National Library of Energy BETA

Sample records for technology light output

  1. Neutron light output and detector efficiency (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency You are accessing a document from the ...

  2. Electroluminescent device having improved light output

    DOE Patents [OSTI]

    Tyan; Yuan-Sheng; Preuss, Donald R.; Farruggia, Giuseppe; Kesel, Raymond A.; Cushman, Thomas R.

    2011-03-22

    An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.

  3. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, M.L.; McNeilly, D.R.

    1984-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phtotransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  4. Light-operated proximity detector with linear output

    DOE Patents [OSTI]

    Simpson, Marc L.; McNeilly, David R.

    1985-01-01

    A light-operated proximity detector is described in which reflected light intensity from a surface whose proximity to the detector is to be gauged is translated directly into a signal proportional to the distance of the detector from the surface. A phototransistor is used to sense the reflected light and is connected in a detector circuit which maintains the phototransistor in a saturated state. A negative feedback arrangement using an operational amplifier connected between the collector and emitter of the transistor provides an output at the output of the amplifier which is linearly proportional to the proximity of the surface to the detector containing the transistor. This direct proportional conversion is true even though the light intensity is varying with the proximity in proportion to the square of the inverse of the distance. The detector may be used for measuring the distance remotely from any target surface.

  5. High lumen compact fluorescents boost light output in new fixtures

    SciTech Connect (OSTI)

    1992-12-31

    Some compact fluorescent lamps aren`t so compact. General Electric (GE), OSRAM, and Philips have been expanding offerings in longer, more powerful, hard wired CFLs that generate enough light to serve applications once limited to conventional fluorescents and metal halide systems. All three of these manufacturers have for some time offered 18- to 40-watt high-output CFLs, which use a fluorescent tube doubled back on itself to produce a lot of light in a compact source. Now GE has introduced an even larger, more powerful 50-watt unit, and OSRAM is soon to follow suit with a 55-watt lamp. These new entries to the field of turbocharged CFLs can provide general lighting at ceiling heights of 12 feet or more as well as indirect lighting, floodlighting, and wall washing. They are such a concentrated source of light that they can provide the desired illumination using fewer lamps and fixtures than would be needed with competing sources.

  6. Universal Lighting Technologies | Open Energy Information

    Open Energy Info (EERE)

    Lighting Technologies Jump to: navigation, search Name: Universal Lighting Technologies Place: Nashville, Tennessee Zip: 37214-3683 Product: Universal Lighting Technologies...

  7. Radioluminescent lighting technology

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

  8. Neutron light output and detector efficiency (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Neutron light output and detector efficiency Citation Details In-Document Search Title: Neutron light output and detector efficiency Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-03-07 OSTI Identifier: 1170660 Report Number(s): LA-UR-12-01236; LA-UR-12-1236

  9. Induction Lighting: An Old Lighting Technology Made New Again | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up

  10. Visible Light Solar Technologies | Open Energy Information

    Open Energy Info (EERE)

    Solar Technologies Place: Albuquerque, New York Zip: 87113 Product: New Mexico-based LED lighting fixture maker. References: Visible Light Solar Technologies1 This article is...

  11. Enhancing the Output of LED Lighting | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing the Output of LED Lighting Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 04.01.12 Enhancing the Output of LED Lighting Adding

  12. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of white light and color vision to the evolutionary ...

  13. Emerging Lighting Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fupwgspring11kinzey.pdf More Documents & Publications Solid-State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting General Service LED Lamps

  14. Laser-Compton Light Source Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-Compton Light Source Technology Laser-Compton light source technology enables production of mono-energetic gamma rays and x rays. In the gamma-ray regime, these sources ...

  15. Common Industrial Lighting Upgrade Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The phosphor materials can be altered to change the color of the visible light from cool ... However, the better color rendering and increased effcacy (or the effciency of the light ...

  16. Promising Technology: Wireless Lighting Occupancy Sensors

    Broader source: Energy.gov [DOE]

    Occupancy sensors and controls detect human presence, and modulate light settings accordingly. When there is no human presence detected, the system can dim or turn off lights. This technology ensures that lights are not used when there are no occupants present, which can lead to significant energy savings.

  17. Government works with technology to boost gas output/usage

    SciTech Connect (OSTI)

    Nicoll, H.

    1996-10-01

    Specially treated ethane gas from fields of the Moomba area in the Cooper basin of South Australia now flows freely through 870 mi of interstate gas pipeline to an end-user in Sydney, New South Wales. This unprecedented usage of ethane is the result of a long-term cooperative agreement. The producer sought to provide the end-user with ethane gas for usage as a petrochemical feedstock to manufacture ethylene and plastic goods. The end-user had strict specifications for a low-CO{sub 2}, very dry ethane product with a small percentage of methane. In order to meet these, the producer committed millions of dollars to construct a high-technology, state-of-the-art ethane treatment facility in the Moomba area, and lay an extensive pipeline. Santos also contracted with the amines supplier to provide a high-performance, deep CO{sub 2} removal solvent with good corrosion prevention characteristics. The paper discusses the Moomba field overflow, gas treatment, government cooperation, and project completion.

  18. Smart Grid Technology Gives Small Business New Light | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not ...

  19. (Lighting and) Solid-State Lighting: Science, Technology, Economic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  20. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging

    SciTech Connect (OSTI)

    Nillius, Peter Klamra, Wlodek; Danielsson, Mats; Sibczynski, Pawel; Sharma, Diksha; Badano, Aldo

    2015-02-15

    Purpose: The authors report on measurements of light output and spatial resolution of microcolumnar CsI:Tl scintillator detectors for x-ray imaging. In addition, the authors discuss the results of simulations aimed at analyzing the results of synchrotron and sealed-source exposures with respect to the contributions of light transport to the total light output. Methods: The authors measured light output from a 490-?m CsI:Tl scintillator screen using two setups. First, the authors used a photomultiplier tube (PMT) to measure the response of the scintillator to sealed-source exposures. Second, the authors performed imaging experiments with a 27-keV monoenergetic synchrotron beam and a slit to calculate the total signal generated in terms of optical photons per keV. The results of both methods are compared to simulations obtained with hybridMANTIS, a coupled x-ray, electron, and optical photon Monte Carlo transport package. The authors report line response (LR) and light output for a range of linear absorption coefficients and describe a model that fits at the same time the light output and the blur measurements. Comparing the experimental results with the simulations, the authors obtained an estimate of the absorption coefficient for the model that provides good agreement with the experimentally measured LR. Finally, the authors report light output simulation results and their dependence on scintillator thickness and reflectivity of the backing surface. Results: The slit images from the synchrotron were analyzed to obtain a total light output of 48 keV{sup ?1} while measurements using the fast PMT instrument setup and sealed-sources reported a light output of 28 keV{sup ?1}. The authors attribute the difference in light output estimates between the two methods to the difference in time constants between the camera and PMT measurements. Simulation structures were designed to match the light output measured with the camera while providing good agreement with the measured LR resulting in a bulk absorption coefficient of 5 × 10{sup ?5} ?m{sup ?1}. Conclusions: The combination of experimental measurements for microcolumnar CsI:Tl scintillators using sealed-sources and synchrotron exposures with results obtained via simulation suggests that the time course of the emission might play a role in experimental estimates. The procedure yielded an experimentally derived linear absorption coefficient for microcolumnar Cs:Tl of 5 × 10{sup ?5} ?m{sup ?1}. To the author’s knowledge, this is the first time this parameter has been validated against experimental observations. The measurements also offer insight into the relative role of optical transport on the effective optical yield of the scintillator with microcolumnar structure.

  1. Beijing Sanyuan Green Lighting Technology Development Co Ltd...

    Open Energy Info (EERE)

    Sanyuan Green Lighting Technology Development Co Ltd Jump to: navigation, search Name: Beijing Sanyuan Green Lighting Technology Development Co., Ltd Place: Beijing, Beijing...

  2. Advanced Nuclear Technology: Advanced Light Water Reactors Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary Advanced Nuclear Technology: Advanced Light Water Reactors ...

  3. Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market 2005 ...

  4. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility ...

  5. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions ...

  6. Technology Development for Light Duty High Efficient Diesel Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty High Efficient Diesel Engines Technology Development for Light Duty High Efficient Diesel Engines Improve the efficiency of diesel engines for light duty applications ...

  7. Sustainable LED Fluorescent Light Replacement Technology

    SciTech Connect (OSTI)

    2011-06-30

    Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

  8. Common Industrial Lighting Upgrade Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Industrial Lighting Upgrade Technologies Common Industrial Lighting Upgrade Technologies This tip sheet provides information on two lighting types and upgrade options, fluorescent lighting and high-bay lighting, for the purpose of improving plant-wide lighting performance. PDF icon Common Industrial Lighting Upgrade Technologies (January 2010) More Documents & Publications Energy Savings Potential of Solid-State Lighting in General Illumination Applications - Report Energy Savings

  9. Adapting Wireless Technology to Lighting Control and Environmental Sensing

    SciTech Connect (OSTI)

    Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

    2005-10-01

    The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.

  10. Brief History of Artificial Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial Lighting Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. Chapter 4: Advancing Clean Electric Power Technologies | Light...

    Energy Savers [EERE]

    Light Water Reactors Chapter 4: Technology Assessments Past, Present, and Future of the ... peacetime uses came online in 1957. Light water reactors (LWRs) are now a mature ...

  12. Solid State Lighting LED Core Technology R&D Roundtable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The document should be referenced as: DOE SSL Program, "Solid State Lighting LED Core Technology R&D Roundtable," November 2015. Authors Monica Hansen LED Lighting Advisors Nnamnor ...

  13. Zhejiang Sunflower Light Energy Science Technology Co Ltd | Open...

    Open Energy Info (EERE)

    Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Sunflower Light Energy Science & Technology Co Ltd Place: Shaoxing, Zhejiang Province, China Zip: 312071...

  14. THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP |

    Energy Savers [EERE]

    Department of Energy THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP THE TENTH ANNUAL SOLID-STATE LIGHTING TECHNOLOGY DEVELOPMENT WORKSHOP More than 230 lighting leaders from across North America gathered in Portland, OR, November 17-18, 2015, for the tenth annual Solid-State Lighting Technology Development Workshop, hosted by DOE. The diverse audience spanned the spectrum of SSL stakeholders, representing lighting, control, and components companies as well as research

  15. Outdoor Solid-State Lighting Technology Deployment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage ... Facility Lighting Retrofit Reduces Annual Energy Use by 76% Phase 2 LEEP Campaign ...

  16. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  17. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    SciTech Connect (OSTI)

    Dinetta, L.C.; Hannon, M.H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

  18. Three SBIR Grants Awarded for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded Three Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology:

  19. Four SBIR Grants Awarded for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology:

  20. FEMP Exterior Solid-State Lighting Technology Pilot | Department...

    Office of Environmental Management (EM)

    & Publications Federal Technology Deployment Pilot: Exterior Solid State Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico Achieves 85% Savings...

  1. Zhejiang Guangyi Light Energy Technologies Co Gytech | Open Energy...

    Open Energy Info (EERE)

    Technologies Co (Gytech) Place: Zhuji, Zhejiang Province, China Sector: Solar Product: Solar products company engaged in PV cell and module as well solar heating and lighting...

