Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Materials Science and Technology Mechanical and Materials Engineering  

E-Print Network [OSTI]

Materials Science and Technology Metallurgy Mechanical and Materials Engineering Materials Science with Energy Engineering Materials Science with Business Management Course Prospectus School of Metallurgy for Metallurgy and Materials What difference will you make? #12;2 School of Metallurgy and Materials Contents

Birmingham, University of

2

Materials Science and Technology Teachers Handbook  

SciTech Connect (OSTI)

The Materials Science and Technology (MST) Handbook was developed by Pacific Northwest National Laboratory, in Richland, Washington, under support from the U.S. Department of Energy. Many individuals have been involved in writing and reviewing materials for this project since it began at Richland High School in 1986, including contributions from educators at the Northwest Regional Education Laboratory, Central Washington University, the University of Washington, teachers from Northwest Schools, and science and education personnel at Pacific Northwest National Laboratory. Support for its development was also provided by the U.S. Department of Education. This introductory course combines the academic disciplines of chemistry, physics, and engineering to create a materials science and technology curriculum. The course covers the fundamentals of ceramics, glass, metals, polymers and composites. Designed to appeal to a broad range of students, the course combines hands-on activities, demonstrations and long term student project descriptions. The basic philosophy of the course is for students to observe, experiment, record, question, seek additional information, and, through creative and insightful thinking, solve problems related to materials science and technology. The MST Teacher Handbook contains a course description, philosophy, student learning objectives, and instructional approach and processes. Science and technology teachers can collaborate to build the course from their own interests, strengths, and experience while incorporating existing school and community resources. The course is intended to meet local educational requirements for technology, vocational and science education.

Wieda, Karen J.; Schweiger, Michael J.; Bliss, Mary; Pitman, Stan G.; Eschbach, Eugene A.

2008-09-04T23:59:59.000Z

3

Materials Science Materials science has had a profound influence on the development of our technologically  

E-Print Network [OSTI]

, special topic courses in materials are also offered, as well as opportunities for senior projects. A minorMaterials Science Materials science has had a profound influence on the development of our technologically advanced society. The availability of suitable materials has been critical to the realization

New Hampshire, University of

4

Advances in Materials Science for Environmental and Energy Technologies II  

SciTech Connect (OSTI)

The Materials Science and Technology 2012 Conference and Exhibition (MS&T'12) was held October 7-11, 2012, in Pittsburgh, Pennsylvania. One of the major themes of the conference was Environmental and Energy Issues. Papers from five of the symposia held under that theme are invluded in this volume. These symposia included Materials Issues in Nuclear Waste Management for the 21st Century; Green Technologies for Materials Manufacturing and Processing IV; Energy Storage: Materials, Systems and Applications; Energy Conversion-Photovoltaic, Concentraing Solar Power and Thermoelectric; and Materials Development for Nuclear Applications and Extreme Environments.

Matyas, Dr Josef [Pacific Northwest National Laboratory (PNNL); Ohji, Tatsuki [Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Tec; Liu, Xingbo [West Virginia University, Morgantown; Paranthaman, Mariappan Parans [ORNL; Devanathan, Ram [Pacific Northwest National Laboratory (PNNL); Fox, Kevin [Savannah River National Laboratory (SRNL); Singh, Mrityunjay [NASA-Glenn Research Center, Cleveland; Wong-ng, Winnie [National Institute of Standards and Technology (NIST), Gaithersburg, MD

2013-01-01T23:59:59.000Z

5

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE)...

6

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials Science, Nanotechnology  

E-Print Network [OSTI]

Research Institute of Micro/Nanometer Science & Technology Multiple Openings : Chemistry, Materials and spacious clean room laboratories for nanofabrication of devices. Interested candidates are urged to submit. of Micro/Nanometer Sci. & Technology 800 Dongchuan Road, Shanghai, China 200240 e-mail:

Alpay, S. Pamir

7

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological SciencesScience China Press and Springer-Verlag Berlin Heidelberg and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; 2 Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China; 3 School of Material Science and Engineering, Georgia Institute

Wang, Zhong L.

8

Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

9

Review on the EFDA programme on tungsten materials technology and science M. Rieth a,  

E-Print Network [OSTI]

Review on the EFDA programme on tungsten materials technology and science M. Rieth a, , J design studies for helium cooled divertors utilize tungsten materials and alloys, mainly due structural as well as armor materials in combination with the necessary production and fab- rication

Nordlund, Kai

10

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications and  

E-Print Network [OSTI]

The Clemson University Department of Materials Science and Engineering, in conjunction with the Center for Optical Materials Science and Engineering Technologies (COMSET), is soliciting applications Centers of Economic Excellence Act,both of which stipulated that the chaired professor encourage knowledge

Stuart, Steven J.

11

MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and  

E-Print Network [OSTI]

MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

Mease, Kenneth D.

12

Materials Science & Technology, MST: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Advanced MaterialsMST

13

1995 Federal Research and Development Program in Materials Science and Technology  

SciTech Connect (OSTI)

The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

None

1995-12-01T23:59:59.000Z

14

Swiss Federal Laboratories for Materials Science and Technology Advances in Thin Film PV: CIGS & CdTe  

E-Print Network [OSTI]

and Photovoltaics Thin film solar cells based on compound semiconductor absorbers: CIGS and CdTe High efficiency and Photovoltaics Swiss Federal Laboratories for Material Science and Technology Key issues in high efficiency CIGSTe Laboratory for Thin Films and Photovoltaics Empa- Swiss Federal Laboratories for Material Science

Canet, L閛nie

15

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

16

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological SciencesScience China Press and Springer-Verlag Berlin Heidelberg HU HongChang, TIAN FuQiang* & HU HePing Department of Hydraulic Engineering, State Key Laboratory as a key soil physical parameter and has been widely used to predict soil hydraulic and other related

Ahmad, Sajjad

17

SCIENCE CHINA Technological Sciences  

E-Print Network [OSTI]

SCIENCE CHINA Technological SciencesScience China Press and Springer-Verlag Berlin Heidelberg. Density-functional-theory formulation of classical and quantum Hooke's law. Sci China Tech Sci, 2014, 57- sider an equilibrium lattice without strain (=0), but elec- #12;Hu H, et al. Sci China Tech Sci April

Simons, Jack

18

Fusion Materials Science and Technology Research Needs: Now and During the ITER era  

SciTech Connect (OSTI)

The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

2013-09-30T23:59:59.000Z

19

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

Abdou, Mohamed

20

Metallurgy:Metallurgical Science:Materials Science & Technology:MST: Los  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvanced Materials|

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Science & technology review  

SciTech Connect (OSTI)

This document is the August, 1995 issue of the Science and Technology review, a Lawrence Berkeley Laboratory publication. It contains two major articles, one on Scanning Tunneling Microscopy - as applied to materials engineering studies, and one on risk assessment, in this case looking primarily at a health care problem. Separate articles will be indexed from this journal to the energy database.

NONE

1995-08-01T23:59:59.000Z

22

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMissionreal-time informationScienceStudents | Center

23

UNDERGRADUATE Materials Science & Engineering  

E-Print Network [OSTI]

UNDERGRADUATE HANDBOOK Materials Science & Engineering 2013 2014 #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Tipple, Brett

24

Materials Science & Engineering  

E-Print Network [OSTI]

Materials Science & Engineering The University of Utah 2014-15 Undergraduate Handbook #12;STUDYING FOR A MATERIALS SCIENCE AND ENGINEERING DEGREE Materials Science and Engineering inter-twines numerous disciplines that still gives the students the opportunity to study science while earning an engineering degree. Materials

Simons, Jack

25

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL)X-RayMaterials

26

Fusion materials science and technology research opportunities now and during the ITER era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

2014-10-01T23:59:59.000Z

27

Fusion Materials Science and Technology Research Opportunities now and during the ITER Era  

SciTech Connect (OSTI)

Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

2014-02-22T23:59:59.000Z

28

COMPUTER SCIENCE INFORMATION TECHNOLOGY  

E-Print Network [OSTI]

COMPUTER SCIENCE and INFORMATION TECHNOLOGY POSTGRADUATE STUDIES 2006 School of Mathematics, Statistics and Computer Science The University of New England Armidale, NSW, Australia Printed courses in computer science and the graduate level topics in computer science which are offered

Dunstan, Neil

29

Institute for Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute for Material Science Who we are and what we do 2:23 Institute for Materials Science: Alexander V. Balatsky IMS is an interdisciplinary research and educational center...

30

Science, technology and innovation  

E-Print Network [OSTI]

Science, technology and innovation Taught degrees MSc in Innovation and Sustainability technologies on individuals and their environment is highly dependent on the choices made by policy makers that science and technology policy choices for sustainable growth and well-being in developing countries need

Sussex, University of

31

Department of Science, Technology, &  

E-Print Network [OSTI]

Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

Acton, Scott

32

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop 颅 Current

33

CENTRE FOR SCIENCE EDUCATION SCIENCE AND TECHNOLOGY  

E-Print Network [OSTI]

FOR SCIENCE EDUCATION SCIENCE AND TECHNOLOGY AARHUS UNIVERSITY 13 JUNE 2013 Project work CENTRE FOR SCIENCE EDUCATION SCIENCE AND TECHNOLOGY AARHUS UNIVERSITY 13 JUNE and ICT Sessions: Mondays, Wednesdays and Fridays kl. 9-16 ICT Development Project work: Tuesdays

34

Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable  

E-Print Network [OSTI]

The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership for Sustainable Energy: Emphasis on Photovoltaic Materials for Module Assembly and Installation with Ann Norris properties that make them excellent candidates for photovoltaic module encapsulants and other materials

Crawford, T. Daniel

35

Materials Science & Engineering  

E-Print Network [OSTI]

. Aucierllo has edited 19 books, published about 450 articles, holds 14 patents, and has organized, chaired and nanocarbon thin films are providing the bases for new physics, new materials science and chemistry

36

Materials sciences programs, Fiscal year 1997  

SciTech Connect (OSTI)

The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

NONE

1998-10-01T23:59:59.000Z

37

First International Symposium on Cold Cathodes Dielectric Science and Technology/Electronics/Luminescent and Display Materials  

E-Print Network [OSTI]

/Electronics/Luminescent and Display Materials 198th Meeting of the Electrochemical Society Date: October 22颅27, 2000 Location: Phoenix Noise (flicker, shot), ffl Emitters (e.g., Spindt颅type field emitters, Negative electron affinity abstract to the ECS headquarters and also to K. L. Jensen at the address below. #12; Electrochemical

Cahay, Marc

38

Stanislav Golubov, and Roger Stoller - Materials Science and Technology Division, Oak Ridge  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout 禄 Staff Basic Energy SciencesAdvanceAccess

39

Bachelor of Science & Bachelor of Science (Technology)  

E-Print Network [OSTI]

Bachelor of Science & Bachelor of Science (Technology) SpecialiSationS Environmental Microbiology environment. This specialisation can be attached to the Environmental Sciences major. Environmental Modelling Sciences major. Land and Freshwater Environments This specialisation is for students interested

Waikato, University of

40

NREL: Energy Sciences - Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres PhotoMaterials Science Learn about our

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Action Plan Materials Science  

E-Print Network [OSTI]

sense, including all strata) has available to it a wide range of con- venient products which improve, improving companies' pros- pects and generating wealth without harming the environment. And allAction Plan 2010-2013 Materials Science Area EXECUTIVE SUMMARY #12;N.B.: If you require any further

Fitze, Patrick

42

Materials Technologies: Goals, Strategies, and Top Accomplishments...  

Energy Savers [EERE]

Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

43

Security Science & Technology | Nuclear Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Security Science & Technology Border Security Comprehensive Vulnerability and Threat Analysis Consequence Management, Safeguards, and Non-Proliferation Tools Export...

44

Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials Science Subcommittee  

E-Print Network [OSTI]

1 Fusion Technologies for Tritium-Suppressed D-D Fusion White Paper prepared for FESAC Materials for tritium-suppressed D-D fusion and the understanding of the turbulent pinch in magnetically confined plasma pathway. Tritium- suppressed D-D fusion eliminates the need to breed fuel from lithium, reduces the damage

45

Materials sciences programs, fiscal year 1994  

SciTech Connect (OSTI)

The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

NONE

1995-04-01T23:59:59.000Z

46

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities, Materials Science, News, News & Events, Research & Capabilities, Solid-State Lighting Semiconductor nanowire lasers have attracted intense interest as...

47

Fuel Cell Technologies Office Science and Technology Policy Fellowship...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

48

Materials Sciences and Engineering Program | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Sciences and Engineering Program SHARE BES Materials Sciences and Engineering Program The ORNL materials sciences and engineering program supported by the Department of...

49

Information Technology and Web Science  

E-Print Network [OSTI]

Rensselaer Graduate Studies Information Technology and Web Science Rensselaer nurtures a "low walls advanced study in the highly creative, interdisci- plinary field of Information Technology and Web Science to gain a breadth of IT knowledge: itws.rpi.edu #12;itws.rpi.edu Information Technology and Web Science

50

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

51

Math100: Introduction to the Profession Mathematics and Materials Science  

E-Print Network [OSTI]

of Applied Mathematics Illinois Institute of Technology #12;Mathematics Materials Science -- Numbers a hexagonal crystal structure. oxygen hydrogen Libbrecht (2005) Gives ice crystals their natural 6-fold

Fasshauer, Greg

52

Materials for Information Technology  

E-Print Network [OSTI]

on thin-film and nano-scale materials. The papers include content ranging from materials-related aspects for these fascinating and useful mate- rials. /jr Adv. Eng. Mater. 2009, 11, Issue 4 Colloidal Hollow Spheres Colloidal hollow spheres of conduct- ing polymers such as polypyrrole (PPy) or polyaniline (PAni) are produced

Tang, Ben Zhong

53

Materials Science and Materials Chemistry for Large Scale Electrochemi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid Materials Science and Materials Chemistry for Large Scale...

54

Copyright 2006 by the NEPAD Office of Science and Technology  

E-Print Network [OSTI]

#12;Copyright 漏 2006 by the NEPAD Office of Science and Technology P.O. Box 395, Lynnwood, Pretoria Office of Science and Technology. Publication compiled by Dr. John Mugabe and Professor Aggrey Ambali 24 PROGRAMME CLUSTER 3: MATERIAL SCIENCES, MANUFACTURING, LASER AND POST-HARVEST TECHNOLOGIES 33

55

Integrating Information, Science, and Technology for Prediction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness...

56

2014 Annual Merit Review Results Report - Materials Technologies...  

Energy Savers [EERE]

Materials Technologies: Propulsion Materials 2014 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials Merit review of DOE Vehicle Technologies...

57

Learning Outcomes Food Science & Technology  

E-Print Network [OSTI]

for the long-term sustainability of Oregon's food processing industry 路 Provide service to the professionLearning Outcomes Food Science & Technology Oregon State University The Department's Learning of the Department of Food Science & Technology at Oregon State University is to serve food technologists, food

Escher, Christine

58

Frontiers of Fusion Materials Science  

E-Print Network [OSTI]

migration Radiation damage accumulation kinetics 路 1 D vs. 3D diffusion processes 路 ionization Insulators 路 Optical Materials *asterisk denotes Fusion Materials Task Group #12;Fusion Materials Sciences R Displacement cascades Quantification of displacement damage source term 路 Is the concept of a liquid valid

59

Department of Advanced Materials Science  

E-Print Network [OSTI]

@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials process, Metal smelting and re ning process of Advanced Materials Science masashi@issp.u-tokyo.ac.jpe-mail 04-7136-3225T E L Nuclear magnetic resonance New Materials Synthesis, Superconductivity, Quantum Spin Liquid,Topological Hall Effect takatama

Katsumoto, Shingo

60

Joanna McFarlane, Refuyat Ashen, and K.C. Cushman Separations and Materials Research Group, Nuclear Science and Technology Division  

E-Print Network [OSTI]

, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge, Nuclear Science and Technology Division Oak Ridge National Laboratory, P. O. Box 2008, MS-6008, Oak Ridge. Fuel mixtures that were considered included: biodiesel and standard diesel fuel, methyl-butanoate and n

Pennycook, Steve

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Materials & Engineering Sciences Center  

E-Print Network [OSTI]

Atoms to Continuum Sandia: 40 years of Hydrogen Science and EngineeringSandia: 40 years of Hydrogen Microsensors CombustionEngineering Science Hydrogen: the renewable energy carrier for the 21st Century for complex hydrides (engineering properties, safety, contaminations....) Other Hydrogen Storage Concepts

62

Advanced Thermoelectric Materials and Generator Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

63

Materials Science & Engineering  

E-Print Network [OSTI]

and Forensics team in the Polymers and Coatings Group, MST-7. He graduated from the University of Toledo, aerogels, carbon fiber composites, damaged materials, and low density materials examining defects

64

Joining of Advanced Materials: An The revolution which has occurred in materials science  

E-Print Network [OSTI]

science and engineering has not been matched by improve- ments in joining science and technology. 1t.materials require ever higher performance, the number of acceptable joining technologies becomes more re- stricted of the material are useless. Unless the shape and properties can be obtained economically, the product has limited

Eagar, Thomas W.

65

Physical Sciences 2007 Science & Technology Highlights  

SciTech Connect (OSTI)

The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

Hazi, A U

2008-04-07T23:59:59.000Z

66

Science, Technology, Engineering, & Mathematics Career Expo for...  

Broader source: Energy.gov (indexed) [DOE]

Science, Technology, Engineering, & Mathematics Career Expo for High School Students Science, Technology, Engineering, & Mathematics Career Expo for High School Students April 10,...

67

Idaho Science, Technology, Engineering and Mathematics Overview  

ScienceCinema (OSTI)

Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

68

Idaho Science, Technology, Engineering and Mathematics Overview  

SciTech Connect (OSTI)

Idaho National Laboratory has been instrumental in establishing the Idaho Science, Technology, Engineering and Mathematics initiative -- i-STEM, which brings together industry, educators, government and other partners to provide K-12 teachers with support, materials and opportunities to improve STEM instruction and increase student interest in technical careers. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2011-01-01T23:59:59.000Z

69

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Aerospace Engineering  

E-Print Network [OSTI]

Science Technology Engineering Math Science Technology Engineering Math Mechanical Engineering Soil Science Sound and Vibrations Wavemaker Kazoo/Flute Harmonica Dancing doggie College

Zhou, Chongwu

70

Materials science Nanotubes get hard  

E-Print Network [OSTI]

Materials science Nanotubes get hard under pressure Proc. Natl Acad. Sci. USA doi:10.1073/pnas.0405877101 (2004) When Zhongwu Wang et al. squeezed carbon nanotubes in a diamond anvil cell, they made nanotubes into diamond itself: the carbon material formed under compression at room temperature seems

Downs, Robert T.

71

MATERIALS SCIENCE HEALTHCARE POLICY  

E-Print Network [OSTI]

for Polymer Research are paving the way to optimizing organic substances for use in solar cells, light-emitting diodes and memory chips, and are using molecular materials to develop electronic components

Falge, Eva

72

HEALTH SCIENCE LIBRARIES AND TECHNOLOGIES  

E-Print Network [OSTI]

HEALTH SCIENCE LIBRARIES AND TECHNOLOGIES APPROVED BY: SR. LEADERSHIP TEAM IN CONSULTATION of the Medical Libraries Facilities and Resources (User Conduct) PAGE: 1 of 4 Health Science Libraries community with resources, expertise, and an inviting space to support health, discovery, teaching

Goldman, Steven A.

73

Field of Expertise Materials Science  

E-Print Network [OSTI]

structure-property relationships through the characterisation of diverse materials to process optimisation and international research partners in order to keep Austrian high-technology industry, scientific production semiconductors Paper and physical chemistry principles of paper strength Metallic materials for energy applica

74

Genome Science/Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

student working with Armand Dichosa, Cliff Han and Krista Reitenga. She spends the bulk of her time on projects utilizing gel microdroplet technology. Armand Dichosa, PhD,...

