorrow. Contact...

  1. Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

  2. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-07-31T23:59:59.000Z

    FIU-HCET personnel visited the Special Technologies Laboratory (STL) for discussions with the Principal Investigator (PI) of Laser Induced Fluorescence Imaging (LIFI) and for training in LIFI. Mr. Peter Gibbons, Tanks Retrieval Technology Integration Manager, visited FIU-HCET on July 20, 1999. Mr. Gibbons inspected the pipeline unplugging experimental facility at the HCET testing field. The detailed test bed construction, testing plan, and plugging material specifications were discussed.

  3. Insurgent strategies for creating inimitability within mature digital ecosystems

    E-Print Network [OSTI]

    Baker, John A. (John Alan)

    2009-01-01T23:59:59.000Z

    Rich software application functionality once constrained to the desktop is now available via the World Wide Web (WWW) with the introduction of emergent Web2.0 technologies. Leveraging the Softwareas- a-service (SaaS) model, ...

  4. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    SciTech Connect (OSTI)

    Beggs, S.D.

    2000-12-07T23:59:59.000Z

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes strategic plans for human resources; environmental protection, safety, and health; site and facilities; security, export control, and counterintelligence; information management; communications, outreach, and community affairs; performance-based management; and productivity improvement and overhead cost reduction. Finally, Chapter VI provides resource projections that are a reasonable baseline for planning the Laboratory's future.

  5. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30T23:59:59.000Z

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  6. Plans, Implementation, and Results

    Broader source: Energy.gov [DOE]

    About the Weatherization and Intergovernmental Programs Office (WIPO) including information on plans, implementations, and results.

  7. Climate change action plan

    E-Print Network [OSTI]

    Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

  8. Effect of grass maturity and starch supplementation on nutrient digestibility in dairy cows

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Effect of grass maturity and starch supplementation on nutrient digestibility in dairy cows AM van Box 160, 8200 AD Lelystad, The Netherlands Digestion of fibre from more mature grass is lower than fibre digestion. In a 2 x 2 factorial experiment we examined the possibility of interaction between

  9. Dveloppement de la fonction digestive : rgulation de la maturation des enzymes de la bordure

    E-Print Network [OSTI]

    Boyer, Edmond

    Développement de la fonction digestive : régulation de la maturation des enzymes de la bordure en cellulaire et Physiopathologie digestives, 3, avenue Molière, 67200 Strasbourg, France. Summary. Development of the digestive function :regulation of the maturation of intestinal brush border enzymes. During the suckling

  10. J Bone Miner Metab . Author manuscript Mineral maturity and crystallinity index are distinct characteristics of bone

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    J Bone Miner Metab . Author manuscript Page /1 13 Mineral maturity and crystallinity index are distinct characteristics of bone mineral Delphine Farlay 1 * , G rard Panczeré 2 , Christian Rey 3 , Pierre the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral

  11. ORIGINAL RESEARCH Minerals Form a Continuum Phase in Mature Cancellous Bone

    E-Print Network [OSTI]

    Price, Paul A.

    ORIGINAL RESEARCH Minerals Form a Continuum Phase in Mature Cancellous Bone Po-Yu Chen · Damon the hierarchical structure of mineral in mature bone. A method to completely deproteinize bone without altering of mineral and protein constituents. SEM revealed that bone minerals are fused together and form a sheet

  12. Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta

    E-Print Network [OSTI]

    Sander, Maike

    Urocortin 3 Marks Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker

  13. Mesenchymal Nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation

    E-Print Network [OSTI]

    Gronostajski, Richard M.

    lung maturation Yu-Chih Hsu a , Jason Osinski a , Christine E. Campbell a , E. David Litwack b , Dan 2011 Accepted 6 April 2011 Available online 13 April 2011 Keywords: NFI-B Lung development Mesenchymal is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects

  14. Effects of Sample Storage on Biosolids Compost Stability and Maturity Evaluation

    E-Print Network [OSTI]

    Ma, Lena

    Effects of Sample Storage on Biosolids Compost Stability and Maturity Evaluation L. Wu and L. Q. Ma-drying of soil sam-Compost stability and maturity are important parameters of com- ples is the most common practice (Bates, 1993), despitepost quality. To date, nearly all compost characterization has been

  15. On the Maturity of Open Source BPM Systems Petia Wohed1

    E-Print Network [OSTI]

    van der Aalst, Wil

    On the Maturity of Open Source BPM Systems Petia Wohed1 , Arthur H.M. ter Hofstede2 , Nick Russell3 Management (BPM) systems and the increasing acceptance and spread of open source software. This development and BPM systems? 2. What is the maturity level of these systems? Seeking answers to these questions we

  16. 1 Background and Motivation Today, services based on web technology are a hot

    E-Print Network [OSTI]

    van der Mei, Rob

    1 Background and Motivation Today, services based on web technology are a hot topic and popularity of e-commerce is growing. The increasing role of web technology is particularly strong in business that the maturity level of web browsing performance is still low, or at least unstable. In current practise, popular

  17. Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA Component Model

    E-Print Network [OSTI]

    Emmerich, Wolfgang

    Component Technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA Component Model Wolfgang, such as Java Beans and distributed object technolo- gies, such as the Common Object Request Broker Archi how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans

  18. Campus Planning + Design -Role and Responsibilities Campus Planning + Design is responsible for the planning, design and implementation

    E-Print Network [OSTI]

    Dasgupta, Dipankar

    selection, ergonomic solutions, specifications, and the coordination of technology with furnishings The staff of Campus Planning + Design routinely examines the physical campus and individual project requests 1 #12;2 selection is accomplished through pre-qualification guidelines including, but not limited to

  19. BETO Announces Updated Multi-Year Program Plan: November 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Bioenergy Technologies Office is pleased to announce the release of a newly updated Multi-Year Program Plan (MYPP). This MYPP sets forth the goals and structure of the Bioenergy...

  20. Solid-State Lighting R&D Multi-Year Program Plan | Department...

    Office of Environmental Management (EM)

    several years, and includes an overview of the status of SSL technology, the current DOE SSL portfolio, and the technology R&D plan. (104 pages, April 2014-Updated May 2014)...

  1. DECISION MODELS FOR EMERGENCY RESPONSE PLANNING

    E-Print Network [OSTI]

    Wang, Hai

    Under FEMA Grant EMW-2004-GR-0112 September 28, 2004 Center for Risk and Economic Analysis of Terrorism by the United States Department of Homeland Security through the Center for Risk and Economic Analysis years proved invaluable as a decision-planning tool. Known as the science and technology of decision

  2. Start your information security planning here!

    E-Print Network [OSTI]

    Magee, Joseph W.