  2. Vision 2020: Lighting Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    References: Vision 2020: Lighting Technology Roadmap1 Overview "Continued innovation in lamps and other system components, as well as in design practices, have made...

  3. Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Data | Department of Energy Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data Vehicle Technologies Office AVTA: Light Duty Alternative Fuel and Advanced Vehicle Data The Vehicle Technologies Office (VTO) supports testing and data collection on a wide range of advanced and alternative fuel vehicles and technologies through the Advanced Vehicle Testing Activity (AVTA) . The following table has downloadable performance, reliability, and driver behavior data for selected

  4. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Feedback From Street Lights You use a GPS to provide real-time data from your car. Now, technologists from the Controls, Electronics and Signal Processing... Read More...

  5. Advanced Technology Light Duty Diesel Aftertreatment System

    Broader source: Energy.gov [DOE]

    Light duty diesel aftertreatment system consisting of a DOC and selective catalytic reduction catalyst on filter (SCRF), close coupled to the engine with direct gaseous ammonia delivery is designed to reduce cold start NOx and HC emissions

  6. Advanced Technology Light Duty Diesel Aftertreatment System ...

    Broader source: Energy.gov (indexed) [DOE]

    Passive Catalytic Approach to Low Temperature NOx Emission Abatement Cummins' Next Generation Tier 2, Bin 2 Light Truck Diesel Engine ATP-LD; Cummins Next Generation Tier 2 Bin 2 ...

  7. California Lighting Technology Center (University of California...

    Open Energy Info (EERE)

    gTechnologyCenter(UniversityofCalifornia,Davis)&oldid765625" Feedback Contact needs updating Image needs updating Reference needed Missing content Broken link Other...

  8. FEMP Exterior Solid-State Lighting Technology Pilot

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the Federal Energy Management Program's (FEMP's) exterior solid-state lighting initiative and technology pilot.

  9. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  10. Federal Technology Deployment Pilot: Exterior Solid State Lighting

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project.

  11. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

    2008-12-01

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  12. Science and Technology of Future Light Sources

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z. -X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stöhr, Joachim; Zholents, Alexander

    2009-01-28

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  13. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 timesmore » better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.« less

  14. Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  15. Superconducting RF Linac Technology for ERL Light Sources

    SciTech Connect (OSTI)

    Chris Tennant

    2005-08-01

    Energy Recovering Linacs (ERLs) offer an attractive alternative as drivers for light sources as they combine the desirable characteristics of both storage rings (high efficiency) and linear accelerators (superior beam quality). Using superconducting RF technology allows ERLs to operate more efficiently because of the inherent characteristics of SRF linacs, namely that they are high gradient-low impedance structures and their ability to operate in the long pulse or CW regime. We present an overview of the physics challenges encountered in the design and operation of ERL based light sources with particular emphasis on those issues related to SRF technology. These challenges include maximizing a cavity�������¢����������������s Qo to increase cryogenic efficiency, maintaining control of the cavity field in the presence of the highest feasible loaded Q and providing adequate damping of the higher-order modes (HOMs). If not sufficiently damped, dipole HOMs can drive the multipass beam breakup (BBU) instability which ERLs are particularly susceptible to. Another challenge involves efficiently extracting the potentially large amounts of HOM power that are generated when a bunch traverses the SRF cavities and which may extend over a high range of frequencies. We present experimental data from the Jefferson Lab FEL Upgrade, a 10 mA ERL light source presently in operation, aimed at addressing some of these issues. We conclude with an outlook towards the future of ERL based light sources.

  16. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of ``intelligent` buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  17. Integrated envelope and lighting technologies for commercial buildings

    SciTech Connect (OSTI)

    Selkowitz, S.; Schuman, J.

    1992-07-01

    Fenestration systems are major contributors to peak cooling loads in commercial buildings and thus to HVAC system costs, peak electric demand, and annual energy use. These loads can be reduced significantly through proper fenestration design and the use of daylighting strategies. However, there are very few documented applications of energy-saving daylighted buildings today, which suggests that significant obstacles to efficient fenestration and lighting design and utilization still exist. This paper reports results of the first phase of a utility-sponsored research, development, and demonstration project to more effectively address the interrelated issues of designing and implementing energy-efficient envelope and lighting systems. We hypothesize that daylighting and overall energy efficiency will not be achieved at a large scale until true building integration has been accomplished to some meaningful degree. Moving beyond the vague concept of intelligent' buildings long popular in the design sector, we attempt to integrate component technologies into functional systems in order to optimize the relevant building energy performance and occupant comfort parameters. We describe the first set of integrated envelope and lighting concepts we are developing using available component technologies. Emerging and future technologies will be incorporated in later phases. Because new hardware systems alone will not ensure optimal building performance, we also discuss obstacles to innovation within the design community and proposed strategies to overcome these obstacles.

  18. Energy Department Offers $10 Million for Energy-Saving Lighting Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies.

  19. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    Broader source: Energy.gov [DOE]

    Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary November 2014

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Useful Thermal Output by Energy Source: Industrial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas ...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric ...

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) ...

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) ...

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all ...

  7. New and Underutilized Technology: High Bay LED Lighting

    Broader source: Energy.gov [DOE]

    The following information outlines key deployment considerations for high bay LED lighting within the Federal sector.

  8. Technology Development for Light Duty High Efficient Diesel Engines

    Broader source: Energy.gov [DOE]

    Improve the efficiency of diesel engines for light duty applications through technical advances in system optimization.

  9. Funding Opportunity for Solid-State Lighting Advanced Technology R&D – 2014

    Broader source: Energy.gov [DOE]

    On December 6, 2013, DOE announced solid-state lighting funding opportunity DE-FOA-0000973, "Solid-State Lighting Advanced Technology R&D - 2014." A total of up to $10 million in funding is...

  10. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  11. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DE-FOA-0000973) | Department of Energy Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of this opportunity are to: Maximize the

  12. Energy Recovered Light Source Technology at TJNAF | U.S. DOE...

    Office of Science (SC) Website

    Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ... Applications of Nuclear Science Archives Energy Recovered Light Source Technology at TJNAF ...

  13. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding Opportunity October 14, 2014 - 3:57pm Addthis This funding opportunity is closed. The U.S. Department of Energy (DOE) announced a solid-state lighting (SSL) R&D funding opportunity on October 14, 2014. Under this funding opportunity (DE-FOA-0001171, "Solid-State Lighting Advanced Technology R&D -

  14. Evaluation of Metal Halide, Plasma, and LED Lighting Technologies for a Hydrogen Fuel Cell Mobile Light (H 2 LT)

    SciTech Connect (OSTI)

    Miller, L. B.; Donohoe, S. P.; Jones, M. H.; White, W. A.; Klebanoff, L. E.; Velinsky, S. A.

    2015-04-22

    This article reports on the testing and comparison of a prototype hydrogen fuel cell light tower (H2LT) and a conventional diesel-powered metal halide light trailer for use in road maintenance and construction activities. The prototype was originally outfitted with plasma lights and then with light-emitting diode (LED) luminaires. Light output and distribution, lighting energy efficiency (i.e., efficacy), power source thermal efficiency, and fuel costs are compared. The metal halide luminaires have 2.2 and 3.1 times more light output than the plasma and LED luminaires, respectively, but they require more power/lumen to provide that output. The LED luminaires have 1.6 times better light efficacy than either the metal halide or plasma luminaires. The light uniformity ratios produced by the plasma and LED towers are acceptable. The fuel cell thermal efficiency at the power required to operate the plasma lights is 48%, significantly higher than the diesel generator efficiency of 23% when operating the metal halide lights. Due to the increased efficiency of the fuel cell and the LED lighting, the fuel cost per lumen-hour of the H2LT is 62% of the metal halide diesel light tower assuming a kilogram of hydrogen is twice the cost of a gallon of diesel fuel.

  15. FEMP Exterior Solid-State Lighting Technology Pilot

    Office of Environmental Management (EM)

    5 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov LED Value & Challenges Source: Acuity Brands Lighting * Value - Superior photometrics, CRI - Long life - Efficiency ...

  16. Lighting System Optimization: Leveraging the New Technology Paradigm

    Energy Savers [EERE]

    Commercial Advanced Lighting Controls Project 14 Advanced Control Demonstration Projects Utility EE Program Specs and Qualified Products List Training Programs for Designers and...

  17. DOE Announces Selections from Solid-State Lighting Core Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    much more energy efficient, longer lasting, and cost competitive by targeting a product system efficiency of 50 percent with lighting that accurately reproduces sunlight spectrum. ...

  18. DOE Announces Selections for Solid-State Lighting Core Technology...

    Energy Savers [EERE]

    much more energy efficient, longer lasting, and cost competitive by targeting a product system efficiency of 50 percent with lighting that accurately reproduces sunlight spectrum. ...

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2013 414 0 132 206 76 2014 852 88 266 326 173

  20. Promising Technology: Parabolic Aluminized Reflector Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    Parabolic aluminized reflectors, or PARs, are directional lamps typically used in recessed lighting. In contrast to CFLs, LEDs offer additional advantages including no warm up time, improved dimming and control capabilities, and for some products much greater efficacy ratings.

  1. Light-Duty Lean GDI Vehicle Technology Benchmark

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. HOTEL-CONNECTED LIGHTING SYSTEMS MEETING AND TECHNOLOGY DEVELOPMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEETING AND TECHNOLOGY DEVELOPMENT WORKSHOP Portland Marriott Downtown Waterfront 1401 SW Naito Parkway Portland, OR 97201 1-877-901-6632 The room block reserved at the Portland...

  3. Four SBIR Grants Awarded for Solid-State Lighting Technology | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Four SBIR Grants Awarded for Solid-State Lighting Technology Four SBIR Grants Awarded for Solid-State Lighting Technology May 14, 2014 - 11:25am Addthis The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology: VoltServer, Inc. - Low-Cost, High Efficiency Integration of SSL and Building Controls using a PET Power Distribution System Innotec, Corp. - Integrating

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Useful Thermal Output by Energy Source: Commercial Sector Combined Heat and Power, 2004 - 2014 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Coal: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,940,247 15,610,335 4,694,565 42,789 592,559 2005 21,350,382 15,397,688 5,339,188 42,931 570,574 2006 21,059,972 15,211,077 5,250,336 41,612 556,948 2007 21,363,588 15,436,110 5,371,039 42,523 513,916 2008 21,051,706 15,189,050

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927

  11. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420

  12. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2013 1,486 0 96 11 1,379 2014 1,283 3 90 16

  13. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012

  14. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856

  15. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769

  16. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001

  17. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283

  18. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357

  19. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410

  20. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2013 831 0 261 423 147

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681

  2. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190

  3. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0

  4. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0

  6. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2004 - 2014 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398

  7. New EM Technology: Spray Lights up Contamination Hot Spots

    Broader source: Energy.gov [DOE]

    OAK RIDGE, Tenn. – Oak Ridge National Laboratory (ORNL) researchers have developed a new technology to determine the extent of contamination in Cold War facilities that could replace costly and time-consuming traditional survey methods used by EM.

  8. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  9. BTO Awards Small Business Grants for Lighting, Building-Integrated Heat and Moisture Exchange Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Science has awarded four Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) and building-integrated heat and moisture exchange technology.

