Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials Science and Technology in Hydroelectricity  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Presentation...

2

Amorphous Materials: Common Issues within Science and Technology  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Amorphous Materials: Common Issues within Science and Technology.

3

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

4

Materials Science and Technology Teachers Handbook  

SciTech Connect

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

5

Nuclear Materials Science:Materials Science Technology:MST-16...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Materials Science (MST-16) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation...

6

Technology Transfer in Materials Science  

Science Conference Proceedings (OSTI)

Novel Bioceramic Scaffolds for Regenerative Medicine ... The Energy Challenge and the Role of Advanced Materials Fernando Rizzo CGEE/PUC-Rio.

7

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Space Radioisotope Power Systems Energy.Gov Office of Nuclear Energy - Space Power Systems NASA Cassini- Huygens Mission to Saturn NASA Curosity - Mars Science...

8

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Propulsion Materials Energy Storage Fossil Energy Nuclear - Radioisotope Power Systems Nuclear Energy Nuclear Fuels Nuclear Light Water...

9

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

MTG MTG For the Public News & Highlights Publications Seminars Workshops Our People Group Leader, Staff Members Find People Fact Sheet Energy Frontier Research Center Center for Defect Physics (EFRC) Related Groups Computational Materials Science Group (CSMD) Nanomaterials Theory Institute (CNMS) Single Crystal Diffraction Group (NScD) University of Tennesee (MSE) ORNL Materials in Extreme Environments Other Useful Links American Physical Society DOE Office of Science Institute of Physics Office of Basic Energy Sciences National Energy Research Scientific Computing Center The Minerals, Metals & Materials Society U.S. Department of Energy Advanced Materials Group In The News PSD Directorate › MST Division › Materials Theory Group The Materials Theory Group (MTG) of the Materials Science and Technology

10

Materials Science & Technology, MST: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations Laboratory Mechanical testing and modeling in MST Sigma Complex Los Alamos National Laboratory's Materials Science and Technology Division provides...

11

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

CST CST For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Capabilities Current Research Materials Our People Group Leader, Staff Members Find People Fact Sheet Group Poster Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Corrosion Science and Technology Group Corrosion Kinetics in simulated high-temperature/high-pressure environments

12

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Selected Publications Our People Contacts by Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment ShaRE User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Correlated Electron Materials Group In The News PSD Directorate › MST Division › Correlated Electron Materials Group CdSiP2Tin Flux The ultimate aim of our research is to attain a better understanding of complex materials, particularly those that are important to clean energy technologies. For example, we are currently investigating the relationship between magnetism and superconductivity, new mechanisms for enhancing

13

ND in Materials Science and Technology II  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: ND in ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive samples.

14

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

15

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

16

MATERIALS SCIENCE AND TECHNOLOGY DIVISION March 1, 2011  

E-Print Network (OSTI)

(20) B.L. MURPHY MATERIALS THEORY G.M. STOCKS* A.R. STRANGE* F.W. AVERILL (12) M. BAJDICH (3) K. YAMAMOTO NUCLEAR MATERIALS SCIENCE AND TECHNOLOGY R.K. NANSTAD B.J. WADDELL* J.H. BAEK (5) J.T. BUSBY (31 19 NUCLEAR AND RADIOLOGICAL PROTECTION DIVISION 20 TECHNICIAN INTERN PROGRAM 21 CENTER FOR NANOPHASE

17

Advances in Materials Science for Environmental and Energy Technologies II  

SciTech Connect

The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

2013-01-01T23:59:59.000Z

18

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

SPNM SPNM For the Public Awards Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Capabilities Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive | Honors and Awards Archive Lynn Boatner, Joanne Ramey, Hu Longmire, research featured in the 2013 Allied High Tech Products, Inc. Calendar in the form of a color micrograph for the month of March, 2013.

19

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

ABD ABD For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members Facilities For Industry Research Projects Our People Group Leader, Staff Members, Facilities Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Alloy Behavior and Design Group The principal technical contact for discussing potential projects in the Alloy Behavior and Design Group is Dr. Easo P. George, Group Leader.

20

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

TFN TFN For the Public Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Core Compentencies Our People Group Leader, Staff Members Find People Energy Frontier Research Center Center for Defect Physics (EFRC) User Facilities High Temperature Materials Laboratory (HTML) Shared Research Equipment User Facility (ShaRE) Related User Facilities Center for Nanophase Materials Sciences (CNMS) High Flux Isotope Reactor (HFIR) Spallation Neutron Source (SNS) Seminars and Announcements MSTD Internal Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Thin Films and Nanostructures Group Complex oxide thin films and heterostructures are important for not only fundamental physics, but also a wide range of exciting opportunities in

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

PCM PCM For the Public Visiting ORNL For Researchers Profiles Group Leader Program Manager Staff Members Facilities Final Report on Economic Analysis of Deploying Used Batteries in Power Systems Document For Industry Research Catalysis by Design Zeolites Materials for Catalysis Photocatalytic C02 Our People Group Leader, Program Manager, Staff Members, Facilities Find People Programs Thin-Film Rechargeable Lithium, Lithium-Ion, and Li-Free Batteries Program Membrane Separations Research Program Related Programs ORNL Technologies Recent News & Features News Releases Archive | Features Archive Recent Honors & Awards Award Archives Honors & Awards Achives | ORNL Spotlight Archives] Nancy Dudney, was recently elected as a Electrochemical Society Fellow in recognition of her scientific achievements and service to the

22

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

23

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

FRM FRM For the Public Awards and Honors Highlights Publications U.S. Program Planning Visiting ORNL For Researchers Profiles Program Manager Program Management ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles Accessing LAMDA Facility Our People Program Manager, Program Management, Facilities Find People ORNL Facilities Low Activation Materials Development and Analysis (LAMDA) Laboratory Irradiated Materials Examination & Testing (IMET) Facility Fracture Mechanics Laboratory High Flux Isotope Reactor (HFIR) (Research Reactors Division) HFIR Rabbit Irradiation Vehicles

24

Metallurgy:Metallurgical Science:Materials Science & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

(F&M) foundry image Foundry powdermetallurgy Powder Materials Processing (P&M) welding Welding & Joining (W&J) Jason Cooley Peering into previously inacessible realms by...

25

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

RSG RSG For Public Research Support Services Environmental, Safety, and Health Facilities Operations Management Information Technology Nuclear & Radiological Control Procurement & Engineering Services Quality Assurance Services Training & Support Services For Researchers Profiles Group Leader AGR Program POC Avid+ Coordinator BUS Chemical Recycling and Used Oil Coordinator Business Cards Coordinator Chemical Hygiene Officer Computer Hardware Issues Technician Craft Work POC Credit Card/PR Coordinator Division Nuclear Criticality Safety Manager (AGR Program) Division Training Officer Division Safety Officer Electrical Safety POC Emergency Preparedness Coordinator Engineering Services Coordinator Environmental Protection Officers ESH Checklists for Procured Services POC

26

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

Connect with PJG Connect with PJG For the Public Awards & Honors R&D100 Awards R&D100 Award Posters For Researchers Profiles For Industry Research Thrust Areas Advanced Alloys Advanced Steels Amorphous Bulk Metallic Glasses Nano Crystalline Composites Ni-Based Alloys Ti Alloys Advanced Processing Additive Manufacturing Electronic Packaging Gelcasting Infrared/Photonic Processing Laser Interference Patterning Magnetic Field Processing Powder Metallurgy Pulse Thermal-Processing (PTP) Ceramics Ceramics Conventional Metals Processing Casting Extrusion Forging Lightweight Metals Aluminum Magnesium Titanium Modeling Materials Behavior Under Severe Environments Microstructure Modeling During Phase Transformations Process Modeling and Simulation: Energy Transport Sensors and Data Acquisition Techniques

27

Materials Science and Technology Division - Physical Sciences Directorate -  

NLE Websites -- All DOE Office Websites (Extended Search)

STG STG For the Public Publications Visiting ORNL For Researchers Profiles Group Leader Staff Members For Industry Sponsored Research Programs Our People Contacts by Group Leader, Staff Members Find People Related Cooperative Research and Development Agreement Work for Others Recent News & Features News Releases Archive | Features Archive PSD Directorate › MST Division › Scattering and Thermophysics Group The Scattering and Thermophysics Group aims to be a national leader in materials characterization using diffraction and thermophysical property measurement methods. The diffraction portion of the Group utilizes laboratory x-ray, synchrotron x-ray, and neutron diffraction facilties to solve problems from phase stability to residual stress and texture. The thermography and thermophysical properties of the Group has exceptional

28

Materials Science & Technology 2005 (MS&T'05)  

Science Conference Proceedings (OSTI)

Sep 25, 2005... Materials and Life Management Issues; Materials for the Hydrogen Economy; Modeling and Simulation of Titanium Technology: Theory and...

29

Surface Protection for Enhanced Materials Performance: Science ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Surface Protection for Enhanced Materials Performance: Science,...

30

Titanium Science & Technology  

Science Conference Proceedings (OSTI)

Titanium Science & Technology. Presented by: F.H. (Sam) Froes, Institute for Materials & Advanced Processes, University of Idaho...

31

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

32

Tangible ideas for children: materials sciences as the future of educational technology  

Science Conference Proceedings (OSTI)

Traditionally, the notion of "educational technology" has been equated with "educational computing". While computer technology is, and will continue to be, a central focus of educational technology, its importance is likely to be rivaled in the coming ... Keywords: educational technology, materials science

Michael Eisenberg

2004-06-01T23:59:59.000Z

33

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

DOE Green Energy (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

34

Argonne TDC: Medical and Life Sciences Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

35

Chemical Science Technologies - Argonne TDC: Chemistry  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

36

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

37

SCIENCE CHINA Technological Sciences  

E-Print Network (OSTI)

SCIENCE CHINA Technological Sciences © Science China Press and Springer-Verlag Berlin Heidelberg distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China Received July 8, 2010; accepted

Ahmad, Sajjad

38

NREL: Energy Sciences - Theoretical Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Materials Science Solid-State Theory Materials Science Hydrogen Technology & Fuel Cells Process Technology & Advanced Concepts Research Staff Computational Science Printable Version Theoretical Materials Science Learn about our research staff including staff profiles, publications, and contact information. Using modern computational techniques, the Theoretical Materials Science Group, within NREL's Chemical and Materials Science Center, applies quantum mechanics to complex materials, yielding quantitative predictions to guide and interact with experimental explorations. Current research focuses on the following efforts: Design new photovoltaic materials that can improve solar cell efficiency and reduce its cost. Explain the underlying physics of new

39

MATERIALS SCIENCE AND TECHNOLOGY DIVISION September 1, 2009  

E-Print Network (OSTI)

NUCLEAR POWER NUCLEAR ENERGY W.R. CORWIN B.J. WADDELL* A.A. BLANKENSHIP* (1) G.L. BELL* ADVANCED REACTORS THEORY G.M. STOCKS A.R. STRANGE F.W. AVERILL (12) M. BAJDICH (3) K.H. BEVAN (3) X. CHEN (3) V.R. COOPER M.T. LIU (12) P.J. MAZIASZ J. R. MORRIS (27) T.G. NIEH (5) G.M. PHARR (24) Y. YAMAMOTO NUCLEAR MATERIALS

40

Argonne TDC: Materials Technologies Available for Licensing  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Materials Science Evaluation Portal  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Evaluation Portal. Materials Science Evaluation Portal. Subject Areas. Modeling; Nondestructive; ...

2013-08-08T23:59:59.000Z

42

Emerging Materials Technology  

Science Conference Proceedings (OSTI)

Posted on: 6/19/2013 12:00:00 AM... As materials science and engineering expands to encompass new technologies, such as nanomaterials, biomaterials, and...

43

1995 Federal Research and Development Program in Materials Science and Technology  

Science Conference Proceedings (OSTI)

The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

None

1995-12-01T23:59:59.000Z

44

Laser Applications in Materials Technology (II)  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Laser Applications in Materials Technology (II). Sponsorship, MS&T ...

45

TMS Web Event: Radiation Materials Science  

Science Conference Proceedings (OSTI)

The annual conferences include the TMS Annual Meeting, the Electronic Materials Conference and the Materials Science & Technology Conference...

46

Sintering and Related Powder Processing Science & Technologies  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... including novel sintering technologies, such as Spark Plasma Sintering, nanosintering, in-situ...

47

SC e-journals, Materials Science  

Office of Scientific and Technical Information (OSTI)

Materials Science Materials Science Acta Materialia Advanced Composite Materials Advanced Energy Materials Advanced Engineering Materials Advanced Functional Materials Advanced Materials Advanced Powder Technology Advances in Materials Science and Engineering - OAJ Annual Review of Materials Research Applied Composite Materials Applied Mathematical Modelling Applied Mathematics & Computation Applied Physics A Applied Physics B Applied Surface Science Archives of Computational Materials Science and Surface Engineering - OAJ Archives of Materials Science and Engineering - OAJ Carbohydrate Polymers Carbon Catalysis Science & Technology Cellulose Cement and Concrete Research Ceramic Engineering and Science Proceedings Ceramics International Chalcogenide Letters - OAJ Chemical and Petroleum Engineering

48

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network (OSTI)

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

49

NEWTON's Material Science References  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science References Material Science References Do you have a great material science reference link? Please click our Ideas page. Featured Reference Links: Materials Research Society Materials Research Society The Materials Research Society has assembled many resources in its Materials Science Enthusiasts site. This site has information for the K-12 audience, general public, and materials science professionals. Material Science nanoHUB nanHUB.org is the place for nanotechnology research, education, and collaboration. There are Simulation Programs, Online Presentations, Courses, Learning Modules, Podcasts, Animations, Teaching Materials, and more. (Intened for high school and up) Materials Science Resources on the Web Materials Science Resources on the Web This site gives a good general introduction into material science. Sponsered by Iowa State, it talks about what material science is, ceramics and composites, and other topics.

50

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

51

NEWTON's Material Science Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Videos Material Science Videos Do you have a great material science video? Please click our Ideas page. Featured Videos: University of Maryland - Material Science University of Maryland - Material Science The Department of Materials Science and Engineering offers a set of videos about various topics in material science to help students understand what material science is. Learn about plasma, polymers, liquid crystals and much more. LearnersTV.com - Material Science LearnersTV.com - Material Science LearnersTV.com offers a series of educational material science lectures that are available to the public for free. Learn about topics like polymers, non-crystalline solids, crystal geometry, phase diagrams, phase transformations and more. NanoWerk - Nanotechnology Videos NanoWerk - Nanotechnology Videos

52

Science & technology review  

Science Conference Proceedings (OSTI)

This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

NONE

1995-08-01T23:59:59.000Z

53

Security Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Security Treaty Verification Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

54

Educational Material Science Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Science Games Material Science Games Do you have a great material science game? Please click our Ideas page. Featured Games: >KS2 Bitsize BBC - Materials KS2 Bitsize BBC - Materials Sponsored by the BBC, K2S Bitsize offers tons of free online science games including a section on materials. Learn about the changes in materials, changing states, heat, rocks, soils, solids, liquids, gases, and much more. Science Kids - Properties of Materials Science Kids - Properties of Materials Learn about the properties of materials as you experiment with a variety of objects in this great science activity for kids. Discover the interesting characteristics of materials; are they flexible, waterproof, strong or transparent? Characteristics of Materials - BBC Schools Characteristics of Materials - BBC Schools

55

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

56

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

57

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

58

Materials Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economy Funding Opportunities State & Local Government Science & Innovation Science & Technology Science Education Innovation Energy Sources Energy Usage Energy Efficiency...

59

Creation Technology of New Material by Composite Plating Method  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Advanced Manufacturing Technologies. Presentation Title, Creation...

60

Nuclear Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science & Technology Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. /No/ Nuclear Science & Technology Some of these resources are LANL-only and will require Remote Access. Key Resources Databases Organizations Journals Key Resources International Atomic Energy Agency IAEA scientific and technical publications cover areas of nuclear power, radiation therapy, nuclear security, nuclear law, and emergency repose. Search under Publications/Books and Reports for scientific books, standards, technical guides and reports National Nuclear Data Center Nuclear physics data for basic nuclear research and for applied nuclear technologies, operated by Brookhaven.

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Research Areas Research Highlights Facilities and Capabilities Science to Energy Solutions News & Awards Events and Conferences Supporting Organizations Advanced Materials Home | Science & Discovery | Advanced Materials | Facilities and Capabilities SHARE Chemical and Materials Sciences Building Chemical and Materials Sciences Building, 411 ORNL's Chemical and Materials Sciences Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical and Materials Sciences Building is a 160,000 square foot facility that provides modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical

62

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

63

Manufacturing Science and Technology: Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

64

Bioconversion Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

BSD BSD EESD ORNL Bioconversion Science and Technology BioSciences Division Home Resources Publications People BST Students Former Members Links Contact Us Research Areas Production of Fuels and Chemicals Genomes to Life Biofuel Cells Bioprocessing of Fossil Fuels Biotreatment and Bioremediation Jonathan Mielenz, leader of the Bioconversion Science and Technology Group in ORNL's Biosciences Division, is studying a microbe that could prove more cost effective than current methods in transforming cellulose from sources such as switchgrass and poplar trees into ethanol. Bioconversion Science & Technology The Bioconversion Science and Technology group performs multidisciplinary R&D for the Department of Energy's (DOE) relevant applications of bioprocessing, especially with biomass. Bioprocessing combines the

65

Integration of Green Engineering Concepts into Materials Science ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Green Engineering and Environmental Stewardship. Presentation Title...