75

WeInformation Sciences and Technology  

E-Print Network [OSTI]

WeInformation Sciences and Technology College of Information Sciences and Technology #12;Office of Undergraduate Recruiting College of Information Sciences and Technology The Pennsylvania State University 104 Information Sciences and Technology Building University Park, PA 16802-6822 For more information: ist

76

LANL: Materials Science Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2RecoveryBioenergy 禄0 Los1Materials

77

Forensic Science and Information Technology at NIST  

E-Print Network [OSTI]

Forensic Science and Information Technology at NIST Martin Herman Information Technology Laboratory, mathematics, and statistics. 路 Cloud Computing 路 Complex Systems 路 Forensic Science 路 Health Information in Forensic Science Advance measurements and standards infrastructure for forensics through information

Perkins, Richard A.

78

Science, technology and innovation  

E-Print Network [OSTI]

for International Development 1 year full time/2 years part time Technological innovation lies at the heart-makers, scientists and companies at different levels. International development agencies are increasingly recognising that will prepare you for careers in academia, government agencies, international development agencies, business

Sussex, University of

79

Center for Nanophase Materials Sciences | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences The Center for Nanophase Materials Sciences (CNMS), one of five DOE-funded nanoscience research centers (NSRCs). CNMS has established itself as an internationally...

80

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-01-01T23:59:59.000Z

82

Science, Technology & Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science HighlightAlan Bishop selected to lead LANL

83

Bioconversion Science & Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould WorkVehicles,000 mrem

84

Computer Technologies and Information Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computer Technologies and Information Sciences A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Aalst, W.M.P.van der - Wiskunde en Informatica, Technische Universiteit Eindhoven...

85

Science and technology news Nanotechnology  

E-Print Network [OSTI]

environmental exposures affect disease risk," said NIEHS Director Linda Birnbaum, Ph.D. "This paper brings us of Environmental Health Sciences, part of the National Institutes of Health. The new technology is discussed in detecting high exposures to toxic industrial chemicals that pose serious health risks in the workplace

Suslick, Kenneth S.

86

Careers in science and technology  

SciTech Connect (OSTI)

The objective of this book is to expose junior and senior high school students to the science and technology fields. It also will convey the importance of getting a general education in science and mathematics while still in high school and of continuing such studies in college. This is intended to encourge students, particularly underrepresented minorities and women, to consider and prepare for careers in science and technology. This book attempts to point out the increasing importance of such knowledge in daily life regardless of occupational choice. This book is intended to be used by junior and senior high school students, as a classroom reference by teachers, and by scientist and engineers participating in outreach activities.

Not Available

1993-09-01T23:59:59.000Z

87

Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry,  

E-Print Network [OSTI]

Sem. Chemistry Materials Science Electrical Engineering Miscellaneous CP Introduction to General Chemistry, Laboratory Practice (Precourse) Physical Chemistry (4 CP) Introductory Engineering (5 CP) Organic & Inorganic Materials Chemistry (4 CP) Energy Science and Technology I (5 CP) Surfaces/Interfaces/ Heterogen

Pfeifer, Holger

88

Before the House Science and Technology Subcommittee on Energy...  

Office of Environmental Management (EM)

Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology...

89

Oak Ridge Science and Technology Park | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Development | Oak Ridge Science and Technology Park SHARE Oak Ridge Science and Technology Park The Oak Ridge Science and Technology Park is ideal for companies that want...

90

Thomas Jefferson High School for Science & Technology National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

91

ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY  

E-Print Network [OSTI]

ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 10, Number 1, 2007, 67颅83 An Analysis

Kuzmanov, Georgi

92

Can Science and Technology Capacity be Measured?  

E-Print Network [OSTI]

The ability of a nation to participate in the global knowledge economy depends to some extent on its capacities in science and technology. In an effort to assess the capacity of different countries in science and technology, this article updates a classification scheme developed by RAND to measure science and technology capacity for 150 countries of the world.

Wagner, Caroline S; Dutta, Arindum

2015-01-01T23:59:59.000Z

93

Dr. Thad M. Adams Materials Technology Section  

E-Print Network [OSTI]

Dr. Thad M. Adams Materials Technology Section Savannah River National Laboratory DOE Hydrogen Pipeline R&D Project Review Meeting January 5-6, 2005 Evaluation of Natural Gas Pipeline Materials for Hydrogen Service #12;Hydrogen Technology at the SavannahHydrogen Technology at the Savannah River Site

94

Science & Technology Review June 2010  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) A Leader in High-Pressure Science--Commentary by William H. Goldstein; (2) Diamonds Put the Pressure on Materials--New experimental capabilities are helping Livermore scientists better understand how extreme pressure affects a material's structure; (3) Exploring the Unusual Behavior of Granular Materials--Livermore scientists are developing new techniques for predicting the response of granular materials under pressure; (4) A 1-Ton Device in a Briefcase--A new briefcase-sized tool for nuclear magnetic resonance is designed for onsite analysis of suspected chemical weapons; and (5) Targets Designed for Ignition--A series of experiments at the National Ignition Facility is helping scientists finalize the ignition target design.

Blobaum, K J

2010-04-28T23:59:59.000Z

95

[Technology transfer of building materials by ECOMAT  

SciTech Connect (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

96

Shaping Environmental Justice: Applying Science, Technology, and Society Boundary Work  

E-Print Network [OSTI]

Applying Science, Technology and Society Boundary Work Chih-the STS (Science, Technology and Society) study as boundary-

Huang, Chih-Tung

2012-01-01T23:59:59.000Z

97

Sandia National Laboratories: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWind andSandia/New2014Materials

98

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia  

E-Print Network [OSTI]

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP6, Kinetics in metallurgy. To form a complete designtechnology, it is consequently necessary to re- sort to careful

Cambridge, University of

99

Taiwan International Graduate Program Sustainable Chemical Science and Technology  

E-Print Network [OSTI]

to sustainable energy 2. construction of supramolecular materials for recognition, self- assemblyTaiwan International Graduate Program Sustainable Chemical Science and Technology Taiwan of the Program to offer Ph.D. education programs only in inter-disciplinary areas in the physical sciences

100

Roadmap: Engineering Technology Green and Alternative Energy Bachelor of Science  

E-Print Network [OSTI]

Roadmap: Engineering Technology 颅 Green and Alternative Energy 颅 Bachelor of Science [RE 26636 Project Management for Administrative Professionals 1 Green and Alternative Energy Elective 3 and Material Science 3 Green and Alternative Energy Elective 3 See note 2 on page 2 Kent Core Requirement 3

Sheridan, Scott

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Engineering Graphics I 3 TECH 20002 Materials and Processes 3 US 10097 Destination Kent State: FYE 1-Aided Engineering Graphics 3 ECON 22060 Principles of Microeconomics 3 Fulfills Kent Core Social Sciences PSYC; fulfills Kent Core Basic Science TECH 20001 Energy/Power 3 TECH 31015 Construction Technology 3 COMM

Sheridan, Scott

102

FWP executive summaries: Basic energy sciences materials sciences programs  

SciTech Connect (OSTI)

This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

Samara, G.A.

1996-02-01T23:59:59.000Z

103

Materials and Components Technology Division research summary, 1992  

SciTech Connect (OSTI)

The Materials and Components Technology Division (MCT) provides a research and development capability for the design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs related to nuclear energy support the development of the Integral Fast Reactor (IFR): life extension and accident analyses for light water reactors (LWRs); fuels development for research and test reactors; fusion reactor first-wall and blanket technology; and safe shipment of hazardous materials. MCT Conservation and Renewables programs include major efforts in high-temperature superconductivity, tribology, nondestructive evaluation (NDE), and thermal sciences. Fossil Energy Programs in MCT include materials development, NDE technology, and Instrumentation design. The division also has a complementary instrumentation effort in support of Arms Control Technology. Individual abstracts have been prepared for the database.

Not Available

1992-11-01T23:59:59.000Z

104

Materials Science and Engineering Graduate Program Requirements  

E-Print Network [OSTI]

Materials Science and Engineering Graduate Program Requirements The Department of Materials Science-Thesis option requires a Special Project, and the Ph.D. degree requires a Doctoral Dissertation. MASTER (6034), Advanced Materials Techniques: Experiment, Theory, and Characterization (6011), and Engineering

Simons, Jack

105

Science & Technology Review September 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

Bearinger, J P

2009-07-24T23:59:59.000Z

106

2004 research briefs :Materials and Process Sciences Center.  

SciTech Connect (OSTI)

This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

Cieslak, Michael J.

2004-01-01T23:59:59.000Z

107

Recent Advances in Chamber Science and Technology  

E-Print Network [OSTI]

Recent Advances in Chamber Science and Technology Mohamed Abdou April 8, 2002ISFNT-6 San Diego, USA #12;Recent Advances in Chamber Science & Technology OutlineOutline Highlights of Major World - Experiments - Analysis & Design #12;Highlights of Major World Programs on Chamber (Blanket) Technology

Abdou, Mohamed

108

Supply Chain and Information Sciences Technology 2010  

E-Print Network [OSTI]

Supply Chain and Information Sciences Technology 2010 Supply Chain and Information Systems Technology Minor SCIST Minor Application Department of Supply Chain & Information Systems College of Information Sciences and Technology Overview The minor in SCIST is structured to provide students not majoring

Guiltinan, Mark

109

Sandia National Laboratories: Materials Science and Engineering...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CapabilitiesCapabilitiesMaterials Science and Engineering Support for Microsystems-Enabled Photovoltaic Grand Challenge Laboratory-Directed Research and Development Project...

110

Introduction to Chemistry and Material Sciences Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2014-06-02 08:56:54...

111

2014 Annual Merit review Results Report - Materials Technologies...  

Energy Savers [EERE]

review Results Report - Materials Technologies 2014 Annual Merit review Results Report - Materials Technologies Merit review of DOE Vehicle Technologies research activities...

112

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network [OSTI]

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

113

Roadmap: Technology Technology Education Licensure Bachelor of Science  

E-Print Network [OSTI]

Roadmap: TechnologyTechnology Education Licensure 颅 Bachelor of Science [AT-BS-TECH-TEDL] College of Applied Engineering, Sustainability and Technology Education Minor [EDUC] College of Education Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics 3 C US 10097 Destination

Sheridan, Scott

114

IOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY  

E-Print Network [OSTI]

, probability and mathematical statistics, and statistics in the social sciences. These seminars allow faculty to offer weekly research seminar series in survey statistics, engineering statistics, ecologicalIOWA STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY #12

115

Immediate Need for Science and Technology Policy Fellowships...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Immediate Need for Science and Technology Policy Fellowships in the Geothermal Technologies Office Immediate Need for Science and Technology Policy Fellowships in the Geothermal...

116

Before the House Science and Technology, Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology, Subcommittee on Energy and Environment Before the House Science and Technology, Subcommittee on Energy and Environment Before the House Science and Technology,...

117

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials SHARE Advanced Materials ORNL has the nation's most comprehensive materials research program and is a world leader in research that supports the development of...

118

College of Agriculture & Life Sciences Agricultural Technology  

E-Print Network [OSTI]

College of Agriculture & Life Sciences Agricultural Technology Applied Agricultural Management Option Checksheet for Students Graduating in Calendar Year 2013 Associate of Agriculture Degree Required Agricultural Technology Core Courses (31 credits) 3 AT 0104 Computer Applications 3 AT 0114 Applied

Virginia Tech

119

Science & Technology Review December 2007  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Homeland Security Begins Abroad--Commentary by John C. Doesburg; (2) Out of Harm's Way--New physical protection and accountability systems, together with a focus on security, safeguard nuclear materials in the Russian Federation; (3) A Calculated Journey to the Center of the Earth--Determining the permeability of partially melted metals in a mineral matrix unlocks secrets about the formation of Earth's core; (4) Wireless That Works--Communication technologies using ultrawideband radar are improving national security; and (5) Power to the People--Edward Teller envisioned safe and plentiful nuclear power for peaceful applications.

Chinn, D J

2007-10-24T23:59:59.000Z

120

Wind Energy Workforce Development: Engineering, Science, & Technology  

SciTech Connect (OSTI)

Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

2013-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

What is Materials Science and Engineering?  

E-Print Network [OSTI]

-Madison Chapter UW-Madison College of Engineering UW-Madison Engineering Career Services MS&E DepartmentalWhat is Materials Science and Engineering? Materials Science and Engineering (MS&E one of the smallest departments in the College of Engineering. Because of this, most classes contain

Wisconsin at Madison, University of

122

Science and Technology Challenges for Homeland Security  

SciTech Connect (OSTI)

Preventing and protecting against catastrophic terrorism is a complex and dynamic challenge. Small groups or individuals can use advanced technology to cause massive destruction, and the rapid pace of technology and ease of information dissemination continually gives terrorists new tools. A 100% defense is not possible. It's a numbers problem--there are simply too many possible targets to protect and too many potential attack scenarios and adversaries to defend against. However, science and technology (S&T) is a powerful force multiplier for defense. We must use S&T to get ahead of the game by making terrorist attacks more difficult to execute, more likely to be interdicted, and less devastating in terms of casualties, economic damage, or lasting disruption. Several S&T areas have potential to significantly enhance homeland security efforts with regard to detecting radiation, pathogens, explosives, and chemical signatures of weapons activities. All of these areas require interdisciplinary research and development (R&D), and many critically depend on advances in materials science. For example, the science of nuclear signatures lies at the core of efforts to develop enhanced radiation detection and nuclear attribution capabilities. Current radiation detectors require cryogenic cooling and are too bulky and expensive. Novel signatures of nuclear decay, new detector materials that provide high resolution at ambient temperatures, and new imaging detectors are needed. Such technologies will improve our ability to detect and locate small, distant, or moving sources and to discriminate threat materials from legitimate sources. A more complete understanding of isotopic ratios via secondary ion mass spectrometry (SIMS), NanoSIMS, or yet-to-be-developed technologies is required to elucidate critical characteristics of nuclear materials (e.g., isotopics, age, reprocessing) in order to identify their source and route history. S&T challenges abound in the biodefense arena as well. Improved biodetectors are needed--autonomous instruments that continuously monitor the environment for threat pathogens, promptly alert authorities in the event of a positive detection, and have an extremely low false alarm rate. Because many threat pathogens are endemic to various regions of the world, the natural microbial environment must be characterized so that background detections can be distinguished from a deliberate release. In addition, most current detection approaches require an a priori knowledge of the pathogens of concern and thus won't work in the face of a new, naturally occurring disease, such as a mutated avian influenza that effects humans, or a deliberately manipulated organism. Thus, we must move from species-specific detection to function-based detection based on a fundamental understanding of the mechanisms and genetic markers of infectivity, pathogenicity, antibiotic resistance, and other traits that distinguish a harmful organism from an innocuous one. Last but not least, new vaccines and treatments are needed, which in turn require in-depth understanding of cellular surfaces, protein folding, and myriad nano-bio aspects of host-pathogen interactions. Much attention is being devoted to countering weapons-of-mass-destruction terrorism, since Al-Qaeda and other terrorist groups have repeatedly stated their intention to acquire and use nuclear, chemical, or biological weapons. However, terrorists in Iraq and elsewhere continue to wreak havoc using improvised explosive devices. Thus, there is a pressing security need for better methods for detecting explosive materials and devices. Transformational S&T such as pulsed fast-neutron analysis or terahertz spectroscopy for material- and element-specific imaging offer the promise of greatly improved explosive detection. For bioscience-based approaches, the development of highly multiplexed transducer arrays and molecular recognition methods that mimic biological systems would similarly provide the foundation for vastly improved capabilities. Likewise, new materials an

Murray, C A

2006-03-24T23:59:59.000Z

123

SCIENCE AND TECHNOLOGY FOR THE NATION  

E-Print Network [OSTI]

SCIENCE AND TECHNOLOGY FOR THE NATION #12;路Yearestablished:1965 路Managementandoperationscontractor include: 路EMSL,aDepartmentofEnergynationalscientific user facility 路Bioproducts,Sciences,andEngineeringLaboratory-- sharedwithWashingtonStateUniversity 路ElectricityInfrastructureOperationsCenter 路SequimMarineSciences

124

Science and Technology of Future Light Sources  

E-Print Network [OSTI]

Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL Berkeley, CA 94720 SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park, CA 94025 Editors. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U

Knowles, David William

125

Sports and Materials Science Course outline  

E-Print Network [OSTI]

. Developments like carbon fibre composite bodyshells and suspension systems, hardened titanium alloy gears. The materials themes aim to introduce and develop knowledge in polymers, advanced composites, high performanceSports and Materials Science CF62 Course outline School of Metallurgy and Materials Success

Birmingham, University of

126

Materials Science and Engineering Program Objectives  

E-Print Network [OSTI]

necessary to understand the impact of engineering solutions in a global, economic, environmentalMaterials Science and Engineering Program Objectives Within the scope of the MSE mission, the objectives of the Materials Engineering Program are to produce graduates who: A. practice materials

Lin, Zhiqun

127

Tohoku University "Merging Advanced Technology with Social Science"  

E-Print Network [OSTI]

: Nano Technology, Biotechnology, Semiconductor, Robotics, Fuel Cell, Artificial Intelligence, Agent1 Tohoku University "Merging Advanced Technology with Social Science" Science Summer Program to examine how Advanced Technologies can be applied to the Social Sciences. The aims of the program

Viglas, Anastasios

128

Basic science research to support the nuclear material focus area  

SciTech Connect (OSTI)

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

129

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

130

Advanced Ceramic Materials and Packaging Technologies for Realizing...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for...

131

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

132

Post-Shred Materials Recovery Technology Development and Demonstration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Post-Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration Presentation from the U.S. DOE Office...

133

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2011 Propulsion Materials R&D Annual Progress Report 2011 annual...

134

2012 Annual Merit Review Results Report - Materials Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- Materials Technologies: Propulsion Materials 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Introduction...

135

applied materials science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

applied in chemical or materials sciences, physics, biology, psychology, applied maths, engineering - anything science brings clear benefits to: researchers (developing...

136

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by: signed Feb. 9, 2012 Rick Kelly, Facility/EH&S Manager Submitted by: signed Feb. 9, 2012 Miquel Salmeron.1 RESPONSIBILITY AND AUTHORITY THROUGH LINE MANAGEMENT............................................................5

137

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

Abdou, Mohamed

138

The nuclear materials control technology briefing book  

SciTech Connect (OSTI)

As national and international interests in nuclear arms control and non-proliferation of nuclear weapons, intensify, it becomes ever more important that contributors be aware of the technologies available for the measurement and control of the nuclear materials important to nuclear weapons development. This briefing book presents concise, nontechnical summaries of various special nuclear material (SNM) and tritium production monitoring technologies applicable to the control of nuclear materials and their production. Since the International Atomic Energy Agency (IAEA) operates a multinational, on-site-inspector-based safeguards program in support of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT), many (but not all) of the technologies reported in this document are in routine use or under development for IAEA safeguards.

Hartwell, J.K.; Fernandez, S.J.

1992-03-01T23:59:59.000Z

139

Before the House Science and Technology Subcommittee on Oversight...  

Broader source: Energy.gov (indexed) [DOE]

on Oversight and Investigations Before the House Science and Technology Subcommittee on Oversight and Investigations Before the House Science and Technology Subcommittee on...

140

Bachelor of Science Engineering Technology Hydrogen and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

142

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

House Science and Technology Subcommittee on Energy and Environment Before the House Science and Technology Subcommittee on Energy and Environment Statement Before the Committee On...

143

Before the House Science, Space, and Technology Subcommittee...  

Energy Savers [EERE]

Science, Space, and Technology Subcommittee on Energy and Environment Before the House Science, Space, and Technology Subcommittee on Energy and Environment Testimony of Scott...

144

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...  

Open Energy Info (EERE)

Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

145

White House Office of Science and Technology Policy Summer 2014...  

Broader source: Energy.gov (indexed) [DOE]

White House Office of Science and Technology Policy Summer 2014 Internship Program Application Period White House Office of Science and Technology Policy Summer 2014 Internship...

146

Webinar: Energy Is Everywhere! Connecting with Science and Technology...  

Office of Environmental Management (EM)

Webinar: Energy Is Everywhere Connecting with Science and Technology Centers Webinar: Energy Is Everywhere Connecting with Science and Technology Centers March 19, 2015 3:00PM to...

147

2011 Annual Merit Review Results Report - Materials Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Propulsion Materials 2011 Annual Merit Review Results Report - Hybrid and Vehicle Systems Technologies...