  10. DOE Announces Selections for Solid-State Lighting Core Technology Research Call (Round 6)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce four selections in response to the Solid-State Lighting (SSL) Core...

  11. Solid-State Lighting Technology: Current State of the Art and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the Art and Grand Challenges Solid-State Lighting Technology: Current State of the Art and ... The lamp is basically a blue LED coated with green and red phosphors. Some of the blue ...

  12. DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  13. DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

  14. Energy Department Announces $10 Million to Advance Innovative, Energy-Saving Lighting Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of cutting energy waste and doubling energy productivity by 2030, the Energy Department today announced nearly $10 million to support research, development, and manufacturing of solid-state lighting (SSL) technologies across the country.

  15. DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  16. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) ...

  17. Vehicle Technologies Office Merit Review 2015: Light-Duty Diesel Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about light-duty...

  18. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  19. Vehicle Technologies Office Merit Review 2015: Ultra Efficient Light Duty Powertrain with Gasoline Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Powertrain at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ultra efficient light duty...

  20. EXC-12-0005- In the Matter of Halco Lighting Technologies

    Broader source: Energy.gov [DOE]

    On July 10, 2012, OHA issued a decision granting an Application for Exception filed by Halco Lighting Technologies (Halco) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation...

  1. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Nitrogen Oxides Control Technology Emissions Reduction Factors Reduction Factor Nitrogen Oxides Control Technology EIA Code Coal Residual Fuel Oil and Distallate Fuel Oil Natural Gas Wood Other Solids Other Liquids Other Gases Other Fuels Burner Out of Service BO 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Low Excess Air LA 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Biased Firing (Alternative Burners) BF 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 Overfire Air OV 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

  2. Maximizing Energy Savings with New Technologies in Lighting and Lighting Controls

    Office of Environmental Management (EM)

    Materials for Harsh Service Conditions: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview of Materials for Harsh Service Conditions .................................................................... 1 5 1.2 Challenges and Opportunities ....................................................................................................... 2 6 1.3 Public

  3. 1366 Technologies Shines a Light on American Innovation

    Broader source: Energy.gov [DOE]

    An inside look at 1366 Technologies' innovative approach to solar manufacturing. Documenting how a $4 million grant from the Advanced Research Projects Agency-Energy (ARPA-E), through the Recovery Act is helping to make their ambitious goal of producing “solar at the cost of coal” a reality.

  4. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report

  5. Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance

    Broader source: Energy.gov (indexed) [DOE]

    Requirements of the U.S. Market | Department of Energy 4 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ricardo, Inc. PDF icon 2004_deer_greaney.pdf More Documents & Publications Ricardo's ACTION Strategy: An Enabling Light Duty Diesel Technology for the US Market US Tier 2 Bin 2 Diesel Research Progress Review of Diesel Emission Control Technology

  6. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Advanced Metering Count by Technology Type, 2007 through 2014 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 2013 42,491,242 4,632,744 196,132 1,202 47,321,320 2014

  8. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    7.A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2014 and 2013 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 Year 2014 Year 2013 New England 4,577.6 4,403.4 22,853.0 23,564.2 1,775.4 1,753.4 3.0 3.0 4,046.3 4,645.4 52.9 52.9 33,308.2 34,422.3

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2014 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0

  10. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2004 through 2014 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304

  11. Advanced Technologies for Light-Duty Vehicles (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    A fundamental concern in projecting the future attributes of light-duty vehicles-passenger cars, sport utility vehicles, pickup trucks, and minivans-is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in the National Energy Modeling System (NEMS); however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

  12. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  13. Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science Archives Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW

  14. Fact #853 December 29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #853: December  29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced

  15. Energy Department Announces $10 Million for Innovative, Energy-Saving Lighting R&D Technologies

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration’s effort to cut energy waste and double energy productivity by 2030, the Energy Department today announced $10 million to support research, development and manufacturing of solid-state lighting (SSL) technologies across the country.

  16. New Research Center to Increase Safety and Power Output of U.S. Nuclear

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactors | Department of Energy Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to

  17. Global Assessment of Hydrogen Technologies - Task 1 Report Technology Evaluation of Hydrogen Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Rousseau, Aymeric

    2007-12-01

    This task analyzes the candidate hydrogen-fueled vehicles for near-term use in the Southeastern U.S. The purpose of this work is to assess their potential in terms of efficiency and performance. This report compares conventional, hybrid electric vehicles (HEV) with gasoline and hydrogen-fueled internal combustion engines (ICEs) as well as fuel cell and fuel cell hybrids from a technology as well as fuel economy point of view. All the vehicles have been simulated using the Powertrain System Analysis Toolkit (PSAT). First, some background information is provided on recent American automotive market trends and consequences. Moreover, available options are presented for introducing cleaner and more economical vehicles in the market in the future. In this study, analysis of various candidate hydrogen-fueled vehicles is performed using PSAT and, thus, a brief description of PSAT features and capabilities are provided. Detailed information on the simulation analysis performed is also offered, including methodology assumptions, fuel economic results, and conclusions from the findings.

  18. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  19. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of this project would provide doped ZnO coated on inexpensive soda lime glass resulting in a significantly lower cost relative to the current ITO coated Flat Panel Display Glass substrates. Additional benefits will be a more consistent TCO that does not need an activation step with better optical performance. Clearly, this will serve to enhance penetration of OLED technologies into the lighting market.

  20. Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

    SciTech Connect (OSTI)

    Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

    2011-01-02

    Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

  1. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 3)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce eight selections in response to the Solid-State Lighting (SSL) Core...

  2. DOE Announces Selections for Solid-State Lighting Core Technology and Product Development Funding Opportunities (Round 4)

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce 13 selections in response to the Solid-State Lighting (SSL) Core...

  3. Microsoft Word - Science and Technology of Future Light Sources.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08/39 BNL-81895-2008 LBNL-1090E-2009 SLAC-R-917 Science and Technology of Future Light Sources A White Paper Report prepared by scientists from ANL, BNL, LBNL and SLAC. The coordinating team consisted of Uwe Bergmann, John Corlett, Steve Dierker, Roger Falcone, John Galayda, Murray Gibson, Jerry Hastings, Bob Hettel, John Hill, Zahid Hussain, Chi-Chang Kao, Janos Kirz, Gabrielle Long, Bill McCurdy, Tor Raubenheimer, Fernando Sannibale, John Seeman, Z.-X. Shen, Gopal Shenoy, Bob Schoenlein, Qun

  4. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-09-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  5. LIGHT WATER REACTOR SUSTAINABILITY PROGRAM ADVANCED INSTRUMENTATION, INFORMATION, AND CONTROL SYSTEMS TECHNOLOGIES TECHNICAL PROGRAM PLAN FOR 2013

    SciTech Connect (OSTI)

    Hallbert, Bruce; Thomas, Ken

    2014-07-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  6. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  7. Evaluation of advanced technologies for residential appliances and residential and commercial lighting

    SciTech Connect (OSTI)

    Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

    1995-01-01

    Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

  8. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    SciTech Connect (OSTI)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

    2009-02-11

    The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

  9. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  10. AEO2014: Preliminary Industrial Output

    U.S. Energy Information Administration (EIA) Indexed Site

    are run for the ratio of gross output (production) and demand computed from Input-Output basis * Major drivers: capacity utilization, interest rates, relative prices, ...

  11. Apply: Solid-State Lighting Advanced Technology R&D - 2014(DE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximize the energy-efficiency of SSL products in the marketplace Remove market barriers through improvements to lifetime, color quality, and lighting system performance Reduce ...

  12. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  13. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  14. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    SciTech Connect (OSTI)

    Corradini, M. L.

    2015-06-01

    In the aftermath of the March 2011 multi-unit accident at the Fukushima Daiichi nuclear power plant (Fukushima), the nuclear community has been reassessing certain safety assumptions about nuclear reactor plant design, operations and emergency actions, particularly with respect to extreme events that might occur and that are beyond each plant’s current design basis. Because of our significant domestic investment in nuclear reactor technology (99 operating reactors in the fleet of commercial LWRs with five under construction), the United States has been a major leader internationally in these activities. The U.S. nuclear industry is voluntarily pursuing a number of additional safety initiatives. The NRC continues to evaluate and, where deemed appropriate, establish new requirements for ensuring adequate protection of public health and safety in the occurrence of low probability events at nuclear plants; (e.g., mitigation strategies for beyond design basis events initiated by external events like seismic or flooding initiators). The DOE has also played a major role in the U.S. response to the Fukushima accident. Initially, DOE worked with the Japanese and the international community to help develop a more complete understanding of the Fukushima accident progression and its consequences, and to respond to various safety concerns emerging from uncertainties about the nature of and the effects from the accident. DOE R&D activities are focused on providing scientific and technical insights, data, analyses methods that ultimately support industry efforts to enhance safety. These activities are expected to further enhance the safety performance of currently operating U.S. nuclear power plants as well as better characterize the safety performance of future U.S. plants. In pursuing this area of R&D, DOE recognizes that the commercial nuclear industry is ultimately responsible for the safe operation of licensed nuclear facilities. As such, industry is considered the primary “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.

  15. GUIDED TOUR—CONNECTED LIGHTING SYSTEMS MEETING AND TECHNOLOGY DEVELOPMENT WORKSHOP

    Broader source: Energy.gov [DOE]

    The guided bus tour will provide a first-hand look at an LED connected lighting system installed in an office space in the 911 Federal Building. This eight-story building constructed in the 1950s...

  16. Apply: Solid-State Lighting Advanced Technology R&D - 2015 Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research to develop or improve commercially viable SSL materials, devices, or systems U.S. Manufacturing - accelerating SSL technology adoption through manufacturing innovations ...

  17. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    Broader source: Energy.gov [DOE]

    The rate of adoption of new vehicle technologies and related reductions in petroleum use and greenhouse gas emissions rely on how rapidly technology innovations enter the fleet through new vehicle purchases. New technologies often increase vehicle price, which creates a barrier to consumer purchase, but other barriers to adoption are not due to increased purchase prices. For example, plug-in vehicles, dedicated alternative fuel vehicles, and other new technologies face non-cost barriers such as consumer unfamiliarity or requirements for drivers to adjust behavior. This report reviews recent research to help classify these non-cost barriers and determine federal government programs and actions with the greatest potential to overcome them.

  18. Vehicle Technologies Office Merit Review 2015: Analyzing Real-World Light Duty Vehicle Efficiency Benefits

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Advanced Nuclear Technology: Advanced Light Water Reactors Utility Requirements Document Small Modular Reactors Inclusion Summary

    SciTech Connect (OSTI)

    Loflin, Leonard; McRimmon, Beth

    2014-12-18

    This report summarizes a project by EPRI to include requirements for small modular light water reactors (smLWR) into the EPRI Utility Requirements Document (URD) for Advanced Light Water Reactors. The project was jointly funded by EPRI and the U.S. Department of Energy (DOE). The report covers the scope and content of the URD, the process used to revise the URD to include smLWR requirements, a summary of the major changes to the URD to include smLWR, and how to use the URD as revised to achieve value on new plant projects.

  20. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  1. DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State...

  2. Vehicle Technologies Office Merit Review 2014: High Strength, Light-Weight Engines for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high strength,...