    Start your information security planning here! Save the Date July 15, 2008 8:30 am ­ 12:30 pm-technology crimes. For additional information, visit http://csrc.nist.gov/secure iz/b or contact: securebiz developed a workshop to help the small business owner increase information system security. Learn how

  3. Annual Performance Plan Fiscal Year 2013

    E-Print Network [OSTI]

    Mathis, Wayne N.

    in the Smithsonian's Federal budget documents and Enterprise Resource Planning (ERP) financial accounting system next-generation technologies to explore our own solar system, meteorites, the Earth's geological past will build bridges of mutual respect, and present the diversity of world cultures and the joy of creativity

  4. Annual Performance Plan Fiscal Year 2011

    E-Print Network [OSTI]

    Mathis, Wayne N.

    with the program structure used in the Smithsonian's Federal budget documents and Enterprise Resource Planning nextgeneration technologies to explore our own solar system, meteorites, the Earth's geological past and present countries and expertise and collections that encompass the globe, we will build bridges of mutual respect

  5. Annual Performance Plan Fiscal Year 2012

    E-Print Network [OSTI]

    Mathis, Wayne N.

    with the program structure used in the Smithsonian's Federal budget documents and Enterprise Resource Planning to understand the fundamental nature of the cosmos, using nextgeneration technologies to explore our own solar and collections that encompass the globe, we will build bridges of mutual respect, and present the diversity

  6. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29T23:59:59.000Z

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  7. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    SciTech Connect (OSTI)

    NONE

    1993-10-29T23:59:59.000Z

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  8. BUSINESS CONTINUITY PLANNING RESOURCES FOR SMALL-AND MEDIUM-

    E-Print Network [OSTI]

    BUSINESS CONTINUITY PLANNING RESOURCES FOR SMALL- AND MEDIUM- SIZED BUSINESSES May 2010 Prepared and supported by the Northwest Regional Technology Center for Homeland Security Business Continuity Planning Resources for Small- and Medium- Sized Businesses KS Judd AM Lesperance May 14, 2010 #12;DISCLAIMER

  9. Industrial Engineering & ManagementStrategic Plan 2014-2018

    E-Print Network [OSTI]

    Piao, Daqing

    Industrial Engineering & ManagementStrategic Plan 2014-2018 College of Engineering, Architecture & Technology #12;Strategic Plan 2014-2018 Industrial Engineering and Management at Oklahoma State University and first Ph.D. in 1960. This School has been represented and led by giants in Industrial Engineering

  10. Program Academic Quality Plan Department of Construction Management

    E-Print Network [OSTI]

    Moore, Paul A.

    Program Academic Quality Plan Department of Construction Management Bowling Green State University://www.bgsu.edu/colleges/technology/undergraduate/cmt/index.html Integral in this effort is our Program Academic Quality Plan. I. Bowling Green State University Mission Bowling Green State University provides educational experiences inside and outside the classroom

  11. Department of Engineering Technology Technology Education

    E-Print Network [OSTI]

    Bieber, Michael

    Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

  12. OFFICE OF INFORMATION TECHNOLOGY COMPUTER SECURITY POLICY

    E-Print Network [OSTI]

    Hemmers, Oliver

    OFFICE OF INFORMATION TECHNOLOGY COMPUTER SECURITY POLICY RESPONsmLE ADMINISTRATOR: RESPONsm Manual, Chapter 14: Data and Information Security, Section 4, Information Security Plans ­ Physical%20-%20DATA%20AND%20INFORMATION%20SECURITY.pdf. CONTACTS Refer to the Office of Information Technology

  13. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  14. 65 Contingency Planning Issues CONTINGENCY PLANNING ISSUES

    E-Print Network [OSTI]

    . The plan relies on a mixed strategy response to an energy shortage. The plan uses a free market approach to local jurisdic- tions, economic considerations, revisions to the California Energy Shortage Contingency multiple jurisdictions or agencies. LOCAL GOVERNMENT ASSISTANCE PROGRAM The purpose of the Energy

  15. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

  16. Plan competitions reveal entrepreneurial talent

    SciTech Connect (OSTI)

    Madison, Alison L.

    2011-05-15T23:59:59.000Z

    Monthly economic diversity column for Tri-City Herald business section. Excerpt below: There’s something to be said for gaining valuable real-world experience in a structured, nurturing environment. Take for instance learning to scuba dive in the comfort of my resort pool rather than immediately hanging out with sharks while I figure out little things like oxygen tanks and avoiding underwater panic attacks. Likewise, graduate students are getting some excellent, supportive real-world training through university business plan competitions. These competitions are places where smart minds, new technologies, months of preparation and coaching, and some healthy pre-presentation jitters collide to reveal not only solid new business ideas, but also some promising entrepreneurial talent. In fact, professionals from around our region descend upon college campuses every spring to judge these events, which help to bridge the gap between academics and the real technology and business-driven economy.

  17. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  18. New maturity indicators based on spectral fluorescence of alginite and bitumen, Monterey Formation, California

    SciTech Connect (OSTI)

    Lee, Chungi; Kennicutt, M.C. II (Texas A and M Univ., College Station (United States)); Lo, H.B. (Exxon Production Research Co., Houston, TX (United States))

    1991-03-01T23:59:59.000Z

    Conventional assessment of maturation level in the Monterey has been problematic, since sporinite and vitrinite are rare or absent. Organic matter is largely alginite and amorphous material, and reliable vitrinite reflectance (R{sub o}%) and Thermal Alteration Index (TAI) are difficult to obtain. Large amounts of bitumen often imbedded in the highly fractured Monterey shales cause a suppression of T{sub max} and low values of S{sub 1}S{sub 1} + S{sub 2}. It is often difficult to determine whether bitumen is indigenous or migrated from other more mature strata. Spectral fluorescence measurements of alginite and bitumen have proved useful in assessing the maturity of the Monterey. A maturity scale based on red/green quotient (Q{sub v}) measured as the fluorescence of alginite B when excited by violet-light has been developed and applied to the Monterey. Alginite B is common in the Monterey, and accurate fluorescent measurements can be readily obtained given the highly fluorescent character of alginite B. A total scanning fluorescence technique was used to develop a maturity scale based on bitumen aromatic content and composition. The maturity parameter (R{sub 1}) developed in this study uses the intensity of fluorescence emitted at 360 nm ratioed to that at 320 nm when the solvent-dissolved bitumen is excited at the 270 nm. These parameters allow for the evaluation of the thermal maturity of algal organic matter and bitumen from the Monterey with R{sub o}% {lt} 1. Indigenous bitumen is also indicated by a comparison of maturity based on Q{sub v} (the solid phase) and bitumen maturity (the liquid phase) based on R{sub 1}.

  19. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  20. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  1. Climate Change Adaptation Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    This course provides an introduction to planning for climate change impacts, with examples of tribes that have been going through the adaptation planning process. The course is intended for tribal...

  2. Virginia Energy Plan (Virginia)

    Broader source: Energy.gov [DOE]

    The 2010 Virginia Energy Plan affirms the state's support for the development of renewable energy. The Plan assesses the state’s energy picture through an examination of the state’s primary energy...

  3. Sustainabiliity Sustainability Plan

    E-Print Network [OSTI]

    Heller, Barbara

    Sustainabiliity IIT Campus Sustainability Plan 2010­2020 Published Fall Semester 2010 www.iit.edu/campus_sustainability #12;IIT Campus Sustainability Plan 2010-2020 Fall Semester 2010 1 Section I: Background Sustainability ...................................................................................................................................................................8 IIT Academic Entities on Sustainability

  4. Hoisting & Rigging Lift Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Stanford Synchrotron Radiation Laboratory May 16, 2005 SSRL-HRLP-000-R0 Page 3 of 3 Guidelines for Generating a Rigging Sketch The lift plan required a rigging sketch or...

  5. Strategic Plan Environmental Assessment

    E-Print Network [OSTI]

    Strategic Plan Environmental Assessment 2009 Clinical Center National Institutes of Health U Institutes of Health Strategic Plan ­ Environmental Assessment 2009 Contents Executive Summary environmental assessment to determine Clinical Center strengths, weaknesses, opportunities, and threats

  6. Ecohydrological Planning for The Woodlands: Lessons Learned After 35 Years

    E-Print Network [OSTI]

    Yang, Bo

    2010-10-12T23:59:59.000Z

    & Technology; M. Arch., Huazhong University of Science & Technology Co-Chairs of Advisory Committee: Dr. Chang-Shan Huang Dr. Ming-Han Li The Woodlands, Texas, is a 27,000-acre new town created with Ian McHarg?s ecohydrological planning approach..., was severely flooded in both events. For the past three decades, very few studies have been conducted to assess the effectiveness of McHarg?s planning approach. The objective of this study is three fold: (1) To document McHarg?s ecohydrological planning...