148

University of London Imperial College of Science, Technology and Medicine  

E-Print Network [OSTI]

1 University of London Imperial College of Science, Technology and Medicine Department of Computing material in the maternal bloodstream. #12;3 Dedicated to B. W. To invent, you need a good imagination on thesis structure, and to Justin Cormack and Sarah Talbot for careful proof-reading. I thank my parents

Imperial College, London

149

June 26 Training: Using Chemistry and Material Sciences Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

150

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Evaluation of Natural Gas Pipeline Materials for Hydrogen Science Presentation by 04-Adams to DOE Hydrogen...

151

Materials Science & Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey selectedContract Research Advanced Materials

152

Thomas Jefferson High School for Science & Technology Takes 2015...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Takes 2015 Virginia Science Bowl 2014 Virginia High School Science Bowl The team from Thomas Jefferson High School for Science and Technology, Alexandria, swept through the...

153

Sscience & technology review; Science Technology Review  

SciTech Connect (OSTI)

This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments, particularly in the Laboratory`s core mission areas - global security, energy and the environment, and bioscience and biotechnology. This review for the month of July 1996 discusses: Frontiers of research in advanced computations, The multibeam Fabry-Perot velocimeter: Efficient measurement of high velocities, High-tech tools for the American textile industry, and Rock mechanics: can the Tuff take the stress.

NONE

1996-07-01T23:59:59.000Z

154

"The Future of Materials Science and Engineering  

E-Print Network [OSTI]

with increased wear characteristics Additive Manufacturing Processing speed, material strength, verification&D is limited and traditionally provided by device manufacturers Technology adapted from other industries tools Opportunities #12; Manufacturing Time and Process Step Reduction Patient digitizer to definitive

Li, Mo

155

ISRAELI PLASMA SCIENCE AND TECHNOLOGY ASSOCIATION  

E-Print Network [OSTI]

AND APPLICATIONS H.I.T. 颅 Holon Institute of Technology February 4th, 2013 BOOK OF ABSTRACTS http://plasma-gate.weizmann.ac.il/ipsta2013/ #12;15th Israeli Conference on Plasma Science and Applications, HIT, Holon, February 4th , 2013 2 Science and Applications, HIT, Holon, February 4th , 2013 3 PREFACE We are delighted to host the 15th

156

Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report The Lightweight Materials activity (LM)...

157

Vehicle Technologies Office: US DRIVE Materials Technical Team...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

US DRIVE Materials Technical Team Roadmap Vehicle Technologies Office: US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) of the U.S. DRIVE Partnership...

158

Advanced Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation Portal Advanced MaterialMaterialsAdvanced

159

Department of Advanced Materials Science  

E-Print Network [OSTI]

device, Bioconjugate matsuura@k.u-tokyo.ac.jpe-mail 04-7136-3781T E L Environmental-friendly materials Nuclear magnetic resonance, Quantum spin systems, Low temperature physics, Strongly correlated electron Effect takatama@spring8.or.jpe-mail 0791-58-2942T E L Synchrotron Radiation, X-ray Free Electron Laser

Katsumoto, Shingo

160

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Berkeley Lab - Materials Sciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job External ApplicantsSearch This page has

162

Science and Technology of Future Light Sources  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

2008-12-01T23:59:59.000Z

163

Science and Technology of Future Light Sources  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; St& #246; hr, Joachim; Zholents, Alexander

2009-01-28T23:59:59.000Z

164

Department of Energy Advance Methane Hydrates Science and Technology Projects  

Broader source: Energy.gov [DOE]

Descriptions for Energy Department Methane Hydrates Science and Technology Projects, August 31, 2012

165

Department of Chemical Engineering & Materials Science College of Engineering  

E-Print Network [OSTI]

Department of Chemical Engineering & Materials Science College of Engineering Michigan State................................................................................. 19 7. Integrity and Safety in Research and Creative Activities of Chemical Engineering and Materials Science offers Master of Science and Doctor of Philosophy degree

166

Superhydrophobic Materials Technology-PVC Bonding Techniques  

SciTech Connect (OSTI)

The purpose of the technology maturation project was to develop an enhanced application technique for applying diatomaceous earth with pinned polysiloxane oil to PVC pipes and materials. The oil infiltration technique is applied as a spray of diluted oil in a solvent onto the superhydrophobic diatomaceous earth substrate. This makes the surface take on the following characteristics: wet?cleanable anti?biofouling waterproof anti?corrosion. The project involved obtaining input and supplies from VeloxFlow and the development of successful techniques that would quickly result in a commercial license agreement with VeloxFlow and other companies that use PVC materials in a variety of other fields of use.

Hunter, Scott R. [Oak Ridge National Laboratory; Efird, Marty [VeloxFlow, LLC

2013-05-03T23:59:59.000Z

167

Vehicle Technologies Office: Materials Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareers 禄Batteries VehicleMaterials Technologies

168

Materials and Chemical Sciences Division annual report, 1987  

SciTech Connect (OSTI)

Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)

Not Available

1988-07-01T23:59:59.000Z

169

Hanford science and technology needs statements, 2000  

SciTech Connect (OSTI)

In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.

BERLIN, G.T.

1999-07-16T23:59:59.000Z

170

Hanford science and technology needs statements, 1999  

SciTech Connect (OSTI)

In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.

Berlin, G.T.

1998-09-30T23:59:59.000Z

171

Sciences: Launching New Technology in the MarketplaceNEED IMPACT STATEMENT  

E-Print Network [OSTI]

Sciences: Launching New Technology in the MarketplaceNEED IMPACT STATEMENT INITIATIVE Over the last and new machine tool builders. To date, M4 Sciences has sold drilling systems in 12 major market countries two decades, the Purdue Center for Materials Processing and Technology (CMPT) (originally part

Ginzel, Matthew

172

Materials Sciences programs, Fiscal year 1993  

SciTech Connect (OSTI)

This report provides a compilation and index of the DOE Materials Sciences Division programs; the compilation is to assist administrators, managers, and scientists to help coordinate research. The report is divided into 7 sections: laboratory projects, contract research projects, small business innovation research, major user facilities, other user facilities, funding level distributions, and indexes.

NONE

1994-02-01T23:59:59.000Z

173

Applied Physics A Materials Science & Processing  

E-Print Network [OSTI]

1 23 Applied Physics A Materials Science & Processing ISSN 0947-8396 Volume 117 Number 1 Appl. Phys. A (2014) 117:319-326 DOI 10.1007/s00339-014-8268-8 Background gas collisional effects on expanding fs at link.springer.com". #12;Background gas collisional effects on expanding fs and ns laser ablation plumes

Harilal, S. S.

174

Vehicle Technologies Office: Materials for High-Efficiency Combustion...  

Broader source: Energy.gov (indexed) [DOE]

High-Efficiency Combustion Engines Vehicle Technologies Office: Materials for High-Efficiency Combustion Engines The Vehicle Technologies Office (VTO) is supporting work to improve...

175

Vehicle Technologies Office Merit Review 2014: Materials for...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Office Merit Review 2014: Materials for Advanced Turbocharger Designs (Agreement ID:17257) Project ID:18518 Vehicle Technologies Office Merit Review 2014:...

176

Open Bibliography for Science, Technology, and Medicine  

E-Print Network [OSTI]

RESEARCH ARTICLE Open Access Open Bibliography for Science, Technology, and Medicine Richard Jones1, Mark MacGillivray1,2,3, Peter Murray-Rust4, Jim Pitman5*, Peter Sefton6*, Ben O扴teen1 and William Waites2,3 Abstract The concept of Open... Bibliography for Science, Technology, and Medicine. Journal of Cheminformatics 2011 3:47. * Correspondence: pitman@stat.berkeley.edu; ptsefton@gmail.com 5Departments of Statistics and Mathematics, University of California, Berkeley, CA, USA 6ptsefton, Toowoomba...

Jones, Richard; MacGillivray, Mark; Murray-Rust, Peter; Pitman, Jim; Sefton, Peter; O'Steen, Ben; Waites, William

2011-10-14T23:59:59.000Z

177

Science and technology for industrial ecology  

SciTech Connect (OSTI)

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

178

Potential Materials Science Benefits from a Burning Plasma  

E-Print Network [OSTI]

Potential Materials Science Benefits from a Burning Plasma Science Experiment S.J. Zinkle Oak Ridge;Introduction 路 The main materials science advances from a BPSX would occur during the R&D phase prior to construction 颅e.g., CIT/BPX, ITER 路 Materials science opportunities during operation of a BPSX would likely

179

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program 颅Issues and Strategy for Fusion Nuclear Science Facility (FNSF) 颅Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

180

Science and Technology Highlights | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System OutagesNews PressThemes 禄 OverviewScience and

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Information Science & Technology Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA JourneyISTI Information Science &

182

Vehicle Technologies Office: Long-Term Lightweight Materials...  

Energy Savers [EERE]

Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long...

183

Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2010 Propulsion Materials R&D Annual Progress Report 2010 annual progress report focusing on enabling...

184

Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report 2008propulsionmaterials.pdf More Documents &...

185

Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2012 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2012 Propulsion Materials R&D Annual Progress Report 2012 annual progress report focusing on...

186

Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual...  

Energy Savers [EERE]

3 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Propulsion Materials R&D Annual Progress Report This report describes the progress made during...

187

Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9 Propulsion Materials R&D Annual Progress Report Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual Progress Report 2009propulsionmaterials.pdf More Documents &...

188

alloying materials science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

graduate students -- whose backgrounds include metallurgy, polymer science, chemistry, physics, ceramics Acton, Scott 19 Materials Science and Engineering B59 (1999) 253257...

189

Faculty of Mechanical Science and Engineering At the Institute of Materials Science, Chair of Materials Science and Nanotechnology  

E-Print Network [OSTI]

of Materials Science and Nanotechnology (Prof. G. Cuniberti), is open to work in the field of biomaterials and / or biologically inspired nanotechnology the position of a Senior Lecturer and Research Group leader (max. E 14 TV (Wissenschaftszeitvertragsgesetz 颅 WissZeitVG). The scientific activities of the Chair of Materials Science and Nanotechnology

Schubart, Christoph

190

Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering  

E-Print Network [OSTI]

Minor Form Materials Science and Engineering Department Of Biomedical, Chemical And Materials Engineering College of Engineering San Jos茅 State University Name_______________________________________ Requirements for the Minor in Materials Science and Engineering: 路 12 units of approved academic work

Gleixner, Stacy

191

Sandia National Laboratories: Research: Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms People FacebookMaterials Science

192

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name: Trony Solar Corporation (formerly Shenzhen Trony Science &...

193

Thomas Jefferson High School for Science & Technology Wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology...

194

Thomas Jefferson High School for Science & Technology wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in second place was the...

195

Thomas Jefferson High School for Science and Technology from...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of science and math questions and answers, the winning team was Thomas Jefferson High School for Science and Technology from Alexandria. Team captain and high school senior,...

196

Robotics Science & Technology for Burning Plasma Experiments  

E-Print Network [OSTI]

Robotics Science & Technology for Burning Plasma Experiments J. N. Herndon, T. W. Burgess, M. M, General Atomics, San Diego, California. #12;Robotics Challenges in Burning Plasma Experiments 路 Control x x x x x x earthmoving equipment electric robots Conventional Machines DMHP Machines x x x x

197

Chemistry and Materials Science Directorate 2005 Annual Report  

SciTech Connect (OSTI)

In 1952, we began laboratory operations in the barracks building of the Naval Air Station with approximately 50 employees. Today, the Chemistry and Materials Science (CMS) Directorate is a major organization at the Lawrence Livermore National Laboratory with more than 500 employees who continue to contribute to our evolving national security mission. For more than half a century, the mission of the Laboratory revolved primarily around nuclear deterrence and associated defense technologies. Today, Livermore supports a broad-based national security mission, and our specialized capabilities increasingly support emerging missions in human health and energy security. In the future, CMS will play a significantly expanded role in science and technology at the intersection of national security, energy and environment, and health. Our world-class workforce will provide the science and technology base for radically innovative materials to our programs and sponsors. Our 2005 Annual Report describes how our successes and breakthroughs follow a path set forward by our strategic plan and four organizing research themes, each with key scientific accomplishments by our staff and collaborators. Organized into two major sections-research themes and dynamic teams, this report focuses on achievements arising from earlier investments that address future challenges. The research presented in this annual report gives substantive examples of how we are proceeding in each of these four theme areas and how they are aligned with our national security mission. Research Themes: (1) Materials Properties and Performance under Extreme Conditions--We are developing ultrahard nanocrystalline metals, exploring the properties of nanotubes when exposed to very high temperatures, and engineering stronger materials to meet future needs for materials that can withstand extreme conditions. (2) Chemistry under Extreme Conditions and Chemical Engineering to Support National-Security Programs--Our recent discovery of a new source of coherent light adds a new tool to an array of methods we use to more fully understand the properties of materials. Insights into the early stages of polymer crystallization may lead to new materials for our national-security mission and private industry. (3) Science Supporting National Objectives at the Intersection of Chemistry, Materials Science, and Biology--We are improving drug binding for cancer treatment through the use of new tools that are helping us characterize protein-antibody interactions. By probing proteins and nucleic acids, we may gain an understanding of Alzheimer's, Mad Cow, and other neurodegenerative diseases. (4) Applied Nuclear Science for Human Health and National Security--Our work with cyanobacteria is leading to a fuller understanding of how these microorganisms affect the global carbon cycle. We are also developing new ways to reduce nuclear threats with better radiation detectors. Dynamic Teams: The dynamic teams section illustrates the directorate's organizational structure that supports a team environment across disciplinary and institutional boundaries. Our three divisions maintain a close relationship with Laboratory programs, working with directorate and program leaders to ensure an effective response to programmatic needs. CMS's divisions are responsible for line management and leadership, and together, provide us with the flexibility and agility to respond to change and meet program milestones. The three divisions are: Materials Science and Technology Division; Chemistry and Chemical Engineering Division; and Chemical Biology and Nuclear Science Division. By maintaining an organizational structure that offers an environment of collaborative problem-solving opportunities, we are able to nurture the discoveries and breakthroughs required for future successes. The dynamic teams section also presents the work of CMS's postdoctoral fellows, who bring to the Laboratory many of the most recent advances taking place in academic departments and provide a research stimulus to established research teams. Postdo

Diaz De La Rubia, T; Fluss, M J; Rath, K; Rennie, G; Shang, S; Kitrinos, G

2006-08-08T23:59:59.000Z

198

Science & Technology Review June 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) A Safer and Even More Effective TATB - Commentary by Bruce T. Goodwin; (2) Dissolving Molecules to Improve Their Performance - Computer scientists and chemists have teamed to develop a green method for recycling a valuable high explosive that is no longer manufactured; (3) Exceptional People Producing Great Science - Postdoctoral researchers lend their expertise to projects that support the Laboratory's missions; (4) Revealing the Identities and Functions of Microbes - A new imaging technique illuminates bacterial metabolic pathways and complex relationships; and (5) A Laser Look inside Planets - Laser-driven ramp compression may one day reveal the interior structure of Earth-like planets in other solar systems.

Bearinger, J P

2009-06-05T23:59:59.000Z

199

Science & Technology Review March 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Seismic Science and Nonproliferation--Commentary by William H. Goldstein; (2) Sleuthing Seismic Signals--Supercomputer simulations improve the accuracy of models used to distinguish nuclear explosions from earthquakes and pinpoint their location; (3) Wind and the Grid--The Laboratory lends technical expertise to government and industry to more effectively integrate wind energy into the nation's electrical infrastructure; (4) Searching for Tiny Signals from Dark Matter--Powerful amplifiers may for the first time allow researchers to detect axions, hypothesized particles that may constitute 'dark matter', and (5) A Better Method for Self-Decontamination--A prototype decontamination system could one day allow military personnel and civilians to better treat themselves for exposure to toxic chemicals.

Bearinger, J P

2009-01-22T23:59:59.000Z

200

Chemistry and Materials Science Department annual report, 1988--1989  

SciTech Connect (OSTI)

This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

1989-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Institute for Critical Technology and Applied Science Seminar Series Biorefinery -A Sustainable Molecular  

E-Print Network [OSTI]

biocatalysis, with principles of green and supramolecular chemistry, we developed building blocksInstitute for Critical Technology and Applied Science Seminar Series Biorefinery - A Sustainable In future research, developing materials, fuels and energy devices from renewable resources would

Crawford, T. Daniel

202

Science & Technology Review March 2010  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Countering the Growing Chem-Bio Threat -- Commentary by Penrose (Parney) C. Albright; (2) Responding to a Terrorist Attack Involving Chemical Warfare Agents -- Livermore scientists are helping the nation strengthen plans to swiftly respond to an incident involving chemical warfare agents; (3) Revealing the Secrets of a Deadly Disease -- A Livermore-developed system helps scientists better understand how plague bacteria infect healthy host cells; (4) A New Application for a Weapons Code -- Simulations reveal for the first time how blast waves cause traumatic brain injuries; (5) Testing Valuable National Assets for X-Ray Damage -- Experiments at the National Ignition Facility are measuring the effects of radiation on critical systems; and (6) An Efficient Way to Harness the Sun's Power -- New solar thermal technology is designed to supply residential electric power at nearly half of the current retail price.

Bearinger, J P

2010-01-29T23:59:59.000Z

203

Science & Technology Review June 2012  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments are furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.

Poyneer, L A

2012-04-20T23:59:59.000Z

204

Materials sciences programs fiscal year 1996  

SciTech Connect (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Sciences Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1997-06-01T23:59:59.000Z

205

Materials sciences programs: Fiscal year 1995  

SciTech Connect (OSTI)

The purpose of this report is to provide a convenient compilation and index of the DOE Materials Science Division programs. This compilation is primarily intended for use by administrators, managers, and scientists to help coordinate research. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the Small Business Innovation Research Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F describes other user facilities, G as a summary of funding levels and H has indices characterizing research projects.

NONE

1996-05-01T23:59:59.000Z

206

Materials Science and Engineering Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science andMaterials

207

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

208

DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies  

SciTech Connect (OSTI)

The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

Deb, S. K.

2005-01-01T23:59:59.000Z

209

Materials Science & Tech Division | Advanced Materials | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science and

210

Materials Science and Materials Chemistry for Large Scale Electrochemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials Science

211

UNIVERSITY OF UTAH MATERIALS SCIENCE AND ENGINEERING DEPARTMENT  

E-Print Network [OSTI]

of this form and return to the Materials Science and Engineering Department along with a DARS report, three

212

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science  

E-Print Network [OSTI]

Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

Levine, Alex J.

213

Living in a Materials World: Materials Science Engineering Professional Development for K-12 Educators  

SciTech Connect (OSTI)

Advances in materials science are fundamental to technological developments and have broad societal impacs. For example, a cellular phone is composed of a polymer case, liquid crystal displays, LEDs, silicon chips, Ni-Cd batteries, resistors, capacitors, speakers, microphones all of which have required advances in materials science to be compacted into a phone which is typically smaller than a deck of cards. Like many technological developments, cellular phones have become a ubiquitous part of society, and yet most people know little about the materials science associated with their manufacture. The probable condition of constrained knowledge of materials science was the motivation for developing and offering a 20 hour fourday course called 'Living in a Materials World.' In addition, materials science provides a connection between our every day experiences and the work of scientists and engineers. The course was offered as part of a larger K-12 teacher professional development project and was a component of a week-long summer institute designed specifically for upper elementary and middle school teachers which included 20 hour content strands, and 12 hours of plenary sessions, planning, and collaborative sharing. The focus of the institute was on enhancing teacher content knowledge in STEM, their capacity for teaching using inquiry, their comfort and positive attitudes toward teaching STEM, their knowledge of how people learn, and strategies for integrating STEM throughout the curriculum. In addition to the summer institute the participating teachers were provided with a kit of about $300 worth of materials and equipment to use to implement the content they learned in their classrooms. As part of this professional development project the participants were required to design and implement 5 lesson plans with their students this fall and report on the results, as part of the continuing education course associated with the project. 'Living in a Materials World' was one of the fifteen content strands offered at the institute. The summer institute participants were pre/post tested on their comfort with STEM, their perceptions of STEM education, their pedagogical discontentment, their implementations of inquiry, their attitudes toward student learning of STEM, and their content knowledge associated with their specific content strand. The results from our research indicate a significant increase in content knowledge (t = 11.36, p < .01) for the Living in a Materials World strand participants. Overall the summer institute participants were found to have significant increases in their comfort levels for teaching STEM (t = 10.94, p < .01), in inquiry implementation (t = 5.72, p < .01) and efficacy for teaching STEM (t = 6.27, p < .01) and significant decrease in pedagogical discontentment (t = -6.26, p < .01).