66

LANL: Materials Science Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Laboratory (MSL) is Materials Science Laboratory (MSL) is an interdisciplinary facility dedicated to research on current materials and those of future interest. It is a 56,000 square-foot modern facility that can be easily reconfigured to accom- modate new processes and operations. It compris- es 27 laboratories, 15 support rooms, and 60 offices. The MSL supports many distinct materi- als research topics, grouped into four focus areas: mechanical behavior, materials processing, syn- thesis, and characterization. Research within the MSL supports programs of national interest in defense, energy, and the basic sciences. The MSL is a non-classified area in the Materials Science Complex in close proximity to classified and other non-classified materials research facilities. The Materials Science

67

Reactor Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Fuel Cycle Science & Technology Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation...

68

Materials Science & Engineering | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Clean Energy Materials Theory and Simulation Neutron Science Nuclear Forensics Nuclear Science Supercomputing Theory, Modeling and Simulation Mathematics Physics More Science Home | Science & Discovery | More Science | Materials Science and Engineering SHARE Materials Science and Engineering ORNL's core capability in applied materials science and engineering directly supports missions in clean energy, national security, and industrial competitiveness. A key strength of ORNL's materials science program is the close coupling of basic and applied R&D. Programs building on this core capability are focused on (1) innovations and improvements in materials synthesis, processing, and design; (2) determination and manipulation of critical structure-property relationships, and (3)

69

Genome Science/Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Science & Innovation » Science & Innovation » Science & Engineering Capabilities » Bioscience: Bioenergy, Biosecurity, and Health » Environmental Microbiology » Genome Genome Science/Technologies Los Alamos using cutting-edge sequencing, finishing, and analysis, impact valuable genomic data. Get Expertise Cheryl Kuske DOE BER Biological System Science Division Program Manager Email Srinivas Iyer Bioscience Group Leader Email Momchilo Vuyisich Bioenergy and Biomedical Sciences Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein research Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the properties of a green fluorescent protein in order to create new fluorescent protein variants.

70

science and technology agenda  

Science Conference Proceedings (OSTI)

Bart Gordon's tenure as Chairman of the House Science and Technology Committee has been marked by an aggressive schedule of hearings and successes in...

71

Genome Science/Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Momchilo Vuyisich Bioenergy and Biomedical Sciences Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein...

72

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

73

Bachelor of Science & Bachelor of Science (Technology)  

E-Print Network (OSTI)

Bachelor of Science & Bachelor of Science (Technology) SpecialiSationS Environmental Microbiology environment. This specialisation can be attached to the Environmental Sciences major. Environmental Modelling Sciences major. Land and Freshwater Environments This specialisation is for students interested

Waikato, University of

74

Sandia National Labs: Materials Science & Engineering, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

MATERIALS SCIENCE & ENGINEERING HOME OrganizationMission Capabilities Awards & Accomplishments Patents MATERIALS SCIENCE AND ENGINEERING CENTER Techniques 1 2 3 4 5 6 7 These are...

75

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

ESTABLISHED MATERIALS TECHNOLOGIES ... Specifically, digital resources are available relating to materials for nuclear power, materials sustainability, and ...

76

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 7, 2013... engineering, computer science, mathematics, chemistry, biology, materials science, neutron research, and/or physics are eligible to nominate...

77

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 3, 2013... pilot opportunity to broaden participation of underrepresented groups in science, technology, engineering, and mathematics (STEM) fields in...

78

Understanding Materials Science History, Science, Applications - TMS  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... CITATION: Hummel, R.E. Understanding Materials Science History, Science, Applications, 2nd Edition, New York: Springer, 2004.

79

CRC handbook of laser science and technology. Volume 4. Optical materials, Part 2 - Properties  

Science Conference Proceedings (OSTI)

This book examines the optical properties of laser materials. Topics considered include: fundamental properties; transmitting materials; crystals; glasses; plastics; filter materials; mirror and reflector materials; polarizer materials; special properties; linear electrooptic materials; magnetooptic materials; elastooptic materials; photorefractive materials; and liquid crystals.

Weber, M.J.

1986-01-01T23:59:59.000Z

80

Site map for the E-print Network -- Energy, science, and technology...  

Office of Scientific and Technical Information (OSTI)

Technologies Environmental Sciences and Ecology Fission and Nuclear Technologies Fossil Fuels Geosciences Materials Science Mathematics Physics Plasma Physics and Fusion...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials science and engineering  

Science Conference Proceedings (OSTI)

During FY-96, work within the Materials Science and Engineering Thrust Area was focused on material modeling. Our motivation for this work is to develop the capability to study the structural response of materials as well as material processing. These capabilities have been applied to a broad range of problems, in support of many programs at Lawrence Livermore National Laboratory. These studies are described in (1) Strength and Fracture Toughness of Material Interfaces; (2) Damage Evolution in Fiber Composite Materials; (3) Flashlamp Envelope Optical Properties and Failure Analysis; (4) Synthesis and Processing of Nanocrystalline Hydroxyapatite; and (5) Room Temperature Creep Compliance of Bulk Kel-E.

Lesuer, D.R.

1997-02-01T23:59:59.000Z

82

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 28, 2012 ... Administrative & Policy Manual .... Materials and Society: Energy Technology, Policy, and Education; Materials Processing and Production; and...

83

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

... Materials Science Programs & Projects. ... In this project we measure the fundamental electrical properties of materials from bulk to nanoscale from ...

2010-09-22T23:59:59.000Z

84

Materials sciences programs, Fiscal year 1997  

Science Conference Proceedings (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

85

Conference on Advances in Materials Science | National Nuclear...  

National Nuclear Security Administration (NNSA)

in Materials Science Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

86

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate...  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation Washington, D.C. - For its leadership and innovation in science and technology, the Office...

87

Polymers and Coatings:Materials Science & Technology, MST-7: Los Alamos  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymers and Coatings (MST-7) Polymers and Coatings (MST-7) Home About Us MST Related Links Research Highlights Focus on Facilities MST e-News Experimental Physical Sciences Vistas MaRIE: Matter-Radiation Interactions in Extremes MST Division Home CONTACTS Polymers and Coatings Group Leader, Ross E. Muenchausen Deputy Group Leader Dominic S. Peterson Point of Contact, Group Office 505-667-6887 foam voids Foam Void Image Using X-ray Micro Tomography About MST Polymers and Coatings (MST-7) Our mission is to provide World-class design, fabrication, assembly, characterization, and field support for the wide range of targets in support of national science programs that include energy, nuclear weapons, conventional defense, industrial collaborations, nonproliferation, and the environment; Outstanding polymer science and engineering solutions in support of

88

NREL: Energy Sciences - Chemical and Materials Science Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Materials Science Staff Chemical and Materials Science Staff The Chemical and Materials Science staff members at the National Renewable Energy Laboratory work within one of five groups: the Chemical and Nanoscale Science Group, the Theoretical Materials Science Group, the Materials Science Group, the Process Technology and Advanced Concepts Group, and the Fuel Cells Group. Access the staff members' background, areas of expertise, and contact information below. Jao van de Lagemaat Director Marisa Howe Project Specialist Chemical & Nanoscale Science Group Nicole Campos Administrative Professional Paul Ackerman Natalia Azarova Brian Bailey Matthew C. Beard Matt Bergren Raghu N. Bhattacharya Julio Villanueva Cab Rebecca Callahan Russ Cormier Ryan Crisp Alex Dixon Andrew J. Ferguson Arthur J. Frank

89

Materials Science Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel...

90

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

91

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Though well established as materials science and engineering fields, constant improvements are being made to the production of metals, the processing of...

92

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010... in my opinion, is raising the consciousness of the materials science ... quality and human health is spreading more rapidly than innovation in...

93

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Apr 26, 2010... in part, on an earlier discovery by Jay Narayan, a 1999 TMS Fellow and John C. Fan Distinguished Chair Professor of Materials Science and...

94

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Oct 5, 2010 ... A mechanical engineer who later became interested in materials science and biology, Suresh has done pioneering work studying the...

95

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

DOE Awards $45 Million to Deploy Advanced Transportation Technologies Novel Electrode Material Offers Alternative for Li-ion Batteries New Materials Make...

96

Materials Science and Engineering  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Science and Engineering Materials Science and Engineering 1 Fe---Cr A lloys f or A dvanced N uclear E nergy A pplica9ons Ron S caMaterials Science and Engineering 2 Thermodynamic S tabiliza9on o f G rain S ize The concept is that non---equilibrium solutes introduced by mechanical alloying can segregate to grain b oundaries, p roducing

97

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 10, 2010 ... ESTABLISHED MATERIALS TECHNOLOGIES ... A new, exciting development is the application of these techniques to biological systems,...

98

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 13, 2012 ... ESTABLISHED MATERIALS TECHNOLOGIES ... These projects include the development and validation of modeling tools to deliver higher...

99

NREL: Energy Sciences - Computational Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Version Computational Materials Science Illustration of molecular structure. Overall shape is a somewhat canted diamond, with a grid of small green balls connected in either a...

100

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Researching renewable energy and energy efficiency technologies-and the Researching renewable energy and energy efficiency technologies-and the science behind them-for a future powered by clean energy. Renewable Electricity and End Use Systems Left to right: Photo of photovoltaic panels. Photo of a wind turbine. Photo of concentrating solar power. Photo of lava. Photo of water. Photo of an engineer working on controls. Photo of an energy efficiency building. Photovoltaics Wind Energy Concentrating Solar Power Geothermal Energy Water Power Electricity Integration Buildings Efficiency Renewable Fuels and Vehicle Systems Left to right: Photo of a scientist looking at biomass. Photo of an engineer working on test equipment. Photo montage of a US flag, truck, and car. Biomass Hydrogen and Fuel Cells Vehicles and Fuels Energy Sciences

102

Materials Technology CERAMICRETE PROVIDES CONCRETE EVIDENCE OF  

E-Print Network (OSTI)

. Further details about Ceramicrete: http://www.anl.gov/techtransfer/ Available_Technologies/ Material_Science/Ceramicrete/ index.html: Ceramicrete properties (Table 2): http://www.anl.gov/techtransfer/ Available_Technologies/ Material_Science/Ceramicrete/ properties-table2.pdf Patents issued and licenses: http://www.anl.gov/techtransfer

Kemner, Ken

103

Materials Technology@TMS  

Science Conference Proceedings (OSTI)

Aug 5, 2010 ... MMC Database ... Student registration and travel expenses were funded, in part, ... Prior to visiting members of Congress, SETCVD participants were briefed on the state of science and technology funding and received...

104

Materials sciences programs, fiscal year 1994  

Science Conference Proceedings (OSTI)

The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

NONE

1995-04-01T23:59:59.000Z

105

The Entire Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archives, Since January 2005 Table of Contents: Materials Scientist Two Phase Materials Nano-technology Projections Scents in Scented Candles Rubber Band Materials Metallic...

106

Nuclear Systems Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Criticality Safety Irradiation Experiment Development and Execution Robotics & Remote Systems Engineering and Applications Thermal & Hydraulic Experiments & Analysis Used Nuclear Fuel Storage, Transportation, and Disposal Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Nuclear Systems Technology SHARE Nuclear Systems Technology Nuclear Systems Technology Image 2 ORNL has had historic involvement in a broad set of nuclear research areas: irradiated materials and isotopes R&D, fission and fusion reactors development, neutron scattering, fuel enrichment, used fuel recycling and disposal, etc. The skills and knowledge required to succeed in these research areas often cultivated core areas of expertise in which ORNL is

107

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna 3 foot diameter cyanate ester / fiberglass laminated antenna Composites PDF format (145 kb) Polymer composite materials are composed of fibers in an organic matrix and can be useful in applications that require a high strength-to-weight ratio. Sandia's MS&T staff will work with you from part design, through mold and tooling design, and on through fabrication. The department is capable of fabricating small and large complex parts and will help you choose the most economical technique for your composite needs. Capabilities: The Center has a comprehensive program on the mechanical engineering design, tooling and fixturing, lay-out, complete processing of the composite structure, and technology transfer of composite structures for a

108

Materials Science & Technology 2003  

Science Conference Proceedings (OSTI)

MS&T '03 integrates and expands upon two seminal fall events: the ISS MECHANICAL WORKING AND STEEL PROCESSING CONFERENCE and the TMS...

109

Materials Science & Technology Building  

E-Print Network (OSTI)

is transforming the national laboratory. In the summer of 2007, work began on the nearly 200,000-square- foot security scientific capabilities, equipment, and staff displaced from accelerated cleanup of the Hanford enables PNNL scientists and engineers to create multidisciplinary teams that crosscut scientific platforms

110

Materials Science & Technology 2003  

Science Conference Proceedings (OSTI)

Edited by A.B. Pandey, K.L. Kendig, J.J. Lewandowski and S.R. Shah. Please submit papers to: Awadh B. Pandey Pratt & Witney MS 702-06 17900 Beeline Hwy...

111

Materials Science & Technology 2014  

Science Conference Proceedings (OSTI)

Innovation in Processing of Light Metals for Transportation Industries: A Symposium in Honor ... Phase Transformations in Ceramics: the Present and the Future.

112

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 9, 2011 ... This team will focus on developing and manufacturing materials technologies that can be pushed to these extremes in next generation energy...

113

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 1, 2013 ... Researchers at Penn State University have designed a special material ... and less power consumption than possible with current technology.

114

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

May 22, 2009... smart grid technologies, batteries, and high-temperature materials) ... 15th Int'l Conference on Environmental Degradation in Nuclear Power...

115

Huazhong Science Technology University Yongtai Science Technology Co Ltd |  

Open Energy Info (EERE)

Huazhong Science Technology University Yongtai Science Technology Co Ltd Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name Huazhong Science & Technology University Yongtai Science & Technology Co Ltd Place Wuhan, Hubei Province, China Zip 430074 Sector Solar Product Makes solar passive water heaters. Coordinates 30.572399°, 114.279121° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.572399,"lon":114.279121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

117

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

118

Center for Theoretical and Computational Materials Science ...  

Science Conference Proceedings (OSTI)

NIST/MML Center for Theoretical and Computational Materials Science. Mission. ... Center for Theoretical and Computational Materials Science ...

2013-09-04T23:59:59.000Z

119

Sandia National Laboratories: Careers: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials science worker Sandia materials scientists are creating scientifically tailored materials for U.S. energy applications and critical defense needs....

120

Materials Science Programs and Projects  

Science Conference Proceedings (OSTI)

NIST Home > Materials Science Programs and Projects. ... the structure of crack tips, the rates ... as health care, communications, energy and electronics ...

2010-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Materials Science Division - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About MSD Information Awards Visit MSD Administrative Staff Division Personnel Research Research Groups Condensed Matter Theory Emerging Materials Energy Conversion and Storage Magnetic Films Molecular Materials Neutron and X-ray Scattering Superconductivity and Magnetism Surface Chemistry Synchrotron Radiation Studies Threat Detection and Analysis Group Research Areas Careers in MSD Internal Sites Search Front Slide 1 November 2013 - Patricia Dehmer (second from right), Deputy Director of Science Programs, DOE Office of Science, joined Argonne Director Eric Isaacs(left) and Associate Laboratory Director for Physical Sciences and Engineering Peter Littlewood(second from left) to tour the recently-opened Energy Sciences Building. Among Dehmer's stops was the crystal growth

122

Licensable Life Science Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensable Life Science Technologies A selection of biology-based technologies available for licensing licensablebiologicaltechnologies...

123

GARS | Nuclear Science and Technology Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Science and Technology Department Exploring Nuclear Technologies for Our Energy Future Brookhaven National Laboratory's Department of Nuclear Science and Technology...

124

Physical Sciences 2007 Science & Technology Highlights  

SciTech Connect

The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

Hazi, A U

2008-04-07T23:59:59.000Z

125

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

126

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

parts Brazing large complex parts The joining and heat-treating technologies in the Thin Film, Vacuum, & Packaging department include brazing, heat-treating, diffusion...

127

Materials Measurement Science Division Staff Directory  

Science Conference Proceedings (OSTI)

... Patricia Ridgley Division Office Manager 301-975-3914. ... Material Measurement Laboratory Materials Measurement Science Division. ...

2013-03-19T23:59:59.000Z

128

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Processes Processes Hydrogen Firing Components Hydrogen Firing Components Large Vacuum Furnace Large Vacuum Furnace Controlled Atmosphere Furnace Controlled Atmosphere Furnace Quantify Material Outgassing Quantify Material Outgassing PDF format (92 kb) The vacuum processing capabilities in our Thin Film, Vacuum, & Packaging Laboratory encompass several areas. Capabilities include vacuum, inert gas and hydrogen firing; thermal desorption mass spectroscopy; vacuum outgassing rate measurement; ion beam milling; and cermet densification. Capabilities: Expertise in the development of cleaning processes and materials characterization of vacuum materials and components Vacuum and hydrogen firing of components for oxide reduction and cleaning of vacuum components Large scale cleaning processes, vapor degreasing and vacuum firing

129

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

rate measurements and mass spectroscopy of materials and components Machining and welding capability for constructing unique vacuum components for prototype or production...