  7. Greensburg Sustainable Comprehensive Plan

    High Performance Buildings Database

    Greensburg, KS In October 2007, the architectural and planning firm, BNIM, was selected formally by the City of Greensburg, with support from the USDA, to prepare the first phase of a comprehensive master plan to rebuild the city, which provides a framework for the rebuilding of Greensburg based around the principles of economic, social and environmental sustainability. The BNIM Planning team presented the final draft of Greensburg's Comprehensive Plan to the City Council and to a public hearing on January 16, 2008.

  8. Environmental Management System Plan

    E-Print Network [OSTI]

    Fox, Robert

    2009-01-01T23:59:59.000Z

    and locations chemicals are used as well as information about emergency plans and procedures. The current Hazardous

  9. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  10. LBNL Institutional Plan, FY 1996--2001. Draft

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The FY 1996-2001 Institutional Plan provides an overview of the Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  11. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  12. Improved oil recovery in mature fields through reservoir characterization and management

    SciTech Connect (OSTI)

    Leetaru, H.E. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-09-01T23:59:59.000Z

    The Illinois basin is mature with respect to hydrocarbon exploitation in the Pennsylvanian and Mississippian strata. Available subsurface data for the basin commonly are 30 to 50 yr old and of lower quality than today's state-of-the-art data. Recent evaluation of two geologically similar Illinois oil fields shows how the application of new concepts and technologies to the old data can be used to improve oil recovery. Boyd and King fields, located in Jefferson County, Illinois, produce from the Mississippian Aux Vases formation, a unit that was deposited in nearshore mixed siliciclastic-carbonate environments. Prospective areas for further development were delineated by conventional reservoir-characterization methods. Three-dimensional modeling was used to enhance visualization of the lateral and vertical heterogeneity of these reservoirs. At King field, mixing of intercalated siliciclastic-carbonate facies causes significant reservoir heterogeneity; numerous compartments have been bypassed by the existing waterflood. Targeted infill drilling of additional producing and injector wells should recover 1-2 million bbl of additional hydrocarbons. At Boyd field, delineation of areas that contain bypassed oil is more difficult because many of the wells have not penetrated the entire reservoir. An additional problem is that almost all of the production from the original Aux Vases wells was severely inhibited by backflow from a higher pressured, shallower reservoir with which it is commingled. In this type of field, reservoir management must focus on isolating the Aux Vases, producing intervals and deepening individual wells through the entire reservoir. The study of these two fields suggests that detailed geologic characterization of the internal reservoir architecture is not enough. Effective reservoir characterization for improved oil recovery must include both reservoir geology and an understanding of previous reservoir management techniques.

  13. Corporate and Business Plan

    E-Print Network [OSTI]

    Corporate and Business Plan 2010-2011 #12;Main addresses Forest Research Alice Holt Lodge Farnham Research's Business Plan 2010-2011 ..........................12 Table Contents Table 1 - Income This Corporate and Business Plan sets out FR's aims and strategic objectives. It describes the Key Performance

  14. Multiperiod Refinery Planning Optimization

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Multiperiod Refinery Planning Optimization with Nonlinear CDU Models Abdulrahman Alattas, Advisor #12;Refinery Planning Model Development 2 Extension to Multiperiod Planning #12;3 Multiperiod Refinery: refinery configuration Determine · What crude oil to process and in which time period? · The quantities

  15. University of Operations Plan

    E-Print Network [OSTI]

    Firestone, Jeremy

    Management Plan Office of Campus and Public Safety University of Delaware Critical Incident Management Plan Management Plan Office of Campus and Public Safety - 4 - University of Delaware Critical Incident Management and Public Safety - 5 - County of New Castle CD-30 911 Center/Communications CD-31 Department of Police CD-32

  16. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16T23:59:59.000Z

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologiesmaturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  17. Lessons Learned at the Nevada National Security Site Implementing the EFCOG Activity-level Work Planning and Control Guide

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, Work Planning Manager, National Security Technologies, Nevada National Security Site. Lessons Learned Implementing Work Planning & Control. 6 Step Process for improving WP&C.

  18. The Identification of Two Maturity Loci Sheds Light on Photoperiodic Flowering in Sorghum

    E-Print Network [OSTI]

    Murphy, Rebecca

    2012-10-19T23:59:59.000Z

    was found to up-regulate floral repressors while down-regulating activators, providing a mechanism of flowering control consistent with the external coincidence model. Maturity Locus 6 (Ma6) also generated interest through its genetic interaction with Ma1...

  19. Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative

    Broader source: Energy.gov [DOE]

    Since the January 5, 2012 launch of the “Electric Sector Cybersecurity Risk Management Maturity” program, a White House initiative led by the Department of Energy in partnership with the Department...

  20. The Identification of Two Maturity Loci Sheds Light on Photoperiodic Flowering in Sorghum 

    E-Print Network [OSTI]

    Murphy, Rebecca

    2012-10-19T23:59:59.000Z

    was found to up-regulate floral repressors while down-regulating activators, providing a mechanism of flowering control consistent with the external coincidence model. Maturity Locus 6 (Ma6) also generated interest through its genetic interaction with Ma1...

  1. Original article Effect of maturity stage of Italian rye grass and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Effect of maturity stage of Italian rye grass and lucerne on ruminal nitrogen samples of rye grass and 5 of lucerne were harvested during the 1 st cycle of growth at different stages

  2. Physiological responses of mature Quarter Horses to reining training when fed conventional and fat supplemented diets 

    E-Print Network [OSTI]

    Rammerstorfer, Christian

    1996-01-01T23:59:59.000Z

    An initial experiment was conducted utilizing five mature Quarter Horses to establish baseline physiological responses to typical reining training. Heart rate and plasma lactate concentration indicated that galloping circles, spinning and stopping...

  3. Physiological responses of mature Quarter Horses to reining training when fed conventional and fat supplemented diets

    E-Print Network [OSTI]

    Rammerstorfer, Christian

    1996-01-01T23:59:59.000Z

    An initial experiment was conducted utilizing five mature Quarter Horses to establish baseline physiological responses to typical reining training. Heart rate and plasma lactate concentration indicated that galloping circles, spinning and stopping...

  4. Research paper Lateral line hair cell maturation is a determinant of

    E-Print Network [OSTI]

    Rubel, Edwin

    Research paper Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility online 3 February 2006 Abstract Developmental differences in hair cell susceptibility to aminoglycoside fluorescent vital dye markers to further investigate the determinants of aminoglycoside induced hair cell

  5. Distribution of soil and leaf water potentials of mature grapefruit trees under three soil moisture regimes

    E-Print Network [OSTI]

    Prathapar, Sanmugam Ahembaranathan

    1982-01-01T23:59:59.000Z

    DISTRIBUTION OF SOIL AND LEAF WATER POTENTIALS OF MATURE GRAPEFRUIT TREES UNDER THREE SOIL MOISTURE REGIMES A Thesis by SANMUGAM AHEMBARANATHAN PRATHAPAP, Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1982 Major Subject; Agricultural Engineering DISTRIBUTION OF SOIL AND LEAF WATER POTENTIALS OF MATURE GRAPEFRUIT TREES UNDER THREE SOIL MOISTURE REGIMES A Thesis by SANMUGAM AHEMBARANATHAN PRATHAPAR...