Anne Seifert; Louis Nadelson

2011-06-01T23:59:59.000Z

214

Thomas Jefferson High School for Science & Technology Snaps Up...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology...

215

Chemistry and materials science research report  

SciTech Connect (OSTI)

The research reported here in summary form was conducted under the auspices of Weapons-Supporting Research (WSR) and Institutional Research and Development (IR D). The period covered is the first half of FY90. The results reported here are for work in progress; thus, they may be preliminary, fragmentary, or incomplete. Research in the following areas are briefly described: energetic materials, tritium, high-Tc superconductors, interfaces, adhesion, bonding, fundamental aspects of metal processing, plutonium, synchrotron-radiation-based materials science, photocatalysis on doped aerogels, laser-induced chemistry, laser-produced molecular plasmas, chemistry of defects, dta equipment development, electronic structure study of the thermodynamic and mechanical properties of Al-Li Alloys, and the structure-property link in sub-nanometer materials.

Not Available

1990-05-31T23:59:59.000Z

216

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY-27, 2004 CERN Geneva, Switzerland #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY Experience Installing New Equipment 路 Conclusions #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

217

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Upton, NY #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT;3 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Properties

McDonald, Kirk

218

AGU, December 2004 Information Technology in Science (ITS)  

E-Print Network [OSTI]

technology Integration of assessment Educators as researcher Issues in Science Education ITS Project Teams of the science project team activities impact the qualityHow does the nature of the science project team1 AGU, December 2004 Information Technology in Science (ITS) Center for Teaching and Learning

Herbert, Bruce

219

HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002  

SciTech Connect (OSTI)

This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

WIBLE, R.A.

2002-04-01T23:59:59.000Z

220

Sandia technology engineering and science accomplishments  

SciTech Connect (OSTI)

Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

Not Available

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Novel technologies and materials for thermal management  

E-Print Network [OSTI]

Efficient thermal engineering solutions for the entire heat load path from source to sink (sensor to cooling plant) are crucial for the future silicon detectors, more than even before. The particularly demanding cooling requirements are coming from the extreme radiation environment, causing high leakage current in the silicon sensors, as well as from the high power dissipated in the front-end electronics, featuring enhanced functionality and high channel count. The need to carry out dedicated R&D has encouraged increased cooperation among the HEP experiments, to identify state-of-the-art materials and construction principles that can help fulfilling the requirements, and to develop more efficient active cooling systems like CO2 cooling, which is now widely accepted as an excellent detector cooling technology.

Verlaat, B; The ATLAS collaboration

2013-01-01T23:59:59.000Z

222

Science & Technology Review January/February 2010  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Innovative Materials Rise to the Radiation Challenge - Commentary by Bruce Warner; (2) The Hunt for Better Radiation Detection - New materials will help radiation detectors pick up weak signals and accurately identify illicit radioactive sources; (3) Time-Critical Technology Identifies Deadly Bloodborne Pathogens - A portable device can simultaneously distinguish up to five bloodborne pathogens in just minutes; (4) Defending Computer Networks against Attack - A Laboratory effort takes a new approach to detecting increasingly sophisticated cyber attacks; and (5) Imaging Cargo's Inner Secrets - Livermore-University of California collaborators are modeling a new radiographic technique for identifying nuclear materials concealed inside cargo containers.

Bearinger, J P

2009-11-30T23:59:59.000Z

223

Nanoscale Science, Engineering and Technology Research Directions  

SciTech Connect (OSTI)

This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

1999-01-01T23:59:59.000Z

224

Science and technology review, October 1997  

SciTech Connect (OSTI)

This month`s issue contains articles entitled Livermore Science and Technology Garner Seven 1997 R&D 100 Awards; New Interferometer Measures to Atomic Dimensions; Compact More Powerful Chips from Virtually Defect-free Thin Film Systems, A New Precision Cutting Tool; The Femtosecond Laser; MELD: A CAD Tool for Photonoics Systems, The Tiltmeter: Tilting at Great Depths to Find Oil; Smaller Insulators Handle Higher Voltage; and Compact Storage Management Software: The Next Generation.

Upadhye, R.

1997-10-01T23:59:59.000Z

225

Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991  

SciTech Connect (OSTI)

This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

Parkin, D.M.; Boring, A.M. [comps.

1991-10-01T23:59:59.000Z

226

News from the Science and Technology  

E-Print Network [OSTI]

the biggest eye on the sky Fertilising budding ventures through business incubation e-Infrastructure to power and detect if there is a dangerous material inside in less than five seconds. Its impressive detection an object's surface. Taking the technology forward, demonstrating its viability and transforming

227

Annual report, Materials Science Branch, FY 1992  

SciTech Connect (OSTI)

This report summarizes the progress of the Materials Science Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1991, through September 30, 1992. Six technical sections of the report cover these main areas of NREL`s in-house research: Crystal Growth, Amorphous Silicon, III-V High-Efficiency Photovoltaic Cells, Solid State Theory, Solid State Spectroscopy, and Program Management. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

Padilla, S. [ed.

1993-10-01T23:59:59.000Z

228

Science and technology review: June 1996  

SciTech Connect (OSTI)

The first feature article is a survey of four research projects showing how theory and modeling efforts by scientist in the Chemistry and Materials Science Directorate at LLNL are advancing the understanding of the property of materials with consideration of underlying structures. The second feature article discusses Livermore and DOE`s Oakland Operations Office teaming up to decontaminate, decommission, and close out--on time and under budget--the Ann Arbor Inertial Confinement Fusion Facility in Michigan. Two research highlights on Mammoth Mountain CO{sub 2} mystery and osteoporosis are also included.

Failor, B.; Stull, S. [eds.

1996-06-01T23:59:59.000Z

229

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Emerging Technologies in Nuclear Science & Engineering 颅 Development of novel techniques/tools using particle transport theory methodologies with Alireza Haghighat, Nuclear Engineering Program, Mechanical Engineering Department Virginia

Crawford, T. Daniel

230

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films  

E-Print Network [OSTI]

NREL Highlights SCIENCE Use of Earth-abundant materials in solar absorber films is critical of these materials could open new opportunities for introducing thin-film solar technologies that combine both low near the FeS2 thin-film surfaces and grain boundaries that limit its open-circuit voltage, rather than

231

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network [OSTI]

Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen requirements of resin infusion and prepregs for Wind Turbine blades manufacture. The new HiPertex technologyProceedings of the 27th Ris International Symposium on Materials Science: Polymer Composite

232

Gender Equity in Materials Science and Engineering  

SciTech Connect (OSTI)

At the request of the University Materials Council, a national workshop was convened to examine 'Gender Equity Issues in Materials Science and Engineering.' The workshop considered causes of the historic underrepresentation of women in materials science and engineering (MSE), with a goal of developing strategies to increase the gender diversity of the discipline in universities and national laboratories. Specific workshop objectives were to examine efforts to level the playing field, understand implicit biases, develop methods to minimize bias in all aspects of training and employment, and create the means to implement a broadly inclusive, family-friendly work environment in MSE departments. Held May 18-20, 2008, at the Conference Center at the University of Maryland, the workshop included heads and chairs of university MSE departments and representatives of the National Science Foundation (NSF), the Office of Basic Energy Sciences of the Department of Energy (DOE-BES), and the national laboratories. The following recommendations are made based on the outcomes of the discussions at the workshop. Many or all of these apply equally well to universities and national laboratories and should be considered in context of industrial environments as well. First, there should be a follow-up process by which the University Materials Council (UMC) reviews the status of women in the field of MSE on a periodic basis and determines what additional changes should be made to accelerate progress in gender equity. Second, all departments should strengthen documentation and enforcement of departmental procedures such that hiring, promotion, compensation, and tenure decisions are more transparent, that the reasons why a candidate was not selected or promoted are clear, and that faculty are less able to apply their biases to personnel decisions. Third, all departments should strengthen mentoring of junior faculty. Fourth, all departments must raise awareness of gender biases and work to eliminate hostile attitudes and environments that can make academic and national laboratory careers unattractive to women. Fifth, with respect to raising awareness among faculty, staff and students, a new type of training session should be developed that would be more effective in conveying the facts and consequences of gender bias than the conventional presentations typically available, which seem not to be highly effective in changing attitudes or behaviors. Sixth, it is proposed that the UMC establish a certification of 'family-friendly' or 'gender equivalent' institutions that would encourage organizations to meet standards for minimizing gender bias and promoting supportive work environments. Seventh, novel approaches to adjusting job responsibilities of faculty, staff, and students to permit them to deal with family/life issues are needed that do not carry stigmas. Finally, faculty and national laboratory staff need to promote the benefits of their careers to women so that a more positive image of the job of materials scientist or materials engineer is presented.

Angus Rockett

2008-12-01T23:59:59.000Z

233

Advanced Ceramic Materials and Packaging Technologies for Realizing...  

Broader source: Energy.gov (indexed) [DOE]

November 15, 2012 Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems PROPRIETARY INFORMATION This document...

234

Vehicle Technologies Office: Materials for Energy Recovery Systems...  

Energy Savers [EERE]

Energy Recovery Systems and Controlling Exhaust Gases Vehicle Technologies Office: Materials for Energy Recovery Systems and Controlling Exhaust Gases The typical internal...

235

Base Technology for Radioactive Material Transportation Packaging Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

1992-07-08T23:59:59.000Z

236

Vehicle Technologies Office Merit Review 2014: A Materials Approach...  

Broader source: Energy.gov (indexed) [DOE]

PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a materials approach to...

237

Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual...  

Energy Savers [EERE]

2 Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report As part of the U.S. Department of Energys...

238

Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...  

Energy Savers [EERE]

3 Lightweight Materials R&D Annual Progress Report Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual Progress Report As part of the U.S. Department of Energy's...

239

Proceedings of the international workshop on spallation materials technology  

SciTech Connect (OSTI)

This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

Mansur, L.K.; Ullmaier, H. [comps.] [comps.

1996-10-01T23:59:59.000Z

240

Principal Associate Director - Science, Technology, and Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentations Presentations926Innovation|Science, Technology,

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect (OSTI)

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

242

Hot Technology, Cool Science (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion ? moderated by KTVU's John Fowler ? on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.

None available

2011-04-28T23:59:59.000Z

243

Mork Family Department of Chemical Engineering and Materials Science  

E-Print Network [OSTI]

, materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

Southern California, University of

244

Soviet satellite communications science and technology  

SciTech Connect (OSTI)

This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

1991-08-01T23:59:59.000Z

245

Science & Technology Review April/May 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Leveraging the National Ignition Facility to Meet the Climate-Energy Challenge--Commentary by George H. Miller; (2) The Journey into a New Era of Scientific Discoveries--The world's largest laser is dedicated on May 29, 2009; (3) Safe and Sustainable Energy with LIFE--A revolutionary technology to generate electricity, modeled after the National Ignition Facility, could either be a pure fusion energy source or combine the best of fusion and fission energy; (4) A Simulated Rehearsal for Battle--Livermore's Joint Conflict and Tactical Simulation is the most widely used tactical model in the world; (5) Improving Catalysis with a 'Noble' Material--By infusing carbon aerogels with platinum, researchers have produced a more affordable and efficient catalytic material; and (6) A Time Machine for Fast Neutrons--A new, robust time-projection chamber that provides directional detection of fast neutrons could greatly improve search methods for nuclear materials.

Bearinger, J P

2009-03-23T23:59:59.000Z

246

Science and Technology Review December 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Advanced Materials for Our Past, Present, and Future - Commentary by Tomas Diaz de la Rubia; (2) A Defensive 'Coat' for Materials under Attack - Amorphous metal coatings provide the strength and corrosion resistance needed to protect military vessels and spent nuclear fuel containers; (3) Too Close for Comfort - Laboratory scientists are analyzing the feasibility of using nuclear explosives to disrupt or divert asteroids on a collision course with Earth; (4) Hyperion: A Titan of High-Performance Computing Systems - Livermore is collaborating with 10 computing industry leaders to create a test bed for Linux cluster hardware and software technologies; (5) Isolating Pathogens for Speedy Identification - An automated miniature device separates viruses, bacteria, genetic material, and proteins from nasal swabs and blood and urine samples for speedy identification.

Bearinger, J P

2009-11-17T23:59:59.000Z

247

Chemistry and Materials Science progress report, FY 1994. Revision 2  

SciTech Connect (OSTI)

Thrust areas of the weapons-supporting research include surface science, fundamentals of the physics and processing of metals, energetic materials, etc. The laboratory directed R and D include director`s initiatives, individual projects, and transactinium science studies.

NONE

1996-01-01T23:59:59.000Z

248

Bachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date  

E-Print Network [OSTI]

404L Materials Analysis Lab 1 MSE 418 Phase Transformations and Kinetics 3 MSE 480 Senior Project I 3 FF MSE 482 Senior Project II 3 MSE 498 Materials Science Seminar 1 PHYS 212, 212L Physics IIBachelor of Science, Materials Science and Engineering, 2014-2015 Name ID# Date General Degree

Barrash, Warren

249

Science & Technology Review July/August 2008  

SciTech Connect (OSTI)

This months issue has the following articles: (1) Science Translated for the Greater Good--Commentary by Steven D. Liedle; (2) The New Face of Industrial Partnerships--An entrepreneurial spirit is blossoming at Lawrence Livermore; (3) Monitoring a Nuclear Weapon from the Inside--Livermore researchers are developing tiny sensors to warn of detrimental chemical and physical changes inside nuclear warheads; (4) Simulating the Biomolecular Structure of Nanometer-Size Particles--Grand Challenge simulations reveal the size and structure of nanolipoprotein particles used to study membrane proteins; and (5) Antineutrino Detectors Improve Reactor Safeguards--Antineutrino detectors track the consumption and production of fissile materials inside nuclear reactors.

Bearinger, J P

2008-05-27T23:59:59.000Z

250

MOT Applied Research Projects Where science, technology, and business meet  

E-Print Network [OSTI]

MOT Applied Research Projects Where science, technology, and business meet Project Details) Compensation: No charge for selected company projects Your Commitment: Involvement ranges from a few check Science Engineering Arts and Sciences Life Sciences Average age: 33 Typical work experience: 5 - 8 years

251

University of Cambridge Department of Materials Science & Metallurgy  

E-Print Network [OSTI]

University of Cambridge Department of Materials Science & Metallurgy Modelling of Microstructural and Metallurgy, University of Cambridge, between May 2007 and August 2007. Except where acknowledgements

Cambridge, University of

252

adsorption material science: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science and Engineering inter-twines numerous disciplines, including chemistry, physics and engineering. It is the one discipline within the College of Engineering...

253

California's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network [OSTI]

and, more broadly, clean energy technology, may well be theCASE FOR A CLEAN ENERGY SCIENCE AND TECHNOLOGY INITIATIVECase for a Clean Energy Science and Technology Initiative

Sperling, Dan

2004-01-01T23:59:59.000Z

254

California 's Hydrogen Highway: The Case for a Clean Energy Science and Technology Initiative  

E-Print Network [OSTI]

and, more broadly, clean energy technology, may well be theCase for a Clean Energy Science and Technology Initiativea major clean energy science and technology initiative.

Sperling, Dan

2004-01-01T23:59:59.000Z

255

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Energy Reliability before the Subcommittee on Energy and Environment, Committee on Science and Technology, U.S. House of Representatives, July 23, 2009 Testimony Before the...

256

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering  

E-Print Network [OSTI]

Licentiate's Thesis submitted in partial fulfillment of the requirements for the degree of Licentiate Korhonen #12;HELSINKI UNIVERSITY ABSTRACT OF OF TECHNOLOGY LICENTIATE THESIS Department of Computer Science

257

Universit Franois Rabelais -Tours cole doctorale : Sant, Sciences et Technologies  

E-Print Network [OSTI]

Universit Fran鏾is Rabelais - Tours 蒫ole doctorale : Sant, Sciences et Technologies Ann閑 lower than the slope defined by the physics of sand aimed at avoiding useless avalanches. A system

Paris-Sud XI, Universit de

258

Chemistry and materials science progress report, FY 1994  

SciTech Connect (OSTI)

Research is reported in the areas of surface science, fundamentals of the physics and processing of metals, energetic materials, transactinide materials and properties and other indirectly related areas of weapons research.

NONE

1995-07-01T23:59:59.000Z

259

Long-Term Stewardship Science and Technology Requirements  

SciTech Connect (OSTI)

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

McDonald, J.K.; Nickelson, R.A.

2002-05-16T23:59:59.000Z

260

Long-term Stewardship Science and Technology Requirements  

SciTech Connect (OSTI)

To ensure technology developed for long-term stewardship will meet existing requirements, a review of requirements was performed. In addition to identifying existing science and technology related requirements, gaps and conflicts of requirements were identified.

Mcdonald, Jaimee Kristen; Nickelson, Reva Anne

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

262

Science and technology review, April 1996  

SciTech Connect (OSTI)

There are two main feature articles in this publication. The first article tells of how using off-the-shelf computers, state-of-the-art CCDs, and a network of collaborators, scientist at Lawrence Livermore National Lab explore the composition of dark matter. Indications are that MACHOs (MAssive Compact Halo Objects) make up the bulk of dark matter in the universe. The second article discusses a new breed of Livermore-developed, flywheel-based energy storage systems using new materials, new technologies, and new thinking to develop a new electromechanical battery. Patents and research highlights are also listed in this publication.

Failor, B.; Stull, S. [eds.

1996-04-01T23:59:59.000Z

263

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

264

Science & Technology Review November/December 2008  

SciTech Connect (OSTI)

This months issue has the following articles: (1) Innovation Is Key to Prosperity and Security --Commentary by Erik J. Stenehjem; (2) Taking Ultrafast Snapshots of Material Changes--The dynamic transmission electron microscope captures images a million times faster than conventional instruments; (3) Automated Technology for Laser Fusion Systems--The first completely computer-controlled system for aligning laser beams is helping make fusion research possible; (4) Protecting the Nation through Secure Cargo--A new device tracks and monitors cargo containers during transit to improve national security; (5) Atom by Atom, Layer by Layer--Extremely thin sandwiches of materials called nanolaminates exhibit remarkable, highly useful properties; and (6) Predicting the Bizarre Properties of Plutonium--A supercomputing 'grand challenge' team has made highly precise predictions of the behavior of plutonium's most important solid phase.

Bearinger, J P

2008-10-07T23:59:59.000Z

265

Science and Technology Review March 2012  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Honoring a Legacy of Service to the Nation - The nation pays tribute to George Miller, who retired in December 2011 as the Laboratory's tenth director; (2) Life-Extension Programs Encompass All Our Expertise - Commentary by Bruce T. Goodwin; (3) Extending the Life of an Aging Weapon - Stockpile stewards have begun work on a multiyear effort to extend the service life of the aging W78 warhead by 30 years; (4) Materials by Design - Material microstructures go three-dimensional with improved additive manufacturing techniques developed at Livermore; (5) Friendly Microbes Power Energy-Producing Devices - Livermore researchers are demonstrating how electrogenic bacteria and microbial fuel cell technologies can produce clean, renewable energy and purify water; and (6) Chemical Sensor Is All Wires, No Batteries - Livermore's 'batteryless' nanowire sensor could benefit applications in diverse fields such as homeland security and medicine.

Nikolic, R J

2012-02-15T23:59:59.000Z

266

Science and Technology at Oak Ridge National Laboratory  

ScienceCinema (OSTI)

ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

Mason, Thomas

2013-02-25T23:59:59.000Z

267

Science and Technology at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

Mason, Thomas

2012-11-01T23:59:59.000Z

268

Materials and Chemical Sciences Division annual report 1989  

SciTech Connect (OSTI)

This report describes research conducted at Lawrence Berkeley Laboratories, programs are discussed in the following topics: materials sciences; chemical sciences; fossil energy; energy storage systems; health and environmental sciences; exploratory research and development funds; and work for others. A total of fifty eight programs are briefly presented. References, figures, and tables are included where appropriate with each program.