  3. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Broader source: Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  4. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  5. Vehicle Technologies Office Merit Review 2014: Light-Duty Diesel Combuston

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia Natonal Laboratories and  University of Wisconsin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  6. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  7. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  8. Solid-State Lighting Technology: Current State of the Art and Grand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenges Technology: Current State of the Art and Grand Challenges - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  9. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  10. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  11. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  12. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  13. Enhanced performance CCD output amplifier

    DOE Patents [OSTI]

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  14. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  15. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  16. Fusion pumped light source

    DOE Patents [OSTI]

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  17. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  18. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  19. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  20. Luminous Efficacy Standards for General Purpose Lights

    Broader source: Energy.gov [DOE]

    *Efficacy refers to the overall energy efficiency of light and is measured in lumens (measure of light output) per watt (measure of power input). The efficacy of a typical incandescent light bulb...

  1. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-11-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

  2. Effective White Light Options for Parking Area Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Effective White Light Options for Parking Area Lighting Effective White Light Options for Parking Area Lighting Document details lighting technologies that provide low-maintenance alternatives to high-pressure sodium lighting. PDF icon white_light_parking_area..pdf More Documents & Publications LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  3. Lighting Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes & Buildings » Lighting & Daylighting » Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights (formally called "lamps" in the lighting industry,) which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting. New lamp designs that use energy-efficient technology are now readily available in the

  4. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  5. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  6. Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about clean...

  7. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  8. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  9. Over the past decade, lighting became more efficient across all...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Lighting efficiency is often expressed as efficacy, or the ratio of light output (measured in lumens) to the electric power input (measured in Watts). Since the DOE's previous ...

  10. Overload protection circuit for output driver

    DOE Patents [OSTI]

    Stewart, Roger G.

    1982-05-11

    A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

  11. Prospects for LED lighting.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

    2003-08-01

    Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

  12. Fact #853 December 29, 2014 Stop/Start Technology is in nearly 5% of All New Light Vehicles Produced

    Broader source: Energy.gov [DOE]

    Stop/Start technology improves fuel economy by reducing engine idle time. As a vehicle slows to a stop, the engine is shut down but then immediately restarts when the break pedal is released so...

  13. Vehicle Technologies Office Merit Review 2014: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high efficiency...

  14. 2010 US Lighting Market Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... second largest lighting energy consumer, at 175 TWh per year. Ranked by technology, linear fluorescent lighting ... sensing, daylight harvesting, and individual occupant ...

  15. Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies

    SciTech Connect (OSTI)

    Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

    2009-08-01

    The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

  16. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  17. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  18. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  19. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  20. Buildings Energy Data Book: 5.6 Lighting

    Buildings Energy Data Book [EERE]

    5 2010 Total Lighting Technology Light Output, by Sector (Trillion Lumen-Hour per Year)(1) Residential Commercial Industrial Other (2) Total Incandescent 1640 49% 180 1% 0 0% 50 1% 1870 5% General (A-type, Decorative) 1390 42% 120 0% 0 0% - - 1510 4% Reflector 190 6% 60 0% 0 0% - - 250 1% Miscellaneous 60 2% 0 0% - - 50 1% 110 0% Halogen 170 5% 240 1% 0 0% 20 0% 430 1% General 20 1% 0 0% 0 0% - - 20 0% Reflector 110 3% 100 0% 0 0% - - 210 1% Low Voltage Display 10 0% 130 1% - - - - 140 0%

  1. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    (CEC), March 1990. Advanced Lighting Technologies Application Guidelines (ALTAG), Building and Appliance Efficiency Office. 3. Dubin, F.S., Mindell, H.L., and Bloome, S., 1976....

  2. Light-Source Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Canada CTST - UCSB Center for Terahertz Science and Technology, USA DFELL - Duke Free Electron Laser Laboratory, USA Jlab - Jefferson Lab, USA LCLS - Linear Coherent Light...

  3. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Lighting Technologies, Costs, and Energy Demand: Global Developments to 2030 View Slides: ...

  4. Lighting Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting-Test-Facilities Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology &...

  5. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  6. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The amount and quality of light around us affects our health, safety, comfort, and productivity. Our country spends more than $37 billion each year on electricity for lighting, but technologies developed during the past 10 years can help us cut lighting costs by 30% to 60% while enhancing lighting quality and reducing environmental impacts. In a typical indoor lighting system, 50 percent or more of the energy supplied to the lamp can be wasted by obsolete equipment, poor maintenance, or

  7. Outdoor Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Lighting Outdoor Lighting Outdoor lighting consumes a significant amount of energy-about 1.3 quadrillion Btu annually-costing about $10 billion per year. In the last five years, a number of municipalities have switched to new LED technologies that can reduce energy costs by approximately 50% over conventional lighting technologies and provide additional savings of 20 to 40% with advance lighting controls. Beyond cost and energy savings, the higher efficiency of LED lights provides other

  8. AEO2016 Preliminary Industrial Output Results

    Gasoline and Diesel Fuel Update (EIA)

    - Enhancements of the industrial output model to incorporate additional detail of chemical, glass, and paper industries. - The extension of the supply matrices allowing for ...

  9. Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Job and Output Benefits of Stationary Fuel Cells (JOBS FC): An Economic Impact Tool Developed for USDOE Presented at the Technology Transition Corporation and U.S. Department of ...

  10. PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module Technologies

    Broader source: Energy.gov [DOE]

    Bifacial PV modules absorb sunlight and produce electricity from both the front and back sides of the module and can take advantage of light reflected from a surface (albedo). Analysis and field data indicate that this technology has the potential to increase system outputs by 10%-20%. Because current bifacial PV technology has complex light collecting dynamics, its performance advantages have not been fully exploited and no commonly-available tools allow it to be considered for major PV projects beyond current niche applications. The project will provide the data, standard test methods, and validated models to allow developers to fairly evaluate the potential benefits bifacial PV technologies for specific projects.

  11. Today LED Holiday Lights, Tomorrow the World?

    SciTech Connect (OSTI)

    Gordon, Kelly L.

    2004-12-20

    This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

  12. Topanga Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Place: Canoga Park, California Zip: 91303 Product: Stealth-mode high-intensity discharge (HID) lighting technology developer. References: Topanga Technologies1...

  13. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50×500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  14. Boosting America's Hydropower Output | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of

  15. 2015 DOE SSL Technology Development Workshop Attendee List

    Energy Savers [EERE]

    Light Technologies Kyle Landig Sunset Lighting Mike Landig Sunset Lighting Susan Larson Soraa Ben Latson Ecova Jefferay Lawton Microchip Technology Marc Ledbetter Pacific...

  16. Advanced Light Extraction Structure for OLED Lighting | Department of

    Energy Savers [EERE]

    Energy Light Extraction Structure for OLED Lighting Advanced Light Extraction Structure for OLED Lighting Lead Performer: Pixelligent Technologies, LLC - Baltimore, MD Partners: OLEDWorks, LLC - Rochester, NY DOE Total Funding: $1,000,000 Cost Share: $250,000 Project Term: 9/10/2014 - 8/31/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will develop a novel internal light extraction (ILE) design to improve the light

  17. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Energy Savers [EERE]

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate ...

  18. Energy Department Awards Nearly $10 Million for Efficient Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As solid-state electronic technology, LED lighting also offers new potential for advanced lighting control, including color tuning and intelligent, adaptive lighting. In total, the ...

  19. Types of Lighting in Commercial Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the...

  20. Lighting Designer Roundtable on Solid-State Lighting

    Broader source: Energy.gov [DOE]

    Roundtable meeting in Chicago of a group of lighting designers focused on examining solid-state lighting (SSL) market and technology issues and encouraging a discussion of designers’ experiences, ideas, and recommendations regarding SSL & SSL industry.

  1. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  2. Advanced Fuel Performance: Modeling and Simulation Light Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Light water reactors (CASL). ... capability of nuclear fuel performance can enable increased power output and lifetime ... to designing safety margins into fuel ...

  3. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and observations from lighting designers, and input from researchers and scientists. ... If luminaire brightness can be controlled, neighborhoods may find lower-lumen-output ...

  4. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  5. Porous radiant burners having increased radiant output

    DOE Patents [OSTI]

    Tong, Timothy W.; Sathe, Sanjeev B.; Peck, Robert E.

    1990-01-01

    Means and methods for enhancing the output of radiant energy from a porous radiant burner by minimizing the scattering and increasing the adsorption, and thus emission of such energy by the use of randomly dispersed ceramic fibers of sub-micron diameter in the fabrication of ceramic fiber matrix burners and for use therein.

  6. Building Technologies Program Planning Summary

    Energy Savers [EERE]

    of commercially available but underutilized technologies, lighting controls, expert lighting design, and integrated systems. * Through the EnergySmart Schools subprogram, BTP...

  7. Energy Savings Activities-Lighting

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students use the scientific method to examine school lighting technologies and determine if there are opportunities to save energy and money.

  8. U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting

    Office of Scientific and Technical Information (OSTI)

    Technology Options (Technical Report) | SciTech Connect U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Citation Details In-Document Search Title: U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Multiyear study to evaluate light sources and identify opportunities for saving energy. This report looks broadly at energy-efficient options in lighting and identifies leading opportunities. Authors: Hong,

  9. Vehicle Technologies Program Overview

    SciTech Connect (OSTI)

    none,

    2006-09-05

    Overview of the Vehicle Technologies Program including external assessment and market view; internal assessment, program history and progress; program justification and federal role; program vision, mission, approach, strategic goals, outputs, and outcomes; and performance goals.

  10. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including the cost of sensor and lighting Reduce ... * Smart shadings * Highly insulated windows * Windows attachment 8 Building Envelope R&D Priorities Technology 2025 ...

  11. Advanced Light Extraction Material for OLED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Extraction Material for OLED Lighting Advanced Light Extraction Material for OLED Lighting Lead Performer: Pixelligent Technologies LLC - Baltimore, MD Partners: OLEDWorks LLC DOE Total Funding: $1,000,000 Project Term: April 6, 2015 - April 5, 2017 Funding Opportunity: FY2015 Phase II Release 1 SBIR Awards PROJECT OBJECTIVE The primary goal of this Phase II project is to develop a viable commercial process to manufacture an internal light extraction (ILE) layer to be supplied to OLED

  12. Error estimates for fission neutron outputs (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Error estimates for fission neutron outputs Citation Details In-Document Search Title: Error estimates for fission neutron outputs You are accessing a document from the...

  13. Solid-State Lighting | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Princeton's approach to solid-state lighting. Read more A Comprehensive Program Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by...

  14. Purchasing Energy-Efficient Light Bulbs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... TABLE 1. LIFETIME SAVINGS FOR EFFICIENT LIGHT BULB MODELS Performance Best Available ENERGY STAR Less Efficient Light Output 1,100 lm 1,100 lm 1,100 lm Input Power 15 W 20 W 75 W ...

  15. Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T. Associates, San Francisco, CA ); Benya, J.R. )

    1992-12-01

    Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

  16. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  17. Guiding SSL Technology Advances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guiding SSL Technology Advances Guiding SSL Technology Advances PDF icon Guiding Solid-State Lighting Technology Advances More Documents & Publications Doing Business with DOE's ...