  6. Influence of stage of maturity on digestibility and nutrient components of a sweet sorghum

    E-Print Network [OSTI]

    Bowers, Thomas Wallace

    1969-01-01T23:59:59.000Z

    , re- sulting in the higher digestibility of dry matter with advancing maturi t"y . Stag " of maturity had no significant correl ati on w! th lignin ron+ent, but there was a significant negative correlation between advanc!:!g maturity and crude... methods of chemical analysis which will predict digestibility and voluntary intake. During the last 200 years the proximate analysis scheme has been used with some modifications but has remained basically unchanged. Lignin is included in the nitrogen...

  7. The effect of maturation on the quality of freeze-dried compressed carrots

    E-Print Network [OSTI]

    Bennet, Richard Guy

    1976-01-01T23:59:59.000Z

    agents allowing the vegetative cell walls to be compressed without serious fragmentation. Three techniques have been used to effectively plasticize freeze-dried foods to moisture levels from 5/o 20$ (Lamps 1967)t 1. Spraying the freeze-dried product...THE EFFECT OF MATURATION ON THE QUALITY OF FREEZE-DRIED COMPRESSED CARROTS A Thesis by RICHARD GUY BENNET Approved as to style and content bye Charm Committee Head of Department ember Member August 1976 ABSTRACT The Effect Of Maturation...

  8. Lafayette Metropolitan Planning Organization 2030 Transportation Plan

    E-Print Network [OSTI]

    Lafayette Metropolitan Planning Organization

    2010-10-31T23:59:59.000Z

    of Carencro Byron Breaux City-Parish Council Designee John Broussard City-Parish President Designee Vernal Comeaux City-Parish Council Designee Bill Fontenot La Dept of Transportation and Development Lucien Gastineau City-Parish Planning Commission...

  9. LANL continuity of operations plan

    SciTech Connect (OSTI)

    Senutovitch, Diane M [Los Alamos National Laboratory

    2010-12-22T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may be required to support an allhazards event, including a national security emergency, major fire, catastrophic natural disaster, man-made disaster, terrorism event, or technological disaster by rendering LANL buildings, infrastructure, or Technical Areas unsafe, temporarily unusable, or inaccessible.

  10. Retirement Planning TimeLine MPSERS Retirement Plan Participant

    E-Print Network [OSTI]

    early in your career! Your MPSERS retirement pension is based on your best 3 years (MIP plan) or 5 years- it is never too early to plan for your retirement! · Know what plan you are in - MIP or Basic. · Review your1 Retirement Planning TimeLine MPSERS Retirement Plan Participant Retirement planning is essential

  11. Business Plans for Agricultural Producers

    E-Print Network [OSTI]

    McCorkle, Dean; Bevers, Stan

    2008-10-17T23:59:59.000Z

    Natural resources Z Strengths, weaknesses, opportunities ? and threats (SWOT) Mission statement ? Objectives and goals ? Production plan ? Financial plan ? Market plan ? Legal and liability issues ? Insurance ? Succession and estate planning...

  12. 480 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 5, MAY 2000 Coupled Structure for Wide-Band EDFA with Gain

    E-Print Network [OSTI]

    Park, Namkyoo

    480 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 5, MAY 2000 Coupled Structure for Wide applications due to the maturity of the supporting technologies such as the host material and pump sources-band EDFA's [4], [5], we have suggested a structure that recycles useless backward amplified spontaneous

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-01-31T23:59:59.000Z

    FIU-HCET participated in an ICT meeting at Mound during the second week of December and presented a brief videotape of the testing of the Robotic Climber technology. During this meeting, FIU-HCET proposed the TechXtract technology for possible testing at Mound and agreed to develop a five-page proposal for review by team members. FIU-HCET provided assistance to Bartlett Inc. and General Lasertronics Corporation in developing a proposal for a Program Opportunity Notice (PON). The proposal was submitted by these companies on January 5, 1999. The search for new equipment dismantlement technologies is continuing. The following vendors have responded to requests for demonstration: LUMONICS, Laser Solutions technology; CRYO-BEAM, Cryogenic cutting technology; Waterjet Technology Association, Waterjet Cutting technology; and DIAJET, Waterjet Cutting technology. Based on the tasks done in FY98, FIU-HCET is working closely with Numatec Hanford Corporation (NHC) and Pacific Northwest National Laboratory (PNNL) to revise the plan and scope of work of the pipeline plugging project in FY99, which involves activities of lab-scale flow loop experiments and a large-scale demonstration test bed.

  14. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  15. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01T23:59:59.000Z

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  16. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  17. Vehicle Technologies Office Merit Review 2014: Pennsylvania Partnership for Promoting Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Delaware Valley Regional Planning Commission at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  18. IDC Integrated Master Plan.

    SciTech Connect (OSTI)

    Clifford, David J.; Harris, James M.

    2014-12-01T23:59:59.000Z

    This is the IDC Re-Engineering Phase 2 project Integrated Master Plan (IMP). The IMP presents the major accomplishments planned over time to re-engineer the IDC system. The IMP and the associate Integrated Master Schedule (IMS) are used for planning, scheduling, executing, and tracking the project technical work efforts. REVISIONS Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Re- engineering Project Team Initial delivery M. Harris

  19. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01T23:59:59.000Z

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  20. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  1. Non-Traditional Business Plan - Developing Sustainable Programs Related to Entrepreneurial Opportunities within a Government Contractor

    E-Print Network [OSTI]

    Helm, William A.

    2007-12-14T23:59:59.000Z

    to be used in creating a strategic plan. Strategic Plan – Aerospace Plant H has a detailed strategic plan that is updated annually to reflect any changes to the business. It is the objective of this section to augment the existing strategic plan... and scientists engaged in the latest technologies. The Plant created a business development department that looked at creating partnerships with other government agencies, other industries, and universities to utilize our manufacturing prowess to help define...

  2. Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Permittees and the public are documented during the Hazardous Waste Facility Permit Community Relations Plan development. Contact Environmental Communication & Public...

  3. MITG Test Plan

    SciTech Connect (OSTI)

    Eck, Marshall B.

    1981-08-01T23:59:59.000Z

    The plan presented is for the testing of a prototypical slice of the Modular Isotopic Thermoelectric Generator (MITG). Cross Reference T48-1.

  4. Planning and Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rates Planning Ten-Year Capital Program Projects Lovell-Yellowtail Transmission Line Rebuild project Studies WACM Wind production summary overview (Oct. 2006)...

  5. Climate Action Plan (Virginia)

    Broader source: Energy.gov [DOE]

    Governor Timothy M. Kaine established the Governor's Commission on Climate Change in December 2007. The commission prepared a plan for Virginia that identified ways to reduce greenhouse gas...

  6. State Energy Strategic Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

  7. Navajo Marketing Plan Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    River Basin Project Act General Power Contract Provisions (GCPC) - 090107 Hoover Power Plant Act of 1984 Navajo Marketing Plan Area Map Navajo Sales Enabling Agreement FINAL -...

  8. Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Brekke, D.D.

    1995-11-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

  9. Strategic Health Workforce Planning

    E-Print Network [OSTI]

    2013-05-11T23:59:59.000Z

    May 11, 2013 ... linked to long-term workforce management plans of doctors, nurses and .... survey [53] particularly highlight the need to research long-term ...