Not Available

1990-07-01T23:59:59.000Z

269

Master of Science project in computational material physics  

E-Print Network [OSTI]

Master of Science project in computational material physics (posted 2013-05-13) Plasmarons exists ! (figure to the right) also for this system. Project To predicting the so far not measured in computational material science. You have taken the courses in Quantum physics, Solid state physics

Hellsing, Bo

270

Graphene: from materials science to particle physics  

E-Print Network [OSTI]

Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has generated great interest and spurred research activity from materials science to particle physics and vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechanical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero density, a central issue in the design of graphene-based nanoelectronic components. While suspended graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice field theory calculations have revealed that suspended graphene is at or near the critical coupling for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and straightforward explanation for the experimental data. In this contribution we review the current status of the field with emphasis on the issue of gap formation, and outline recent progress and future points of contact between condensed matter physics and Lattice QCD.

Joaqu韓 E. Drut; Timo A. L鋒de; Eero T鰈

2010-11-02T23:59:59.000Z

271

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Broader source: Energy.gov [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

272

Fusion Nuclear Science and Technology (FNST) Challenges and Facilities  

E-Print Network [OSTI]

Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central Mountain to climb Since we have never done any experiments on FNST in a real fusion nuclear environment, we

273

M. Abdou April 2013 Fusion Nuclear Science and Technology  

E-Print Network [OSTI]

M. Abdou April 2013 Fusion Nuclear Science and Technology Challenges and Required R&D Mohamed Fusion Nuclear Science and Technology Challenges and Required R&D Presentation Outline Introduction to the Fusion Nuclear Environment and Fusion Nuclear Components FNST R&D Challenges Need for Fusion Nuclear

Abdou, Mohamed

274

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE The Blackett Laboratory  

E-Print Network [OSTI]

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE The Blackett Laboratory Department of Physics with the Departments of Mathematics and Chemistry and the Centre for the History of Science, Technology and Medicine-President of the Optical Society of America and becomes President of the Society in 2004. Professor D J Bradley FRS, former

275

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

276

FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).  

SciTech Connect (OSTI)

This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

Samara, George A.; Simmons, Jerry A.

2006-07-01T23:59:59.000Z

277

School of Earth and Atmospheric Sciences Georgia Institute of Technology  

E-Print Network [OSTI]

School of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative research and educate the future leaders in earth and atmospheric sciences for the 21st century, within

Weber, Rodney

278

Advanced Materials Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministrator ReferencesalkaliAdvancedTechnology Marketing

279

Technologies for detection of nuclear materials  

SciTech Connect (OSTI)

Detection of smuggled nuclear materials at transit points requires monitoring unknown samples in large closed packages. This review contends that high-confidence nuclear-material detection requires induced fission as the primary mechanism, with passive radiation screening in a complementary role. With the right equipment, even small quantities of nuclear materials are detectable with a high probability at transit points. The equipment could also be linked synergistically with detectors of other contrabond. For screening postal mail and packages, passive monitors are probably more cost-effective. When a suspicious item is detected, a single active probe could then be used. Until active systems become mass produced, this two-stage screening/interrogation role for active/passive equipment is more economic for cargo at border crossings. For widespread monitoring of nuclear smuggling, it will probably be necessary to develop a system for simultaneously detecting most categories of contraband, including explosives and illicit drugs. With control of nuclear materials at known storage sites being the first line of defense, detection capabilities at international borders could establish a viable second line of defense against smuggling.

DeVolpi, A.

1996-03-30T23:59:59.000Z

280

Harvard-MIT Division of Health Sciences and Technology Contract for Technical Qualifying Exam (TQE)  

E-Print Network [OSTI]

Electrical Engineering Computer Science Physics Chemistry Aeronautics & Astronautics Nuclear Science Engineering Materials Science& Engineering Electrical Engineering Computer Science PhysicsChemistryNuclear): ______________________________________ Concentration Area (circle one)*: Mechanical Engineering Chemical Engineering Materials Science & Engineering

Bhatia, Sangeeta

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Science and Technology Review December 2011  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) High-Performance Computing for Energy Innovation - Commentary by Tomas Diaz de la Rubia; (2) Simulating the Next Generation of Energy Technologies - Projects using high-performance computing demonstrate Livermore's computational horsepower and improve the quality of energy solutions and the speed of deployment; (3) ARC Comes into Focus - The Advanced Radiographic Capability, a petawatt-class laser, can penetrate dense objects to reveal material dynamics during National Ignition Facility experiments; (4) A New Method to Track Viral Evolution - A sensitive technique developed at the Laboratory can identify virus mutations that may jump from host to host; and (5) Data for Defense: New Software Finds It Fast - Department of Defense warfighters and planners are using Livermore software systems to extract pertinent information from massive amounts of data.

Nikolic, R J

2011-11-01T23:59:59.000Z

282

16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology  

E-Print Network [OSTI]

of operating NPP; 路 NPP decommissioning and waste treatment; 路 Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

283

THE PHYSICS OF ARC WELDING PROCESSES Department of Materials Science and Engineering,  

E-Print Network [OSTI]

) THE PHYSICS OF ARC WELDING PROCESSES T.W.EAGAR Department of Materials Science and Engineering, Massachusetts Institute of Technology Abstract Welding is an extremely complex proce ss; however, due to its Wor ds: Arc Welding, Arc Physics, Shielding Gases, Gas Metal Arc Welding. 1. Introduction Langmuir

Eagar, Thomas W.

284

Science, technology and engineering at LANL  

SciTech Connect (OSTI)

The Laboratory provides science solution to the mission areas of nuclear deterrence, global security, and energy security. The capabilities support the Laboratory's vision as the premier national security science laboratory. The strength of LANL's science is at the core of the Laboratory. The Laboratory addresses important science questions for stockpile stewardship, emerging threats, and energy. The underpinning science vitality to support mission areas is supported through the Post Doc program, the fundamental science program in LDRD, collaborations fostered through the Institutes, and the LANL user facilities. LANL fosters the strategy of Science that Matters through investments, people, and facilities.

Mercer-smith, Janet A [Los Alamos National Laboratory; Wallace, Terry C [Los Alamos National Laboratory

2011-01-06T23:59:59.000Z

285

Michael J. Aziz Professor of Materials & Energy Technologies  

E-Print Network [OSTI]

he developed a quantitative course on Energy Technology for a group of students in diverseMichael J. Aziz Professor of Materials & Energy Technologies Harvard School of Engineering in 1983. He spent two years at Oak Ridge National Laboratory as Eugene P. Wigner Postdoctoral Fellow

Lin, Xi

286

Fusion Materials Science Overview of Challenges and Recent Progress  

E-Print Network [OSTI]

Fusion Materials Science Overview of Challenges and Recent Progress Steven J. Zinkle Oak Ridge: Development of new materials for structural applications is historically a long process 颅 Ni3Al intermetallic alloys commercialization 颅 Superalloy turbine blade development 颅 Cladding and duct materials for fast

287

Roadmap: Applied Engineering Computer Engineering Technology -Bachelor of Science  

E-Print Network [OSTI]

-BS-AENG-CET] College of Applied Engineering, Sustainability and Technology Catalog Year: 2012-2013 Page 1 of 2 | Last Technology - Bachelor of Science [AT-BS-AENG-CET] College of Applied Engineering, Sustainability Technology 3 Semester Eight: [13 Credit Hours] TECH 43222 Computer Hardware Engineering and Architecture 3

Sheridan, Scott

288

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network [OSTI]

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

289

Materials Science and Engineering at TCCC  

E-Print Network [OSTI]

BILLION A DAY... RESPONSIBLY Technical Community 颅 R&D #12;5 路 Cold Drink Equipment 路 Energy efficiency High barrier plastic materials Don't underestimate the mundane. #12;88 Where are materials going

Li, Mo

290

Imperial College OF SCIENCE, TECHNOLOGY AND MEDICINE  

E-Print Network [OSTI]

liberalisation, globalisation & technological development. The world market grows by an amount equal

291

Building Science and Technology Solutions for National Problems  

SciTech Connect (OSTI)

The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

Bishop, Alan R. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

292

New Materials and Separations Science for Sustainable  

E-Print Network [OSTI]

;Existing desalination technologies use too much energy EnergyUse,MJ/m3 * Reverse osmosis: Electrodialysis and electrodialysis in one technology #12;Fluid flow Desalted water Charged surface Feed Concentrate Concentrate Back Turbine We desalinate the geothermal fluid that exits the heat exchanger using reverse osmosis Condenser

Keller, Arturo A.

293

DOE fundamentals handbook: Material science. Volume 1  

SciTech Connect (OSTI)

The Mechanical Science Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of mechanical components and mechanical science. The handbook includes information on diesel engines, heat exchangers, pumps, valves, and miscellaneous mechanical components. This information will provide personnel with a foundation for understanding the construction and operation of mechanical components that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

294

The Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical  

E-Print Network [OSTI]

and exacting process and the pharmaceutical industry strives to increase efficiency and productivityThe Pfizer Institute for Pharmaceutical Materials Science The Pfizer Institute for Pharmaceutical Materials Science #12;The Pfizer Institute for Pharmaceutical Materials Science Modelling and Experimental

Lasenby, Joan

295

MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY FALL 2011 1 / 12/7/2011  

E-Print Network [OSTI]

MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY FALL 2011 1 / 12/7/2011 MATERIALS SCIENCE PROGRAM, Mahesh CHEM 7365 Chemistry 262-0421 mahesh@chem.wisc.edu #12;MATERIALS SCIENCE PROGRAM FACULTY DIRECTORY

Wisconsin at Madison, University of

296

3.012 Fundamentals of Materials Science, Fall 2003  

E-Print Network [OSTI]

This subject describes the fundamentals of bonding, energetics, and structure that underpin materials science. From electrons to silicon to DNA: the role of electronic bonding in determining the energy, structure, and ...

Marzari, Nicola

297

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Microelectronic Device Manufacturing MS/ME 580 Theory of Elasticity MS 784 Topics in Materials Science ENGINEERING

Lin, Xi

298

Boston University College of Engineering Division of Materials Science & Engineering  

E-Print Network [OSTI]

Structure & Dislocations in Matls MS/ME 535 Green Manufacturing MS/ME 545 Electrochemistry of Fuel Cells Intro to Materials Science and Engineering MS/EC 579 Microelectronic Device Manufacturing MS/ME 580

Lin, Xi

299

References R-3 ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society.  

E-Print Network [OSTI]

References #12;References R-3 REFERENCES ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society. ANSI 1969. N13.1, Sampling Airborne Radioactive Materials in Nuclear for Application to Radioactive Dosimetry and Radiological Assessments, DOE/TIC-11026, U.S. Department of Energy

Pennycook, Steve

300

References R-3 ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society.  

E-Print Network [OSTI]

References #12;References R-3 REFERENCES ANS 1986. Glossary of Terms in Nuclear Science and Technology, American Nuclear Society. ANSI 1969. N13.1, Sampling Airborne Radioactive Materials in Nuclear: A Handbook of Decay Data for Application to Radioactive Dosimetry and Radiological Assessments, DOE/TIC-11026

Pennycook, Steve

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and novel engineering materials. The user community takes advantage of capabilities of neutron scattering for measurements over wide ranges of experimental and operating...

302

Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development  

SciTech Connect (OSTI)

The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

Jon Carmack

2014-01-01T23:59:59.000Z

303

2012 FINALIST GRADUATE STUDENT MATERIALS SCIENCE & ENGINEERING  

E-Print Network [OSTI]

high performance technologies for water and air purification. Serionix is differentiated by rapid. James is the recipient of two Federal Small Business Innovation Research (SBIR) grants aimed at the facility scale. #12;

Illinois at Urbana-Champaign, University of

304

Student Academic Services School of Ocean & Earth Science Technology (SOEST)  

E-Print Network [OSTI]

Student Academic Services School of Ocean & Earth Science Technology (SOEST between academic advisors, faculty advisors, and students to implement a personal education plan that is consistent with the student's goals. DESCRIPTION Academic

305

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect (OSTI)

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

306

Environmental Assessment for the Oak Ridge Science and Technology...  

Broader source: Energy.gov (indexed) [DOE]

6-281(E)020508 FINDING OF NO SIGNIFICANT IMPACT OAK RIDGE SCIENCE AND TECHNOLOGY PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U. S. Department of...

307

Chemical Science and Technology Laboratory Page 1 Technical Activities Report  

E-Print Network [OSTI]

Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division TABLE OF CONTENTS I. PHYSICAL & CHEMICAL PROPERTIES DIVISION (838.................................................................................................9 1. The NIST WebBook: NIST Chemical Reference Data for Industry

Magee, Joseph W.

308

EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science  

E-Print Network [OSTI]

, The Netherlands. Page: 1 #12;Unlike other alternatives to the GGA, the following features, make the RCTM Science Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven, The Netherlands ISSN: 0926

Eindhoven, Technische Universiteit

309

Patent Litigation for High Technology and Life Sciences Companies  

E-Print Network [OSTI]

Patent Litigation for High Technology and Life Sciences Companies #12;漏 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

Shamos, Michael I.

310

Polymer / Elastomer and Composite Material Science  

E-Print Network [OSTI]

@ ~80K Cryo-adsorbent 6-10 MPa @ 40-80K Storage materials ammonia boranes, sodium and lithium alanates? Infrastructure Static system High reliability Continuous operations Erosion from continuous flows? Limited valve-80K Storage materials ammonia boranes, sodium and lithium alanates, and alanes Exo and endothermic

311

IFP --Oil & Gas Science and Technology --(Script : 1er specimen) --1 --Oil & Gas Science and Technology --rev. IFP, Vol. xx (2009), No X, pp. 00-00  

E-Print Network [OSTI]

IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 1 -- Oil & Gas Science2010 Author manuscript, published in "Oil & Gas Science and Technology - Rev. IFP, 65, 3 (2010) 435-444" DOI : 10.2516/ogst/2010007 #12;IFP -- Oil & Gas Science and Technology -- (Script : 1er specimen) -- 2

Boyer, Edmond

312

Materials Science and Engineering A 497 (2008) 212215 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

properties such as high-specific modulus, good high-cycle fatigue resistance, and improved thermal stability-scale grain size, the nano-crystalline metallic materials typically possess high-yield strengths, as predictedMaterials Science and Engineering A 497 (2008) 212颅215 Contents lists available at Science

Rollins, Andrew M.

313

Computer Science and Information Technology Student Pipeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Student Pipeline Program Description Los Alamos National Laboratory's High Performance Computing and Information Technology Divisions recruit and hire promising...

314

Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment  

SciTech Connect (OSTI)

The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

2001-02-01T23:59:59.000Z

315

The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program  

E-Print Network [OSTI]

DRAFTING TECHNOLOGY The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program offers a choice of six areas of emphasis: architectural drafting; civil drafting; information technology; mechanical and electrical drafting; process

Ickert-Bond, Steffi

316

Master of Science project in computational material physics  

E-Print Network [OSTI]

Master of Science project in computational material physics (2013-12-05) Two-band Hubbard model of these materials. The temperature, pressure and doping driven transitions between a vast number of phases, e Gutzwiller method with the GPAW-DFT code in order to take into account the local correlations. Project

Hellsing, Bo

317

Master of Science project in computational material physics  

E-Print Network [OSTI]

Master of Science project in computational material physics (2013-04-26) Engineering of ultra of remarkable properties of these materials. The temperature, pressure and doping driven transitions between correlations. Project Investigating the influence of biaxial strain on electronic properties such as self

Hellsing, Bo

318

NASA Earth Science Technology Office 2014 Annual Report  

E-Print Network [OSTI]

projects and the advancement and infusion of technologies for NASA Earth science. Activities within. ESTO continues to build upon a strong history of technology development and infusion. In FY14 54 completed projects in the ESTO portfolio, 35% have already been infused while an additional 46% have a path

Waliser, Duane E.

319

Science and Technology Roadmapping to Support Project Planning  

SciTech Connect (OSTI)

Disciplined science and technology roadmapping provides a framework to coordinate research and development activities with project objectives. This case-history paper describes initial project technology needs identification, assessment and R&D ranking activities supporting characterization of 781 waste tanks requiring a 'hazardous waste determination' or 'verification of empty' decision to meet an Idaho state Voluntary Consent Order.

Mc Carthy, Jeremiah Justin; Haley, Daniel Joseph; Dixon, Brent Wayne

2001-07-01T23:59:59.000Z

320

Science and Technology of Future Light Sources: A White Paper  

SciTech Connect (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

2009-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Materials science matchmaker | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials PorousMaterials

322

Water Science and Technology Board. Annual report 1991  

SciTech Connect (OSTI)

This report summarizes the activities of the Water Science and Technology Board during 1991. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Restoration of aquatic ecosystems - science, technologies and public policy; Water transfers in the West - efficiency, equity and the environment; Opportunities in the hydrologic sciences; and Ground water models - scientific and regulatory applications. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

Not Available

1995-01-01T23:59:59.000Z

323

Faculty Search Materials Science and Engineering  

E-Print Network [OSTI]

/ sensors, nuclear security, and/or nuclear medical applications are especially encouraged to apply. The MSE candidate will be expected to conduct scholarly research in an area of nuclear materials as evidenced department participates in the Nuclear Engineering Program at Virginia Tech (http://www.nuclear

Buehrer, R. Michael

324

army materials technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

army materials technology First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ERDCELTR-12-10 Army Range...

325

Open Bibliography for Science, Technology, and Medicine  

E-Print Network [OSTI]

Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge Jim Pitman / Departments of Statistics and Mathematics, University of California, Berkeley Peter Sefton / ptsefton.com Ben O'Steen / Cottage Labs William Waites...

Jones, Richard; MacGillivray, Mark; Murray-Rust, Peter; Pitman, Jim; Sefton, Peter; O'Steen, Ben; Waites, William

2011-07-04T23:59:59.000Z

326

NREL: Photovoltaics Research - Materials Science Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand EvaluationScience Staff The

327

A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology, Viability, and Options  

E-Print Network [OSTI]

A version of this appeared in Current Science 75(6) 1998 India's Nuclear Breeders: Technology tongia@andrew.cmu.edu; vsa@andrew.cmu.edu Abstract: India's nuclear power program is based on indigenous materials and technology, with the potential for providing energy security for many centuries. This paper

328

Physical and Life Sciences 2008 Science & Technology Highlights  

SciTech Connect (OSTI)

This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

Correll, D L; Hazi, A U

2009-05-06T23:59:59.000Z

329

antimatter containment technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Technology Division: Low Background Infrared Calibration Facility Quality Manual Materials Science Websites Summary: Optical Technology Division: Low Background Infrared...

330

Business Partnerships & Enterprise Strategy Faculty of Science and Technology: Business Partnerships & Enterprise Strategy 2011-2015  

E-Print Network [OSTI]

of ICT, Engineering and Environmental Technology SMEs. Significantly increased participationBusiness Partnerships & Enterprise Strategy 2011-2015 #12;Faculty of Science and Technology 2008 and 2011, science and technology departments at Lancaster continued to develop and deepen

Meju, Max

331

Announcement The Scientific Advisory Committee of the International Science & Technology Center (ISTC SAC)  

E-Print Network [OSTI]

Knowledge and technology transfer from High Energy Physics (vi) International collaboration - Road map2nd Announcement The Scientific Advisory Committee of the International Science & Technology Center (ISTC SAC) in cooperation with The Secretariat of the International Science & Technology Center (ISTC

332

Science and technology for industrial ecology  

SciTech Connect (OSTI)

This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

333

Smouldering Combustion Phenomena in Science and Technology  

E-Print Network [OSTI]

Smouldering is the slow, low-temperature, flameless form of combustion of a condensed fuel. It poses safety and environmental hazards and allows novel technological application but its fundamentals remain mostly unknown ...