130

Engineering Science & Technology Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Cooling, Heating and Power Technologies Electronics and Communications Industrial Energy Efficiency Robotics and Energetic Systems Sensors & Signal...

131

NETL Earns Carnegie Science Awards for Advanced Materials, Corporate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Earns Carnegie Science Awards for Advanced Materials, Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation NETL Earns Carnegie Science Awards for Advanced Materials, Corporate Innovation March 5, 2013 - 9:16am Addthis WASHINGTON, D.C. - For its leadership and innovation in science and technology, the National Energy Technology Laboratory has earned two Carnegie Science Awards from the Carnegie Science Center. NETL representatives will pick up the Advanced Materials Award and the Corporate Innovation Award at the 17th annual award ceremony to be held May 3, 2013, at Carnegie Music Hall in Pittsburgh. The Carnegie Science Center established the Carnegie Science Awards program in 1997 "to recognize and promote innovation in science and technology across western Pennsylvania." The awards not only identify the innovators

132

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

SEM micrograph of carbon film SEM micrograph of carbon film SEM micrograph of carbon film (marker = 50 microns) Materials Characterization PDF format (139 kb) MS&T provides a broad range of techniques to characterize organic materials. These techniques assist you in understanding and improving the materials and processes used (e.g., encapsulation, adhesion, composites). Capabilities: Thermal Analysis - Determine glass transition temperature (Tg), heat capacity (Cp), heat of cure, curing reaction kinetics, glassy and rubbery modulus, coefficient of thermal expansion, volatile and organic content, and decomposition temperatures Rheological Testing - Characterize the rheological properties of liquids, melts and solids Work of Adhesion - Measure work of adhesion between polymeric

133

Mesoscale Computational Materials Science - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... Symposium, Mesoscale Computational Materials Science of Energy Materials. Sponsorship ... materials for advanced batteries and fuel cells

134

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

135

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

DOE Green Energy (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

136

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

137

Materials Science Evaluation News  

Science Conference Proceedings (OSTI)

... Organic solar cells may be a step closer to market because of measurements taken at the National Institute of Standards and Technology (NIST ...

2010-10-28T23:59:59.000Z

138

Materials Science/Crystallography  

Science Conference Proceedings (OSTI)

... Understanding the ormation of Methane Hydrate F ... J.247 agnetic Excitation Spectrum in Spin ... eutron Vibrational Spectroscopy of Organic Materials ...

2003-11-12T23:59:59.000Z

139

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

cq523_150.GIF (12759 bytes) cq523_150.GIF (12759 bytes) Study of inclusion effect on encapsulation stress Encapsulation Many of the components we work with are encapsulated in either highly filled epoxies or in foams of varying density. Encapsulation is performed for a variety of reasons, including high voltage standoff, shock and vibration isolation, stress relief, environmental isolation, etc. We not only perform encapsulation, but we conduct research into the component-encapsulation adhesive bond, fracture of the adhesive bond, the stress developed during cure, cure kinetics of the encapsulant material, and the effect of inclusions on the bulk stress field. We have worked to develop more environmentally friendly substitutes for the traditional epoxies and foams. We can help you choose an encapsulant material,

140

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Future Science & Technology Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Promethean Boldness - Argonne's Nuclear Science and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy...

142

Dynamic Glazing from a Material Science Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic Glazing from a Material Science Perspective Dynamic Glazing from a Material Science Perspective Speaker(s): Sunnie Lim Date: February 16, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Dragan Charlie Curcija Advanced window technology has been identified as a component which can greatly reduce the energy consumption of the building envelope. The next generation of advanced windows will involve a "smart-coating" technology where the optical and solar properties can be dynamically controlled. The performance of such coating is ultimately linked to its materials properties such as chemical composition and microstructure. These properties are directly influenced by the deposition process conditions. A promising dynamic windows technology is based upon the electrochromism process. An electrochromic window system consists of a sandwich of

143

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Engineered Net Shaping(tm) Laser Engineered Net Shaping(tm) PDF format (140 kb) picture of processing blade Processing Blade Sandia National Laboratories has developed a new technology to fabricate three-dimensional metallic components directly from CAD solid models. This process, called Laser Engineered Net ShapingT (LENS®), exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production items, are produced. The process fabricates metal parts directly from the Computer Aided Design (CAD) solid models using a metal powder injected into a molten pool created by a focused, high-powered laser beam. Simultaneously, the substrate on which the deposition is occurring is scanned under the beam/powder interaction zone to fabricate the desired

144

Biological Materials Science Symposium  

Science Conference Proceedings (OSTI)

The structure and properties of biological materials exhibit a breadth and complexity .... Protective Role of Arapaima Scales: Structure and Mechanical Behavior.

145

Nuclear Science and Technology Division - Home page  

NLE Websites -- All DOE Office Websites (Extended Search)

image image image - mural in bldg 5200 image image Fuels, Isotopes, and Nuclear Materials image Fuels, Isotopes, and Nuclear Materials Nuclear System Analysis, Design, and Safety image Nuclear System Analysis, Design, and Safety WELCOME Performing basic and applied R&D for the Department of Energy, the National Nuclear Security Administration, and other government agencies, as well as supporting and leveraging industrial partnerships Mission Statement The Nuclear Science and Technology Division at Oak Ridge National Laboratory will provide leading-edge science, technology, and engineering research that support our Nation's nuclear science and technology enterprise across a broad spectrum of applications including but not limited to advanced nuclear power systems, nuclear medicine,and nuclear

146

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 & ast edited: 2012-02-24 15:12:59...

147

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 July 2, 2014 Annecy, France. The International Congress on 3D Materials Science seeks...

148

CRC handbook of laser science and technology. Volume 5. Optical materials. Part 3. Applications, coatings, and fabrication  

Science Conference Proceedings (OSTI)

This book describes the uses, coatings, and fabrication of laser materials. Topics considered include: optical waveguide materials; optical storage materials; holographic recording materials; phase conjunction materials; holographic recording materials; phase conjunction materials; laser crystals; laser glasses; quantum counter materials; thin films and coatings; multilayer dielectric coatings; graded-index surfaces and films; optical materials fabrication; fabrication techniques; fabrication procedures for specific materials.

Weber, M.J.

1987-01-01T23:59:59.000Z

149

Science & Technology Review June 2007  

SciTech Connect

Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy's National Nuclear Security Administration. At Livermore, we focus science and technology on ensuring our nation's security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

Chinn, D J

2007-04-30T23:59:59.000Z

150

Science & Technology Review June 2007  

DOE Green Energy (OSTI)

Lawrence Livermore National Laboratory is operated by the University of California for the Department of Energy's National Nuclear Security Administration. At Livermore, we focus science and technology on ensuring our nation's security. We also apply that expertise to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published 10 times a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world.

Chinn, D J

2007-04-30T23:59:59.000Z

151

NREL: Science and Technology - Science and Technology Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Technology Highlights Science and Technology Highlights NREL researchers' accomplishments in fundamental energy science contribute to a clean energy future for the nation. Take a look at recent technical highlights and learn about the key results and impacts in NREL's energy science research involving: Solar Photo of a large photovoltaic array. January 2014 Technique Reveals Critical Physics in Deep Regions of Solar Cells NREL's improved time-resolved photoluminescence method measures minority-carrier lifetime deep within photovoltaic samples to help develop more efficient solar cells. System Advisor Model Includes Analysis of Hybrid CSP Option NREL has created an analytical model to study a hybrid power option-concentrating solar power coupled with natural-gas-powered generation.

152

NIST Nanoscale Science and Technology Center Now ...  

Science Conference Proceedings (OSTI)

NIST Nanoscale Science and Technology Center Now Accepting Proposals. For Immediate Release: May 1, 2007. ...

2013-07-19T23:59:59.000Z

153

Seeking Science and Technology  

Science Conference Proceedings (OSTI)

... Household Products Database consumer-oriented household products database ... Cool Roofing Materials Database database with solar and ...

2011-07-14T23:59:59.000Z

154

The NIST Center for Nanoscale Science and Technology ...  

Science Conference Proceedings (OSTI)

Page 1. CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 CENTER FOR NANOSCALE SCIENCE & TECHNOLOGY 2010 Page 2. ...

2012-09-15T23:59:59.000Z

155

The computational materials science of concrete:  

Science Conference Proceedings (OSTI)

... Computational Materials Engineering (ICME), advanced by the ... models need to advance to the ... reposito- ry, the computational materials science of ...

2013-07-29T23:59:59.000Z

156

Computational Materials Science and Engineering Committee  

Science Conference Proceedings (OSTI)

The Computational Materials Science and Engineering Committee is part of the Materials Processing & Manufacturing Division;. Our Mission: Foster research...

157

ME306 Materials Science Course Syllabus  

E-Print Network (OSTI)

SUPPLEMENTARY REFERENCES ON RESERVE 1. James F. Shackelford, "Introduction to Materials Science for Engineering

Cleveland, Robin

158

Fuel Cycle Science & Technology | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuel Cycle Systems Radiochemical Separation & Processing Recycle & Waste Management Uranium Enrichment Used Nuclear Fuel Storage, Transportation, and Disposal Fusion Nuclear Science Isotope Development and Production Nuclear Security Science & Technology Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery | Nuclear Science | Research Areas | Fuel Cycle Science & Technology SHARE Fuel Cycle Science and Technology The ORNL expertise and experience across the entire nuclear fuel cycle is underpinned by extensive facilities and a comprehensive modeling and simulation capability ORNL supports the understanding, development, evaluation and deployment of

159

Sintering Science and Technology  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... This research was sponsored by the U.S. DOE, Office of EERE Industrial Technologies Program, under contract DE-AC05-00OR22725 with...

160

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Aerospace Engineering  

E-Print Network (OSTI)

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Loop glider Airboat Straw rockets College Class Science Activity Stomp rockets Underwater copters AND/OR Circuits College Class Science Activity Electronic T/F Motorized flying gliders

Rohs, Remo

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Materials Technology @ TMS Home Page  

Science Conference Proceedings (OSTI)

Welcome to the TMS Digital Resource Center, an archive of electronic, contributed resources on a variety of materials science and engineering topics.

162

Vehicle Technologies Office: Materials Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer composites can directly reduce the weight of a vehicle's body...

163

Materials and Science in Sports: Exhibition - TMS  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

164

Materials and Science in Sports: Destination Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

165

Chemistry and Materials Science Strategic Plan  

SciTech Connect

Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted the assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.

Rhodie, K B; Mailhiot, C; Eaglesham, D; Hartmann-Siantar, C L; Turpin, L S; Allen, P G

2004-04-21T23:59:59.000Z

166

LANL Institutes - Information Science and Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWS LIBRARY JOBS SITE MAP Emergency Maps Organization Goals Phone Search Science > LANL Institutes > Information Science and Technology Center Institutes Home Mission...

167

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

- Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

168

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 3, 2010 ... This program focuses on developing energy storage technologies to ... Ultimately , technologies developed through this program will be...

169

Materials Sciences Division 1990 annual report  

Science Conference Proceedings (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

170

Materials Sciences Division 1990 annual report  

Science Conference Proceedings (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

171

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

172

CRC handbook of laser science and technology. Volume 3. Optical materials, Part 1 - Nonlinear optical properties/radiation damage  

Science Conference Proceedings (OSTI)

This book examines the nonlinear optical properties of laser materials. The physical radiation effects on laser materials are also considered. Topics considered include: nonlinear optical properties; nonlinear and harmonic generation materials; two-photon absorption; nonlinear refractive index; stimulated Raman scattering; radiation damage; crystals; and glasses.

Weber, M.J.

1986-01-01T23:59:59.000Z

173

Thomas Jefferson High School for Science & Technology National...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

174

JOM - Materials Technology@TMS  

Science Conference Proceedings (OSTI)

Sep 15, 2009 ... While science, technology, engineering, and mathematics instruction is collectively referred ... to engineering design in curricula and professional development. ... education that will work for different American school systems.

175

Before the House Committee on Science, Space and Technology ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the House Committee on Science, Space and Technology Before the House Committee on Science, Space and Technology Statement Before the Committee on Science, Space and Technology,...

176

Welcome to Greenhouse Gases: Science and Technology: Editorial  

E-Print Network (OSTI)

to Greenhouse Gases: Science and Technology Editorial CurtisWelcome to Greenhouse Gases: Science and Technology. Throughon greenhouse gas emissions science and technology, this

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

177

Office of Science and Technology & International Year End Report - 2005  

E-Print Network (OSTI)

Director, Office of Science and Technology and Internationalreprocessing. Journal of Nuclear Science and Technology, 26,2 nanoparticles. Environmental Science and Technology, 37,

Bodvarsson, G.S.

2005-01-01T23:59:59.000Z

178

Science & Technology Principal Directo rate Industrial ...  

Erik Stenehjem Science & Technology Principal Directo rate Industrial Partnerships Office Erik Stenehjem Director----Roger Werne Deputy Director

179

Science and Technology of Interfaces - International Symposium ...  

Science Conference Proceedings (OSTI)

SCIENCE AND TECHNOLOGY. OF INTERFACES. International Symposium Honoring the. Contributions of Dr. Bhakta Rath. Proceedings of a symposium...

180

Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Argonne's Nuclear Science and Technology Legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

3D Materials Science 2014: Home Page  

Science Conference Proceedings (OSTI)

The International Congress on 3D Materials Science seeks to provide the ... assess the state-of-the-art within the various elements of 3D materials science, but to...

182

Putting Science to Work OUR TECHNOLOGIES  

NLE Websites -- All DOE Office Websites (Extended Search)

OUR OUR TECHNOLOGIES ORNL Technology Transfer & Economic Development (TTED) seeks to foster economic development and the growth of business and industry by making available the most innovative equipment, the latest technology, and the expertise of ORNL researchers to technology-based companies throughout the nation. (continued on page 3) A scanning electron microscope image of bacteria with magnetite crystals. L ocal business leaders in the Oak Ridge-Knoxville area recently launched Innovation Valley Partners (IVP), a $35- million venture capital fund. IVP is affiliated with Battelle Ven- tures, LP , a $150-million national fund investing in early-stage companies in the life sciences, information technology, home- land security, energy and advanced materials/nanotechnology.

183

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Oct 18, 2012 ... In the last century, investments in research and development (R&D) have been ... and basic science can take years to produce tangible results.

184

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Feb 14, 2013 ... According to a National Science Foundation (NSF) statement, the research efforts leading to the Argus II have bridged cellular biology and...

185

Principal Associate Director - Science, Technology, and Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Principal Associate Director - Science, Technology, and Engineering Principal Associate Director - Science, Technology, and Engineering Bishop oversees directorates of Chemistry, Life, and Earth Sciences; Engineering and Engineering Sciences; Experimental Physical Sciences; Information Technology; and Theory, Simulation, and Computation. Contact Operator Los Alamos National Laboratory (505 667-5061 Bishop is a Fellow of the American Physical Society, the Institute of Physics, and the American Association for the Advancement of Science; a recipient of the Department of Energy's E.O. Lawrence Award; a Humboldt Senior Fellow; and a LANL Fellow. Alan R. Bishop Principal Associate Director for Science, Technology, and Engineering Alan R. Bishop, Acting Principal Associate Director for Science, Technology and Engineering As Principal Associate Director for Science, Technology, and Engineering,

186

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

187

Science & Technology Review October 2007  

Science Conference Proceedings (OSTI)

Livermore researchers won five R&D 100 awards in R&D Magazine's annual competition for the top 100 industrial innovations worldwide. This issue of Science & Technology Review highlights the award-winning technologies: noninvasive pneumothorax detector, microelectromechanical system-based adaptive optics scanning laser ophthalmoscope, large-area imager, hyper library of linear solvers, and continuous-phase-plate optics system manufactured using magnetorheological finishing. Since 1978, Laboratory researchers have received 118 R&D 100 awards. The R&D 100 logo (on the cover and p 1) is reprinted courtesy of R&D Magazine.

Chinn, D J

2007-08-21T23:59:59.000Z

188

Computational Materials Science: from Basic Principles to Material ...  

Science Conference Proceedings (OSTI)

Feb 8, 2007... Thermodynamics Software/Codes, Visualization Software/Codes ... Topic Title: Computational Materials Science: from Basic Principles to...

189

Materials Highlights | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials SHARE Materials Highlights 1-7 of 7 Results Neutron scattering characterizes dynamics in polymer family December 01, 2012 - Understanding the interplay between structure and dynamics is the key to obtaining tailor-made materials. In the last few years, a large effort has been devoted to characterizing and relating the structure and dynamic properties in families of polymers with alkyl side groups. Theory meets experiment: structure-property relationships in an electrode material for solid-oxide fuel cells December 01, 2012 - Fuel cell technology is one potentially very efficient and environmentally friendly way to convert the chemical energy of fuels into electricity. Solid-oxide fuel cells (SOFCs) can convert a wide variety of fuels with simpler, cheaper designs than those used in

190

Conference on Advances in Materials Science - Presentations | National  

NLE Websites -- All DOE Office Websites (Extended Search)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

191

Conference on Advances in Materials Science - Presentations | National  

National Nuclear Security Administration (NNSA)

in Materials Science - Presentations | National in Materials Science - Presentations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Feature Bottom Conference on Advances in Materials Science - Presentations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

192

FWP executive summaries: Basic energy sciences materials sciences programs  

Science Conference Proceedings (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

193

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Defining the data challenges associated with building the materials innovation infrastructure at the core of the U.S. Materials Genome Initiative (MGI) was the...