  10. Individual Development Plan

    Broader source: Energy.gov [DOE]

    To be effective, training decisions made at the organizational and departmental levels must be informed by the needs of the individual. An individual development plan (IDP) is cooperatively...

  11. Superhydrophobic Materials Technology-PVC Bonding Techniques

    SciTech Connect (OSTI)

    Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

    2013-05-03T23:59:59.000Z

    The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: • wet?cleanable • anti?biofouling • waterproof • anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

  12. Advancing Design-for-Assembly: The Next Generation in Assembly Planning

    SciTech Connect (OSTI)

    Calton, T.L.

    1998-12-09T23:59:59.000Z

    At the 1995 IEEE Symposium on Assembly and Task Planning, Sandia National Laboratories introduced the Archimedes 2 Software Tool [2]. The system was described as a second-generation assembly planning system that allowed preliminmy application of awembly planning for industry, while solidly supporting further research in planning techniques. Sandia has worked closely with indust~ and academia over the last four years. The results of these working relationships have bridged a gap for the next generation in assembly planning. Zke goal of this paper is to share Sandia 's technological advancements in assembly planning over the last four years and the impact these advancements have made on the manufacturing communip.

  13. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  14. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  15. Fuel Cell Technologies Office Funding by State: FY 2013, FY 2014...

    Broader source: Energy.gov (indexed) [DOE]

    View a list of projects, organized by state, funded by the Fuel Cell Technologies Office for fiscal years 2013 and 2014, and planned for 2015. Fuel Cell Technologies Office Funding...

  16. Effective tax planning for Mexican operations

    SciTech Connect (OSTI)

    Smith, W.J.A.; Rodriguez, E.

    1981-06-01T23:59:59.000Z

    Differences in Mexico's economic and tax systems make it important for foreign investors in oil and gas development to understand these protective policies and investment barriers. American investors, for example, should plan for technology-based opportunities. Among the tax opportunities described are those dealing with site selection, type of ownership, foreign tax credits, income sourcing, and the use of a Domestic International Sales Corporation (DISC). (DCK)

  17. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  18. WECC Variable Generation Planning Reference Book: Appendices

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Du, Pengwei; Etingov, Pavel V.; Ma, Jian; Vyakaranam, Bharat

    2013-05-13T23:59:59.000Z

    The document titled “WECC Variable Generation Planning Reference Book”. This book is divided into two volumes; one is the main document (volume 1)and the other is appendices (volume 2). The main document is a collection of the best practices and the information regarding the application and impact of variables generation on power system planning. This volume (appendices) has additional information on the following topics: Probabilistic load flow problems. 2. Additional useful indices. 3. high-impact low-frequency (HILF) events. 4. Examples of wide-area nomograms. 5. Transmission line ratings, types of dynamic rating methods. 6. Relative costs per MW-km of different electric power transmission technologies. 7. Ultra-high voltage (UHV) transmission. 8.High voltage direct current (VSC-HVDC). 9. HVDC. 10. Rewiring of existing transmission lines. 11. High-temperature low sag (HTLS) conductors. 12. The direct method and energy functions for transient stability analysis in power systems. 13.Blackouts caused by voltage instability. 14. Algorithm for parameter continuation predictor-corrector methods. 15. Approximation techniques available for security regions. 16. Impacts of wind power on power system small signals stability. 17. FIDVR. 18. FACTS. 19. European planning standard and practices. 20. International experience in wind and solar energy sources. 21. Western Renewable Energy Zones (WREZ). 22. various energy storage technologies. 23. demand response. 24. BA consolidation and cooperation options. 25. generator power management requirements and 26. European planning guidelines.

  19. Implementing Motor Decision Plans

    E-Print Network [OSTI]

    Elliott, R. N.

    The first step to reducing energy costs and increasing reliability in motors is to establish a motor plan. A motor plan allows decisions to be made in advance of motor failure, and increases the options available. By contrast, most motor decisions...

  20. Environmental protection Implementation Plan

    SciTech Connect (OSTI)

    R. C. Holland

    1999-12-01T23:59:59.000Z

    This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

  1. Supporting Document Strategic Plan

    E-Print Network [OSTI]

    Auckland, University of

    1 Supporting Document Strategic Plan 2013­2020 #12;2 Supporting Document Strategic Plan 2013 more critical to the University's future than was the case in 2005. The purpose of this document are summarised via a SWOT analysis in Appendix 1. This document should therefore be read in conjunction

  2. Technology Application Centers: Facilitating Technology Transfer

    E-Print Network [OSTI]

    Kuhel, G. J.

    's approach to technology deployment seeks to blend an industrial customer's priorities with the utility's marketing and customer service objectives. A&C Enercom sees technology deployment as the sum of an equation: technology deployment equals technology...

  3. RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION

    SciTech Connect (OSTI)

    Farfan, E.; Jannik, T.

    2010-03-25T23:59:59.000Z

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  4. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  5. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2010-10-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  6. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  7. Commercialization plan laser-based decoating systems

    SciTech Connect (OSTI)

    Freiwald, J.; Freiwald, D.A.

    1998-01-01T23:59:59.000Z

    F2 Associates Inc. (F2) is a small, high-technology firm focused on developing and commercializing environmentally friendly laser ablation systems for industrial-rate removal of surface coatings from metals, concrete, and delicate substrates such as composites. F2 has a contract with the US Department of Energy Federal Energy Technology Center (FETC) to develop and test a laser-based technology for removing contaminated paint and other contaminants from concrete and metal surfaces. Task 4.1 in Phase 2 of the Statement of Work for this DOE contract requires that F2 ``document its plans for commercializing and marketing the stationary laser ablation system. This document shall include a discussion of prospects for commercial customers and partners and may require periodic update to reflect changing strategy. This document shall be submitted to the DOE for review.`` This report is being prepared and submitted in fulfillment of that requirement. This report describes the laser-based technology for cleaning and coatings removal, the types of laser-based systems that have been developed by F2 based on this technology, and the various markets that are emerging for this technology. F2`s commercialization and marketing plans are described, including how F2`s organization is structured to meet the needs of technology commercialization, F2`s strategy and marketing approach, and the necessary steps to receive certification for removing paint from aircraft and DOE certification for D and D applications. The future use of the equipment built for the DOE contract is also discussed.

  8. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect (OSTI)

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30T23:59:59.000Z

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  9. Business Continuity Planning Checklist

    E-Print Network [OSTI]

    Greenberg, Albert

    of your business, making sure you can recover the technology and processes required to operate after/Security, Physical Plant, Insurance, Legal Affairs, Public Affairs, Personnel Department, Comptroller, Audit Division the event. ­ Conduct a technology asset inventory to determine and document the mission-critical technology

  10. Transportation Institutional Plan

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

  11. The Sellafield Plan - 12458

    SciTech Connect (OSTI)

    Irving, Iain [Stakeholder Relations Director, Sellafield Ltd, Cumbria (United Kingdom)