Rein, Guillermo

334

Science and Technology Review, December 1997  

SciTech Connect (OSTI)

Featured articles in this issue cover progress in these areas: Advancing Technologies and Applications in Nondestructive Evaluation; Atomic Engineering with Multilayers; Marrying Astrophysics with the Earth; Continuing Work in Breast Cancer Detection Technologies. Furthermore, this issue lists patents issued to and/or the awards received by Laboratory employees. It also includes an index of the contents of all the issues published in calendar year 1997.

Upadhye, R.

1997-12-01T23:59:59.000Z

335

Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

carbon fiber and process it into composite materials. New equipment installed in late 2006 pro- vided-effective carbon fiber and composite material production meth- ods.The objective is to demonstrate and transfer improved technolo- gies to producers of carbon fiber and composites. Carbon composites (carbon fibers

Pennycook, Steve

336

Materials Sciences and Engineering Program | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90Materials

337

Chemistry and Materials Science at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center for GasChemical Speeding Up

338

ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas at Arlington, Arlington, Texas, USA  

E-Print Network [OSTI]

ADVANCED COMPOSITE MATERIALS TECHNOLOGY FOR ROTORCRAFT Andrew Makeev*, University of Texas, Patz Materials & Technologies, Benicia, CA, USA Abstract Composite materials are increasingly used. In polymer-matrix composite structures, matrix-dominated failures impose severe limitations on structural

Texas at Arlington, University of

339

Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering offers a combined BS/MS degree  

E-Print Network [OSTI]

Materials Science and Engineering BS/MS Program The Department of Materials Science and Engineering currently enrolled in Major Status in the Materials Science and Engineering program can be admitted to expand the research of the student's Senior Design Project to a M.S. thesis. The Senior Design

Tipple, Brett

340

Science and Technology Review September 1999  

SciTech Connect (OSTI)

This review consists of the following titles; The Laboratory in the News; Life Performance of Complex Systems; A Better Picture of Aging Materials; Researchers Determine Chernobyl Liquidators' Exposure; and Target Chamber's Dedication Marks a Giant Milestone.

Eimerl, D

1999-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office is offering research opportunities through the EERE Science and Technology Policy Fellowships Program. These two-year fellowships provide an opportunity for scientists, engineers, and researchers to participate in projects that support hydrogen and fuel cell activities.

342

Bayer Material Science (TRL 1 2 3 System) - River Devices to...  

Broader source: Energy.gov (indexed) [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM) Bayer Material Science (TRL 1 2 3 System) - River Devices to...

343

Science & Technology Review March/April 2008  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Science and Security in Sharp Focus--Commentary by William H. Goldstein; (2) Extending the Search for Extrasolar Planets--The Gemini Planet Imager will delve deep into the universe to identify planets that cannot be detected with current instrumentation; (3) Standardizing the Art of Electron-Beam Welding--The Laboratory's EBeam Profiler makes electron-beam welds consistent and improves quality control; (4) Molecular Building Blocks Made of Diamonds--Livermore physicists are exploring the electrical properties of diamondoids, tiny molecules of diamond; and (5) Animation Brings Science to Life--Animation helps scientists and engineers effectively communicate their ideas and research in a visually compelling way.

Chinn, D J

2008-01-22T23:59:59.000Z

344

Improving Life through Science and Technology.  

E-Print Network [OSTI]

Activity, and Community Shifts Scott A. Senseman Department of Soil and Crop Sciences Texas A&M University;#12;#12;Carbon Mineralization 路 Gas tight 1-L glass containers 路 Ten mL 1 M KOH 路 Humidity maintained by vial of water 路 Traps replaced at regular intervals Anderson, 1982 #12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12

345

Water Science and Technology Board annual report, 1990  

SciTech Connect (OSTI)

This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

Not Available

1990-12-31T23:59:59.000Z

346

Water Science and Technology Board annual report, 1990  

SciTech Connect (OSTI)

This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

Not Available

1990-01-01T23:59:59.000Z

347

Supplemental Material to Cryogenic Roadmap Current Commercial Technology  

E-Print Network [OSTI]

Supplemental Material to Cryogenic Roadmap Current Commercial Technology Refrigeration Approximate,500 Brayton Turbine $800,000 $69.57 167 14.5 18.94% Liquid Air Plants Cosmodyne GF-1 80 N2 4 T/Day 8,400 Brayton Turbine $700,000 $83.33 372 44.3 6.21% Cosmodyne Aspen 1000 80 N2 1000 nM3 /Hr 64,969 Brayton

348

The Departments of Chemical Engineering, Materials Science and Engineering and  

E-Print Network [OSTI]

setting will be facilitated by McMaster's Engineering Co-op and Career Services (ECCS). Applicants shouldThe Departments of Chemical Engineering, Materials Science and Engineering and Mechanical Engineering offer a program of study to students seeking the degree of Master of Engineering in Manufacturing

Thompson, Michael

349

A Survey of Energies in Materials Science Frans Spaepen  

E-Print Network [OSTI]

a new or old problem by comparing its underlying energies. These conversations produced small diagramsA Survey of Energies in Materials Science Frans Spaepen Division of Engineering and Appliedth birthday. Abstract A table is presented that compares energies that govern a variety of phenomena

Spaepen, Frans A.

350

CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY  

E-Print Network [OSTI]

6/29/11 CONDENSED MATTER THEORIST, MATERIALS SCIENCE DIVISION ARGONNE NATIONAL LABORATORY Argonne Division, preferably by e-mail (norman@anl.gov), otherwise by regular mail (MSD-223, Argonne National Lab, Argonne, IL 60439). Please use the subject line "CMT Search" in any e-mail correspondence. Argonne

351

Wood September 28, 2002 DEPARTMENT OF MATERIALS SCIENCE  

E-Print Network [OSTI]

Wood September 28, 2002 1 DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CARNEGIE MELLON: Microstructure-Sensitive Mechanical Properties #12;Wood September 28, 2002 2 Introduction Reading will also have an opportunity to perform similar experiments on various types of wood. These will illustrate

Rollett, Anthony D.

352

Science and Technology Review, September 1996  

SciTech Connect (OSTI)

This review is published ten times a year to communicate, to a broad audience, Lawrence Livermore National Laboratory`s scientific and technological accomplishments in fulfilling its primary missions. The feature articles are `Taking Lasers beyond the National Ignition Facility` and `Jumpin` Jupiter! Metallic Hydrogen`. The first article describes the ultimate goal of laser fusion as the production of electricity by inertial confinement fusion. Advances in diode-laser technology promise to take another step closer to that goal. The latter article discusses a Laboratory team`s efforts to provide evidence for the metallization of hydrogen based on the team`s expertise in shock compression. A commentary on `The Next Frontiers of Advanced Lasers Research is provided, and a research highlight is given on `Modeling Human Joints and Prosthetic Implants.

Failor, B.; Upadhye, R.; Wheatcraft, D. [eds.

1996-09-01T23:59:59.000Z

353

Sandia Technology engineering and science accomplishments  

SciTech Connect (OSTI)

This report briefly discusses the following research being conducted at Sandia Laboratories: Advanced Manufacturing -- Sandia technology helps keep US industry in the lead; Microelectronics-Sandia`s unique facilities transform research advances into manufacturable products; Energy -- Sandia`s energy programs focus on strengthening industrial growth and political decisionmaking; Environment -- Sandia is a leader in environmentally conscious manufacturing and hazardous waste reduction; Health Care -- New biomedical technologies help reduce cost and improve quality of health care; Information & Computation -- Sandia aims to help make the information age a reality; Transportation -- This new initiative at the Labs will help improve transportation, safety,l efficiency, and economy; Nonproliferation -- Dismantlement and arms control are major areas of emphasis at Sandia; and Awards and Patents -- Talented, dedicated employees are the backbone of Sandia`s success.

Not Available

1994-02-01T23:59:59.000Z

354

Science and technology review, March 1996  

SciTech Connect (OSTI)

This publication contains two feature articles and one research highlight. The first feature article is on the safe disposal of nuclear wastes. The second article is about using the Lab`s diamond anvil cell to probe the behavior of nuclear weapons related materials. The research highlight is on using hydrogen fuel for hybrid vehicles.

Failor, B.; Wheatcraft, D. [eds.

1996-03-01T23:59:59.000Z

355

Computer Science and Information Technology Student Pipeline  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositional Variation The ComputationalofScience and

356

Science and Technology 2009 | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)Science Highlight Archives:2 MAY9, 2009tRNATechnology

357

NREL: Photovoltaics Research - Science and Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and AchievementsResearchReliabilityand7 November 29,Science and

358

Materials Science and Engineering B 157 (2009) 101104 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

) method [6], calcination process [7], chemical vapor deposition [8], thermal evaporation [1], hydrothermalDirect Materials Science and Engineering B journal homepage: www.elsevier.com/locate/mseb A rapid hydrothermal Court, S111, Lake Mary, FL 32746, USA d Advanced Materials Processing and Analysis Center

Chow, Lee

359

Materials Science and Engineering -Master Thesis -July 2011 Analysis and optimization of thin walled  

E-Print Network [OSTI]

. Materials and processes Work done Compounding realized either using pre-preg technology or Resin Infusion

Dalang, Robert C.

360

Sandia National Laboratories: Science and Technology Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaledand Technology

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology  

E-Print Network [OSTI]

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology University of Hawaii at Manoa REQUIREMENTS FOR A MINOR IN GEOLOGY & GEOPHYSICS The minor requires GG 101 (or 103) & 101L or GG 170, 200, and 11 credits hours of non-introductory Geology and Geophysics courses at the 300

362

Missouri University of Science and Technology 1 Geology and Geophysics  

E-Print Network [OSTI]

Missouri University of Science and Technology 1 Geology and Geophysics Graduate work in Geology are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry and Environmental Geochemistry Mineralogy/Petrology/Economic Geology Geophysics/Tectonics/Remote Sensing

Missouri-Rolla, University of

363

Green Building Features Northwest Center for Engineering, Science and Technology  

E-Print Network [OSTI]

Green Building Features Northwest Center for Engineering, Science and Technology RESOURCE for commercial buildings developed by the U.S. Green Building Council (USGBC) to provide a national consensus in what constitutes a "green" building and to provide market incentives to build green. PSU has received

Bertini, Robert L.

364

Science & Technology Highlights ORNL a Member of USAutoPARTs  

E-Print Network [OSTI]

. precompetitive, collaborative R&D of clean and efficient vehicle technologies. The objective is to advance cost- rials; electronics and hybrid vehicle tech- nologies; and fuels, engine, and emission control Boeman, and Associate Director of the ORNL Energy and Engineering Sciences Directorate Dana Christensen

Pennycook, Steve

365

Nuclear Science and Technology, November 2000. NEUTRON CROSS SECTION EVALUATIONS  

E-Print Network [OSTI]

Nuclear Science and Technology, November 2000. 1 NEUTRON CROSS SECTION EVALUATIONS FOR 238 U UP and Power Engineering, 249020 Obninsk, Russia A.Ventura ENEA, Nuclear Data Center and INFN, Bologna Section of the statistical description that includes direct, pre-equilibrium and equilibrium mechanisms of nuclear reactions

366

Estimating the Economic Contributions Utah Science Technology and Research  

E-Print Network [OSTI]

Estimating the Economic Contributions of the Utah Science Technology and Research Initiative (USTAR Stambro Senior Research Economist Bureau of Economic and Business Research David Eccles School of Business University of Utah February 2012 漏 2012 Bureau of Economic and Business Research, University of Utah #12

Tipple, Brett

367

Missouri University of Science and Technology 1 Petroleum Engineering  

E-Print Network [OSTI]

Missouri University of Science and Technology 1 Petroleum Engineering The Petroleum Engineering include reservoir enhancement, hydraulic fracturing, CO2 sequestration, gel treatments, drilling, well: http://gse.mst.edu/ or http://petroleum.mst.edu/ . Baojun Bai, Associate Professor PHD New Mexico

Missouri-Rolla, University of

368

Office of Nuclear Energy, Science and Technology Executive Summary  

E-Print Network [OSTI]

Office of Nuclear Energy, Science and Technology Executive Summary Mission As we become more in this new century, the benefits of nuclear fission as a key energy source for both the near- and long method of generating energy from nuclear fission in both the United States and the world. A key mission

369

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Computer Science and Engineering  

E-Print Network [OSTI]

test cases really matter? An experiment comparing test case based and exploratory testing Licentiate thesis submitted for official examination for the degree of Licentiate in Technology. Espoo, 23 of Computer Science and Engineering ABSTRACT OF LICENTIATE THESIS Author Date Juha Itkonen 23.5.2008 Pages 56

Itkonen, Juha

370

Intro to Information Science Technology Fall 2011, Williston Campus  

E-Print Network [OSTI]

CIS1120 Intro to Information Science Technology Fall 2011, Williston Campus Vermont Technical is in BP 424. Williston Office Hours: Tue 10:30-1:00, Thu 2:30-3:00 ! (tentative, subject to change) Other hours by appointment ! In general, I am in Randolph MW and Williston TTF. Course Overview: This course

Damon, Craig A.

371

PNNL's Community Science & Technology Seminar Series Nuclear Power in a  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Nuclear Power in a Post-Fukushima World generated by nuclear power. What will the U.S. energy portfolio look like, and how will the energy demand is focused on longer- term operation of nuclear power plants, including measurements to detect

372

PNNL's Community Science & Technology Seminar Series Geology and the  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Geology and the Nuclear Fuel Cycle Presented, the nuclear industry faces unique hurdles to expansion and waste management. Geology plays a critical role in the nuclear fuel cycle beyond just the mining of uranium for nuclear fuel. Come hear Frannie Skomurski

373

Water Science and Technology Board. Annual report 1992-1993  

SciTech Connect (OSTI)

This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

Not Available

1995-01-01T23:59:59.000Z

374

Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies  

SciTech Connect (OSTI)

The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

Abruna, H.D.; DiSalvo, Francis J.

2012-06-29T23:59:59.000Z

375

Computing and Computational Sciences Directorate - Information Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous MaterialsCompliance ViewORNL'sHome 鈥 AboutNews

376

Computing and Computational Sciences Directorate - Information Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous MaterialsCompliance ViewORNL'sHome 鈥

377

Computing and Computational Sciences Directorate - Information Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous MaterialsCompliance ViewORNL'sHome

378

National Security Science and Technology Initiative: Air Cargo Screening  

SciTech Connect (OSTI)

The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive benchmarks combinations, and conducted modeling and simulation studies to begin populating the matrix of commodities, threats, and detection technologies. (4) Designed and fabricated basic (homogeneous) commodity test pallets and fabricated inert stimulants to support experiments and to validate modeling/simulation results. (5) Developed/expanded the team's capabilities to conduct full-scale imaging (neutron and x-ray) experiments of air cargo commodities and explosive benchmarks. (6) Conducted experiments to improve the collection of trace particles of explosives from a variety of surfaces representative of air cargo materials by means of mechanical (air/vibration/pressure), thermal, and electrostatic methods. Air cargo screening is a difficult challenge that will require significant investment in both research and development to find a suitable solution to ensure the safety of passengers without significantly hindering the flow of commodities. The initiative funded by Battelle has positioned this group to make major contributions in meeting the air cargo challenge by developing collaborations, developing laboratory test systems, improving knowledge of the challenges (both technical and business) for air cargo screening, and increasing the understanding of the capabilities for current inspection methods (x-ray radiography, x-ray backscatter, etc.) and potential future inspection methods (neutron radiography, fusion of detector modalities, advanced trace detection, etc.). Lastly, air cargo screening is still an issue that will benefit from collaboration between Department of Energy Laboratories and Battelle. On January 7, 2010, DHS Secretary Napolitano joined White House Press Secretary Robert Gibbs and Assistant to the President for Counterterrorism and Homeland Security John Brennan to announce several recommendations DHS has made to the President for improving the technology and procedures used to protect air travel from acts of terrorism. (This announcement followed the 25 Dec'09 Delta/Northwest Airlines Flight 253 terror attack.) Secretary Napolitano out

Bingham, Philip R [ORNL; White, Tim [Pacific Northwest National Laboratory (PNNL); Cespedes, Ernesto [Idaho National Laboratory (INL); Bowerman, Biays [Brookhaven National Laboratory (BNL); Bush, John [Battelle

2010-11-01T23:59:59.000Z

379

Science and Technology Review April/May 2011  

SciTech Connect (OSTI)

At Lawrence Livermore National Laboratory, the focus is on science and technology research to ensure the nation's security. That expertise is also applied to solve other important national problems in energy, bioscience, and the environment. Science & Technology Review is published eight time a year to communicate, to a broad audience, the Laboratory's scientific and technological accomplishments in fulfilling its primary missions. The publication's goal is to help readers understand these accomplishments and appreciate their value to the individual citizen, the nation, and the world. In this issue for April/May 2011, the features are 'Dealing with the Nonlinear Battlefield' and 'From Video to Knowledge.' Research highlights are 'Kinetic Models Predict Biofuel Efficiency,' Going Deep with MEGa-Rays' and 'Energy on Demand.'

Nikolic, R J

2011-03-03T23:59:59.000Z

380

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

382

E-Print Network 3.0 - art science technology Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science technology Search Powered by Explorit Topic List Advanced Search Sample search results for: art science technology Page: << < 1 2 3 4 5 > >> 1 The Post-Diploma Bachelor of...

383

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP), Academia Sinica  

E-Print Network [OSTI]

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP Science and Technology (MST) graduate program: (1) Chemical dynamics and molecular spectroscopy, and transient species, and covers mechanisms involved in photodissociation, reactive scattering, energy transfer

384

Geospatial Information Science and Technology Minor The Geospatial Information Science and Technology Minor is available to any current UC Berkeley student in good academic  

E-Print Network [OSTI]

Seminar: Mobile City Chronicles: Gaming with New Technologies of Detection and Security (Note: There mayGeospatial Information Science and Technology Minor The Geospatial Information Science and Technology Minor is available to any current UC Berkeley student in good academic standing. The deadline

Silver, Whendee

385

Long-Term Stewardship Program Science and Technology Requirements  

SciTech Connect (OSTI)

Many of the United States hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program抯 mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

Joan McDonald

2002-09-01T23:59:59.000Z

386

A Security Definition for Multi Secret Sharing and a Scheme Based Massoud Hadian Dehkordi, Iran University of Science and Technology  

E-Print Network [OSTI]

, Iran University of Science and Technology Reza Ghasemi, Iran University of Science and Technology Since. Ghasemi, The School of Mathematics, Iran University of Science and Technology, Tehran, Iran mhadian

387

JOYCE Y. WONG Departments of Biomedical Engineering and Materials Science & Engineering  

E-Print Network [OSTI]

JOYCE Y. WONG Professor Departments of Biomedical Engineering and Materials Science & Engineering, Departments of Biomedical Engineering & Materials Science & Engineering (2013-) Co-Director, Affinity Research - ) Associate Chair, Graduate Studies, Department of Biomedical Engineering (2006-2010) Associate Director

388

Technology and Risk Sciences Program. FY99 Annual Report  

SciTech Connect (OSTI)

In making the transition from weapons production to environmental restoration, DOE has found that it needs to develop reliable means of defining and understanding health and environmental risks and of selecting cost-efficient environmental management technologies so that cleanup activities can be appropriately directed. Through the Technology and Risk Sciences Project, the Entergy Spatial Analysis Research Laboratory attempts to provide DOE with products that incorporate spatial analysis techniques in the risk assessment, communication, and management processes; design and evaluate methods for evaluating innovative environmental technologies; and collaborate and access technical information on risk assessment methodologies, including multimedia modeling and environmental technologies in Russia and the Ukraine, while in addition training and developing the skills of the next generation of scientists and environmental professionals.

Regens, James L.