  18. Off-set stabilizer for comparator output

    DOE Patents [OSTI]

    Lunsford, James S.

    1991-01-01

    A stabilized off-set voltage is input as the reference voltage to a comparator. In application to a time-interval meter, the comparator output generates a timing interval which is independent of drift in the initial voltage across the timing capacitor. A precision resistor and operational amplifier charge a capacitor to a voltage which is precisely offset from the initial voltage. The capacitance of the reference capacitor is selected so that substantially no voltage drop is obtained in the reference voltage applied to the comparator during the interval to be measured.

  19. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  20. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  1. And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations with Hydrogen and Fuel Cell Technology | Department of Energy And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology And the Oscar for Sustainable Mobile Lighting Goes to.... Lighting Up Operations with Hydrogen and Fuel Cell Technology September 30, 2014 - 1:12pm Addthis Developed by Sandia National Laboratories and several industry partners, the fuel cell mobile light (H2LT) offers a cleaner, quieter alternative to

  2. World crude output overcomes Persian Gulf disruption

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    Several OPEC producers made good on their promises to replace 2.7 MMbpd of oil exports that vanished from the world market after Iraq took over Kuwait. Even more incredibly, they accomplished this while a breathtaking 1.2- MMbopd reduction in Soviet output took place during the course of 1991. After Abu Dhabi, Indonesia, Iran, Libya, Nigeria, Saudi Arabia and Venezuela turned the taps wide open, their combined output rose 2.95 MMbopd. Put together with a 282,000-bopd increase by Norway and contributions from smaller producers, this enabled world oil production to remain within 400,000 bopd of its 1990 level. The 60.5-MMbopd average was off by just 0.7%. This paper reports that improvement took place in five of eight regions. Largest increases were in Western Europe and Africa. Greatest reductions occurred in Eastern Europe and the Middle East. Fifteen nations produced 1 MMbopd or more last year, compared with 17 during 1990.

  3. Emerging Technologies (ET)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercialization of technologies and systems capable of substantially reducing primary energy use through improved: * Solid-State Lighting (Jim Brodrick) * HVAC, Water Heating ...

  4. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Phase I

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2010-06-22

    U.S. DOE Solid-State Lighting Technology Demonstration GATEWAY Program Report on the TJMaxx Demonstration.

  5. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Office of Scientific and Technical Information (OSTI)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which

  6. Considerations When Comparing LED and Conventional Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using LEDs » Considerations When Comparing LED and Conventional Lighting Considerations When Comparing LED and Conventional Lighting When comparing LED lighting performance to conventional lighting, buyers will want to consider energy efficiency, operating life and lumen depreciation, light output/distribution, color quality, color shift, dimmability, and expected lifetime. Energy efficiency The final energy efficiency of any lighting system depends on more than the efficacy of the

  7. Integrated LED-based luminare for general lighting

    SciTech Connect (OSTI)

    Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

    2013-03-05

    Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

  8. lighting controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology & Innovation Expand Technology & Innovation Utility Resources Expand...

  9. Room-return scattering in fission neutron outputs (Conference...

    Office of Scientific and Technical Information (OSTI)

    Room-return scattering in fission neutron outputs Citation Details In-Document Search Title: Room-return scattering in fission neutron outputs You are accessing a document from...

  10. Photovoltaic module with light reflecting backskin

    DOE Patents [OSTI]

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  11. Solid State Lighting: GATEWAY and CALiPER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting: GATEWAY and CALiPER Solid State Lighting: GATEWAY and CALiPER Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review ...

  12. Picture of the Week: Circuits of light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Circuits of light This artistic conceptualization of circuits made of light represents a new capability that could lead to advanced sensor systems, quantum information processing technology, and more. March 25, 2016 circuits of light artist's conception Circuits of light: artist's conception View a super-large 300 dpi version of this image on our Lab Flickr site. Circuits of light This artistic conceptualization of circuits made of light represents a new capability that could lead to advanced

  13. Pathways to Commercial Success: Technologies and Products Supported...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Proton Energy Systems, Inc. A new electrolysis system using ... to enhance light harvesting through a large ... to humidity, and linear and repeatable output ...

  14. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  15. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) ...

  16. Lighting for Health: LEDs in the New Age of Illumination

    SciTech Connect (OSTI)

    2014-05-01

    DOE Solid-State Lighting program technology fact sheet that provides background on current science and considerations related to LED light and health.

  17. Solid-State Lighting Recovery Act Award Selections | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting Recovery Act Award Selections Solid-State Lighting Recovery Act Award Selections A chart highlighting core technology research projects and product development ...

  18. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Broader source: Energy.gov (indexed) [DOE]

    Download the presentation slides from the Fuel Cell Technologies Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. PDF icon Fuel Cell Mobile Lighting Webinar ...

  19. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E.; Kulp, Thomas J.

    2002-01-01

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  20. U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting

    Office of Scientific and Technical Information (OSTI)

    Technology Options (Technical Report) | SciTech Connect U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Citation Details In-Document Search Title: U.S. Lighting Market Characterization Volume II: Energy Efficient Lighting Technology Options Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting

    Office of Scientific and Technical Information (OSTI)

    in Leavenworth, KS (Technical Report) | SciTech Connect in Leavenworth, KS Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for

  2. Halbach array generator/motor having mechanically regulated output voltage and mechanical power output

    DOE Patents [OSTI]

    Post, Richard F.

    2005-06-14

    A motor/generator has its stationary portion, i.e., the stator, positioned concentrically within its rotatable element, i.e., the rotor, along the axis of rotation of the rotor. The rotor includes a Halbach array of magnets. The voltage and power outputs are regulated by varying the radial gap in between the stator windings and the rotating Halbach array. The gap is varied by extensible and retractable supports attached to the stator windings that can move the windings in a radial direction.

  3. Method and apparatus for varying accelerator beam output energy

    DOE Patents [OSTI]

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  4. Optical manifold for light-emitting diodes

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  5. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  6. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  7. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly....

  8. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  9. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  10. Driver circuit for solid state light sources

    DOE Patents [OSTI]

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  11. LED Lighting Forecast | Department of Energy

    Energy Savers [EERE]

    This is a positive development in terms of energy consumption, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. Report: ...

  12. Astronomy Particle Physics Light Sources Genomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 - 2 Astronomy Particle Physics Light Sources Genomics Climate * Big Data Software - Broad ecosystem of capabilities and technologies - Research and evaluate - Customize and...

  13. High natural gas output and inventories contribute to lower prices

    U.S. Energy Information Administration (EIA) Indexed Site

    High natural gas output and inventories contribute to lower prices High natural gas production and ample gas inventories are expected to keep natural gas prices relatively low for ...

  14. Output-Based Error Estimation and Adaptation for Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Output-Based Error Estimation and Adaptation for Uncertainty Quantification Isaac M. Asher and Krzysztof J. Fidkowski University of Michigan US National Congress on Computational...

  15. Compact waveguide power divider with multiple isolated outputs

    DOE Patents [OSTI]

    Moeller, Charles P. (Del Mar, CA)

    1987-01-01

    A waveguide power divider (10) for splitting electromagnetic microwave power and directionally coupling the divided power includes an input waveguide (21) and reduced height output waveguides (23) interconnected by axial slots (22) and matched loads (25) and (26) positioned at the unused ends of input and output guides (21) and (23) respectively. The axial slots are of a length such that the wave in the input waveguide (21) is directionally coupled to the output waveguides (23). The widths of input guide (21) and output guides (23) are equal and the width of axial slots (22) is one half of the width of the input guide (21).

  16. LED Essentials - Technology, Applications, Advantages, Disadvantages |

    Energy Savers [EERE]

    Department of Energy Essentials - Technology, Applications, Advantages, Disadvantages LED Essentials - Technology, Applications, Advantages, Disadvantages On October 11, 2007, Kevin Dowling, VP of Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current applications, future potential, and evolving path of LED technology from indicator lights to general illumination. View

  17. 2015 SSL TECHNOLOGY DEVELOPMENT WORKSHOP PRESENTATIONS - Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Changing Technology and Business Practices: Rob Fallow, Fortis Construction PDF icon Changing Technology and Business Practices: Chip Israel, Lighting Design Alliance...

  18. Hydrogen Storage - Current Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage - Current Technology Hydrogen Storage - Current Technology Hydrogen storage is a ... for the full platform of light-duty automotive vehicles using fuel cell power plants. ...

  19. CEYX Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Zip: CA 92123 Product: CEYX Technologies Inc, provides software-enabled control systems for light emitting devices. References: CEYX Technologies Inc1 This...

  20. Energy Department Offers $10 Million for Energy-Saving Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing of solid-state lighting (SSL) technologies. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting ...

  1. Solar Panel and Induction Lighting Project

    SciTech Connect (OSTI)

    Gresek, Michael

    2014-01-21

    Installation of solar and energy saving lighting technologies at municipal facilities to: Produce and conserve electricity for these facilities; saving money and the environment; lead by example; educate the public on conservation and renewable technologies.

  2. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host

    Office of Scientific and Technical Information (OSTI)

    Site: Lija Loop, Portland, Oregon (Technical Report) | SciTech Connect Street Lighting Host Site: Lija Loop, Portland, Oregon Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting

  3. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  4. U.S. Lighting Market Characterization Volume II: Energy Efficient...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: building technologies program corporate; energy; market; characterization; commercial; industrial; residential; lighting Word Cloud More Like This Full ...

  5. LED Parking Lot Lighting Working Group Fact Sheet

    SciTech Connect (OSTI)

    2008-10-01

    This fact sheet describes the Retailer Energy Alliance LED Parking Lot Lighting Working Group and its Technology Procurement Project.

  6. LED Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » LED Lighting Facts LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general illumination from manufacturers who commit to testing products and reporting performance results according to industry standards. For lighting buyers, designers, and energy efficiency programs, the program provides information essential to evaluating SSL products. Central to the

  7. Lighting market sourcebook for the US

    SciTech Connect (OSTI)

    Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

    1997-12-01

    Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

  8. LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center

    Broader source: Energy.gov [DOE]

    Document details new lighting technology that reduces energy consumption and reduces maintenance, while providing effective illumination.

  9. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  10. Lumificient Technologies | Open Energy Information

    Open Energy Info (EERE)

    Lumificient Technologies Place: Minnesota Zip: MN 55369 Product: Lumificient is a manufacturing and distribution firm that designs and develops solid state lighting or LED...

  11. Adura Technologies | Open Energy Information

    Open Energy Info (EERE)

    California Zip: CA 94105 Product: San Francisco-based, producer of wireless lighting control systems. References: Adura Technologies1 This article is a stub. You can help...

  12. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  13. Materials processing with light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials processing with light, plasmas and other sources of energy At the ARC various processing technologies are used to create materials, struc- tures, and devices that play an increasingly important role in high value-added manufacturing of computer and communications equipment, physical and chemical sensors, biomedical instruments and treatments, semiconductors, thin films, photovoltaics, electronic components and optical components. For example, making coatings, including paint, chrome,

  14. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, James R.; Bemis, Jr., Curtis E.

    1986-01-01

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  15. Dual output acoustic wave sensor for molecular identification

    DOE Patents [OSTI]

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  16. Device for frequency modulation of a laser output spectrum

    DOE Patents [OSTI]

    Beene, J.R.; Bemis, C.E. Jr.