    2012-07-01T23:59:59.000Z

    The Sellafield Performance Plan represents the start of a new era for the Sellafield site. It is a key driver in the Nuclear Management Partners mission to make Sellafield safer, cleaner, more productive, more cost effective and a better neighbour. When published in summer 2011, the Sellafield Performance Plan set out exactly what work would be completed at Sellafield between 2010/11 and 2025/26, how all of the facilities on the site interact, and what new facilities would be needed in order to deliver the risk and hazard reduction mission. The plan is the first credible and underpinned lifetime plan for the Sellafield site - the most complex part of the UK's civil nuclear estate. Under the Sellafield Performance Plan there are projected to be more jobs longer creating opportunities for the site, its workforce and the economic stability of West Cumbria. The Sellafield Ltd performance plan sets out how NMP will apply their global experience to improve operations, generate efficiencies and deliver detailed programmes of work with the aim of accelerating decommissioning and providing value for money. Successful delivery of the plan will also ensure the site continues to effectively operate critical national infrastructure that supports the UK's energy programme, and maintains the safe and secure management and storage of nuclear materials. The NDA and UK Government have demonstrated their confidence in NMP and Sellafield Ltd's capability to deliver this plan by providing the highest-ever Annual Site Funding Limit for the site in 2011/12. The Sellafield Performance Plan also creates both the foundation and the environment for a vibrant West Cumbrian economy through significant opportunities for the local supply chain and real prospects for further inward investment. By working flexibly and accelerating the decommissioning programme, the plan provides the opportunity for significant retraining to adapt to future challenges on the site and for other potential new nuclear missions in West Cumbria. (authors)

  12. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Napp, Nils

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2014 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY.......................................................................................... 2 2.1 CHEMICAL HYGIENE OFFICER

  13. DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan

    E-Print Network [OSTI]

    DRAFT Fifteenmile Management Plan 5. Fifteenmile Subbasin Management Plan DRAFT May 25 2004 Group 5. FIFTEENMILE SUBBASIN MANAGEMENT PLAN............................................... 38 5.5.2. Consistency with the Clean Water Act, Total Maximum Daily Loads and Existing Water Quality

  14. FEMP/NTDP Technology Focus New Technology

    E-Print Network [OSTI]

    FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies ­ Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

  15. Producing Early-Maturity (Group IV) Soybeans on the Texas Gulf Coast

    E-Print Network [OSTI]

    Klosterboer, Arlen; Miller, Travis; Livingston, Stephen

    1996-04-11T23:59:59.000Z

    Rhonda R. Kappler, Graphic Designer Producing Early-Maturity (Group IV) Soybeans On The Texas Gulf Coast A. D. Klosterboer, T. D. Miller, and S. D. Livingston* n Preparing a good and weed-free seed bed. n Cultivating in a timely manner. n Making and using... by the Texas Agricultural Extension Service is implied. Elizabeth Gregory, Editor Rhonda R. Kappler, Graphic Designer Producing Early-Maturity (Group IV) Soybeans On The Texas Gulf Coast A. D. Klosterboer, T. D. Miller, and S. D. Livingston* ...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards...

  17. Overview of the Heavy Truck Engine and Enabling Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    to use less petroleum. --EERE Strategic Plan, October 2002-- Overview of the Heavy Truck Engine and Enabling Technologies R&D Presented at the 2009 DOE Hydrogen Program and...

  18. DOE-Backed Project Will Demonstrate Innovative Geothermal Technology...

    Energy Savers [EERE]

    June 16, 2010 - 2:27pm Addthis As part of DOE's Geothermal Technologies Program, two geothermal companies, AltaRock Energy and Davenport Newberry, announced plans on June 8 to...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput Matrix...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

  2. BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN

    E-Print Network [OSTI]

    Florida, University of

    BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PL LDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A R RISK MANAGEMENT PLAN BUILDING A RISK MANAGEMENT PLAN BUILDIN T PLAN BUILDING A RISK MANAGEMENT PLAN BUILDING A RISK MANAGEM

  3. National Center for Combating Terrorism Strategic Plan, September 2003

    SciTech Connect (OSTI)

    Bechtel Nevada

    2003-09-01T23:59:59.000Z

    National Center for Combating Terrorism Strategic Plan is to document the mission, vision, and goals for success; define the build plan; and describe initiatives that support the U.S. Department of Homeland Security, U.S. Department of Defense, U.S. Department of Energy, U.S. Department of Justice, intelligence community, National Governors Association, and other organizations or departments with combating terrorism training, testing, and technology responsibilities.

  4. Commonwealth of the Northern Mariana Islands Strategic Energy Plan

    SciTech Connect (OSTI)

    Conrad, M. D.; Ness, J. E.

    2013-07-01T23:59:59.000Z

    Describes various energy strategies available to CNMI to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption. The information presented in this strategic energy plan will be used by the CNMI Governor's Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, and expanding the use of a range of energy technologies, including renewable electricity production and buildings energy efficiency and conservation.

  5. Review of encapsulation technologies

    SciTech Connect (OSTI)

    Shaulis, L.

    1996-09-01T23:59:59.000Z

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  6. Benchmarking foreign electronics technologies

    SciTech Connect (OSTI)

    Bostian, C.W.; Hodges, D.A.; Leachman, R.C.; Sheridan, T.B.; Tsang, W.T.; White, R.M.

    1994-12-01T23:59:59.000Z

    This report has been drafted in response to a request from the Japanese Technology Evaluation Center`s (JTEC) Panel on Benchmarking Select Technologies. Since April 1991, the Competitive Semiconductor Manufacturing (CSM) Program at the University of California at Berkeley has been engaged in a detailed study of quality, productivity, and competitiveness in semiconductor manufacturing worldwide. The program is a joint activity of the College of Engineering, the Haas School of Business, and the Berkeley Roundtable on the International Economy, under sponsorship of the Alfred P. Sloan Foundation, and with the cooperation of semiconductor producers from Asia, Europe and the United States. Professors David A. Hodges and Robert C. Leachman are the project`s Co-Directors. The present report for JTEC is primarily based on data and analysis drawn from that continuing program. The CSM program is being conducted by faculty, graduate students and research staff from UC Berkeley`s Schools of Engineering and Business, and Department of Economics. Many of the participating firms are represented on the program`s Industry Advisory Board. The Board played an important role in defining the research agenda. A pilot study was conducted in 1991 with the cooperation of three semiconductor plants. The research plan and survey documents were thereby refined. The main phase of the CSM benchmarking study began in mid-1992 and will continue at least through 1997. reports are presented on the manufacture of integrated circuits; data storage; wireless technology; human-machine interfaces; and optoelectronics. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Information resources management long-range plan, FY1994--1998

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This document describes IRM activities and the information technology resources and capabilities of the Department, the future requirements, and the strategies and plans to satisfy the identified requirements. The long-range planning process provides the systematic means to meet this objective and assists the Department in assuring that information technology (IT) support is provided in an efficient, effective, and timely manner so that its programmatic missions can be accomplished. Another important objective of the Plan is to promote better understanding, both within and external to the Department, of its IT environment, requirements, issues, and recommended solutions. This DOE IRM Plan takes into consideration the IRM requirements of approximately 50 different sites. The annual long-range planning cycle for supporting this Plan was initiated by a Call in August 1991 for site plans to be submitted in February 1992 by those Departmental components and contractors with major IRM requirements.

  8. Lightweight materials for transportation: Program plan

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

  9. Public affairs plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the Fiscal Year 1995 UMTRA public affairs program and identify specific activities to be conducted during the year. It also describes the roles of various agencies involved in the conduct of the public affairs program and defines the functions of the Technical Assistance Contractor (TAC) Public Affairs Department. It integrates and replaces the Public Participation Plan (DOE/AL/62350-47D) and Public Information Plan (DOE/AL/623590-71). The plan describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in project decision-making processes. The plan applies to the UMTRA Project Office; the DOE Albuquerque Operations Office, Office of Intergovernmental and External Affairs (OIEA); the UMTRA TAC; the UMTRA Remedial Action Contractor (RAC); and other cooperating agencies.