194

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 6, 2009... specifications for future energy generation technologies, including the Ultra- Supercritical Steam Boiler and Turbine Project, said Williamson.

195

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 3, 2008... properties of nanomaterials, while also theorizing their impact on advancements in battery technology, solar energy, and superconductors.

196

Thomas Jefferson High School for Science & Technology National Science  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thomas Jefferson High School for Science & Technology National Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from Alexandria, Va. The team received its championship trophy after triumphing over 62 other regional team champions this weekend. The team members are: Logan Kearsley, Matthew Isakowitz, Sam Lederer, Lisa Marrone, Charlotte Seid and coach Sharon Baker. The team also won a research trip to Alaska, three Computer Based Laboratories and $1,000 for their school's science

197

Science& Technology Review November 2003  

DOE Green Energy (OSTI)

This issue of Science & Technology Review covers the following topics: (1) We Will Always Need Basic Science--Commentary by Tomas Diaz de la Rubia; (2) When Semiconductors Go Nano--experiments and computer simulations reveal some surprising behavior of semiconductors at the nanoscale; (3) Retinal Prosthesis Provides Hope for Restoring Sight--A microelectrode array is being developed for a retinal prosthesis; (4) Maglev on the Development Track for Urban Transportation--Inductrack, a Livermore concept to levitate train cars using permanent magnets, will be demonstrated on a 120-meter-long test track; and (5) Power Plant on a Chip Moves Closer to Reality--Laboratory-designed fuel processor gives power boost to dime-size fuel cell.

McMahon, D

2003-11-01T23:59:59.000Z

198

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 12, 2013 ... MT@TMS HOME PAGE ... this center will cover the scientific and technological requirements of the food industry along the whole value chain.

199

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 27, 2010 ... The 0.01-ton prototype is intended to replace conventional vapor compression cooling technology. This two-state alloy alternately absorbs or...

200

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 23, 2011 ... Recycling lithium ion batteries is not an option; the need to develop enabling technologies is critically important for a sustainable future.

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Materials Science and Engineering Onsite Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Engineering Onsite Research As the lead field center for the DOE Office of Fossil Energy's research and development program, the National Energy Technology Laboratory...

202

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jul 10, 2012... for Learning and Dialogue on Energy Topics, Materials Sustainability ... and electronic equipment and infrastructure, energy production and...

203

About - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home TMS Committees Home Electronic, Magnetic & Photonic Materials...

204

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

... MI; Elizabeth Holm, Carnegie Mellon University, Pittsburgh, PA; Peter Gumbsch, Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany.

205

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

206

Advanced Materials Technologies - Energy Innovation Portal  

Advanced Materials Technology Marketing Summaries Here youll find marketing summaries of advanced materials technologies available for licensing from ...

207

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

208

Science & Technology Review September 2009  

Science Conference Proceedings (OSTI)

This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

Bearinger, J P

2009-07-24T23:59:59.000Z

209

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 21, 2011 ... TMS Social Network and Site Tools .... Development of low-cost, novel hydrogen storage vessels and/or low-cost fibers for composite ... storage technologies for both stationary and light-duty vehicle transportation applications.

210

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Feb 16, 2011 ... Lactic acid is a renewable starting material, produced by bacteria grown in vats of biomass, such as glucose and starch from plants. It has been...

211

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

... the pace of advanced materials discovery, innovation, manufacture, and commercialization. At a White House event on June 24, the second anniversary of .

212

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Jan 11, 2010 ... Advanced materials, off-shore wind power, quantum physics, nanoscience, and metrology are a few of the research areas that will be pursued...

213

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 9, 2009... achieve the ultimate goal of developing superconducting materials for real- world devices, such as zero-loss power transmission lines.

214

JOM - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 10, 2010 ... The garment represents a futuristic makeover of that traditional and popular clothing material standby, cotton. Scientists in the Textiles...

215

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 17, 2009 ... Electronic, Magnetic & Photonic Materials .... will support the development of low- cost batteries for electric and plug-in hybrid electric vehicles.

216

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010 ... Next-generation materials for renewable energy production and ... have made concerted efforts to work principles of industrial ecology and life...

217

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Aug 17, 2010... to the lithium ion-metal oxide batteries currently on the market. ... The team tested how much electricity the material could store after charging...

218

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Sep 30, 2011 ... Harvesting electricity from waste heat requires a material that is good at conducting electricity but poor at conducting heat. One of the most...

219

Teacher Resource Center: Fermilab Science Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Science Materials Fermilab Science Materials TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources Select from several categories of items available from the Fermilab Education Office. Teachers created these classroom materials as part of Fermilab educational programs. The following materials may be ordered either through the Education Office or through the Fermilab Friends for Science Education Online Store. ** Use the online order form (pdf).** You can fill it out online, save it, print it and send it by US mail.

220

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Materials Science Dominates R&D 100 Awards  

Science Conference Proceedings (OSTI)

Aug 16, 2010... Technologies, Electric Devices, Energy Technologies, Imaging Technologies, Lasers and Photonics, Process Sciences, Safety and...

222

Argonne TDC: Physical Sciences  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

223

Materials Science and Technology (MAST)  

Science Conference Proceedings (OSTI)

Jan 4, 2008 ... Each module offers an overview of the topic and its scientific principles, as well as a glossary, lab activities, sample quizzes and movies.

224

Materials Science & Technology 2003 - TMS  

Science Conference Proceedings (OSTI)

incorporating the 2003 Fall Meeting of ... Additionally, I want to point out that this event is structured, and there are plans for future participation by other societies.

225

NREL: Energy Analysis - Energy Sciences Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy...

226

Science, Engineering, Technology, & Mathematics Career Expo  

NLE Websites -- All DOE Office Websites (Extended Search)

Expo for High School Students Fermilab, Wilson Hall Spring 2014 Come and join math, science, engineering, & technology experts from a wide variety of careers. Meet scientists,...

227

WEB RESOURCE: Nuclear Science and Technology  

Science Conference Proceedings (OSTI)

Feb 19, 2007 ... This page offers lecture notes and presentations from a course on nuclear science and technology. Presentation slides and audio files are also...

228

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

229

Manufacturing Science and Technology: Creating Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

be accessed by private-sector companies, universities, and other laboratories through a User Facility Agreement. The Manufacturing Science & Technology Organization is a User...

230

Textbook: Introduction to Materials Science for Engineers  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... CITATION: Shackelford, J. F. Introduction to Materials Science for Engineers. 5th Edition, New York: Prentice Hall, Inc., 2000.

231

Introduction to Computational Materials Science and Engineering ...  

Science Conference Proceedings (OSTI)

Introduction to Computational Materials Science and Engineering Tools. Short Course. July 11-12, 2013 Salt Lake Marriott Downtown at City Creek Salt Lake

232

Introduction to Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2013-05-28 15:53:12...

233

Materials Science and Engineering Division Homepage  

Science Conference Proceedings (OSTI)

... those engaged in the materials science and engineering enterprise to ... that solve problems in areas such as energy, electronics, transportation and ...

2013-03-07T23:59:59.000Z

234

3D Materials Science 2012: Technical Program  

Science Conference Proceedings (OSTI)

3D Materials Science 2012: Technical Program July 8-12, 2012 Seven Springs Mountain Resort Seven Springs, Pennsylvania. View Session Sheets.

235

Electronic Materials Science Challenges in Renewable Energy  

Science Conference Proceedings (OSTI)

Presentation Title, Electronic Materials Science Challenges in Renewable Energy. Author(s), Richard R. King. On-Site Speaker (Planned), Richard R. King.

236

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

accident tolerant fuels, and providing the materials underpinning for fusion energy. The nuclear materials program leverages off both fundamental and applied capabilities within...

237

Before House Committee on Science, Space, and Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space, and Technology Before House Committee on Science, Space, and Technology Before House Committee on Science, Space, and Technology By: Peter Lyons Subject: Assessing America's...

238

Before House Committee on Science, Space and Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space and Technology Before House Committee on Science, Space and Technology Before House Committee on Science, Space and Technology By: Secretary Steven Chu Subject: FY 2013...

239

Before the House Science and Technology, Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology,...

240

NREL: Science and Technology - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Below are news stories involving NREL's Science and Technology. January 6, 2014 NREL Expert Honored for Energy Systems Innovations The Energy Department's National Renewable Energy Laboratory (NREL) recently won several prestigious awards, including honors for innovations in window air-conditioning efficiency, data sharing, and its energy-efficient computer data center. January 2, 2014 NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) have discovered that an enzyme from a microorganism first found in the Valley of Geysers on the Kamchatka Peninsula in Russia in 1990 can digest cellulose almost twice as fast as the current leading component cellulase enzyme on the market.

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Photovoltaics Research - Science and Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Technology Facility Science and Technology Facility Photo of the Science and Technology Facility (S&TF) at NREL. NREL's Science and Technology Facility (S&TF) has a sustainable and energy efficient design and will support solar cell, thin film, and nanostructure research. Solar cell, thin film, and nanostructure research are conducted in our Science and Technology Facility (S&TF) with the benefits of a forty percent reduction in energy use compared to standard laboratory buildings; energy recovery for ventilation in laboratories; and functional and flexible laboratory space. Designed specifically to reduce time delays associated with transferring technology to industry, the S&TF's 71,000 square feet is a multi-level facility of laboratory space, office space, and lobby connected by an

242

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

243

Science & Technology Review December 2007  

Science Conference Proceedings (OSTI)

This month's issue has the following articles: (1) Homeland Security Begins Abroad--Commentary by John C. Doesburg; (2) Out of Harm's Way--New physical protection and accountability systems, together with a focus on security, safeguard nuclear materials in the Russian Federation; (3) A Calculated Journey to the Center of the Earth--Determining the permeability of partially melted metals in a mineral matrix unlocks secrets about the formation of Earth's core; (4) Wireless That Works--Communication technologies using ultrawideband radar are improving national security; and (5) Power to the People--Edward Teller envisioned safe and plentiful nuclear power for peaceful applications.

Chinn, D J

2007-10-24T23:59:59.000Z

244

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

| Features Archive PSD Directorate MST Division Mechanical Properties and Mechanics Group The Mechanical Properties and Mechanics Group (MP&M) conducts applied research...

245

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

the city of Oak Ridge, Tennessee, the Irradiated Fuels Examination Laboratory (IFEL) is a hot cell facility built primarily for the disassembly and examination of highly...

246

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

sustainable. NANSTAD, Randy K. Group Leader nanstadrk@ornl.gov 865.574.4471 865.241.3650 BALLTRIP, Donna L. Section Secretary balltripdl@ornl.gov 865.574.4484 865.574.6098...

247

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

furnace-based technology. 1998-2004: Developed a process to produce extremely thin wall steel castings for use in the transportation industry. Cupola furnace technology:...

248

2004 research briefs :Materials and Process Sciences Center.  

Science Conference Proceedings (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

249

DOE Taps Universities for Turbine Technology Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. Development of high-efficiency, ultra-clean turbine systems requires significant advances in high temperature materials science, understanding of combustion phenomena, and innovative cooling techniques to maintain integrity of turbine components. Such necessary technology advancements are

250

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

cultivate a collaborative and interdisciplinary approach to materials research and help train the next generation of materials scientists. Quick Facts Established in 1962 Number of...

251

Advanced Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

these new materials to industry. For example, an understanding of how defects form at the atomic level allows creation of improved materials that approach their theoretical...

252

International Congress on Biodiesel: The Science and The Technologies  

Science Conference Proceedings (OSTI)

Archive of the International Congress on Biodiesel: The Science and The Technologies International Congress on Biodiesel: The Science and The Technologies Vienna, Austria International Congress on Biodiesel: The Science and The Technologies

253

National Science Bowl Competition Buzzer Materials List | U...  

Office of Science (SC) Website

Middle School Rules, Forms, and Resources Make Your Own National Science Bowl Competition Buzzer National Science Bowl Competition Buzzer Materials List National Science...

254

Guofu Bioenergy Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Guofu Bioenergy Science Technology Co Ltd Jump to: navigation, search Name Guofu Bioenergy Science & Technology Co Ltd Place Beijing Municipality, China Zip 100101 Sector Biomass...

255

Jiuquan Xinmao Science and Technology Wind Power | Open Energy...  

Open Energy Info (EERE)

Jiuquan Xinmao Science and Technology Wind Power Jump to: navigation, search Name Jiuquan Xinmao Science and Technology Wind Power Place Gansu Province, China Sector Wind energy...

256

Before the House Science, Space, and Technology Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investigations and Oversight Before the House Science, Space, and Technology Subcommittee on Investigations and Oversight Before the House Science, Space, and Technology...

257

Before the House Science and Technology Subcommittee on Oversight...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Oversight and Investigations Before the House Science and Technology Subcommittee on Oversight and Investigations Before the House Science and Technology Subcommittee on...

258

Before the House Science and Technology Subcommittee on Investigations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Investigations and Oversight Before the House Science and Technology Subcommittee on Investigations and Oversight Before the House Science and Technology Subcommittee on...

259

Before the House Science and Technology Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee Before the House Science and Technology Committee Before the House Science and Technology Committee By: Secretary Steven Chu Subject: New Direction for Energy Research...

260

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

are here Home Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Before the House Committee on Science, Space, and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the House Committee on Science, Space, and Technology Testimony of Ernest Moniz, Secretary of Energy Before the House Committee on Science, Space, and Technology...

262

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

263

DOE Projects to Advance Environmental Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The...

264

Department of Energy Advance Methane Hydrates Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Department of Energy Advance Methane Hydrates Science and Technology Projects Descriptions for Energy Department Methane...

265

LLNL: Science and Technology in the National Interest  

NLE Websites -- All DOE Office Websites (Extended Search)

Adobe Flash Player Science and Technology in the National Interest - FY2012 Lawrence Livermore National Laboratory Science and Technology in the National Interest - FY2012 PDF...

266

Condensed Matter Physics & Materials Science Department, Brookhaven...  

NLE Websites -- All DOE Office Websites (Extended Search)

Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov Education: Iowa State...

267

Advances in welding science and technology  

SciTech Connect

Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments.

David, S.A.; Babu, S.S.; Vitek, J.M.

1995-12-31T23:59:59.000Z

268

Photon Sciences Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Y Y Rhein Craig 20622 PSBC Active Y Y Page 3 of 80 List of Photon Sciences Mat'l Handling Equip 5242013 4:09:58 PM 725 UV East GE-56 PS-C01 Yale A-422-3749 2 ton...

269

FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)  

SciTech Connect

The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

Samara, G.A.

1997-05-01T23:59:59.000Z

270

Science and Technology of Future Light Sources  

E-Print Network (OSTI)

DESY) Herman Winick (SLAC) Mike Zisman (LBNL) WHITEPAPERof Future Light Sources A White Paper Report prepared byheart of the all- 24 WHITEPAPER Science and Technology of

Bergmann, Uwe

2009-01-01T23:59:59.000Z

271

Chemical and Materials Sciences Building | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building provides modern laboratory and office space for researchers studying and developing materials and chemical processes for energy-related technologies. The Chemical...

272

Argonne TDC: Transportation Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

273

Argonne TDC: Engineering Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

274

Argonne TDC: Environmental Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

275

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

enhance the sensitivity of NMRMRI experiments in bulk materials, in nuclear-based spintronics, and quantum computation in diamond. Summary Dynamic nuclear polarization, which...

276

New Opportunities for Materials Science  

Science Conference Proceedings (OSTI)

Aug 8, 2013 ... O. Advanced Neutron and Synchrotron Studies of Materials: New ... Status of China Spallation Neutron Source and Perspectives of Neutron...

277

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Electron Microscopy Center for X-ray Optics Joint Center for Artificial Photosynthesis, North Research Highlights Research & Facilities Core Programs Materials...

278

Technology@TMS: Online Article - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

"Can we take biology again?" is the unusual request being made by veteran science faculty members at New York City College of Technology/CUNY, when they...

279

Materials science aspects of coal  

Science Conference Proceedings (OSTI)

Natural organic materials are arrangements of linear aliphatic units and ring-like aromatic units arranged in a polymeric pattern. We show that fossilized organic materials such as coals and oil shale retain this polymeric character. We also show the polymeric nature of jet and amber

Charles Wert; Manfred Weller

2001-01-01T23:59:59.000Z

280

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Computational Materials and Chemical Sciences Network (CMCSN...  

Office of Science (SC) Website

The Computational Materials and Chemical Sciences Network (CMCSN) Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers...

282

Radiation Materials Science Package (2007), by Gary S. Was - TMS  

Science Conference Proceedings (OSTI)

Jul 11, 2008 ... Fundamentals of Radiation Materials Science is a high-level materials science book/CD package intended for graduate students and...