    1984-07-17

    A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

  17. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home » Information Resources » Publications » Technology Roadmaps Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and market penetration of solid-state lighting, and recent achievements. The following documents are available as Adobe Acrobat PDFs. OLED Stakeholder Meeting Report Summary of a September meeting open to members of the

  18. How Do You Light Your Home Efficiently? | Department of Energy

    Energy Savers [EERE]

    Light Your Home Efficiently? How Do You Light Your Home Efficiently? July 22, 2009 - 4:30pm Addthis An average household dedicates 11% of its energy budget to lighting. Installing efficient lighting technologies, using task lighting, flipping the switch, and taking advantage of natural daylight can all help you save on your lighting costs. How do you light your home efficiently? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy

  19. Ultra High p-doping Material Research for GaN Based Light Emitters

    SciTech Connect (OSTI)

    Vladimir Dmitriev

    2007-06-30

    The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

  20. Commercial Lighting and LED Lighting Incentives | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Schools Institutional Savings Category Lighting Lighting ControlsSensors Other EE LED Lighting Maximum Rebate Up to 100% of cost; incentives that exceed 5,000 should be...

  1. Community Climate System Model (CCSM) Experiments and Output Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

  2. Light's Darkness

    ScienceCinema (OSTI)

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2010-01-08

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  3. Bayesian approaches for combining computational model output and physical

    Office of Scientific and Technical Information (OSTI)

    observations (Conference) | SciTech Connect Bayesian approaches for combining computational model output and physical observations Citation Details In-Document Search Title: Bayesian approaches for combining computational model output and physical observations Authors: Higdon, David M [1] ; Lawrence, Earl [1] ; Heitmann, Katrin [2] ; Habib, Salman [2] + Show Author Affiliations Los Alamos National Laboratory ANL Publication Date: 2011-07-25 OSTI Identifier: 1084581 Report Number(s):

  4. Multiple scattering effects in fission neutron outputs (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Multiple scattering effects in fission neutron outputs Citation Details In-Document Search Title: Multiple scattering effects in fission neutron outputs Authors: Taddeucci, Terry N [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2011-02-24 OSTI Identifier: 1053153 Report Number(s): LA-UR-11-01326; LA-UR-11-1326 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: Fission fprogram Review, ;

  5. PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Advanced Thermal Management for Higher Module Power Output PROJECT PROFILE: Advanced Thermal Management for Higher Module Power Output Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,816,911 Higher temperatures of photovoltaic (PV) modules are causing lower than projected module performance. For example, a free-standing Si PV module has 0.4% decrease in efficiency per degree

  6. An Integrated Solid-State LED Luminaire for General Lighting

    SciTech Connect (OSTI)

    Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

    2009-03-31

    A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

  7. Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel. Final report

    SciTech Connect (OSTI)

    Eley, C.; Tolen, T.; Benya, J.R.

    1992-12-01

    Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

  8. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOE Patents [OSTI]

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  9. Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.

    SciTech Connect (OSTI)

    Wu, M.; Wu, Y.; Wang, M; Energy Systems

    2008-01-31

    The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

  10. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  11. Brief History of Artificial Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... SubTER Carbon Sequestration Program Leadership EnergyWater Nexus EnergyWater History ...

  12. Method for separating FEL output beams from long wavelength radiation

    DOE Patents [OSTI]

    Neil, George; Shinn, Michelle D.; Gubeli, Joseph

    2016-04-26

    A method for improving the output beam quality of a free electron laser (FEL) by reducing the amount of emission at wavelengths longer than the electron pulse length and reducing the amount of edge radiation. A mirror constructed of thermally conductive material and having an aperture therein is placed at an oblique angle with respect to the beam downstream of the bending magnet but before any sensitive use of the FEL beam. The aperture in the mirror is sized to deflect emission longer than the wavelength of the FEL output while having a minor impact on the FEL output beam. A properly sized aperture will enable the FEL radiation, which is coherent and generally at a much shorter wavelength than the bending radiations, to pass through the aperture mirror. The much higher divergence bending radiations will subsequently strike the aperture mirror and be reflected safely out of the way.

  13. Motor vehicle output and GDP, 1968-2007.

    SciTech Connect (OSTI)

    Santini, D. J.; Poyer, D. A.

    2008-01-01

    In this paper, we assess the performance of the BEA series 'value of motor vehicle output' as an indicator of the business cycle over the period 1968-2007. We statistically assess the causal relationship between real motor vehicle output (RMVO) and real gross domestic product (RGDP). This is accomplished by standard estimation and statistical methods used to assess vector autoregressive models. This assessment represents the initial results of a more encompassing research project, the intent of which is to determine the dynamic interaction of the transport sector with the overall economy. It's a start to a more comprehensive assessment of how transport and economic activity interrelate.

  14. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    Broader source: Energy.gov [DOE]

    This document is a report of observations and results obtained from a lighting demonstration project conducted under a U.S. Department of Energy program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology for plant-wide improvement.

  15. Trusted Computing Technologies, Intel Trusted Execution Technology.

    SciTech Connect (OSTI)

    Guise, Max Joseph; Wendt, Jeremy Daniel

    2011-01-01

    We describe the current state-of-the-art in Trusted Computing Technologies - focusing mainly on Intel's Trusted Execution Technology (TXT). This document is based on existing documentation and tests of two existing TXT-based systems: Intel's Trusted Boot and Invisible Things Lab's Qubes OS. We describe what features are lacking in current implementations, describe what a mature system could provide, and present a list of developments to watch. Critical systems perform operation-critical computations on high importance data. In such systems, the inputs, computation steps, and outputs may be highly sensitive. Sensitive components must be protected from both unauthorized release, and unauthorized alteration: Unauthorized users should not access the sensitive input and sensitive output data, nor be able to alter them; the computation contains intermediate data with the same requirements, and executes algorithms that the unauthorized should not be able to know or alter. Due to various system requirements, such critical systems are frequently built from commercial hardware, employ commercial software, and require network access. These hardware, software, and network system components increase the risk that sensitive input data, computation, and output data may be compromised.

  16. Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices

  17. Healthcare Energy: Spotlight on Lighting and Other Electric Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two

  18. Lighting the Way to Serious Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the

  19. Doing Business with DOE's Solid-State Lighting Program

    Energy Savers [EERE]

    Doing Business with DOE's Solid-State Lighting Program Solid-state lighting (SSL) is an emerging technology that promises to make a significant impact on solving our nation's energy and environmental challenges. With the promise of being more than ten times as effcient as incandescent lighting and twice as effcient as fuorescent light- ing, SSL products using light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) will mean "greener" homes and businesses that use

  20. U.S. Department of Energy and International Association of Lighting...

    Energy Savers [EERE]

    MOU highlights four key areas on which DOE and IALD will collaborate: Promoting lighting design principles and technologies that improve lighting quality, energy efficiency, and...

  1. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  2. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, Naomi J.; Koltai, Rita; McGowan, Terry

    2013-12-31

    This GATEWAY report discusses the problems of pedestrian lighting that occur with all technologies with a focus on the unique optical options and opportunities offered by LEDs through the findings from two pedestrian-focused projects, one at Stanford University in California, and one at the Chautauqua Institution in upstate New York. Incorporating user feedback this report reviews the tradeoffs that must be weighed among visual comfort, color, visibility, efficacy and other factors to stimulate discussion among specifiers, users, energy specialists, and in industry in hopes that new approaches, metrics, and standards can be developed to support pedestrian-focused communities, while reducing energy use.

  3. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect (OSTI)

    Haque, S.; Frost, F. Dion R.; Groulx, R.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Roe, N. A.; Wang, G.; Yu, Y.

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 ?m × 2 ?m are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup ?} rms at 70 kpixels/sec.

  4. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and ...

  5. Shanghai Huiyang New Energy Technology Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Product: China-based technology company to install turnkey solutions for solar and LED lighting systems. References: Shanghai Huiyang New Energy Technology Co Ltd1 This...

  6. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Fact 868: April 13, 2015 Automotive Technology Has Improved Performance and ...

  7. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research

  8. Fact #800: October 21, 2013 Characteristics of New Light Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 800: October 21, 2013 Characteristics of New Light Vehicles over Time From model years 1980 to 2012, there have been significant gains in automotive technology. For new light ...

  9. What's Next for Solid-State Lighting?

    Energy Savers [EERE]

    - 2 1 Photo 1: LEDs can be designed to mimic skylights or windows. Photo ©The Sky Factory, Community North Hospital, Indianapolis Photo 2: LEDs can be color tuned to maximize plant growth for indoor agriculture. Photo courtesy of GE Lighting What's Next for Solid-State Lighting? A s we stand on the brink of a lighting revolution spearheaded by light-emitting diode (LED) technology, one question on everyone's minds is: what's next for solid-state lighting (SSL)? Formerly just an intriguing

  10. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  11. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  12. Summary of the Output from the VTP Advanced Materials Workshop

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004

    Broader source: Energy.gov [DOE]

    Handbook providing practical information to help regulators decide if they want to use output-based regulations and explains how to develop an output-based emission standard

  14. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  15. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  16. Optical device with conical input and output prism faces

    DOE Patents [OSTI]

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  17. An Advanced simulation Code for Modeling Inductive Output Tubes

    SciTech Connect (OSTI)

    Thuc Bui; R. Lawrence Ives

    2012-04-27

    During the Phase I program, CCR completed several major building blocks for a 3D large signal, inductive output tube (IOT) code using modern computer language and programming techniques. These included a 3D, Helmholtz, time-harmonic, field solver with a fully functional graphical user interface (GUI), automeshing and adaptivity. Other building blocks included the improved electrostatic Poisson solver with temporal boundary conditions to provide temporal fields for the time-stepping particle pusher as well as the self electric field caused by time-varying space charge. The magnetostatic field solver was also updated to solve for the self magnetic field caused by time changing current density in the output cavity gap. The goal function to optimize an IOT cavity was also formulated, and the optimization methodologies were investigated.

  18. High Efficiency Clean Combustion in Multi-Cylinder Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit ... Combustion in Multi-Cylinder Light-Duty Engines Vehicle Technologies Office Merit Review ...

  19. Light Duty Diesels in the United States - Some Perspectives | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Emission Control Technology Review Update on Diesel Exhaust Emission Control Technology and Regulations Light Duty Diesels in the United States - Some Perspectives

  20. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  1. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  2. Plasma-based EUV light source

    DOE Patents [OSTI]

    Shumlak, Uri; Golingo, Raymond; Nelson, Brian A.

    2010-11-02

    Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

  3. Ring laser having an output at a single frequency

    DOE Patents [OSTI]

    Hackell, Lloyd A.

    1991-01-01

    A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.