  10. Centrifugal shot blasting. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  11. Texas Tech University Hygiene Plan

    E-Print Network [OSTI]

    Rock, Chris

    Texas Tech University Chemical Hygiene Plan (Laboratory Safety Manual) January 2013 #12;TABLE C ­ Chemical Hygiene Checklist #12;TEXAS TECH UNIVERSITY CHEMICAL HYGIENE PLAN January 2013 1 PURPOSE OF THIS PLAN It is the desire

  12. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01T23:59:59.000Z

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  13. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-03-30T23:59:59.000Z

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  14. Y-12 Site Sustainability Plan

    SciTech Connect (OSTI)

    Sherry, T. D.; Kohlhorst, D. P.; Little, S. K.

    2011-12-01T23:59:59.000Z

    The accomplishments to date and the long-range planning of the Y-12 Energy Management and Sustainability and Stewardship programs support the DOE and the National Nuclear Security Administration (NNSA) vision for a commitment to energy efficiency and sustainability and to achievement of the Guiding Principles. Specifically, the Y-12 vision is to support the Environment, Safety and Health Policy and the DOE Strategic Sustainability Performance Plan (SSPP) while promoting overall sustainability and reduction of greenhouse gas (GHG) emissions. Table ES.2 gives a comprehensive overview of Y-12's performance status and planned actions. B&W Y-12's Energy Management mission is to incorporate renewable energy and energy efficient technologies site-wide and to position Y-12 to meet NNSA energy requirement needs through 2025 and beyond. During FY 2011, the site formed a sustainability team (Fig. ES.1). The sustainability team provides a coordinated approach to meeting the various sustainability requirements and serves as a forum for increased communication and consistent implementation of sustainability activities at Y-12. The sustainability team serves as an information exchange mechanism to promote general awareness of sustainability information, while providing a system to document progress and to identify resources. These resources are necessary to implement activities that support the overall goals of sustainability, including reducing the use of resources and conserving energy. Additionally, the team's objectives include: (1) Foster a Y-12-wide philosophy to conserve resources; (2) Reduce the impacts of production operations in a cost-effective manner; (3) Increase materials recycling; (4) Use a minimum amount of energy and fuel; (5) Create a minimum of waste and pollution in achieving Y-12-strategic objectives; (6) Develop and implement techniques, technologies, process modifications, and programs that support sustainable acquisition; (7) Minimize the impacts to resources, including energy/fuel, water, waste, pesticides, and pollution generation; (8) Incorporate sustainable design principles into the design and construction of facility upgrades, new facilities, and infrastructure; and (9) Comply with federal and state regulations, executive orders, and DOE requirements. Y-12 is working to communicate its sustainment vision through procedural, engineering, operational, and management practices. The site will make informed decisions based on the application of the five Guiding Principles for HPSBs to the maximum extent possible.

  15. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  16. PREVIOUS GEOSCIENCES INTERNSHIP EXPERIENCES CITY PLANNING

    E-Print Network [OSTI]

    Kurapov, Alexander

    PREVIOUS GEOSCIENCES INTERNSHIP EXPERIENCES CITY PLANNING TRANSPORTATION PLANNING LAND USE (HIGHER EDUCATION) LAND USE PLANNING INTERNSHIPS CH2M-HILL PLANNING AND ENGINEERING CITY OF ANAHEIM

  17. Solar Technology Center

    SciTech Connect (OSTI)

    Boehm, Bob

    2011-04-27T23:59:59.000Z

    The Department of Energy, Golden Field Office, awarded a grant to the UNLV Research Foundation (UNLVRF) on August 1, 2005 to develop a solar and renewable energy information center. The Solar Technology Center (STC) is to be developed in two phases, with Phase I consisting of all activities necessary to determine feasibility of the project, including design and engineering, identification of land access issues and permitting necessary to determine project viability without permanently disturbing the project site, and completion of a National Environmental Policy Act (NEPA) Environmental Assessment. Phase II is the installation of infrastructure and related structures, which leads to commencement of operations of the STC. The STC is located in the Boulder City designated 3,000-acre Eldorado Valley Energy Zone, approximately 15 miles southwest of downtown Boulder City and fronting on Eldorado Valley Drive. The 33-acre vacant parcel has been leased to the Nevada Test Site Development Corporation (NTSDC) by Boulder City to accommodate a planned facility that will be synergistic with present and planned energy projects in the Zone. The parcel will be developed by the UNLVRF. The NTSDC is the economic development arm of the UNLVRF. UNLVRF will be the entity responsible for overseeing the lease and the development project to assure compliance with the lease stipulations established by Boulder City. The STC will be operated and maintained by University of Nevada, Las Vegas (UNLV) and its Center for Energy Research (UNLV-CER). Land parcels in the Eldorado Valley Energy Zone near the 33-acre lease are committed to the construction and operation of an electrical grid connected solar energy production facility. Other projects supporting renewable and solar technologies have been developed within the energy zone, with several more developments in the horizon.

  18. In-situ bioremediation drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-04-26T23:59:59.000Z

    This work plan describes the design and construction of proposed wells and outlines the characterization activities to be performed in support of the In Situ Bioremediation Task for FY 1994. The purpose of the well-design is to facilitate implementation and monitoring of in situ biodegradation of CCl{sub 4} in ground water. However, the wells will also be used to characterize the geology, hydrology, microbiology, and contaminant distribution, which will all feed into the design of the technology. Implementation and design of this remediation demonstration technology will be described separately in an integrated test plan.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30T23:59:59.000Z

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to jointly host technology transfer meetings and occasional field excursions. A total of 15 technology transfer/strategic planning workshops were held.

  20. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  1. Community Energy Stategic Planning Resources

    Broader source: Energy.gov (indexed) [DOE]

    Community Energy Strategic Planning Resources Technical Assistance Program January 24 th , 2013 2 Agenda 1. Welcome & overview 2. What is a community energy strategic plan and why...

  2. SRC-FAMILY TYROSINE KINASES PARTICIPATE IN THE REGULATION OF MAMMALIAN OOCYTE MATURATION AND ZYGOTIC DEVELOPMENT

    E-Print Network [OSTI]

    McGinnis, Lynda K.

    2009-02-05T23:59:59.000Z

    of Contents??????????????????.. v List of Tables ???????????????????? vii List of Figures .???????????????????. viii Chapter 1 Introduction 1. General introduction ??????????????. 1 2. Signaling at ovulation ?????????????... 2 3. Signaling... of oocyte maturation ..??????.???.. 6 1. Completion of meiosis and first mitosis ??????... 8 2. Integrating signaling with chromatin and cytoskeleton 11 a. MAPK and spindle microtubules .?????? 12 b. Src-family kinases and microtubule dynamics ? 13 c...

  3. MATURITY, SEX RATIO, AND SIZE COMPOSITION OF THE NATURAL POPULATION OF AMERICAN LOBSTER, HOMARUS A MERICANUS,

    E-Print Network [OSTI]

    . The following types of gear were used: (1) rectangular vinyl-coated lobster traps (1- X 2-inch and 1- X 1-inch supplemental data were obtained for our maturity studies. Of the aforementioned types of gear, consid- erably Whaler.' Sub- sequently, only 67 (2.6 %) of 2,582 lobsters were captured with the other types of gear

  4. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum

    E-Print Network [OSTI]

    Hebert, Daniel N.