283

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

284

Nanoscience Images from the Center for Nanophase Materials Sciences (CNMS)  

DOE Data Explorer (OSTI)

DOE's Nanoscale Science Research Centers to support the synthesis, processing, fabrication, and analysis of materials at the nanoscale are also National User Facilities. The Center for Nanophase Materials Science is currently one of five ceterns for interdisciplinary research at the nanoscale. These centers are laboratories for nanofabrication, may have one-of-a-kind signature instruments, including nanopatterning tools and research-grade probe microscopes. The images produced by nanoscience research and the technologies involved are beautiful and unique. This website makes available a very small collection but very high quality, public domain images

285

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

286

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

287

Chemical Engineering and Materials Science  

E-Print Network (OSTI)

from vegetable oil. Earn a degree in chemical engineering, and you could enjoy a career working to commercialize new ideas, technologies and products. Students learn to solve problems and bring inventions through tissue engineering of large vessels and heart valves, or inventing clean-burning alternative fuel

Chinnam, Ratna Babu

288

Center for Science and Technology Policy Research Briefing #2  

E-Print Network (OSTI)

with George Bush's science advisor John Marburger: Pielke, Jr., R. A., 2006. Science Policy without ScienceCenter for Science and Technology Policy Research Briefing #2 In 2006, we launched a new email briefing about our Center's science policy work. We are working to improve how science and technology

Colorado at Boulder, University of

289

Behavioral Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Computational Engineering Computer Science Data Earth Sciences Energy Science Future Technology Knowledge Discovery Materials Mathematics National Security Systems...

290

NETL: Onsite Research: Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Metallography Metallography NETL has a state-of-the art metallographic facility staffed with world renowned experts with experience on a wide range of alloys and materials with the tools to get the job done. Our metallography staff works with their customers to reveal the microstructure contained within the specimens using sophisticated polishing, staining, and microscopic techniques to develop new techniques and improve upon old ones. An understanding of the microstructure is a useful tool in a wide range of situations from developing processing techniques on new material to evaluating the performance of new and existing materials after exposure to aggressive conditions. The information our staff obtains is an invaluable part of a research program. For example:

291

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Energy.gov (U.S. Department of Energy (DOE))

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

292

Berkeley Lab - Materials Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Publications J. R. I. Lee, H. D. Whitley, R. W. Meulenberg, A. Wolcott, J. Z. Zhang, D. Prendergast, D. D. Lovingood, G. F. Strouse, T. Ogitsu, E. Schwegler, L. J. Terminello and T. van Buuren. Ligand-Mediated Modification of the Electronic Structure of CdSe Quantum Dots. Nano Letters 12, 2763 (2012). abstract » B. Zamft, L. Bintu, T. Ishibashi and C. Bustamante. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proceedings of the National Academy of Sciences 109, 8948 (2012). abstract » W. Morris, B. Volosskiy, S. Demir, F. Gandara, P. L. McGrier, H. Furukawa, D. Cascio, J. F. Stoddart and O. M. Yaghi. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal-Organic Frameworks. Inorganic chemistry 51, 6443 (2012). abstract »

293

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

for technical information on building products, materials, new technologies, business management, and housing systems. DOE's Residential Building Energy Codes - Resource for...

294

Science and Technology of Future Light Sources  

Science Conference Proceedings (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

2008-12-01T23:59:59.000Z

295

Science and Technology of Future Light Sources  

Science Conference Proceedings (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Sthr, Joachim; Zholents, Alexander

2009-01-28T23:59:59.000Z

296

Materials and Chemical Sciences Division annual report, 1987  

DOE Green Energy (OSTI)

Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

Not Available

1988-07-01T23:59:59.000Z

297

Intercollege Graduate Degree Program in Materials Science and Engineering  

E-Print Network (OSTI)

University 101 Steidle Building Joan Redwing, Chair & Professor of Materials Science and Engineering redwing

Kaye, Jason P.

298

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network (OSTI)

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

299

NREL: Sustainable NREL - Science and Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Technology Facility Science and Technology Facility The 71,000 sq ft Science and Technology Facility (S&TF), was certified as Platinum in FY 2007 by the U.S. Green Buildings Council under its Leadership in Energy and Environmental Design (LEED®) Green Building program. It's the first federal LEED® Platinum building. Energy Use The S&TF is a showcase for energy efficiency. The S&TF was designed to provide a 41% reduction in energy cost compared to a standard laboratory building. Its energy-saving features include: Public transportation is located within one-half mile of the S&TF. The roof is ENERGY STAR® compliant (high reflectivity, low emissivity). The building design exceeds ASHRAE 90.1 1999 requirements for energy efficiency. Orientation along an east-west axis so that windows on the north and south

300

Hanford science and technology needs statements, 2000  

SciTech Connect

In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.

BERLIN, G.T.

1999-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hanford science and technology needs statements, 1999  

Science Conference Proceedings (OSTI)

In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.

Berlin, G.T.

1998-09-30T23:59:59.000Z

302

Before the Subcommittee on Energy -- House Science, Space, and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-- House Science, Space, and -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Testimony of Christopher Smith, Acting Assistant Secretary Before the Subcommittee on Energy -- House Science, Space, and Technology Committee More Documents & Publications Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Energy -- House Science, Space, and Technology Committee Before the Subcommittee on Energy and Power -- House Energy and Commerce Committee Before the Subcommittees on Energy and Environment - House Committee on

303

Advanced Materials Technologies Available for Licensing - Energy ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have advanced materials ...

304

Science and technology news Nanotechnology  

E-Print Network (OSTI)

by Google Electric Car Conversion Guides Reviewed. Learn How To Convert Your Gas Car To Electric. DiyElectricCar technology high on the list of priorities in a world demanding electric cars and gadgets that last longer a (nano)boost February 9th, 2009 Need to store electricity more efficiently? Put it behind bars. That

Ajayan, Pulickel M.

305

Hanford science and technology needs statements document  

Science Conference Proceedings (OSTI)

This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritization of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.

Piper, L.L.

1997-12-31T23:59:59.000Z

306

Argonne TDC: Licensable Battery Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

307

Argonne TDC: Fuel Cell Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

308

Argonne TDC: Imaging Technology Portfolios  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

309

NREL: Technology Transfer - Materials Exposure Testing Market ...  

National Renewable Energy Laboratory Technology Transfer Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System

310

Advanced Materials Technologies Available for Licensing ...  

Advanced Materials Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have ...

311

Science and technology for industrial ecology  

SciTech Connect

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

312

Materials Sciences programs, Fiscal year 1993  

Science Conference Proceedings (OSTI)

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

313

Science & Technology Review September 2002  

DOE Green Energy (OSTI)

This month's issue has the following articles: (1) Livermore--Poised for the Future, Commentary by Michael R. Anastasio; (2) A Hitchhiker's Guide to Early Earth--Experiments examine the possibility that the building blocks of life arrived on Earth as hitchhikers on comets; (3) A New World of Maps--More than pretty pictures, maps prepared with the tools of geographic information sciences allow researchers to find new relationships among spatial information; (4) Solid-Oxide Fuel Cells Stack Up to Efficient, Clean Power--The goal of Livermore's research in solid-oxide fuel cells is electric power generated cleanly and efficiently at an affordable cost; and (5) Empowering Light, Historic Accomplishments in Laser Research--During the past 40 plus years, the laser program at Livermore has played a seminal role in taking high-energy lasers from concept to reality.

Budil, K

2002-09-01T23:59:59.000Z

314

Science & Technology Review April 2007  

SciTech Connect

This month's issue has the following articles: (1) Shaking the Foundations of Solar-System Science--Commentary by William H. Goldstein; (2) Stardust Results Challenge Astronomical Convention--The first samples retrieved from a comet are a treasure trove of surprises to Laboratory researchers; (3) Fire in the Hole--Underground coal gasification may help to meet future energy supply challenges with a production process from the past; (4) Big Physics in Small Spaces--A newly developed computer model successfully simulates particle-laden fluids flowing through complex microfluidic systems; (5) A New Block on the Periodic Table--Livermore and Russian scientists add a new block to the periodic table with the creation of element 118; and (6) A Search for Patterns and Connections--Throughout his career, Edward Teller searched for mathematical solutions to explain the physical world.

Radousky, H B

2007-02-27T23:59:59.000Z

315

Science & Technology Review June 2009  

SciTech Connect

This month's issue has the following articles: (1) A Safer and Even More Effective TATB - Commentary by Bruce T. Goodwin; (2) Dissolving Molecules to Improve Their Performance - Computer scientists and chemists have teamed to develop a green method for recycling a valuable high explosive that is no longer manufactured; (3) Exceptional People Producing Great Science - Postdoctoral researchers lend their expertise to projects that support the Laboratory's missions; (4) Revealing the Identities and Functions of Microbes - A new imaging technique illuminates bacterial metabolic pathways and complex relationships; and (5) A Laser Look inside Planets - Laser-driven ramp compression may one day reveal the interior structure of Earth-like planets in other solar systems.

Bearinger, J P

2009-06-05T23:59:59.000Z

316

Science & Technology Review March 2009  

DOE Green Energy (OSTI)

This month's issue has the following articles: (1) Seismic Science and Nonproliferation--Commentary by William H. Goldstein; (2) Sleuthing Seismic Signals--Supercomputer simulations improve the accuracy of models used to distinguish nuclear explosions from earthquakes and pinpoint their location; (3) Wind and the Grid--The Laboratory lends technical expertise to government and industry to more effectively integrate wind energy into the nation's electrical infrastructure; (4) Searching for Tiny Signals from Dark Matter--Powerful amplifiers may for the first time allow researchers to detect axions, hypothesized particles that may constitute 'dark matter', and (5) A Better Method for Self-Decontamination--A prototype decontamination system could one day allow military personnel and civilians to better treat themselves for exposure to toxic chemicals.

Bearinger, J P

2009-01-22T23:59:59.000Z

317

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-10-09FinalTestimony(Gillo).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science...

318

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science &...

319

Lab engineer brings science and technology to Bay Area youth  

NLE Websites -- All DOE Office Websites (Extended Search)

mentors students in science and technology, including computational science, robotics and additive manufacturing (AKA 3D printing), and helps teachers learn about these...

320

LLNL Scientist Named NNSA Science and Technology Excellence Award...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... LLNL Scientist Named NNSA Science and...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Materials and Science in Sports--Calendar of Events  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

322

Materials and Science in Sports--Registration Information  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

323

Materials and Science in Sports--Speakers and Presenters  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

324

Materials and Science in Sports--Hertz Rental Car  

Science Conference Proceedings (OSTI)

The Materials and Science in Sports Symposium, sponsored by the Structural Materials Division of The Minerals, Metals & Materials Society (TMS), will be held ...

325

Science & Technology Review June 2012  

SciTech Connect

This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments are furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.

Poyneer, L A

2012-04-20T23:59:59.000Z

326

Science & Technology Review March 2010  

DOE Green Energy (OSTI)

This month's issue has the following articles: (1) Countering the Growing Chem-Bio Threat -- Commentary by Penrose (Parney) C. Albright; (2) Responding to a Terrorist Attack Involving Chemical Warfare Agents -- Livermore scientists are helping the nation strengthen plans to swiftly respond to an incident involving chemical warfare agents; (3) Revealing the Secrets of a Deadly Disease -- A Livermore-developed system helps scientists better understand how plague bacteria infect healthy host cells; (4) A New Application for a Weapons Code -- Simulations reveal for the first time how blast waves cause traumatic brain injuries; (5) Testing Valuable National Assets for X-Ray Damage -- Experiments at the National Ignition Facility are measuring the effects of radiation on critical systems; and (6) An Efficient Way to Harness the Sun's Power -- New solar thermal technology is designed to supply residential electric power at nearly half of the current retail price.

Bearinger, J P

2010-01-29T23:59:59.000Z

327

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

328

JOM - Materials Technology@TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2009... from U.S. institutions in science, engineering, and selected health fields. ... school, and organizational unit data available in a single record.

329

Bioinspired Materials Design from Renewable Resources  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2010. Symposium, Bioinspired Materials Engineering. Presentation Title, Bioinspired Materials...

330

Establishing Materials Technology Community - Technology@TMS ...  

Science Conference Proceedings (OSTI)

... the demand is increasing for materials that reduce overall component weight ... primary magnesium production cost estimates, this paper provides a forecast...

331

Applied Science and Technology Task Order Fiscal Year 2009 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End...

332

Applied Science and Technology Task Order Fiscal Year 2010 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End...

333

Applied Science and Technology Task Order Fiscal Year 2011 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End...

334

Applied Science and Technology Task Order Fiscal Year 2008 Year...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End...

335

DOE Virtual Library of Energy Science and Technology | OSTI,...  

Office of Scientific and Technical Information (OSTI)

DOE Virtual Library of Energy Science and Technology DOE Virtual Library of Energy Science and Technology April 13, 1999 Walter L. Warnick, Ph.D., Director Office of Scientific and...

336

Before the House Science, Space, and Technology Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Scott Klara, Deputy Director National Energy Technology Laboratory Before the House Science, Space, and Technology Subcommittee on Energy and Environment Subject: Coal...

337

Materials sciences programs: Fiscal year 1995  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

338

Materials sciences programs fiscal year 1996  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1997-06-01T23:59:59.000Z

339

The NIST Center for Nanoscale Science and Technology  

Science Conference Proceedings (OSTI)

... NANO LAB ... to be determined with unprecedented spatial and energy resolution. ... Center for Nanoscale Science and Technology National Institute of ...

2013-07-14T23:59:59.000Z

340

Oak Ridge Science and Technology Park | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic Development Carbon Fiber Cluster Strategy Additive Manufacturing Cluster Strategy Entrepreneurial Development Programs Oak Ridge Science and Technology Park Economic...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Progress of Tritium Science & Technology in China  

Science Conference Proceedings (OSTI)

Plenary / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

Sun Ying

342

Polymer/Elastomer and Composite Material Science  

NLE Websites -- All DOE Office Websites (Extended Search)

/ Elastomer and / Elastomer and Composite Material Science KEVIN L. SIMMONS Pacific Northwest National Laboratory, Richland, WA DOE Headquarters, Forrestal Bldg. October 17-18, 2012 January 17, 2013 Kevin.simmons@pnnl.gov 1 Outline Hydrogen production, transmission, distribution, delivery system Common themes in the hydrogen system Automotive vs infrastructure Hydrogen use conditions Polymer/elastomer and composites compatibility? Common materials in BOP components, hoses, and liners Common materials in composite tank and piping Material issues Polymers/Elastomers Composites Questions 2 Main Points to Remember 1) Polymers are extensively used in hydrogen and fuel cell applications 2) Hydrogen impact on polymers is not well understood 3) Next steps 3 4 Hydrogen Production Systems

343

Chemistry and Materials Science Directorate 2005 Annual Report  

Science Conference Proceedings (OSTI)

In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

2006-08-08T23:59:59.000Z

344

Materials and Components Technology Division research summary, 1992  

SciTech Connect

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

345

Sandia technology engineering and science accomplishments  

SciTech Connect

Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

Not Available

1993-03-01T23:59:59.000Z

346

HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002  

SciTech Connect

This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

WIBLE, R.A.

2002-04-01T23:59:59.000Z

347

Nanoscale Science, Engineering and Technology Research Directions  

Science Conference Proceedings (OSTI)

This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

1999-01-01T23:59:59.000Z

348

Science and technology review, October 1997  

SciTech Connect

This month`s issue contains articles entitled Livermore Science and Technology Garner Seven 1997 R&D 100 Awards; New Interferometer Measures to Atomic Dimensions; Compact More Powerful Chips from Virtually Defect-free Thin Film Systems, A New Precision Cutting Tool; The Femtosecond Laser; MELD: A CAD Tool for Photonoics Systems, The Tiltmeter: Tilting at Great Depths to Find Oil; Smaller Insulators Handle Higher Voltage; and Compact Storage Management Software: The Next Generation.

Upadhye, R.

1997-10-01T23:59:59.000Z

349

Vehicle Technologies Office: Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

stiffness, and ductility) Improving their manufacturing (material cost, production rate, or yield) Developing alloys of advanced materials In the short term, replacing heavy...

350

Laboratory E133 - Material Science and Hydrogen Research ...  

Science Conference Proceedings (OSTI)

... E137 | E138. Laboratory E133 - Material Science and Hydrogen Research Laboratory. Laboratory Contacts. Name: Kimberly ...

2013-09-05T23:59:59.000Z

351

Opportunities and Challenges to Careers in Materials Science and ...  

Science Conference Proceedings (OSTI)

... employer (job location (domestic or foreign, staff versus management, etc.) ... Materials Science and Engineering in the Canadian Oil Sands - Challenges &...

352

Materials Science in Reduced Gravity - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Materials Science in Reduced Gravity. Sponsorship...

353

XG Sciences, ORNL partner on titanium-graphene composite materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

XG Sciences, ORNL partner on titaniumgraphene composite materials January 01, 2013 Titaniumgraphene composite specimens prepared for flash thermal diffusivity measurement....

354

Discussions@TMS -- Webinar Discussion: Materials Science and ...  

Science Conference Proceedings (OSTI)

BACKGROUNDER for Discussing the Webinar: Materials Science and Policy for Environmentally Benign Electronics This posting provides background...