2000-01-01T23:59:59.000Z

389

Science. Technology. Innovation. W I N T E R 2 0 0 4  

E-Print Network [OSTI]

Science. Technology. Innovation. W I N T E R 2 0 0 4 Inside | Page 15 Spectral library helps's leadersincreasingly turn to science and technology for information to help them make important decisions technology, fundamental science and national security, discuss how each area of research at PNNL addresses

390

Society of Wood Science and Technology Convention 10-12 November 2008, Concepcin, Chile  

E-Print Network [OSTI]

Society of Wood Science and Technology Convention 10-12 November 2008, Concepci贸n, Chile Global #12;Society of Wood Science and Technology Convention 10-12 November 2008, Concepci贸n, Chile Subjects;Society of Wood Science and Technology Convention 10-12 November 2008, Concepci贸n, Chile Main sources

391

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

392

Materials Development Program: Ceramic Technology Project bibliography, 1984--1992  

SciTech Connect (OSTI)

The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

Not Available

1994-03-01T23:59:59.000Z

393

A New Framework for Science and Technology Policy  

SciTech Connect (OSTI)

The usual divisions of science and technology into pure research applied research, development, demonstration, and production creates impediments for moving knowledge into socially useful products and services. This failing has been previously discussed without concrete suggestions of how to improve the situation. In the proposed framework the divisive and artificial distinctions of basic and applied are softened, and the complementary and somewhat overlapping roles of universities, corporations, and federal labs are clarified to enable robust partnerships. As a collegial group of scientists and technologists from industry, university, and government agencies and their national laboratories, we have worked together to clarify this framework. We offer the results in hopes of improving the results from investments in science and technology and thereby helping strengthen the social contract between the public and private investors and the scientists-technologists.

VanDevender, J.P.

1999-03-04T23:59:59.000Z

394

Year 1 Progress Report Computational Materials and Chemical Sciences Network Administration  

SciTech Connect (OSTI)

This document reports progress on the project 揅omputational Materials and Chemical Sciences Network Administration, which is supported by DOE BES Grant DE-FG02-02ER45990 MOD 08. As stated in the original proposal, the primary goal of this project is to carry out the scientific administrative responsibilities for the Computational Materials and Chemical Sciences Network (CMCSN) of the U.S. Department of Energy, Office of Basic Energy Sciences. These responsibilities include organizing meetings, publishing and maintaining CMCSN抯 website, publishing a periodic newsletter, writing original material for both the website and the newsletter, maintaining CMCSN documentation, editing scientific documents, as needed, serving as liaison for the entire Network, facilitating information exchange across the network, communicating CMCSN抯 success stories to the larger community and numerous other tasks outside the purview of the scientists in the CMCSN. Given the dramatic increase in computational power, advances in computational materials science can have an enormous impact in science and technology. For many of the questions that can be addressed by computation there is a choice of theoretical techniques available, yet often there is no accepted understanding of the relative strengths and effectiveness of the competing approaches. The CMCSN fosters progress in this understanding by providing modest additional funding to research groups which engage in collaborative activities to develop, compare, and test novel computational techniques. Thus, the CMCSN provides the 揼lue money which enables different groups to work together, building on their existing programs and expertise while avoiding unnecessary duplication of effort. This includes travel funding, partial postdoc salaries, and funding for periodic scientific meetings. The activities supported by this grant are briefly summarized below.

Rehr, John J.

2012-08-02T23:59:59.000Z

395

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process Modelling, H. K. D. H. Bhadeshia  

E-Print Network [OSTI]

Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP10, Process.璄. Svensson. The metallurgy of the welded joint can be categorised into two major regions, the fusion zone

Cambridge, University of

396

National conference on environmental remediation science and technology: Abstracts  

SciTech Connect (OSTI)

This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

NONE

1998-12-31T23:59:59.000Z

397

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

materials and technologies to reduce industry's consumption of oil, natural gas, and electricity won the Ohio Governor's Award for Energy Efficiency in 2006. With assistance from ORNL and its for turbochargers used in truck diesel engines. Three years ago, U.S. diesel engine companies were install- ing

Pennycook, Steve

398

Roadmap: Technology Bachelor of Science [AT-BS-TECH  

E-Print Network [OSTI]

Reasoning TECH 10001 Information Technology 3 TECH 13580 Engineering Graphics I 3 TECH 20002 Materials] MATH 11022 Trigonometry 3 Fulfills Kent Core Additional TECH 23581 Computer-Aided Engineering Graphics offered on Regional Campuses only Semester Four: [14-16 Credit Hours] TECH 20001 Energy/Power 3 TECH

Sheridan, Scott

399

Universit de Nice Sophia Antipolis UFR Sciences cole Doctorale Sciences & Technologies de l'Information et de la Communication  

E-Print Network [OSTI]

Universit茅 de Nice Sophia Antipolis 颅 UFR Sciences ?cole Doctorale Sciences & Technologies de l l' Universit茅 de Nice Sophia Antipolis Philosophi忙 Doctor (Ph.D.) of Sciences of University Nice Sophia Antipolis Sp茅cialit茅: INFORMATIQUE 颅 Computer Science par 颅 by Nicaise Eric CHOUNGMO FOFACK

Paris-Sud XI, Universit茅 de

400

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

115 CSE Electrical and Computer Engineering 225 Nuclear Science-8pd / 407 Nuclear Science 9-10pd Engineering 221 MAE-A Nuclear Engineering Sciences 214 Nuclear Science (Next to Journalism Bldg) StudentEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Director, School of Materials Science and Engineering College of Engineering & Science, Clemson University, Clemson SC  

E-Print Network [OSTI]

University, Clemson SC Clemson University invites applications and nominations for the position of Director of the School of Materials Science and Engineering. Clemson University is the land grant institution of South pursues its service mission, and in the continued pursuit of government and industry funding for research

Bolding, M. Chad

402

Material Science for Quantum Computing with Atom Chips  

E-Print Network [OSTI]

In its most general form, the atom chip is a device in which neutral or charged particles are positioned in an isolating environment such as vacuum (or even a carbon solid state lattice) near the chip surface. The chip may then be used to interact in a highly controlled manner with the quantum state. I outline the importance of material science to quantum computing (QC) with atom chips, where the latter may be utilized for many, if not all, suggested implementations of QC. Material science is important both for enhancing the control coupling to the quantum system for preparation and manipulation as well as measurement, and for suppressing the uncontrolled coupling giving rise to low fidelity through static and dynamic effects such as potential corrugations and noise. As a case study, atom chips for neutral ground state atoms are analyzed and it is shown that nanofabricated wires will allow for more than $10^4$ gate operations when considering spin-flips and decoherence. The effects of fabrication imperfections and the Casimir-Polder force are also analyzed. In addition, alternative approaches to current-carrying wires are briefly described. Finally, an outlook of what materials and geometries may be required is presented, as well as an outline of directions for further study.

Ron Folman

2011-09-12T23:59:59.000Z

403

Layered Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Layered Cathode Materials presented by Michael Thackeray Chemical Sciences and Engineering Division, Argonne Annual Merit Review DOE Vehicle Technologies Program Washington, D.C....

404

Science and Engineering Alliance, Inc. (SEA) Activities to Increase Participation of Students from Underrepresented Groups in Science, Technology, Engineering and Mathematics (STEM) Programs  

SciTech Connect (OSTI)

To Increase Participation of Students from Underrepresented Groups in Science, Technology, Engineering and Mathematics (STEM) Programs.

Robert L. Shepard, PhD.

2012-04-30T23:59:59.000Z

405

WESTERN NEW YORK SCIENCE AND TECHNOLOGY FORUM Horizons of the Sciences 2012/2013  

E-Print Network [OSTI]

Use of Modern Technology for Reduction of Earthquake Damage in Building and Bridge Structures" October CHARLOTTE LINDQVIST, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY "Origins, NYS Department of Health, Buffalo, NY "Medical Entomology in Service to the Public" January 9 4:30 PM

McCombe, Bruce D.

406

WESTERN NEW YORK SCIENCE AND TECHNOLOGY FORUM Horizons of the Sciences 2012/2013  

E-Print Network [OSTI]

Use of Modern Technology for Reduction of Earthquake Damage in Building and Bridge Structures" October LINDQVIST, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY "Origins of the Polar, NYS Department of Health, Buffalo, NY "Medical Entomology in Service to the Public" January 9 4:30 PM

McCombe, Bruce D.

407

Journal of Materials Education Vol. 33 (3-4): 141 -148 (2011) INTEGRATION OF MATERIALS SCIENCE IN THE EDUCATION OF  

E-Print Network [OSTI]

Chemistry, University Siegen, 57068 Siegen, Germany; and Department of Polymer Science and Engineering Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North creativity and curiosity for scientific problems are challenged. This ambitious concept that can be conducted

North Texas, University of

408

Sandia National Laboratories: Research: Materials Science: Image Gallery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecoveryTop LDRD PublicationsMaterials Science

409

Review and evaluation of the Office of Science and Technology`s Community Leaders Network  

SciTech Connect (OSTI)

This report constitutes a review and evaluation of the Community Leaders Network (CLN), an informally structured national stakeholder group sponsored by the Department of Energy (DOE) Environmental Management (EM) Program`s Office of Science and Technology (OST) to obtain citizen input into the technology research and development programs of the OST. Since the CLN`s inception in 1993, its participants, currently numbering about 35 members mostly from jurisdictions hosting DOE waste management and environmental remediation sites, and its clients (i.e., OST) have invested substantial resources to develop the capability to enhance technology development and deployment activities through proactive stakeholder involvement. The specific objectives of the CLN are to: provide feedback and input to OST on technology development activities; provide information on OST ideas and approaches to key stakeholder groups, and provide input to OST on stakeholder concerns and involvement.

Carnes, S.A.; Schweitzer, M.; Peelle, E.R.

1997-08-01T23:59:59.000Z

410

FWP executive summaries. Basic Energy Sciences/Materials Sciences Programs (SNL/NM)  

SciTech Connect (OSTI)

This report is divided into: budget, capital equipment requests, general programmatic overview and institutional issues, DOE center of excellence for synthesis and processing of advanced materials, industrial interactions and technology transfer, and research program summaries (new proposals, existing programs). Ceramics, semiconductors, superconductors, interfaces, CVD, tailored surfaces, adhesion, growth and epitaxy, boron-rich solids, nanoclusters, etc. are covered.

Samara, G.A.

1994-01-01T23:59:59.000Z

411

The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry  

E-Print Network [OSTI]

) project. The general scope of the work was to determine possible applications of smart materials DoE facilities. The project started with the selection of types of smart materials and technologies1 The Use of Smart Materials Technologies in Radiation Environment and Nuclear Industry Victor

Giurgiutiu, Victor

412

FBIS report. Science and technology: Japan, May 7, 1996  

SciTech Connect (OSTI)

;Partial Contents: Japan: FH1 Aerospace Division Executive on UAV R&D; JapaN: MHI Delivers First F-2 Flight Test Model; Nuclear Technologies; Japan: Nuclear Material Research in Cross-Over Research Project; Japan: MITI To Subsidize Development of Cryptography; Defense Industries; Japan: JADI Announces FY96 Major Events Schedule; Japan: Rollout Ceremony Held for First OH-X Flight Test Model; and Japan: KHI Weapons Designer OH-X Development.

NONE

1996-05-07T23:59:59.000Z

413

Nuclear Materials Science:Materials Science Technology:MST-16:LANL:Los  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&D Consortium includesEnergy

414

Transcript of STFC's corporate film Science and technology are amazing worlds of discovery and opportunity.  

E-Print Network [OSTI]

Transcript of STFC's corporate film Science and technology are amazing worlds of discovery and opportunity. STFC, the Science and Technology Facilities Council is shaping future science in the UK. With our to harness its own amazing processes ... fusion... a new clean energy source, using sea water as a fuel

415

Welcome to Greenhouse Gases: Science and Technology: Editorial  

SciTech Connect (OSTI)

This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

Oldenburg, C.M.; Maroto-Valer, M.M.

2011-02-01T23:59:59.000Z

416

Water Science and Technology Board annual report 1988  

SciTech Connect (OSTI)

This annual report of the Water Science and Technology Board (WSTB) summarizes the activities of the Board and its subgroups during 1988, its sixth year of existence. Included are descriptions of current and recently completed projects, new activities scheduled to begin in 1989, and plans for the future. The report also includes information on Board and committee memberships, program operational features, and reports produced during the past several years. This annual report is intended to provide an introduction to the WSTB and summary of its program for the year.

Not Available

1989-01-01T23:59:59.000Z

417

Office of Science and Technology&International Year EndReport - 2005  

SciTech Connect (OSTI)

Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repository total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).

Bodvarsson, G.S.

2005-10-27T23:59:59.000Z

418

Evaluating the Effectiveness of Mathematics, Science, and Technology Teacher Preparation Academies in Texas  

E-Print Network [OSTI]

1 EVALUATING THE EFFECTIVENESS OF MATHEMATICS, SCIENCE, AND TECHNOLOGY TEACHER PREPARATION ACADEMIES IN TEXAS A Dissertation by DANIELLE BAIRRINGTON BROWN Submitted to the Office of Graduate Studies of Texas A&M University..., and Technology Teacher Preparation Academies in Texas Copyright 2011 Danielle Bairrington Brown 3 EVALUATING THE EFFECTIVENESS OF MATHEMATICS, SCIENCE, AND TECHNOLOGY TEACHER PREPARATION ACADEMIES IN TEXAS A Dissertation by DANIELLE...

Brown, Danielle Bairrington

2012-07-16T23:59:59.000Z

419

EGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering  

E-Print Network [OSTI]

& Engineering E115 CSE Electrical and Computer Engineering 1084 Weimer Hall 8pd / 407 Nuclear Science 9-10 pd-A Nuclear Engineering Science 214 Nuclear Science (Next to Journalism Bldg) Student Success 210 Weil HallEGN 1002 Intro to Engineering Fall 2010 Sections listed under Materials Science and Engineering

Schwartz, Eric M.

420

Science and Technology Review January/February 2012  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Dawn of a New Era of Scientific Discovery - Commentary by Edward I. Moses; (2) At the Frontiers of Fundamental Science Research - Collaborators from national laboratories, universities, and international organizations are using the National Ignition Facility to probe key fundamental science questions; (3) Livermore Responds to Crisis in Post-Earthquake Japan - More than 70 Laboratory scientists provided round-the-clock expertise in radionuclide analysis and atmospheric dispersion modeling as part of the nation's support to Japan following the March 2011 earthquake and nuclear accident; (4) A Comprehensive Resource for Modeling, Simulation, and Experiments - A new Web-based resource called MIDAS is a central repository for material properties, experimental data, and computer models; and (5) Finding Data Needles in Gigabit Haystacks - Livermore computer scientists have developed a novel computer architecture based on 'persistent' memory to ease data-intensive computations.

Nikolic, R J

2011-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Wood and Fiber Science, 36(1), 2004, pp. 1725 2004 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 36(1), 2004, pp. 17颅25 2004 by the Society of Wood Science and Technology FUNDAMENTALS OF VERTICAL DENSITY PROFILE FORMATION IN WOOD COMPOSITES. PART III. MDF DENSITY FORMATION DURING of Wood Science and Forest Products 210 Cheatham Hall, Virginia Tech Blacksburg, VA 24061-0323 and Timothy

Wang, Siqun

422

Wood and Fiber Science, 36(1), 2004, pp. 7183 2004 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 36(1), 2004, pp. 71颅83 2004 by the Society of Wood Science and Technology (Lenth and Kamke 1996). Interest in predicting the consolidation be- havior of wood strand mats has led that strand geometry affects the relative void volume in a mat. #12;72 WOOD AND FIBER SCIENCE, JANUARY 2004, V

423

Invention and Outreach: The Center for the Science and Engineering of Materials  

E-Print Network [OSTI]

Invention and Outreach: The Center for the Science and Engineering of Materials THE CENTER FOR THE SCIENCE AND ENGINEERING OF MATERIALS (CSEM), under the direction of Professor of Chemical Engineering research and educational aspects of polymeric, structural, photonic, and ferroelectric materials

Haile, Sossina M.

424

Towards quantification of the role of materials innovation in overall technological development  

E-Print Network [OSTI]

This article presents a method for quantitatively assessing the role of materials innovation in overall technological development. The method involves classifying the technical changes underlying the overall innovation ...

Magee, Christopher L.

425

Water Science and Technology Board annual report 1987  

SciTech Connect (OSTI)

In 1982, the National Research Council chose to recognize the importance of water resource issues by establishing the Water Science and Technology Board (WSTB). During the five years since its first meeting in November 1982, the WSTB has grown and matured. The WSTB has met 14 times to provide guidance and plan activities. Under the WSTB's direction, committees of experts have conducted approximately 30 studies on a broad array of topics, from dam safety to irrigation-induced water quality problems to ground water protection strategies. Studies have ranged in scope from the oversight of specific agency projects and programs to broader scientific reviews, such as a disciplinary assessment of the hydrologic sciences initiated in 1987. In all cases, studies have the general theme of ultimately improving the scientific and technological bases of programs of water management and environmental quality. This fifth annual report of the WSTB summarizes the Board's accomplishments during 1987, its current activities, and its plans for the future. The report also includes information on Board and committee memberships, program organizations, and the reports produced. The report should provide the reader with a basic understanding of the WSTB's interests, achievements, and capabilities. The WSTB welcomes inquiries and suggestions concerning its activities and will provide more detailed information on any aspects of its work to those interested.

Not Available

1988-01-01T23:59:59.000Z

426

Composites Science and Technology, Vol. 64, no. 7-8, pp. 1011-1020 (2004) Comparison of Two Models of SWCN Polymer Composites  

E-Print Network [OSTI]

developed to predict the macroscopic behavior of composite materials reinforced with typical carbon fibers composite materials has attracted significant attention since their discovery more than a decade ago [1, 2Composites Science and Technology, Vol. 64, no. 7-8, pp. 1011-1020 (2004) Comparison of Two Models

Odegard, Gregory M.

427

Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Environmental Health and Safety 颅 Environmental Technology 颅 Associate of Applied Science Environmental Geology 3 Fulfills Kent Core Basic Sciences Semester Four: [14-15 Credit Hours] CHEM 10052 Social Sciences (3 credit hours) 3 Basic Sciences (3 credit hours) Fulfilled in this major with CHEM

Sheridan, Scott

428

Stevens has introduced a new program in Science and Technology Studies within the  

E-Print Network [OSTI]

in urgent need of scientific in- novation are numerous and make headlines every day: global climate change degrees: the B.S. in Science, Technology & Society and the B.A. in Science Communication. THE SCIENCE COMMUNICATION MAJOR Stevens' Science Communication program will teach you the most effective methods to convey

Yang, Eui-Hyeok

429

GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

430

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network [OSTI]

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National. The bioenergy supply chain, from crop to customer, is a spatiotemporal process, and geospatial science provides. This includes geospatially integrated modeling to assess feedstock production, feedstock transportation

431

Sandia Technology: Engineering and science accomplishments, February 1995  

SciTech Connect (OSTI)

Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

NONE

1995-02-01T23:59:59.000Z

432

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

SciTech Connect (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

433

Quadrennial Technology Review Strategy Videos with Under Secretary for Science Steven Koonin  

Broader source: Energy.gov [DOE]

?In these videos, Under Secretary for Science Steven Koonin describes some of the questions for which the Department is asking for public input for the Quadrennial Technology Review .

434

Epistemologies of uncertainty : governing CO2 capture and storage science and technology  

E-Print Network [OSTI]

This thesis progresses from a science and technology studies (STS) perspective to consider the ways that expert stakeholders perceive and communicate uncertainties and risks attached to carbon ...

Evar, Benjamin

2014-11-27T23:59:59.000Z

435

School of Materials Science and Engineering, Harbin Institute of Technology,  

E-Print Network [OSTI]

bilayer plate withstands the blast without any fracturing. Amini et al. 7 also addressed the effect on the front face of the plate, it may actually en- hance the destructive effect of the blast, promoting. Dynamic mechanical analysis was conducted to study the effect of the fly ash volume fraction

Nemat-Nasser, Sia

436

NREL: Solar Research - Materials and Chemical Science and Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resource assessment andWorking with Us

437

About Materials Science Technology:MST: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARMStreamsUSBudgetEnterpriseFermilab valuesAbout

438

Facts and figures for the chemistry and materials science directorate (March 1997)  

SciTech Connect (OSTI)

This document contains a wide range of budgetary, personnel, and other administrative information about LLNL and the Chemistry and Materials Science Directorate.

Newkirk, L.

1997-03-01T23:59:59.000Z

439

Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop  

SciTech Connect (OSTI)

The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

Burk, Linda H.