    Protein folding Carbohydrates Molecular chaperones Quality control Eukaryotic secretory pathway cargo fold folding conditions in live cells. Strikingly, protein folding that is reconstituted in the test tube [2,3]. For these proteins, protein folding and maturation begin co- translationally as the protein

  5. Joint leverage and maturity choices in real estate firms: The role of the REIT status

    E-Print Network [OSTI]

    Alcock, Jamie T.; Steiner, Eva; Tan, Kelvin J. K.

    2012-05-22T23:59:59.000Z

    KJK (2011) The determinants of debt maturity in australian firms. Ac- counting & Finance DOI 10.1111/j.1467-629X.2010.00397.x, URL http://dx.doi.org/ 10.1111/j.1467-629X.2010.00397.x Alcock J, Glascock JL, Steiner E (2012) Manipulation in u.s. reit...

  6. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV

    E-Print Network [OSTI]

    MINIREVIEW Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB versions (i.e. Systems I­III) are found on the positive side of bioenergetic mem- branes in different on the positive (or p) side of bioenergetic membranes (bacte- rial periplasm, chloroplast lumen and mitochondrial

  7. Snow ablation modelling in a mature aspen stand of the boreal forest

    E-Print Network [OSTI]

    Ni-Meister, Wenge

    Snow ablation modelling in a mature aspen stand of the boreal forest J. P. Hardy,1* R. E. Davis,1 R- ing snow ablation in a lea¯ess, deciduous aspen stand and verifying the results with ®eld data. New to estimate a branch area index for defoliated aspen as an analogue to the foliage area index used

  8. Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees

    E-Print Network [OSTI]

    Martin, Timothy

    Hydraulic architecture and tracheid allometry in mature Pinus palustris and Pinus elliottii trees C and better-drained micro- sites than SL. The hydraulic architecture and tracheid dimen- sions of roots, trunk but weak trade-off between water conduction efficiency and safety. Tracheid hydraulic diameter (Dh

  9. Natural mortality rate, annual fecundity, and maturity at length for Greenland halibut

    E-Print Network [OSTI]

    296 Natural mortality rate, annual fecundity, and maturity at length for Greenland halibut% ma- turity, and the rate of instantaneous natural mortality (M) by using GSI for Greenland halibut Greenland halibut (Reinhardtius hip- poglossoides) life history traits and to correctly assess the status

  10. AGE, GROWTH, AND SEXUAL MATURITY OF GREENLAND HALIBUT, REINHARDT/US lHPPOGLOSSOIDES (WALBAUM),

    E-Print Network [OSTI]

    AGE, GROWTH, AND SEXUAL MATURITY OF GREENLAND HALIBUT, REINHARDT/US lHPPOGLOSSOIDES (WALBAUM), IN THE CANADIAN NORTHWEST ATLANTIC W. R. BOWERIN01 ABSTRACT Age composition of Greenland halibut, Reinhardtius the slowest throughout the range. Onsetofmaturityoffemale Greenland halibutfrom the Gulfof

  11. Blood-Brain Barrier and Neuro-Inflammation during Cerebral Maturation PARIS-XI UNIVERSITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HARATI Blood-Brain Barrier during Cerebral Maturation: Impact of Neuro-Inflammation on the Regulation and Alternative Energies Commission of Saclay (CEA de Saclay), in the Pharmacology and Immuno-analysis Service the opportunity to conduct my thesis work in one of the leading research institutes in Europe; it is a once

  12. Microbiological parameters as indicators of compost maturity S.M. Tiquia

    E-Print Network [OSTI]

    Tiquia-Arashiro, Sonia M.

    Microbiological parameters as indicators of compost maturity S.M. Tiquia Department of Natural management strategies and composted using different turning and moisture regimes; relate their association with humification parameters and compost temperature; and identify the most suitable microbial indicators of compost

  13. Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Iran) based on organic petrography, geochemistry and basin modelling: implications for source rock1 Thermal maturity of the Upper Triassic-Middle Jurassic Shemshak Group (Alborz Range, Northern Iran. Organic matter (OM) has been investigated using Rock-Eval pyrolysis, elemental analysis

  14. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.)

    E-Print Network [OSTI]

    Bert, Didier

    Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.) Didier. Evaluations of carbon fixation and storage in this forest are facilitated by its general homogeneity for expansion factors and carbon concentration in the biomass, and more accurate results could be obtained

  15. Maturation of luteinizing hormone-releasing hormone (LHRH) and somatostatin (SRIF) neuronal systems

    E-Print Network [OSTI]

    Boyer, Edmond

    Maturation of luteinizing hormone-releasing hormone (LHRH) and somatostatin (SRIF) neuronal systems.N.R.S., Gif-sur-Yvette, France. Summary. Using the immunoperoxidase method, neurons containing luteinizing ewe lambs between 3 days and 16 weeks of age. Both peptidergic neuronal systems were well developed

  16. Coexpression of Wild-Type Tyrosinase Enhances Maturation of Temperature-Sensitive Tyrosinase Mutants

    E-Print Network [OSTI]

    Hebert, Daniel N.

    Coexpression of Wild-Type Tyrosinase Enhances Maturation of Temperature-Sensitive Tyrosinase.S.A. Tyrosinase is a type I membrane glycoprotein whose activity is essential for melanin synthesis. Loss of function mutations in tyrosinase is the cause of ocu- locutaneous albinism 1. In the milder oculocuta

  17. Tyrosinase Maturation and Oligomerization in the Endoplasmic Reticulum Require a Melanocyte-specific Factor*

    E-Print Network [OSTI]

    Hebert, Daniel N.

    Tyrosinase Maturation and Oligomerization in the Endoplasmic Reticulum Require a Melanocyte of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06520 Tyrosinase is a glycoprotein in tyrosinase, with many leading to its misfolding, endoplasmic reticulum (ER) retention, and degradation. Here

  18. Benign Mature Mediastinal Dysembryoma with Pulmonary Extension Revealed by Recurrent Hemoptysis in a Young Woman

    SciTech Connect (OSTI)

    Filaire, M. [Clermont-Ferrand University Hospital, Service de chirurgie thoracique (France); Michel-Letonturier, M. [Clermont-Ferrand University Hospital, Service de radiologie B, viscerale et vasculaire (France); Garcier, J. M.; Escande, G. [Clermont-Ferrand University Hospital, Service de chirurgie thoracique (France); Boyer, L. [Clermont-Ferrand University Hospital, Service de radiologie B, viscerale et vasculaire (France)], E-mail: lboyer@chu-clermontferrand.fr

    2006-06-15T23:59:59.000Z

    We report one case of mature mediastinal teratoma with pulmonary extension surgically diagnosed in a 22-year-old woman complaining of recurrent hemoptyses for which no etiological explanation could be found. Thoracic surgery was only decided on after three embolizations proved ineffective.

  19. Management implementation plan for a safety analysis and review system

    SciTech Connect (OSTI)

    Hulburt, D.A.; Berkey, B.D.

    1981-04-01T23:59:59.000Z

    The US Department of Energy has issued an Order, DOE 5481.1, which establishes uniform requirements for the preparation and review of Safety Analysis for DOE Operations. The Management Implementation Plan specified herein establishes the administrative procedures and technical requirements for implementing DOE 5481.1 to Operations under the cognizance of the Pittsburgh Energy Technology Center. This Implementation Plan is applicable to all present and future Operations under the cognizance of PETC. The Plan identifies those Operations for which DOE 5481.1 is applicable and those Operations for which no further analysis is required because the initial determination and review has concluded that DOE 5481.1 does not apply.

  20. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.