355

Molecular forensic science of nuclear materials  

SciTech Connect

We are interested in applying our understanding of actinide chemical structure and bonding to broaden the suite of analytical tools available for nuclear forensic analyses. Uranium- and plutonium-oxide systems form under a variety of conditions, and these chemical species exhibit some of the most complex behavior of metal oxide systems known. No less intriguing is the ability of AnO{sub 2} (An: U, Pu) to form non-stoichiometric species described as AnO{sub 2+x}. Environmental studies have shown the value of utilizing the chemical signatures of these actinide oxides materials to understand transport following release into the environment. Chemical speciation of actinide-oxide samples may also provide clues as to the age, source, process history, or transport of the material. The scientific challenge is to identify, measure and understand those aspects of speciation of actinide analytes that carry information about material origin and history most relevant to forensics. Here, we will describe our efforts in material synthesis and analytical methods development that we will use to provide the fundamental science required to characterize actinide oxide molecular structures for forensics science. Structural properties and initial results to measure structural variability of uranium oxide samples using synchrotron-based X-ray Absorption Fine Structure will be discussed.

Wilkerson, Marianne Perry [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

356

Technology@TMS: Online Article - Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

By Cathy Rohrer, Materials Technology@TMS Moderator, and Neeraj Thirumalai, ExxonMobil Research and Engineering Company "Atoms to airplanes.

357

Guangxi Gettop Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gettop Science Technology Co Ltd Gettop Science Technology Co Ltd Jump to: navigation, search Name Guangxi Gettop Science & Technology Co Ltd Place Nanning, Guangxi Autonomous Region, China Zip 530022 Sector Biomass Product Nanning-based biomass and waste technology development company and project developer. References Guangxi Gettop Science & Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guangxi Gettop Science & Technology Co Ltd is a company located in Nanning, Guangxi Autonomous Region, China . References ↑ "Guangxi Gettop Science & Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guangxi_Gettop_Science_Technology_Co_Ltd&oldid=346248

358

Argonne TDC: Sensor Technology Available for Licensing  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

359

Argonne TDC: Technologies for Homeland Defense  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

360

Argonne TDC: High-Impact Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemistry and Materials Science Department annual report, 1988--1989  

Science Conference Proceedings (OSTI)

This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

1989-12-31T23:59:59.000Z

362

Vehicle Technologies Office: Materials by Design  

NLE Websites -- All DOE Office Websites (Extended Search)

improve research on a variety of technologies, such as: Magnetics for electric motors Thermoelectric materials for energy recovery Improved catalysts for exhaust...

363

[Technology transfer of building materials by ECOMAT  

Science Conference Proceedings (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

364

Vehicle Technologies Office: Lightweight Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Lightweight Materials Lightweight Material Mass Reduction Magnesium 30-70% Carbon fiber composites 50-70% Aluminum and Al matrix composites 30-60% Titanium 40-55% Glass fiber...

365

Shanghai Hi Show Photovoltaic Science Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Hi Show Photovoltaic Science Technology Co Ltd Hi Show Photovoltaic Science Technology Co Ltd Jump to: navigation, search Name Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd Place Shanghai Municipality, China Zip 201109 Sector Solar Product China-based Manufacturer of module tester and solar simulator. References Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd is a company located in Shanghai Municipality, China . References ↑ "Shanghai Hi-Show Photovoltaic Science & Technology Co., Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Shanghai_Hi_Show_Photovoltaic_Science_Technology_Co_Ltd&oldid=350840

366

Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Zhangzhou Guolv Solar Science and Technology Co Ltd Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name Zhangzhou Guolv Solar Science and Technology Co Ltd Place Fujian Province, China Zip 363600 Sector Solar Product A company engaged in producing solar PV-based products such as solar lights and signposts. References Zhangzhou Guolv Solar Science and Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Zhangzhou Guolv Solar Science and Technology Co Ltd is a company located in Fujian Province, China . References ↑ "Zhangzhou Guolv Solar Science and Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Zhangzhou_Guolv_Solar_Science_and_Technology_Co_Ltd&oldid=353481"

367

CEEG Shanghai Solar Science Technology | Open Energy Information  

Open Energy Info (EERE)

Shanghai Solar Science Technology Shanghai Solar Science Technology Jump to: navigation, search Name CEEG (Shanghai) Solar Science & Technology Place Shanghai Municipality, China Zip 200335 Sector Services, Solar Product Shanghai-based PV module manufacturer integrates services including the research, development, production, sales of polysilicon solar panel References CEEG (Shanghai) Solar Science & Technology[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEEG (Shanghai) Solar Science & Technology is a company located in Shanghai Municipality, China . References ↑ "CEEG (Shanghai) Solar Science & Technology" Retrieved from "http://en.openei.org/w/index.php?title=CEEG_Shanghai_Solar_Science_Technology&oldid=343327"

368

LLNL Scientist Named NNSA Science and Technology Excellence Award Winner |  

National Nuclear Security Administration (NNSA)

NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... NNSA Blog > LLNL Scientist Named NNSA Science and Technology ... LLNL Scientist Named NNSA Science and Technology Excellence Award Winner Posted By Office of Public Affairs NNSA Administrator Thomas D'Agostino yesterday awarded the first ever NNSA Science and Technology Excellence Award to Dr. Michel McCoy from Lawrence Livermore National Laboratory for his groundbreaking computer science research and leadership with the Advanced Simulation and Computing program. The newly-established NNSA Science and Technology Excellence Award is the highest level of recognition for science and technology achievement in NNSA. It recognizes accomplishment that can include vision, leadership, innovation and intellectual contributions. The award is intended to draw attention to the remarkable scientific and technological successes that are

369

LANL: Facility Focus, MST-6 Materials Surface Science Investigations Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

07-018 Spring 2007 07-018 Spring 2007 T he MST-6 Materials Surface Science Investigations Laboratory is home to a one-of-a-kind integrated instrument for surface science and materials research, allowing scientists at Los Alamos National Laboratory the unique opportunity to perform coordinated research using ultra-high vacuum surface measurements, in situ reactions, and materials synthesis tools. Housed in the Materials Science Laboratory, the surface science instrument features an ultra-clean integrated system for surface analysis and in situ surface modification, thin film deposition, and surface gas reactions. This integrated system is used for analytical surface science; materials electronic

370

Inspection technologies protect and enhance materials for power plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Inspection technologies protect and enhance materials for power plants Inspection technologies protect and enhance materials for power plants Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Inspection technologies protect and enhance materials for power plants A researcher makes thermal images of ceramic defects THERMAL IMAGING - Julian Benz uses Argonne's thermal imaging system

371

Fundamentals of Porous Materials from Development to Applications  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Frontiers of Materials Science: Fundamentals of Porous Materials from...

372

Science & Technology Review January/February 2010  

SciTech Connect

This month's issue has the following articles: (1) Innovative Materials Rise to the Radiation Challenge - Commentary by Bruce Warner; (2) The Hunt for Better Radiation Detection - New materials will help radiation detectors pick up weak signals and accurately identify illicit radioactive sources; (3) Time-Critical Technology Identifies Deadly Bloodborne Pathogens - A portable device can simultaneously distinguish up to five bloodborne pathogens in just minutes; (4) Defending Computer Networks against Attack - A Laboratory effort takes a new approach to detecting increasingly sophisticated cyber attacks; and (5) Imaging Cargo's Inner Secrets - Livermore-University of California collaborators are modeling a new radiographic technique for identifying nuclear materials concealed inside cargo containers.

Bearinger, J P

2009-11-30T23:59:59.000Z

373

Science, Technology, Medicine & Society Speaker How Geneticists Learned  

E-Print Network (OSTI)

Science, Technology, Medicine & Society Speaker Series How Geneticists Learned to Stop Worrying on a history of American medical genetics, tentatively titled The Science of Human Perfection. More information: Science, Technology and Society Program 734-763-2066 umsts@umich.edu www

Rosenberg, Noah

374

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

Czech Republic Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

375

Gender Equity in Materials Science and Engineering  

SciTech Connect

At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

Angus Rockett

2008-12-01T23:59:59.000Z

376

Gender Equity in Materials Science and Engineering  

SciTech Connect

At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

Angus Rockett

2008-12-01T23:59:59.000Z

377

MSTC - Microsystems Science, Technology, and Components  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems Microsystems Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News MICROSYSTEMS SCIENCE, TECHNOLOGY & COMPONENTS Clear Latest MSTC News Ed Cole appointed Fellow by ASM International Researching new detectors for chemical, biological threats MESA fab streaming video MESAFab streaming video Get Adobe Flash player The concept of integrating more than one transistor on a single chip has had a profound and lasting impact on our society. From the first use in the Minuteman missile to the proliferation of consumer products today, microelectronic circuits have dramatically improved performance, functionality, and reliability, while reducing cost

378

MSTC - Microsystems Science, Technology, and Components - MESA  

NLE Websites -- All DOE Office Websites (Extended Search)

Microsystems > MESA Microsystems > MESA Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News MESA MESA Logo Microsystems and Engineering Sciences Applications (MESA) Sandia's primary mission is ensuring the U.S. nuclear arsenal is safe, secure, reliable, and can fully support the Nation's deterrence policy. Employing only the most advanced and failsafe technologies to fulfill our responsibilities as stewards of the nuclear stockpile, Sandia is responsible for the development, design and maintenance of approximately 90 percent of the several thousand parts found in any given weapon system, including radiation-hardened microelectronics. In support of this mission,

379

CNMS | Center for Nanophase Materials Sciences | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

science; synthesis science; and theory, modeling, and simulation. Operating as a national user facility, the CNMS supports a multidisciplinary environment for research to...

380

Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991  

Science Conference Proceedings (OSTI)

This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

Parkin, D.M.; Boring, A.M. [comps.

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

News - Materials Technology@TMS  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual .... The Solar Impulse, the first aircraft built to fly day and night without using fuel, ... Technology developed by engineering researchers at the University of Arkansas has been shown to regulate or limit the amount of excess current that moves through the power grid when a surge occurs .

382

Shanghai Chaori Solar Energy Science Technology Development Co Ltd | Open  

Open Energy Info (EERE)

Shanghai Chaori Solar Energy Science Technology Development Co Ltd Shanghai Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200063 Sector Solar Product Manufacturer of solar PV cells based on outsourced CRM mono-crystalline and CRM multi-crystalline materials, as well as lighting and other PV systems. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Science & Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory Featured Lab Game-Changers in Our Past and Future A researcher at the Joint Bioenergy Institute at Berkeley National Lab chooses bacteria colonies in their efforts to create a game-changing biofuel from sustainable, energy-dense plants, such as switchgrass. The JBEI is one example of the ability for Energy Department labs to form scientific partnerships designed to hurdle an energy barrier with transformative technology. | Photo courtesy of Berkeley National Lab.

384

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Time 10-1-09FinalTestimony(Kovar).pdf More Documents & Publications Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science...

385

Chemistry and Materials Science progress report, FY 1994. Revision 2  

Science Conference Proceedings (OSTI)

Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

NONE

1996-01-01T23:59:59.000Z

386

Soviet satellite communications science and technology  

Science Conference Proceedings (OSTI)

This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

1991-08-01T23:59:59.000Z

387

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

Science Conference Proceedings (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

388

Science & Technology Review July/August 2008  

SciTech Connect

This months issue has the following articles: (1) Science Translated for the Greater Good--Commentary by Steven D. Liedle; (2) The New Face of Industrial Partnerships--An entrepreneurial spirit is blossoming at Lawrence Livermore; (3) Monitoring a Nuclear Weapon from the Inside--Livermore researchers are developing tiny sensors to warn of detrimental chemical and physical changes inside nuclear warheads; (4) Simulating the Biomolecular Structure of Nanometer-Size Particles--Grand Challenge simulations reveal the size and structure of nanolipoprotein particles used to study membrane proteins; and (5) Antineutrino Detectors Improve Reactor Safeguards--Antineutrino detectors track the consumption and production of fissile materials inside nuclear reactors.

Bearinger, J P

2008-05-27T23:59:59.000Z

389

Materials Science Division Project Safety Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Electron Microscopes Miller, Electron Microscopes Project No. 20006.3 Materials Science Division Project Safety Review Safety Analysis Form (03/08) Date of Submission March 12, 2010 FWP No.: 58405 Project Title User Experimental Work with Electron Microscopes in the Electron Microscopy Center This Safety Analysis Form (SAF) supersedes previous versions of 20006 and its modifications. Is this a (check one) new submission renewal supplemental modification X Principal Investigator(s) Dean Miller Other Participants (excluding administrative support personnel) EMC staff and EMC users (Attach participant signature sheet) Project dates: Start: March 2010 End: Open-ended This form is to be completed for all new investigations or experimental projects that are conducted in MSD laboratories, and for all ongoing such projects that undergo significant change from their original

390

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Team website: solarhouse.mst.edu Photo of members of the Missouri University of Science and Technology Solar Decathlon 2013 team standing in front of a solar-powered house. Enlarge image The Missouri University of Science and Technology Solar Decathlon 2013 team (Courtesy of the Missouri University of Science and Technology Solar Decathlon 2013 team) he Missouri University of Science and Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors,

391

Beijing Corona Science Technology Co Ltd BCST | Open Energy Information  

Open Energy Info (EERE)

Science Technology Co Ltd BCST Science Technology Co Ltd BCST Jump to: navigation, search Name Beijing Corona Science & Technology Co Ltd (BCST) Place Beijing Municipality, China Zip 100083 Sector Solar, Wind energy Product Provide turnkey contract service for the design, installation and building of wind farm and solar PV station; it also manufacture controlling system and key equipments for wind and PV power station. References Beijing Corona Science & Technology Co Ltd (BCST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Corona Science & Technology Co Ltd (BCST) is a company located in Beijing Municipality, China . References ↑ "[ Beijing Corona Science & Technology Co Ltd (BCST)]"

392

DOE's Under Secretary for Science to Attend the G8 Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Under Secretary for Science to Attend the G8 Science and DOE's Under Secretary for Science to Attend the G8 Science and Technology Ministerial in Japan DOE's Under Secretary for Science to Attend the G8 Science and Technology Ministerial in Japan June 13, 2008 - 1:30pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Under Secretary for Science Dr. Raymond L. Orbach will travel to Okinawa, Japan this weekend to participate in the G8 Science and Technology Ministerial hosted on June 15 by Fumio Kishida, Japanese Minister of State for Okinawa and Northern Territories Affairs, Science and Technology Policy, Quality-of-Life Policy, and Regulatory Reform. While in Japan, Dr. Orbach will meet with ministers and other high-level government officials from G8 countries, the European Union, China, India, Korea, Mexico, the Phillipines, and South

393

RFNC-VNIIEF Tritium Technologies for Fundamental Science  

Science Conference Proceedings (OSTI)

Properties and Reaction / Proceedings of the Sixth International Conference on Tritium Science and Technology Tsukuba, Japan November 12-16, 2001

Radiy I. Il'kaev; Valentin N. Lobanov; Arkadiy A. Yukhimchuk

394

Carbon Sequestration Research in the Office of Science and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

researchers in the NETL's Office of Science and Technology (OST) have been performing carbon sequestration research. The OST research program has expanded in recent years as...

395

Before the House Science and Technology Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forward 1-27-10FinalTestimony(Majumdar).pdf More Documents & Publications Before the House Science, Space, and Technology Committee Before the House Subcommittee on...

396

Before the House Science, Space, and Technology Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the House Science, Space, and Technology Subcommittee on Energy and Environment By: Victor Der, Assistant Secretary Office of Fossil Energy Subject: Offshore Drilling Safety...

397

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10-21-09FinalTestimony(Klara)(NETL).pdf More Documents & Publications Before the House Science, Space, and Technology Subcommittee on Energy and Environment Before the...

398

Before the House Science and Technology Subcommittee on Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Committee On Science And Technology, Subcommittee on Energy and Environment, U.S. House of Representatives By: Jacques Beaudry-Losique, Deputy Assistant Secretary for...

399

About the ASC/Russian Science & Technology Cooperative Program...  

National Nuclear Security Administration (NNSA)

of Advanced Simulation and Computing Institutional Research & Development > Russia Tri-Lab S&T Collaborations > About the ASCRussian Science & Technology Cooperative Program...

400

After Sandy, Rebuilding Smarter with Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

called for in the President's Climate Action Plan. Challenging Innovators to Design New Disaster-Response Solutions In August, the White House Office of Science and Technology...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department of Energy Advance Methane Hydrates Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Methane Hydrates Science and Technology Projects Dollars awarded will go to research the advance understanding of the nature and occurrence of Deepwater and Arctic gas...

402

Norwegian University of Science and Technology CONWEC AS | Open...  

Open Energy Info (EERE)

Name Norwegian University of Science and Technology CONWEC AS Address Department of Physics Realfagbygget Place Trondheim Zip N-7491 Sector Marine and Hydrokinetic Website...