  4. Development of output user interface software to support analysis

    SciTech Connect (OSTI)

    Wahanani, Nursinta Adi Natsir, Khairina Hartini, Entin

    2014-09-30

    Data processing software packages such as VSOP and MCNPX are softwares that has been scientifically proven and complete. The result of VSOP and MCNPX are huge and complex text files. In the analyze process, user need additional processing like Microsoft Excel to show informative result. This research develop an user interface software for output of VSOP and MCNPX. VSOP program output is used to support neutronic analysis and MCNPX program output is used to support burn-up analysis. Software development using iterative development methods which allow for revision and addition of features according to user needs. Processing time with this software 500 times faster than with conventional methods using Microsoft Excel. PYTHON is used as a programming language, because Python is available for all major operating systems: Windows, Linux/Unix, OS/2, Mac, Amiga, among others. Values that support neutronic analysis are k-eff, burn-up and mass Pu{sup 239} and Pu{sup 241}. Burn-up analysis used the mass inventory values of actinide (Thorium, Plutonium, Neptunium and Uranium). Values are visualized in graphical shape to support analysis.

  5. CALiPER Snapshot Report: Light Bulbs

    SciTech Connect (OSTI)

    2013-10-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  6. Ab Initio Calculations of Light-Ion Fusion Reactions (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ab Initio Calculations of Light-Ion Fusion Reactions Citation Details In-Document Search ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  7. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS X-Rays Shine a New Light on Catalysis Print Electrocatalysts are responsible for expediting reactions in many promising renewable energy technologies. However, the extreme...

  8. Forest Grove Light & Power- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Forest Grove Light & Power offers a variety of rebates through Conservation Services Department. Rebates vary based on technology, and are available to residential, commercial, and/or...

  9. Solid-State Lighting Subprogram Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting subprogram. Through robust feedback, the BTO Program Peer ...

  10. Solid-State Lighting Program Strategy Overview - 2014 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting Program Strategy activities. Through robust feedback, the ...

  11. International Battery Presentation - Keeping The Lights On: Smart...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Battery Presentation - Keeping The Lights On: Smart Storage for a Smart Grid (July 12, 2011) ... Technologies Office: 2009 Energy Storage R&D Annual Progress ...

  12. Light-Material Interactions in Energy Conversion - Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control light-material interactions, with the goal of achieving ultrahigh efficiency solar cells. ... is developing a transformational high efficiencylow cost photovoltaics technology. ...

  13. Technical Feasibility Assessment of LED Roadway Lighting on the...

    Office of Scientific and Technical Information (OSTI)

    technology, since both light source types feature rated lifetimes significantly exceeding those of the existing high-pressure sodium (HPS) and low-pressure sodium (LPS) products. ...

  14. Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Greenhouse Gas Emissions: The Combined Potential of Hybrid Technology and Behavioral Adaptation Title Reducing Light Duty Vehicle Fuel Consumption and Greenhouse Gas...

  15. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Mobile Light Project -- A DOE Market Transformation Activity-- Lennie Klebanoff ... Systems Torsten Erbel Multiquip Inc. DOE Fuel Cell Technologies Webinar November 13, ...

  16. Emerging Technologies Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program supports R&D of technologies and systems that are capable of substantially reducing building primary energy use, and accelerates their introduction into the marketplace. External Influences: DOE budget, Spin-off products, Legislation, Market incentives, Private sector R&D, Energy prices, Legislation / Regulation Sub- Programs Objectives Activities / Partners Key Outputs Short Term Outcome Mid-Term Outcome Long Term Outcome Support R&D of high efficiency

  17. Partner with DOE and Emerging Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC),...

  18. Bosch Powertrain Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bosch Powertrain Technologies Provides major supplier view of future gasoline engine ... Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty ...

  19. Everlight TPV Technology JV | Open Energy Information

    Open Energy Info (EERE)

    JV Place: Fujian Province, China Product: China-based company focused on LED chip packaging and LED light strip production. References: Everlight & TPV Technology JV1 This...

  20. Mapping biofuel field: A bibliometric evaluation of research output

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Starbuck Downes, C. Meghan; Boeing, Wiebke; Deng, Shuguang; Ivey, Shanna; Khandan, Nirmal; Schaub, Tanner; Unc, Adrian; Van Voorhies, Wayne; Lammers, Pete

    2013-08-14

    Fundamental research as part of the National Alliance for Advanced Biofuels and Bioproducts for the advancement of technology for algal based biofuel products.

  1. Low Capital Photovoltaic Panel Electrical Output-Booster System...

    Broader source: Energy.gov (indexed) [DOE]

    summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012. PDF icon ssgrandchallengefinanceschrag.pdf More Documents ...

  2. Low Capital Photovoltaic Panel Electrical Output-Booster System

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012.

  3. The Savannah River Technology Center, a leader in sensor technology

    SciTech Connect (OSTI)

    Stewart, W.C.

    1993-12-01

    This publication highlights the capabilities and achievements of the Savannah River Technology Center in the field of sensor technology. Sensors are developed to provide solutions for environmental and chemical analysis. Most of their sensor systems are based upon fiber optics. Fiber optic probes function in three main modes: as a reflected light probe, from opaque samples; as a transreflectance probe, which sample light reflected back from samples which can pass light; and a flow cell, which monitors light transmitted through a path which passes the process stream being tested. The sensor group has developed fiber optic based temperature probes, has combined fiber optics with sol-gel technology to monitor process streams using chemical indicators, has done development work on slip stream on-line sampling of chemical process streams, has developed software to aid in the analysis of chemical solutions, and has applied this technology in a wide range of emerging areas.

  4. 2015 DOE Solid-State Lighting Project Portfolio

    Energy Savers [EERE]

    PROJECT PORTFOLIO: SOLID-STATE LIGHTING January 2015 DOE Solid-State Lighting Project Portfolio January 2015 Executive Summary The U.S. Department of Energy (DOE) partners with businesses, universities, and national laboratories to accelerate improvements in solid-state lighting (SSL) technology. These collaborative, cost-shared efforts focus on developing highly energy-efficient, low cost, white light sources for general illumination. DOE supports SSL research for both light-emitting diode

  5. DOE ZERH Webinar: LED Lighting Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LED Lighting Efficiency DOE ZERH Webinar: LED Lighting Efficiency Description: LED lighting offers efficiency and performance benefits we've never seen in traditional lighting technologies. Commercial buildings have seen rapid growth in LED deployment, and in the residential arena leading builders are now integrating LED lighting packages. And as with any new building system, there are integration challenges along with the process of consumer understanding and acceptance. This webinar will

  6. CONNECTED LIGHTING SYSTEMS WORKSHOP REGISTRATION | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The following resources provide information about outdoor lighting control systems. PDF icon 2014 Presentation: What to Look for Today in Control Systems PDF icon 2015 Presentation: Outdoor Lighting Control System Fundamentals PDF icon 2015 Presentation: Lessons Learned from Networked Outdoor Lighting Control System Pilot Projects PDF icon Emerging Technology Primer: Networked Outdoor Lighting Control Systems

    CONNECTED LIGHTING SYSTEMS WORKSHOP REGISTRATION The registration fee for the 2016

  7. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  8. Electrostatically actuatable light modulating device

    DOE Patents [OSTI]

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  9. Juice Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    Technology Ltd Place: Hertfordshire, England, United Kingdom Zip: EN11 0EX Product: U.K-based lighting fixtures technology LED provider. Coordinates: 51.84005, -0.2751 Show...

  10. Lighting Developments to 2030

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Choices to Save You Money Lighting Choices to Save You Money This Energy 101 video explores the different lighting options available to consumers. Light your home using the same amount of light for less money. By replacing your home's five most frequently used light fixtures or bulbs with models that have earned the ENERGY STAR, you can save $75 each year. New lighting standards took effect in 2012, and money-saving options such as halogen incandescent, CFL, and LED lightbulbs are

  11. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  12. Factors Affecting Power Output by Photovoltaic Cells Lesson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suzanne McClung Unit Title: Option C: Energy Subject: Chemistry Lesson Title: Factors Affecting Power Output by Photovoltaic Cells Grade Level(s): IB 2 (Senior - 3 rd year of chemistry) Lesson Length: 2-90 minute blocks with 30 minutes for wrap up in a 3 rd class period Date(s): * Learning Goals o Students will make observations of voltage and current in a solar panel system o Students will calculate power of a solar panel system o Students will determine the effect of a factor on the power

  13. PHOTOVOLTAIC LIGHTING SYSTEM PERFORMANCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, PO Box 5800, Albuquerque, New Mexico, USA ABSTRACT Grid-tied PV energy ... Inverter output was controlled by the average solar irradiance over the previous 1h ...

  14. Mobile lighting apparatus

    DOE Patents [OSTI]

    Roe, George Michael; Klebanoff, Leonard Elliott; Rea, Gerald W; Drake, Robert A; Johnson, Terry A; Wingert, Steven John; Damberger, Thomas A; Skradski, Thomas J; Radley, Christopher James; Oros, James M; Schuttinger, Paul G; Grupp, David J; Prey, Stephen Carl

    2013-05-14

    A mobile lighting apparatus includes a portable frame such as a moveable trailer or skid having a light tower thereon. The light tower is moveable from a stowed position to a deployed position. A hydrogen-powered fuel cell is located on the portable frame to provide electrical power to an array of the energy efficient lights located on the light tower.

  15. Guiding SSL Technology Advances

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's solid-state lighting (SSL) program builds collaborative industry and research community to guise SSL technology innovation. Provides an overview of DOE's SSL program and its comprehensive approach based on long-term relationships with the SSL industry and community. (April 2015)

  16. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    SciTech Connect (OSTI)

    Rishman, E. E.; Tuenge, J. R.

    2009-10-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology combined with occupancy sensors in a set of upright grocery store freezer cases.

  17. Building Controls and Lighting Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to State Energy Advisory Board (STEAB) February 22, 2011 Francis Rubinstein Lead, Lighting Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory fmrubinstein@lbl.gov Lawrence Berkeley National Laboratory U.S. Building End Use Energy Consumption Buildings consume 40% of Building
sector
has:
 total U.S. energy Largest
Energy
Use!
 * 71% of electricity *54% of natural gas No Single End Use Dominates Fastest
growth
rate!
 Lawrence

  18. CALiPER Exploratory Study. Recessed Troffer Lighting

    SciTech Connect (OSTI)

    Miller, N. J.; Royer, M. P.; Poplawski, M. E.

    2013-03-01

    This CALiPER study examines the problems and benefits likely to be encountered with LED products intended to replace linear fluorescent lamps. LED dedicated troffers, replacement tubes, and non-tube retrofit kits were evaluated against fluorescent benchmark troffers in a simulated office space for photometric distribution, uniformity of light on the task surface, suitability of light output, flicker, dimming performance, color quality, power quality, safety and certification issues, ease of installation, energy efficiency, and life-cycle cost.

  19. Output-increasing, protective cover for a solar cell

    DOE Patents [OSTI]

    Hammerbacher, Milfred D.

    1995-11-21

    A flexible cover (14) for a flexible solar cell (12) protects the cell from the ambient and increases the cell's efficiency. The cell(12)includes silicon spheres (16) held in a flexible aluminum sheet matrix (20,22). The cover (14) is a flexible, protective layer (60) of light-transparent material having a relatively flat upper, free surface (64) and an irregular opposed surface (66). The irregular surface (66) includes first portions (68) which conform to the polar regions (31R) of the spheres (16) and second convex (72) or concave (90) portions (72 or 90) which define spaces (78) in conjunction with the reflective surface (20T) of one aluminum sheet (20). Without the cover (14) light (50) falling on the surface (20T) between the spheres (16) is wasted, that is, it does not fall on a sphere (16). The surfaces of the second portions are non-parallel to the direction of the otherwise wasted light (50), which fact, together with a selected relationship between the refractive indices of the cover and the spaces, result in sufficient diffraction of the otherwise wasted light (50) so that about 25% of it is reflected from the surface (20T) onto a sphere (16).