2014-12-16T23:59:59.000Z

440

Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97  

SciTech Connect (OSTI)

This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

Newkirk, L.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Teachers' Perceptions of Effective Science, Technology, and Mathematics Professional Development and Changes in Classroom Practices  

E-Print Network [OSTI]

was developed. Data from two programs that provided professional development to teachers in the areas of technology, mathematics, and science was used to inform the conceptual framework. These two programs were Target Technology in Texas (T3) and Mathematics...

Boriack, Anna Christine

2013-04-11T23:59:59.000Z

442

Delft university of technology Faculty of electrical engineering, mathematics and computer science  

E-Print Network [OSTI]

Delft university of technology Faculty of electrical engineering, mathematics and computer science-Lagrangian method" Adriaan Sillem Delft university of technology Daily supervisors Responsible professor Dr.ir. A. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.5 Conservation of energy

Vuik, Kees

443

Universit des Sciences et Technologies de Lille Numro d'Ordre: 3506 Anne: 2005  

E-Print Network [OSTI]

networks technologies are useless. Managing services consists in providing a reliable and easy wayifL Universit des Sciences et Technologies de Lille Num閞o d'Ordre: 3506 Ann閑: 2005 Th鑣e

Paris-Sud XI, Universit de

444

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energy and  

E-Print Network [OSTI]

Institute for Critical Technology and Applied Science Seminar Series Polymer Membranes for Energyst century for reliable, sustainable, efficient access to clean energy and clean water for Excellence in Industrial Gases Technology (2008), and the Strategic Environmental Research and Development

Crawford, T. Daniel

445

UWM-CBU Concrete Materials Technology Series Program No. 71 Workshop on GREEN CONSTRUCTION MATERIALS USING COAL-COMBUSTION PRODUCTS  

E-Print Network [OSTI]

: Classification (Class F, Class C, Class N, and SDA & Clean-Coal Ash); Chemical Composition; PhysicalUWM-CBU Concrete Materials Technology Series Program No. 71 Workshop on GREEN CONSTRUCTION MATERIALS USING COAL-COMBUSTION PRODUCTS Center for By-Products Utilization NONPROFIT ORGANIZATION 3200

Saldin, Dilano

446

Journal of Hazardous Materials 264 (2014) 246253 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

to Clostridium sp. and effects on uranium biosorption C. Zhanga,b, , S.V. Malhotrab,1 , A.J. Francisc,d a College of Environmental Science and Engineering, Nankai University, Tianjin, China 300071 b Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07104 USA c Environmental Sciences

Ohta, Shigemi

447

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network [OSTI]

Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. ThygesenProceedings of the 27th Ris酶 International Symposium on Materials Science: Polymer Composite

448

Vehicle Technologies Office Merit Review 2014: Novel Anode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

449

Vehicle Technologies Office Merit Review 2014: Multi-Material...  

Energy Savers [EERE]

Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

450

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS...  

Broader source: Energy.gov (indexed) [DOE]

also states that there are other competitive technologies, specifically amine-based absorption , which are mature and have significant advantages associated with their incumbency...

451

revised: 1/5/2012 Bachelor of Science in Information Technology  

E-Print Network [OSTI]

revised: 1/5/2012 Bachelor of Science in Information Technology Health Information Technology Major The program in Health Information Technology (HIT) is a bachelor's completion degree that addresses the technology and processes used by health care providers and related organizations. The program includes

Dollar, Anna

452

THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS  

E-Print Network [OSTI]

THE UNIVERSITY OF NEW MEXICO THE CENTER FOR HIGH TECHNOLOGY MATERIALS Photonic Crystals: Part I.J. Malloy1 1Center for High Technology Materials University of New Mexico 2Lockheed Martin Denver, Colorado 3Electrical and Computer Engineering Department University of New Mexico #12;THE UNIVERSITY OF NEW

Mojahedi, Mohammad

453

Requirements for a Minor in Materials Science and Engineering 1. A minor in Materials Science and Engineering can be earned through completion of 20 credits  

E-Print Network [OSTI]

of Fuel Cells and Batteries ENG MS/ME 530 Introduction to Micro and Nanomechanics of Solids ENG MS/ME 555 MEMS Fabrication and Materials ENG MS/ME 534 Materials Technology for Microelectronics CAS PY 451 program. 4. Students must have a declared major on record in order to apply for the Minor in Materials

454

Science and Technology Review July/August 2009  

SciTech Connect (OSTI)

This month's issue has the following articles: (1) Game-Changing Science in the National Interest - Commentary by Tomas Diaz de la Rubia; (2) Preventing Close Encounters of the Orbiting Kind - The Testbed Environment for Space Situational Awareness is improving capabilities for monitoring and detecting threats to space operations; (3) A CAT Scanner for Nuclear Weapon Components - A new x-ray system images nuclear weapon components in three dimensions, promising unprecedented resolution and clarity; (4) Mass-Producing Positrons - Scientists reveal a new method for yielding a greater density of positrons at a much faster rate inside a laboratory setting; and (5) The Next Generation of Medical Diagnostic Devices - Portable medical diagnostic devices using ultrawideband technology help first responders evaluate injuries in emergency situations and could improve overall health care.

Bearinger, J P

2009-06-29T23:59:59.000Z

455

Using Mobile Technology and Social Networking to Crowdsource Citizen Science  

E-Print Network [OSTI]

Using Mobile Technology and Social Networking to CrowdsourceFall 2012 Using Mobile Technology and Social Networking toAbstract Using Mobile Technology and Social Networking to

Robson, Christine

2012-01-01T23:59:59.000Z

456

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network [OSTI]

AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

457

Science and Technology of the 10-MA Spherical Tori  

SciTech Connect (OSTI)

The Spherical Torus (ST) configuration has recently emerged as an example of confinement concept innovation that enables attractive steps in the development of fusion energy. The scientific potential for the ST has been indicated by recent encouraging results from START,2 CDX-U, and HIT. The scientific principles for the D-fueled ST will soon be tested by NSTX (National Spherical Torus Experiment3) in the U.S. and MAST (Mega-Amp Spherical Tokamak4) in the U.K. at the level of l-2 MA in plasma current. More recently, interest has grown in the U.S. in the possibility of near-term ST fusion burn devices at the level of 10 MA in plasma current. The missions for these devices would be to test burning plasma performance in a small, pulsed D-T-fueled ST (i.e., DTST) and to develop fusion energy technologies in a small steady state ST-based Volume Neutron Source (VNS). This paper reports the results of analysis of the key science and technology issues for these devices.

Peng, Y-K.M.

1999-11-14T23:59:59.000Z

458

E-Print Network 3.0 - activity source material Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and gain-material for new lasers. The talk... Nano-Materials and Ultrafast Optoelectronic Devices" Abstract: Today's progress in the materials... sciences and nano-technologies...

459

Long-Term Lightweight MaterialVehicle Technologies Office: Long...  

Broader source: Energy.gov (indexed) [DOE]

Researchs Research In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75...

460

Vehicle Technologies Office: Short-Term Lightweight Materials...  

Broader source: Energy.gov (indexed) [DOE]

face barriers in cost and manufacturing. Manufacturers also face issues with joining, corrosion, repair, and recycling when they combine aluminum with other materials. VTO has...

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Co-op and Internship Program Department of Chemical Engineering and Materials Science  

E-Print Network [OSTI]

Co-op and Internship Program Department of Chemical Engineering and Materials Science June 2013 Engineering and Materials Science (CEMS) supports both Industrial Internships and Co-op Industrial Assignments. The Internship program also integrates technical employment and academic studies but it is shorter in length

Janssen, Michel

462

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822  

E-Print Network [OSTI]

BSc in Nuclear Science and Materials H821 MEng in Nuclear Engineering H822 Research and education in nuclear engineering, waste management and decommissioning holds the key to sustainable energy production in Nuclear Science and Materials and MEng in Nuclear Engineering degrees bring together a range of modules

Miall, Chris

463

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15颅23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

464

Colorado State University's Information Science and Technology Center (ISTeC)  

E-Print Network [OSTI]

Colorado State University's Information Science and Technology Center (ISTeC) presents one lecture and a Golden Core Member of the IEEE Computer Society. He has served as Editor-in-Chief of the IEEE Science and Technology Center) is a university-wide organization for promoting, facilitating

465

Extratropical cyclone occlusion Journal: McGraw Hill 2008 Yearbook of Science & Technology  

E-Print Network [OSTI]

://mc.manuscriptcentral.com/yearbook McGraw Hill Yearbook of Science & Technology 2008 #12;ForReview EXTRATROPICAL CYCLONE OCCLUSIONForReview Extratropical cyclone occlusion Journal: McGraw Hill 2008 Yearbook of Science & Technology Manuscript ID: draft Manuscript Type: Yearbook Article Date Submitted by the Author: n/a Complete

Williams, Justin

466

Oil & Gas Science and Technology --Rev. IFP Energies nouvelles Copyright 2010 IFPEN Energies nouvelles  

E-Print Network [OSTI]

Oil & Gas Science and Technology -- Rev. IFP Energies nouvelles Copyright 漏 2010 IFPEN Energies to an effective thermal management system and to maintain safety, perfor- #12;2 Oil & Gas Science and Technology of Michigan, Ann Arbor, Michigan, 48109 - USA 2 U.S. Army Tank Automotive Research, Development

Stefanopoulou, Anna

467

STATEMENT OF CONSIDERATIONS REQUEST BY ADVANCED TECHNOLOGY MATERIALS...  

Broader source: Energy.gov (indexed) [DOE]

to practice in the course of ATMI's subcontract work for United Technologies Corporation Fuel Cells (UTCFC) under Cooperative Agreement Number DE-FC04-02AL67616 entitled "The...

468

Vehicle Technologies Office Merit Review 2014: Overiew of Materials...  

Energy Savers [EERE]

R&D Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

469

Institute for Astronomy The Royal Observatory Edinburgh comprises the UK Astronomy Technology Centre of the Science and Technology  

E-Print Network [OSTI]

Institute for Astronomy The Royal Observatory Edinburgh comprises the UK Astronomy Technology Centre of the Science and Technology Facilities Council, the Institute for Astronomy of the University of Edinburgh and the ROE Visitor Centre. Undergraduate study at the IfA The Institute for Astronomy (If

Tittley, Eric

470

U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center  

E-Print Network [OSTI]

1 U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center Summary of the Materials Management Stakeholder Committee Teleconference Wednesday, July 29, 2009 meeting of the Materials Management Committee (March 31, 2009): Because it is not always clear whether

471

Document: L1334 | Category: Physical Science, Materials License Status: Available for licensing || Texas Industry Cluster: Biotechnology and Life Sciences  

E-Print Network [OSTI]

for licensing || Texas Industry Cluster: Biotechnology and Life Sciences Nanocomposite membranes for energy. These markets include hydrogen production, medical devices, advanced materials, and drug delivery. Development Engineering, The University of Texas at Austin OTC Contact Brian Cummings, Associate Director, Life Sciences

Lightsey, Glenn

472

Before the House Science and Technology Subcommittee on Energy...  

Broader source: Energy.gov (indexed) [DOE]

Office of Facilities and Project Management, Office of Nuclear Physics, Office of Science Subject: DOE's Office of Science Research Applications 9-10-09FinalTestimony(Gillo...

473

Before the House Science and Technology Subcommittee on Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Associate Director Office of Biological and Environmental Research Office of Science Subject: DOE's Office of Science Research Applications 9-10-09FinalTestimony(Palmi...

474

Roadmap: Environmental Health and Safety Environmental Technology Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Environmental Health and Safety 颅 Environmental Technology 颅 Associate of Applied Science 10110 Biological Diversity 4 Fulfills Kent Core Basic Sciences EVHS 20004 Environmental Health CHEM 10050 Fundamentals of Chemistry 3 Fulfills Kent Core Basic Sciences EVHS 20001 Environmental Law 3

Khan, Javed I.

475

Materials technology assessment for a 1050 K Stirling Space Engine design  

SciTech Connect (OSTI)

An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

1988-10-01T23:59:59.000Z

476

Wood and Fiber Science, 36(1), 2004, pp. 107118 2004 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 36(1), 2004, pp. 107颅118 2004 by the Society of Wood Science and Technology FORMOSAN SUBTERRANEAN TERMITE RESISTANCE OF BORATE-MODIFIED STRANDBOARD MANUFACTURED FROM SOUTHERN WOOD, but not on termite mortality. Wood species showed no significant effect on the termite resistance. Correlations

477

Wood and Fiber Science, 37(1), 2005, pp. 95111 2004 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 37(1), 2005, pp. 95颅111 漏 2004 by the Society of Wood Science and Technology SURFACE AND INTERFACIAL CHARACTERIZATION OF WOOD-PVC COMPOSITE: IMAGING MORPHOLOGY AND WETTING wetting behavior of wood-PVC composites in this study. Two-dimensional and time-dependent profiles

478

Wood and Fiber Science, 35(4), 2003, pp. 482498 2003 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 35(4), 2003, pp. 482颅498 2003 by the Society of Wood Science and Technology. INTRODUCTION Strength properties of wood-based compos- ites are related to mean panel density and the density of the average panel density (Kruse et al. 2000). Modeling for the spatial structure of wood composites

479

Wood and Fiber Science, 35(3), 2003, pp. 381396 2003 by the Society of Wood Science and Technology  

E-Print Network [OSTI]

Wood and Fiber Science, 35(3), 2003, pp. 381颅396 2003 by the Society of Wood Science and Technology a feasible application of both methods in wood composite research and in a real-time quality control system wood composites widely 1 This paper (NO: 02-40-0457) is published with the approval of the Director

480

Vehicle Technologies Office: Short-Term Lightweight Materials Research  

Broader source: Energy.gov [DOE]

In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent.

Note: This page contains sample records for the topic "technology materials science" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicle Technologies Office: Short-Term Lightweight Materials...  

Broader source: Energy.gov (indexed) [DOE]

term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60...

482

Materials Technology Support for Radioisotope Power Systems Final Report  

SciTech Connect (OSTI)

Over the period of this sponsored research, UDRI performed a number of materials related tasks that helped to facilitate increased understanding of the properties and applications of a number of candidate program related materials including; effects of neutron irradiation on tantalum alloys using a 500kW reactor, thermodynamic based modeling of the chemical species in weld pools, and the application of candidate coatings for increased oxidation resistance of FWPF (Fine Weave Pierced Fabric) modules.

Daniel P. Kramer; Chadwick D. Barklay

2008-10-07T23:59:59.000Z

483

Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation  

SciTech Connect (OSTI)

The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

Liby, Alan L [ORNL; Rogers, Hiram [ORNL

2013-10-01T23:59:59.000Z

484

RECYCLABILITY CHALLENGES IN "ABUNDANT" MATERIAL-BASED TECHNOLOGIES Annick Anctila  

E-Print Network [OSTI]

growth of photovoltaic markets requires investigating three measurable aspects: Cost, resource-3443957, VMF@BNL.GOV ABSTRACT: Much current research in photovoltaic technology is directed towards using sustainability metrics for large-scale PV growth are low cost and minimum environmental impact. As the numbers

485

Rover Technology Development and Infusion for the 2009 Mars Science Laboratory Mission  

E-Print Network [OSTI]

Rover Technology Development and Infusion for the 2009 Mars Science Laboratory Mission Richard Infusion Abstract This paper provides an overview of the rover technology development, integration, validation, and mission infusion process now being used by the NASA Mars Technology Program. Described

Volpe, Richard

486

Postdoctoral position in microfluidics for life and medical sciences at Technion -Israel Institute of Technology  

E-Print Network [OSTI]

Postdoctoral position in microfluidics for life and medical sciences at Technion - Israel Institute of Technology The Microfluidic Technologies Laboratory at Technion, led by Prof. Moran Bercovici, is seeking of novel bio-microfluidic tools and assays. The Microfluidic Technologies Laboratory (microfluidics

Rimon, Elon

487

Proceedings of the 27th Ris International Symposium on Materials Science  

E-Print Network [OSTI]

Materials for Wind Power Turbines Editors: H. Lilholt, B. Madsen, T.L. Andersen, L.P. Mikkelsen, A. Thygesen crack opening. 1. INTRODUCTION Composite materials (mainly in unidirectional lay-up) are used in windProceedings of the 27th Ris酶 International Symposium on Materials Science: Polymer Composite

488

Materials Science and Engineering A 430 (2006) 189202 Grid indentation analysis of composite microstructure  

E-Print Network [OSTI]

Materials Science and Engineering A 430 (2006) 189颅202 Grid indentation analysis of composite 17 May 2006 Abstract Several composites comprise material phases that cannot be recapitulated ex situ characteristics of naturally occurring material composites. Here, we propose a straightforward application

Van Vliet, Krystyn J.

489

Department of Materials Science and Engineering Four Year Plan (2011-12 Catalog)  

E-Print Network [OSTI]

3 MSE 482 Senior Project II 3 MSE 404L Materials Analysis Lab 1 Technical or engineering elective 3 of Materials MSE 480 Senior Project I MSE 482 Senior Project II 2 6 7 12 11 ENGR 120 IntroductionDepartment of Materials Science and Engineering Four Year Plan (2011-12 Catalog) FALL SEMESTER

Barrash, Warren

490

Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

491

Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

492

Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design  

Broader source: Energy.gov [DOE]

Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles:...

493

The UFA technology for characterization of in situ barrier materials  

SciTech Connect (OSTI)

Site characterizations, choices of remedial strategies for site restoration, and performance assessments of chosen strategies all require knowledge of the transport properties for subsurface materials, such as hydraulic conductivities, diffusion coefficients, sorption properties, and in situ recharge rates. Unsaturated conditions in the vadose zone are especially difficult to investigate because of the extreme variability in the transport properties of geologic materials as a function of water content. A new technique, the Unsaturated Flow Apparatus (UFA), was developed to rapidly attain hydraulic steady-state in all porous/fractured media, including multicomponent/multiphase systems. The larger driving forces obtainable with centrifugation techniques are combined with precision fluid flow through a rotating seal. Hydraulic steady state is achieved in a period of hours to days, instead of months to years, depending on the target water content and intrinsic permeability of the material. Barrier materials such as bentonite slurries, chemical barriers, cements, and asphalt concretes can be rapidly run in the UFA prior to emplacement to fine-tune formulations and identify any site-specific or substrate-specific problems that could not be identified without actual field testing.

Wright, J. [Pacific Northwest Lab., Richland, WA (United States); Conca, J.L. [Washington State Univ. Tri-Cities, Richland, WA (United States)

1994-11-01T23:59:59.000Z

494

York company gets $2 million for efficiency project Industrial Science and Technology Network is one of 58 recent  

E-Print Network [OSTI]

York company gets $2 million for efficiency project Industrial Science and Technology Network Specter. Industrial Science and Technology Network has been awarded the money in a recent round of funding. Industrial Science and Technology Network, 2101 Pennsylvania Ave, specializes in using nanotechnology

Gilchrist, James F.

495

ACS DIVISION OF POLYMERIC MATERIALS: SCIENCE AND ENGINEERING  

E-Print Network [OSTI]

, interpenetrating polymer networks, IPNs. Other topics included the mechanical and morphological aspects of polymers textbook, "Introduction to Physical Polymer Science," with Wiley, 2004. While in retirement, he remains for Polymer Science and Engineering, and served as Education Chairman. His efforts at ACS have included

Gilchrist, James F.

496

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

497

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science  

E-Print Network [OSTI]

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate Important Notes Semester One: [17 Credit Hours] EERT 12000 Electric Circuits I 4 MERT 12000 Engineering

Khan, Javed I.

498

Thomas Jefferson High School for Science & Technology wins...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bowl February 15, 2006 TJHSST Finishing in first place at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and...

499

Diffusion-wave laser radiometric diagnostic quality-control technologies for materials NDE/NDT  

E-Print Network [OSTI]

Diffusion-wave laser radiometric diagnostic quality-control technologies for materials NDE/NDT A in two emerging NDE/NDT technologies. The solution of the ill-posed thermal- wave inverse problem has radiometric NDE metrology capable of measuring the primary photo- injected free carrier parameters

Mandelis, Andreas

500

PNNL's Community Science & Technology Seminar Series Biomedical Research  

E-Print Network [OSTI]

. Advances in modern technologies related to genomics (genes) and proteomics (proteins) promise to usher