403

E-print Network home page -- Energy, science, and technology for the  

Office of Scientific and Technical Information (OSTI)

Energy, science, and technology for the research community! Energy, science, and technology for the research community! Enter Search Terms Search Advanced Search The E-print Network is . . . . . . a vast, integrated network of electronic scientific and technical information created by scientists and research engineers active in their respective fields, all full-text searchable. E-print Network is intended for use by other scientists, engineers, and students at advanced levels. . . . a gateway to over 35,300 websites and databases worldwide, containing over 5.5 million e-prints in basic and applied sciences, primarily in physics but also including subject areas such as chemistry, biology and life sciences, materials science, nuclear sciences and engineering, energy research, computer and information technologies, and other disciplines of

404

Christen leads ORNL's Center for Nanophase Materials Sciences | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 SHARE Media Contact: Bill Cabage Oak Ridge National Laboratory Communications (865) 574-4399 Christen leads ORNL's Center for Nanophase Materials Sciences Hans Christen Hans Christen (hi-res image) OAK RIDGE, Jan. 9, 2014 -- Hans M. Christen of the Department of Energy's Oak Ridge National Laboratory has been named director of ORNL's Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers. Christen joined ORNL in 2000 and led the Thin Films and Nanostructures group from 2006 to 2013. In 2013, he became associate director within the Materials Science and Technology Division and has managed the DOE Materials Sciences & Engineering Program since 2011. His research has focused on the effects of epitaxial strain, spatial

405

TMS 2010 Tutorial on "Nanoscale Computational Materials Science"  

Science Conference Proceedings (OSTI)

TMS 2010: Tutorial on Nanoscale Computational Materials Science February 14-18, 2010 Washington State Convention Center Seattle, WA. This tutorial...

406

3D Materials Science 2012: Housing and Travel  

Science Conference Proceedings (OSTI)

International Conference on 3D Materials Science 2012. July 8-12, 2012 Seven Springs Mountain Resort Seven Springs, Pennsylvania. Download Exhibits...

407

3D Materials Science 2014: Housing and Travel - TMS  

Science Conference Proceedings (OSTI)

2nd International Congress on 3D Materials Science 2014. June 29 July 2, 2014 Annecy, France. CONGRESS LOCATION. Near Geneva, L'Imprial Palace...

408

Discussions@TMS - Employment in the Material Science Industry  

Science Conference Proceedings (OSTI)

Apr 21, 2009 ... I am a recruiter in the Material Science industry specifically Metals Processing and while customers are still adding resources I wanted to get a...

409

Materials and Science in Sports--Special Airfare - TMS  

Science Conference Proceedings (OSTI)

April 22-25, 2001 MATERIALS AND SCIENCE IN SPORTS Coronado, ... travel consultant must call US Airways' Meeting and Convention Reservation Office at...

410

Conference on Advances In Materials Science - 2009, Prague, Czech...  

National Nuclear Security Administration (NNSA)

In Materials Science - 2009, Prague, Czech Republic | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

411

COURSE NOTES: ViMS: Visualizations in Materials Science ... - TMS  

Science Conference Proceedings (OSTI)

Feb 10, 2007 ... This web resource offers a detailed description of an interactive and graphics- based sophomore level introductory materials science course...

412

JOM Examines Diversity in Materials Science and Engineering  

Science Conference Proceedings (OSTI)

Jun 25, 2013 ... The main article of the package offers interviews with authors of recent studies on diversity trends in materials science and engineering (MSE),...

413

Iver Anderson, Division of Materials Sciences and Engineering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iver Anderson, Division of Materials Sciences and Engineering, The Ames Laboratory, Current and Future Direction in Processing Rare Earth Alloys for Clean Energy Applications Iver...

414

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

Science Conference Proceedings (OSTI)

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

415

Science & Technology Review April/May 2009  

SciTech Connect

This month's issue has the following articles: (1) Leveraging the National Ignition Facility to Meet the Climate-Energy Challenge--Commentary by George H. Miller; (2) The Journey into a New Era of Scientific Discoveries--The world's largest laser is dedicated on May 29, 2009; (3) Safe and Sustainable Energy with LIFE--A revolutionary technology to generate electricity, modeled after the National Ignition Facility, could either be a pure fusion energy source or combine the best of fusion and fission energy; (4) A Simulated Rehearsal for Battle--Livermore's Joint Conflict and Tactical Simulation is the most widely used tactical model in the world; (5) Improving Catalysis with a 'Noble' Material--By infusing carbon aerogels with platinum, researchers have produced a more affordable and efficient catalytic material; and (6) A Time Machine for Fast Neutrons--A new, robust time-projection chamber that provides directional detection of fast neutrons could greatly improve search methods for nuclear materials.

Bearinger, J P

2009-03-23T23:59:59.000Z

416

Science and Technology Review December 2009  

Science Conference Proceedings (OSTI)

This month's issue has the following articles: (1) Advanced Materials for Our Past, Present, and Future - Commentary by Tomas Diaz de la Rubia; (2) A Defensive 'Coat' for Materials under Attack - Amorphous metal coatings provide the strength and corrosion resistance needed to protect military vessels and spent nuclear fuel containers; (3) Too Close for Comfort - Laboratory scientists are analyzing the feasibility of using nuclear explosives to disrupt or divert asteroids on a collision course with Earth; (4) Hyperion: A Titan of High-Performance Computing Systems - Livermore is collaborating with 10 computing industry leaders to create a test bed for Linux cluster hardware and software technologies; (5) Isolating Pathogens for Speedy Identification - An automated miniature device separates viruses, bacteria, genetic material, and proteins from nasal swabs and blood and urine samples for speedy identification.

Bearinger, J P

2009-11-17T23:59:59.000Z

417

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

418

Deep Web Technologies' Innovations Contribute to DOE Science Search  

Office of Scientific and Technical Information (OSTI)

Deep Web Technologies' Innovations Contribute to DOE Science Search Deep Web Technologies' Innovations Contribute to DOE Science Search Technology NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE June 25, 2008 Deep Web Technologies' Innovations Contribute to DOE Science Search Technology Oak Ridge, TN - The 2008 SBIR Small Business of the Year award, announced today by the Department of Energy, acknowledged the web search innovations of Deep Web Technologies, Inc., which has made remarkable advances in an unconventional technology, called federated search. Using federated search, the DOE Office of Scientific and Technical Information (OSTI) has created and deployed groundbreaking tools for making larger quantities of science and technology information available to more people, more quickly and more

419

Nuclear Energy Enabling Technologies (NEET) Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies (NEET) Reactor Materials Enabling Technologies (NEET) Reactor Materials Award Recipient Estimated Award Amount* Award Location Supporting Organizations Project Description University of Nebraska $979,978 Lincoln, NE Massachusetts Institute of Technology (Cambridge, MA), Texas A&M (College Station, TX) Project will explore the development of advanced metal/ceramic composites. These improvements could lead to more efficient production of electricity in advanced reactors. Oak Ridge National Laboratory $849,000 Oak Ridge, TN University of Wisconsin-Madison (Madison, WI) Project will develop novel high-temperature high-strength steels with the help of computational modeling, which could lead to increased efficiency in advanced reactors. Pacific Northwest National Laboratory

420

Materials and Chemical Sciences Division annual report 1989  

DOE Green Energy (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Chemistry and materials science progress report, FY 1994  

SciTech Connect

Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

NONE

1995-07-01T23:59:59.000Z

422

Science, technology and engineering at LANL  

SciTech Connect

The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

423

Science and technology review, April 1996  

DOE Green Energy (OSTI)

There are two main feature articles in this publication. The first article tells of how using off-the-shelf computers, state-of-the-art CCDs, and a network of collaborators, scientist at Lawrence Livermore National Lab explore the composition of dark matter. Indications are that MACHOs (MAssive Compact Halo Objects) make up the bulk of dark matter in the universe. The second article discusses a new breed of Livermore-developed, flywheel-based energy storage systems using new materials, new technologies, and new thinking to develop a new electromechanical battery. Patents and research highlights are also listed in this publication.

Failor, B.; Stull, S. [eds.

1996-04-01T23:59:59.000Z

424

Graphene: from materials science to particle physics  

E-Print Network (OSTI)

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqun E. Drut; Timo A. Lhde; Eero Tl

2010-11-02T23:59:59.000Z

425

Materials Science & Technology 2006 Conference Proceedings  

Science Conference Proceedings (OSTI)

Rare Earth (R) Manganites, RMn2O5. .... C. Johnson, R. Gemmen, and C. Cross .... G.-r. Hu, X.-g. Gao, Z.-d. Peng, J. Li, and Y.-x. Liu. Fuel Cell Systems: Design...

426

ND in Materials Science and Technology I  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Zr-2.5Nb alloy is used for the pressure tubes in CANDU reactor fuel channels. Three phases (?, ?, and ?) of zirconium are known to exist in...

427

Science and Technology Review March 2012  

DOE Green Energy (OSTI)

This month's issue has the following articles: (1) Honoring a Legacy of Service to the Nation - The nation pays tribute to George Miller, who retired in December 2011 as the Laboratory's tenth director; (2) Life-Extension Programs Encompass All Our Expertise - Commentary by Bruce T. Goodwin; (3) Extending the Life of an Aging Weapon - Stockpile stewards have begun work on a multiyear effort to extend the service life of the aging W78 warhead by 30 years; (4) Materials by Design - Material microstructures go three-dimensional with improved additive manufacturing techniques developed at Livermore; (5) Friendly Microbes Power Energy-Producing Devices - Livermore researchers are demonstrating how electrogenic bacteria and microbial fuel cell technologies can produce clean, renewable energy and purify water; and (6) Chemical Sensor Is All Wires, No Batteries - Livermore's 'batteryless' nanowire sensor could benefit applications in diverse fields such as homeland security and medicine.

Nikolic, R J

2012-02-15T23:59:59.000Z

428

Science & Technology Review November/December 2008  

SciTech Connect

This months issue has the following articles: (1) Innovation Is Key to Prosperity and Security --Commentary by Erik J. Stenehjem; (2) Taking Ultrafast Snapshots of Material Changes--The dynamic transmission electron microscope captures images a million times faster than conventional instruments; (3) Automated Technology for Laser Fusion Systems--The first completely computer-controlled system for aligning laser beams is helping make fusion research possible; (4) Protecting the Nation through Secure Cargo--A new device tracks and monitors cargo containers during transit to improve national security; (5) Atom by Atom, Layer by Layer--Extremely thin sandwiches of materials called nanolaminates exhibit remarkable, highly useful properties; and (6) Predicting the Bizarre Properties of Plutonium--A supercomputing 'grand challenge' team has made highly precise predictions of the behavior of plutonium's most important solid phase.

Bearinger, J P

2008-10-07T23:59:59.000Z

429

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics...

430

Condensed Matter and Magnetic Science, MPA-CMMS: Materials Physics and  

NLE Websites -- All DOE Office Websites (Extended Search)

feature banner feature banner banner Condensed Matter and Magnet Science The Condensed Matter and Magnet Science Group (MPA-CMMS) is comprised of research scientists, technicians, postdocs, and students specializing in experimental physics research, with a strong emphasis on fundamental condensed matter physics with complimentary thrusts in correlated electron materials, high magnetic-field science and technology, thermal physics, and actinide chemistry. MPA-CMMS hosts the Pulsed Field Facility of the National High Magnetic Field Laboratory (NHMFL-PFF) located at TA-35 while new material synthesis, low temperature expertise, and various low-energy spectroscopies are located at TA-3. Our actinide chemistry activities occur at RC-1 (TA-48). The NHMFL-PFF is a national user facility for high magnetic field science sponsored primarily by the National Science Foundation's Division of Materials Research, with branches at Florida State University, the University of Florida, and Los Alamos National Laboratory. (Check out NHMFL Web site for more details.)

431

Before the House Science, Space, and Technology Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the House Science, Space, and Technology Subcommittee on Before the House Science, Space, and Technology Subcommittee on Investigations and Oversight Before the House Science, Space, and Technology Subcommittee on Investigations and Oversight Before the House Science, Space, and Technology Subcommittee on Investigations and Oversight By: David Sandalow, Assistant Secretary Office of Policy and International Affairs Subject: Rare Earth Elements 06-14-2011_Final_Sandalow_Testimony(2).pdf More Documents & Publications Statement of David Sandalow, Assistant Secretary of Energy for Policy and International Affairs, Before the Subcommittee on Investigations and Oversight, Committee on Science, Space, and Technology, United States House of Representatives Before the Senate Energy and Natural Resources Subcommittee on Energy

432

Applications of Nuclear Science and Technology| U.S. DOE Office of Science  

Office of Science (SC) Website

Applications of Nuclear Science and Technology Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Benefits of NP Applications of Nuclear Science and Technology Print Text Size: A A A RSS Feeds FeedbackShare Page Applications of Nuclear Science and Technology (ANS&T) Exchange Meeting: August 22-23, 2011 Hilton Washington DC/Rockville Hotel & Executive Meeting Center

433

MSTC - Microsystems Science, Technology, and Components - MSTC News  

NLE Websites -- All DOE Office Websites (Extended Search)

MSTC News MSTC News Microsystems Home Custom Microsystems Solutions Microsystems R&D Services Capabilities and Technologies Facilities Trusted Microsystems General Info About Us Awards Contacts Doing Business with Us Fact Sheets MESA News LATEST MSTC NEWS news News Archive Ed Cole appointed Fellow by ASM International Sept 20, 2013 Ed Cole Ed Cole (1000), appointed a Sandia Fellow in June, has been elected by the board of trustees of ASM International as a Fellow of that society. The ASM International website describes itself as a society of 36,000 members worldwide "dedicated to supporting the materials and engineering professions." According to the notification letter, "The honor of Fellow represents recognition of our distinguished contributions in the field of materials science and engineering, and develops a broadly based

434

Center for Theoretical and Computational Materials Science  

Science Conference Proceedings (OSTI)

... an advanced code repository/wiki for collaboration and modern computational lab-notebook blogging tools (supported by the National Science ...

2012-10-02T23:59:59.000Z

435

Center for Nanophase Materials Sciences (CNMS) - Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

POLICIES User Access Policy - Version 1.1 General Policies and Procedures for User Access to the DOE Nanoscale Science Research Centers Peer Review and Advisory Bodies Evaluation...

436

PNNL: Chemical & Materials Sciences - Fundamental & Computational...  

NLE Websites -- All DOE Office Websites (Extended Search)

& Journal Cover Gallery CMSD Job Openings Links Seminar Series Frontiers in Geochemistry Frontiers in Catalysis Science and Engineering Frontiers in Chemical Physics &...

437

Materials research to advance fossil energy technologies at the NETL  

Science Conference Proceedings (OSTI)

A brief overview of materials research being carried out by the National Energy Technology Laboratory to advance fossil energy technologies.

Powell, C.A.

2006-10-18T23:59:59.000Z

438

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0 Comments) NERSC will present a three-hour training class focussed on Chemistry and Material Sciences applications on Tuesday, June 26, from 9:00 to 12:00 Pacific Time. The first hour of the training is targeted at beginners. We will show you how to get started running material science and chemistry application codes at NERSC. We will demonstrate how to use the preinstalled VASP and Gaussian applications at NERSC efficiently. In the second hour, we will discuss more advanced use cases, such as managing workflows, compiling optimized versions of custom material science and chemistry applications.

439

Jefferson Lab Science Series - The Science and Technology Behind...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecules are Everywhere Previous Video (Molecules are Everywhere) Science Series Video Archive Next Video (Iceland: Dynamic Land of Ice and Fire) Iceland: Dynamic Land of Ice and...

440

Computational Materials Science and Engineering Education: A ...  

Science Conference Proceedings (OSTI)

January 2009; Informatics and Integrated Computational Materials Engineering: Part II; March 2008; Materials Informatics Part I: A Diversity of Issues...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Zenith Materials Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Materials Technology Corp Materials Technology Corp Jump to: navigation, search Name Zenith Materials Technology Corp. Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar ingot puller and wafer wire-saw. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

The nuclear materials control technology briefing book  

SciTech Connect

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

443

Proceedings: Hazardous Waste Material Remediation Technology Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on hazardous waste materials remediation. The workshop was the fourth in a series initiated by EPRI to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of hazardous waste management as they relate to nuclear plant decommissioning. The information will help utilities understand hazardous waste issues, select technologies for their individual projects, and reduce decom...

1999-11-23T23:59:59.000Z

444

Commerce Science and Technology Fellowship | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commerce Science and Technology Fellowship Commerce Science and Technology Fellowship Commerce Science and Technology Fellowship Program Overview: The ComSci Program is to provide a hands-on learning experience for participants, increasing their understanding of technological innovation as a source of national and international economic growth; the relationship of science and technology to government policies on economics; trade, education, and fiscal matters; the organization of scientific and technological activities in the Federal Government; and the technical activities and problems in other executive, legislative, and judicial agencies of the government, thereby motivating and encouraging the development of cooperative endeavors and programs. NOTICE: The ComSci Program is currently under an administrative review.

445

Panels - Science, Engineering, Technology, & Mathematics Career...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Scientists and Engineers O*NET OnLine STEM Career Clusters Occupational Outlook Handbook, U. S. Department of Labor, 2010-11 Edition. Science Buddies: Careers in Science...

446

Plasma Science Committee (PLSC) and the Panel on Opportunities in Plasma Science and Technology (OPST)  

SciTech Connect

The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States and identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. During July 1992, the PLSC sponsored a workshop on nonneutral plasmas in traps. Although no written report on the workshop results, was prepared for public distribution, a summary of highlights was provided to the OPST Subpanel on Nonneutral Plasmas. The PLSC also continued its follow-up briefings and discussions on the results of the results of the report Plasma Processing of materials. Scientific and Technological Opportunities. As a result of these activities, the Committee is now working with the NRC Committee on Atomic, Molecular, and Optical Sciences (CAMOS) to organize a symposium on database needs in plasma processing of materials.

1993-01-01T23:59:59.000Z

447

Science and Technology Review December 2011  

SciTech Connect

This month's issue has the following articles: (1) High-Performance Computing for Energy Innovation - Commentary by Tomas Diaz de la Rubia; (2) Simulating the Next Generation of Energy Technologies - Projects using high-performance computing demonstrate Livermore's computational horsepower and improve the quality of energy solutions and the speed of deployment; (3) ARC Comes into Focus - The Advanced Radiographic Capability, a petawatt-class laser, can penetrate dense objects to reveal material dynamics during National Ignition Facility experiments; (4) A New Method to Track Viral Evolution - A sensitive technique developed at the Laboratory can identify virus mutations that may jump from host to host; and (5) Data for Defense: New Software Finds It Fast - Department of Defense warfighters and planners are using Livermore software systems to extract pertinent information from massive amounts of data.

Nikolic, R J

2011-11-01T23:59:59.000Z

448

Materials Sciences and Engineering Program | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

and materials under extreme conditions; energy storage and energy conversion; and nano- and meso-scale materials and properties. Underpinning these four themes are four core...

449

Geographic Information Science and Technology | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

High Resolution Population and Social Dynamics Critical Infrastructure Data modeling Population-Infrastructure Dependency Spatiotemporal Data Mining and Uncertainty Analysis Machine Learning and Pattern Recognition Participatory Sensing and Volunteered Geographic Information High Performance Geocomputation and Visualization Cyber GIS Emerging Architectures for Geocomputation Energy Assurance Climate Extremes and Impact on Infrastructures Geocomputation for Transportation Emergency Preparedness and Response Quantum Information Science Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Research Areas | Geographic Information Science and Technology SHARE Geographic Information Science and Technology Oak Ridge National Laboratory has been a pioneer in the research,

450

Building Science and Technology Solutions for National Problems  

Science Conference Proceedings (OSTI)

The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

Bishop, Alan R. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

451

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

452

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

453

DOE Projects to Advance Environmental Science and Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and to support science that will aid the regulatory and permitting processes required for shale gas development. A primary goal of Fossil Energy's Oil and Natural Gas Program is to enhance the responsible development of domestic natural gas and oil resources that supply the country's energy. A specific objective is to accelerate the

454

Magnesium Technology Symposium  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2013 ... Scope, The magnesium technology symposium will cover a broad spectrum of theoretical and...

455

Physical and Life Sciences 2008 Science & Technology Highlights  

Science Conference Proceedings (OSTI)

This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

Correll, D L; Hazi, A U

2009-05-06T23:59:59.000Z

456

Materials challenges in advanced coal conversion technologies  

SciTech Connect

Coal is a critical component in the international energy portfolio, used extensively for electricity generation. Coal is also readily converted to liquid fuels and/or hydrogen for the transportation industry. However, energy extracted from coal comes at a large environmental price: coal combustion can produce large quantities of ash and CO{sub 2}, as well as other pollutants. Advanced technologies can increase the efficiencies and decrease the emissions associated with burning coal and provide an opportunity for CO{sub 2} capture and sequestration. However, these advanced technologies increase the severity of plant operating conditions and thus require improved materials that can stand up to the harsh operating environments. The materials challenges offered by advanced coal conversion technologies must be solved in order to make burning coal an economically and environmentally sound choice for producing energy.

Powem, C.A.; Morreale, B.D. [National Energy Technology Laboratory, Albany, OR (United States)

2008-04-15T23:59:59.000Z

457

Shanti Swarup Bhatnagar Prize for Science & Technology 2013 List of recipients  

E-Print Network (OSTI)

Shanti Swarup Bhatnagar Prize for Science & Technology 2013 List of recipients Biological Sciences Dr Sathees Chukkurumbal Raghavan Department of Biochemistry Indian Institute of Science (IISc) Bangalore 560 012 Chemical Sciences Dr Yamuna Krishnan National Centre for Biological Sciences (TIFR) UAS

Jayaram, Bhyravabotla

458

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network (OSTI)

a living laboratory for research on integrated energy-saving technologies that will lead to the development infrastructure. The development and technology transfer team include Parans Paranthaman, Tolga Aytug, Amit Goyal1Oak Ridge National Laboratory Science & Technology Highlights Published by Oak Ridge National

459

Bioinspired Materials Engineering  

Science Conference Proceedings (OSTI)

Conference Tools for Materials Science & Technology 2014 ... structured functional materials with improved and designed (piezo )electrical, magnetic, optical,...

460

Radiation Shields Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Radiation...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Turning local materials into solar technology  

Science Conference Proceedings (OSTI)

Dr. A. Jagadeesh, founder President of the Society of Science for the People in India, explains his design for a solar water pre-heater for cooking. This simple technology can significantly decrease the amount of fuel used to cook food in rural areas of developing countries. The basis for the solar water pre-heater is the fact that the use of pre-heated water of 60C to cook food, particularly rice, dal and maize, lowers cooking times considerably and leads to substantial fuel savings.

Jagadeesh, A. (Society of Science for the People in India, Andhra, Pradesh (India))

1992-06-01T23:59:59.000Z

462

Future Science & Technology Programs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

efforts and the long-term vitality of science and engineering at NNSA. NNSA is focused on developing and maintaining the critical scientific and technical capabilities that are...

463

Transmaterialization: technology and materials demand cycles  

SciTech Connect

Recently concern has risen worldwide regarding the issue of declining materials demand which has been termed dematerialization. A summary of the issues involved appears in the proceedings of the recent conference on metals demand published in Materials and Society (1986). Dematerialization refers to the constant decline in use of materials as a percentage of total production. Dematerialization implies a structural change in an economy, indicating a reduced demand for materials and, therefore, a decline in overall industrial growth. This paper proposes that, instead of dematerialization in the US material markets, the demand change that has been occurring can be more aptly described as transmaterialization. Transmaterialization implies a recurring industrial transformation in the way that economic societies use materials, a process that has occurred regularly or cyclically throughout history. Instead of a once and for all structural change as implied by dematerialization, transmaterialization suggests that minerals demand experiences phases in which old, lower-quality materials linked to mature industries undergo replacement periodically by higher-quality or technologically-more-appropriate materials. The latter, as of recent, tend to be lighter materials with more robust technical properties than those being replaced.

Waddell, L.M.; Labys, W.C.

1988-01-01T23:59:59.000Z

464

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Chameleon House solarhouse.mst.edu Missouri University of Science and Technology designed Chameleon House for the U.S. Department of Energy Solar Decathlon 2013 to epitomize an adaptable living environment. With versatile features that form a chameleon skin-and spaces designed to maximize flexibility, comfort, and convenience-the Chameleon House flexes easily to meet as many market and regional needs as possible. Design Philosophy Chameleon House rejects a paradigm of technology for technology's sake. Instead, its creators were guided by the belief that technology is important only to the extent that it significantly enhances a user's experience. The design avoids unnecessary complexity in favor of a simple approach that uses seamless engineering of systems to prove that

465

Data Analytics for Materials Science and Manufacturing  

Science Conference Proceedings (OSTI)

Surya R. Kalidindi, Georgia Institute of Technology ... and Manufacturing field in order to facilitate communication and collaboration among the various camps.

466

Center for Nanophase Materials Sciences - Newsletter January...  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Massachusetts. Prof. Dadmun joined the National Institute of Standards and Technology as a National Research Council Postdoctoral Associate. Dr. Dadmun's current...

467

Manufacturing Science and Technology: R & D Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Projects R&D Projects This page is included to give visitors to the web site a sample of the R&D work that this Center undertakes. The Manufacturing Science & Technology Center works mainly in the Development-to-Application part of the Research-to-Development-to-Application cycle.Staff in the Center, however, do perform work in the research-to-development area with the aim of providing our customers with more robust, quicker, and/or less expensive processes to meet Sandia's manufacturing needs. We also do R&D to develop processes required for the manufacture of specialized materials and components that can no longer be obtained either in the commercial market or at one of the DOE's production facilities. Within Sandia, most manufacturing R&D is carried out by the Manufacturing

468

Radiation imaging technology for nuclear materials safeguards  

SciTech Connect

Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

1997-12-01T23:59:59.000Z

469

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

470

Chemical and Engineering Materials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

471

Chemical & Engineering Materials | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical and Engineering Materials Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the structure and dynamics of chemical systems and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating conditions, including studies of chemical and physical changes in situ. User experiments with diffraction, small-angle scattering, inelastic and quasi-elastic scattering, and neutron imaging instruments address a range of problems in chemistry and in engineering materials research. Current areas of research supported within Chemical and Engineering Materials include: The structure and dynamics of electrical energy storage materials

472

Building Technologies Office: Building Science Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Education Science Education Photo of students investigating building enclosure moisture problems at a field testing facility in British Columbia. Students study moisture building enclosure issues at the Coquitlam Field Test facility in Vancouver, British Columbia. Credit: John Straube The U.S. Department of Energy's (DOE) Building America program recognizes that the education of future design/construction industry professionals in solid building science principles is critical to widespread development of high performance homes that are energy efficient, healthy, and durable. In November 2012, DOE met with leaders in the building science community to develop a strategic Building Science Education Roadmap that will chart a path for training skilled professionals who apply proven innovations and recognize the value of high performance homes. The roadmap aims to:

473

Algorithm Development in Computational Materials Science and ...  

Science Conference Proceedings (OSTI)

Integrating Advanced Materials Simulation Techniques into an Automated Data Analysis Workflow at the Spallation Neutron Source Intersecting Slip for...

474

Autonomous Research Systems for Materials Science  

Science Conference Proceedings (OSTI)

Dictionary-based Diffraction Microscopy for Materials Effective Extraction of Both Impurity Diffusion Coefficients and Interdiffusion Coefficients for Diffusivity...

475

3D Materials Science 2014: Meeting Registration  

Science Conference Proceedings (OSTI)

Administrative & Policy Manual. Scroll up. Scroll down. Technical Divisions Home TMS Committees Home Electronic, Magnetic & Photonic Materials...

476

Jiangxi Gemei Science and Technology Inc | Open Energy Information  

Open Energy Info (EERE)

Gemei Science and Technology Inc Gemei Science and Technology Inc Jump to: navigation, search Name Jiangxi Gemei Science and Technology Inc Place Fuzhou, Jiangxi Province, China Sector Solar Product Jiangxi Gemei Science and Technology plans to open its vertically integrated solar facility using a turnkey solution from Spire. Coordinates 26.070999°, 119.303223° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.070999,"lon":119.303223,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Alan Bishop selected to lead LANL Science, Technology & Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Science, Technology & Engineering directorate Science, Technology & Engineering directorate Alan Bishop selected to lead LANL Science, Technology & Engineering directorate Bishop has been acting in that role since Aug. 29, 2011. August 17, 2012 Alan Bishop Alan Bishop Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role since Aug. 29, 2011. Over the course of a distinguished 30-year career as a research scientist and leader, Bishop has more than 700 publications in archival journals and

478

Before the House Science, Space, and Technology Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statement Before the Committee on Science, Space, and Technology, U.S. House of Representatives By: Secretary Steven Chu, U.S. Department of Energy Subject: DOE Fiscal Year 2012...

479

Before the House Science, Space, and Technology Committee | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Before the House Science, Space, and Technology Committee By: David Franz, Director Loan Guarantee Program Subject: DOE's Clean Energy R&D Activities 6-15-11FinalTestimony(Frant...

480

Florida International University Science and Technology Workforce Development Program  

Energy.gov (U.S. Department of Energy (DOE))

The DOE-Florida International University (FIU) Science and Technology Workforce Development Program is an innovative grant program between DOE-EM and FIU's Applied Research Center designed to...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

482

Biology Chemistry & Material Science Laboratory 2 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 2 Inventory The BioChemMat Lab 2 (BCM 2) at SSRL is dedicated to researcher experiments, including...

483

Biology Chemistry & Material Science Laboratory 1 | Sample Preparation...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Cynthia Patty | (650) 926-3925 Biology Chemistry & Material Science Laboratory 1 Inventory The BioChemMat Lab 1 at SSRL is dedicated to researcher experiments, including x-ray...

484

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science  

E-Print Network (OSTI)

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science CASA-Report 11-11 February 2011 Notes on solving Maxwell equations Part 2: Green's function for stratified media by R. Rook Centre for Analysis, Scientific computing and Applications Department of Mathematics and Computer Science

Eindhoven, Technische Universiteit

485

DOE fundamentals handbook: Material science. Volume 2  

Science Conference Proceedings (OSTI)

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the structure and properties of metals. This volume contains the following modules: thermal shock (thermal stress, pressurized thermal shock), brittle fracture (mechanism, minimum pressurization-temperature curves, heatup/cooldown rate limits), and plant materials (properties considered when selecting materials, fuel materials, cladding and reflectors, control materials, nuclear reactor core problems, plant material problems, atomic displacement due to irradiation, thermal and displacement spikes due to irradiation, neutron capture effect, radiation effects in organic compounds, reactor use of aluminum).

Not Available

1993-01-01T23:59:59.000Z

486

Novel Materials for Photovoltaic Technologies: Preprint  

DOE Green Energy (OSTI)

While existing photovoltaic technologies continue to advance, there are still many exciting opportunities in the area of novel materials. These opportunities arise because there is a substantial need for reducing the costs associated with the preparation and processing of photovoltaics, and because the theoretically possible photovoltaic efficiencies have yet to be achieved in practical devices. Thus it remains reasonable to continue photovoltaic research activity aimed at entirely new approaches to processing and at entirely new materials as the active media. This group identified three areas for further consideration: (a) Nano/molecular composites and hierarchical structures; (b) Organic semiconductors; and (c) Hot carrier devices.

Alivisatos, P. (University of California Berkeley); Carter, S. (University of California Santa Barbara); Ginley, D.; Nozik, A. (National Renewable Energy Laboratory); Meyer, G. (Johns Hopkins University); Rosenthal, S. (Vanderbilt University)

1999-04-01T23:59:59.000Z

487

Superhydrophobic Materials Technology-PVC Bonding Techniques  

SciTech Connect

The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet?cleanable anti?biofouling waterproof anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

2013-05-03T23:59:59.000Z

488

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

489

Biomolecular Materials | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Biomolecular Materials Biomolecular Materials Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Biomolecular Materials Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research in the discovery, design and synthesis of biomimetic and bioinspired functional materials and complex structures, and materials aspects of energy conversion processes based on principles and concepts of biology. The major program emphasis is the creation of robust, scalable, energy-relevant materials and systems with

490

Computational Materials Science and Engineering in University ...  

Science Conference Proceedings (OSTI)

Cyber-Enabled Ab Initio Simulations in Nanohub.org: Simulation Tools and Learning Modules Cyber-Enabled Materials Simulations Via Nanohub.org.

491

Materials Science of Nuclear Waste Management II  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Challenges include the multi-phase nature of the materials, galvanic .... to quantify phase volume percentage and pore size distribution data to...

492

Materials Research Highlights | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Study on the Dynamics of Poly(alkylene oxide)s" Contact: Christine Gerstl Theory meets experiment: structure-property relationships in an electrode material for...

493

Conference on Advances in Materials Science - Presentations ...  

National Nuclear Security Administration (NNSA)

Presentations-Session 1 Modeling of Plutonium Ageing The Spectroscopic Signature of Aging in -Pu Modeling the Aging and Reliability of Solder Joints Polymer Material Thermal...

494

Condensed Matter Physics & Materials Science Department  

NLE Websites -- All DOE Office Websites (Extended Search)

is focused on the Magneto Optical Imaging of magnetic field distribution in superconductors and magnetic materials. How to Contact Us Our Research Characterization...

495

Electronic Materials Science Challenges in Renewable Energy  

Science Conference Proceedings (OSTI)

This work was supported in part by the U.S. Dept. of Energy through the NREL High- ... ...but electronic materials impact many more aspects of renewable energy...

496

Materials Science of Nuclear Waste Management  

Science Conference Proceedings (OSTI)

The intent is to provide a forum for researchers from national laboratories, universities, and nuclear industry to discuss current understanding of materials...

497

Future Directions in 3D Materials Science  

Science Conference Proceedings (OSTI)

Jul 12, 2012 ... The success of computational materials design in the 1990s established a basis for the DARPA-AIM initiative of the 2000s which broadened...

498

Center for Nanophase Materials Sciences (CNMS)  

NLE Websites -- All DOE Office Websites

Science User Facilities Science User Facilities Search Go Home About Advisory Committee CNMS Fact Sheet CNMS Organizational Chart Research Themes Publications Journal Cover Gallery Research Highlights Related ORNL User Facilities User Program Becoming A User Acknowledgement Guidelines CNMS Capabilities Active Projects User Group Data Management Policy Working at CNMS Jobs ES&H Obtaining Entry Hours of Operation Local Information News & Events News Events CNMS User Newsletters People Contact Us Visit us on Wikipedia. Visit us on FaceBook. Visit us on YouTube. Upcoming Events and Latest News Call For Proposals - Next cycle is Spring 2014 Neutrons and Nano Workshops and User Meetings - TALKS Postdoctoral Opportunities CNMS Discovery Seminars Opening the Eye-Popping Possibilities of the Smallest Scales

499

Computer Science and Information Technology Student Pipeline  

NLE Websites -- All DOE Office Websites (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

500

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...