  20. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2009-06-02

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  1. Method and system for managing an electrical output of a turbogenerator

    DOE Patents [OSTI]

    Stahlhut, Ronnie Dean; Vuk, Carl Thomas

    2010-08-24

    The system and method manages an electrical output of a turbogenerator in accordance with multiple modes. In a first mode, a direct current (DC) bus receives power from a turbogenerator output via a rectifier where turbogenerator revolutions per unit time (e.g., revolutions per minute (RPM)) or an electrical output level of a turbogenerator output meet or exceed a minimum threshold. In a second mode, if the turbogenerator revolutions per unit time or electrical output level of a turbogenerator output are less than the minimum threshold, the electric drive motor or a generator mechanically powered by the engine provides electrical energy to the direct current bus.

  2. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  3. Energy Department Solid-State Lighting Efforts Spark New Paradigm

    Broader source: Energy.gov [DOE]

    Breakthroughs in solid-state lighting (SSL) technology, driven in part by Energy Department research investments, are leading to sweeping changes in the way lighting experts view the vast economic potential of future lighting systems and their growing benefits to society.

  4. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tungsten halogen lamps are more energy-efficient than standard incandescent lamps. They ... Fluorescent lights are about 3 to 4 times as efficient as incandescent lighting and last ...

  5. Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeSolid-State Lighting Permalink ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting Energy, Energy Efficiency, Materials Science, Partnership, Research & ...

  6. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting will be examined here: * replacing incandescent bulbs with compact fluorescent lamps * replacing incandescent exit signs with those lit by light emitting diodes (LED) * ...

  7. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    light by passing electricity through mercury vapor, which causes the fluorescent coating to glow or fluoresce. High-Efficiency Ballast (HEB): A lighting conservation feature...

  8. Fluorescent Lighting Basics

    Broader source: Energy.gov [DOE]

    Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye.

  9. Leavenworth Tree Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Join HERO for our annual Leavenworth Tree Lighting Ceremony & Shopping SATURDAY DECEMBER 12, 2015 Leavenworth Christmas Lighting Festival Visitors return year after year for some...

  10. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Motivation and Computation of Lighting Measures Floorspace by Lighting Equipment Configuration As described in Appendix A, for each building b, the CBECS data set has the total...

  11. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  12. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    are also under consideration. Outside the DOE, the Environmental Protection Agency's Green Lights program promotes energy-efficient lighting as a means to reducing...

  13. residential-lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Progress Report Evaluation Utility Toolkit Residential Lighting Market Research The Residential Lighting Market Research Project will estimate market savings from...

  14. Energy consumption series: Lighting in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1992-03-11

    Lighting represents a substantial fraction of commercial electricity consumption. A wide range of initiatives in the Department of Energy`s (DOE) National Energy Strategy have focused on commercial lighting as a potential source of energy conservation. This report provides a statistical profile of commercial lighting, to examine the potential for lighting energy conservation in commercial buildings. The principal conclusion from this analysis is that energy use for lighting could be reduced by as much as a factor of four using currently available technology. The analysis is based primarily on the Energy Information Administration`s (EIA) 1986 Commercial Buildings Energy Consumption Survey (CBECS). The more recent 1989 survey had less detail on lighting, for budget reasons. While changes have occurred in the commercial building stock since 1986, the relationships identified by this analysis are expected to remain generally valid. In addition, the analytic approach developed here can be applied to the data that will be collected in the 1992 CBECS.

  15. Cree LED Lighting Solutions Formerly LED Lighting Fixtures LLF...

    Open Energy Info (EERE)

    LED Lighting Solutions Formerly LED Lighting Fixtures LLF Jump to: navigation, search Name: Cree LED Lighting Solutions (Formerly LED Lighting Fixtures (LLF)) Place: Morrisville,...

  16. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and ...

  17. Angular output of hollow, metal-lined, waveguide Raman sensors

    SciTech Connect (OSTI)

    Biedrzycki, Stephen; Buric, Michael P.; Falk, Joel; Woodruff, Steven D.

    2012-04-20

    Hollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power. We report a theory/experimental comparison of the Raman power collected as a function of the solid angle and waveguide length. New theoretical observations are compared with previous theory appropriate only for low-order modes. A cutback experiment is demonstrated to verify the validity of either theory. The angular distribution of Raman light is measured using aluminum and silver-lined waveguides of varying lengths.

  18. New Research Center to Increase Safety and Power Output of U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 12:00am ...

  19. Output-Based Regulations: A Handbook for Air Regulators (U.S...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 The U.S. ...

  20. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmaps Technology Roadmaps May 15, 2015 Solid-State Lighting R&D Plan The Solid-State Lighting (SSL) R&D Plan is a consolidation of the Department of Energy (DOE) SSL Multi-Year Program Plan (MYPP) and the DOE SSL Manufacturing R&D Roadmap that DOE has published and updated in previous years. The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The Roadmap also reviews SSL technology status and

  1. Transformations in Lighting: The Sixth Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 400 SSL technology leaders from industry, research organizations, universities, national laboratories, manufacturing, energy efficiency organizations, utilities and municipalities gathered in San Francisco, CA to participate in the "Transformations in Lighting" Solid-State Lighting Workshop on February 3-5, 2009. The workshop, hosted by DOE, with sponsors BetaLED, Echelon, Pacific Gas & Electric, and Southern California Edison, was the sixth annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products. The workshop brought together a diverse gathering of participants - from the R&D community to lighting designers and architects - to share insights, ideas, and updates on the rapidly evolving SSL market.

  2. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  3. Blue and Green Light? Wavelength Scaling for NIF

    SciTech Connect (OSTI)

    Suter, L; Miller, M; Moody, J; Kruer, W

    2003-08-21

    Use of the National Ignition Facility to also output frequency-doubled (.53{micro}m) laser light would allow significantly more energy to be delivered to targets as well as significantly greater bandwidth for beam smoothing. This green light option could provide access to new ICF target designs and a wider range of plasma conditions for other applications. The wavelength scaling of the interaction physics is a key issue in assessing this green light option. Wavelength scaling theory based on the collisionless plasma approximation is explored, and some limitations associated with plasma collisionality are examined. Important features of the wavelength scaling are tested using the current data base, which is growing. It appears that, with modest restrictions, .53{micro}m light couples with targets as well as .35{micro}m light does. A more quantitative understanding of the beneficial effects of SSD on the interaction physics is needed for both .53{micro}m and .35{micro}m light.

  4. Pedestrian Friendly Outdoor Lighting

    SciTech Connect (OSTI)

    Miller, N. J.; Koltai, R. N.; McGowan, T. K.

    2013-12-01

    The GATEWAY program followed two pedestrian-scale lighting projects that required multiple mockups – one at Stanford University in California and the other at Chautauqua Institution in upstate New York. The report provides insight into pedestrian lighting criteria, how they differ from street and area lighting criteria, and how solid-state lighting can be better applied in pedestrian applications.

  5. LED Lighting Facts Snapshot: Indoor Ambient Lighting

    SciTech Connect (OSTI)

    2013-04-01

    LED Lighting Facts Snapshot reports reveal how today's products really perform, drawing on analysis of verified performance data from the program's online product list.

  6. Failure Mode Classification for Life Prediction Modeling of Solid-State Lighting

    SciTech Connect (OSTI)

    Sakalaukus, Peter Joseph

    2015-08-01

    Since the passing of the Energy Independence and Security Act of 2007, the U.S. government has mandated greater energy independence which has acted as a catalyst for accelerating and facilitating research efforts toward the development and deployment of market-driven solutions for energy-saving homes, buildings and manufacturing, as well as sustainable transportation and renewable electricity generation. As part of this effort, an emphasis toward advancing solid-state lighting technology through research, development, demonstration, and commercial applications is assisting in the phase out of the common incandescent light bulb, as well as developing a more economical lighting source that is less toxic than compact fluorescent lighting. This has led lighting manufacturers to pursue SSL technologies for a wide range of consumer lighting applications. An SSL luminaire’s lifetime can be characterized in terms of lumen maintenance life. Lumen maintenance or lumen depreciation is the percentage decrease in the relative luminous flux from that of the original, pristine luminous flux value. Lumen maintenance life is the estimated operating time, in hours, when the desired failure threshold is projected to be reached at normal operating conditions. One accepted failure threshold of SSL luminaires is lumen maintenance of 70% -- a 30% reduction in the light output of the luminaire. Currently, the only approved lighting standard that puts forth a recommendation for long-term luminous flux maintenance projections towards a specified failure threshold of an SSL luminaire is the IES TM-28-14 (TM28) standard. iii TM28 was derived as a means to compare luminaires that have been tested at different facilities, research labs or companies. TM28 recommends the use of the Arrhenius equation to determine SSL device specific reaction rates from thermally driven failure mechanisms used to characterize a single failure mode – the relative change in the luminous flux output or “light power” of the SSL luminaire. The use of the Arrhenius equation necessitates two different temperature conditions, 25°C and 45°C are suggested by TM28, to determine the SSL lamp specific activation energy. One principal issue with TM28 is the lack of additional stresses or parameters needed to characterize non-temperature dependent failure mechanisms. Another principal issue with TM28 is the assumption that lumen maintenance or lumen depreciation gives an adequate comparison between SSL luminaires. Additionally, TM28 has no process for the determination of acceleration factors or lifetime estimations. Currently, a literature gap exists for established accelerated test methods for SSL devices to assess quality, reliability and durability before being introduced into the marketplace. Furthermore, there is a need for Physics-of-Failure based approaches to understand the processes and mechanisms that induce failure for the assessment of SSL reliability in order to develop generalized acceleration factors that better represent SSL product lifetime. This and the deficiencies in TM28 validate the need behind the development of acceleration techniques to quantify SSL reliability under a variety of environmental conditions. The ability to assess damage accrual and investigate reliability of SSL components and systems is essential to understanding the life time of the SSL device itself. The methodologies developed in this work increases the understanding of SSL devices iv through the investigation of component and device reliability under a variety of accelerated test conditions. The approaches for suitable lifetime predictions through the development of novel generalized acceleration factors, as well as a prognostics and health management framework, will greatly reduce the time and effort needed to produce SSL acceleration factors for the development of lifetime predictions.

  7. Keeping Pace with LED Lighting Trends | Department of Energy

    Energy Savers [EERE]

    Keeping Pace with LED Lighting Trends Keeping Pace with LED Lighting Trends October 23, 2013 - 10:41am Addthis This year's SSL Market Introduction Workshop will take place in Portland, Oregon. | Photo courtesy of Travel Portland This year's SSL Market Introduction Workshop will take place in Portland, Oregon. | Photo courtesy of Travel Portland Jim Brodrick Jim Brodrick Lighting Program Manager Rapid advances in solid-state lighting (SSL) technology are reducing the cost, improving the

  8. Walmart Sees the Light for Parking Lots | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Walmart Sees the Light for Parking Lots Walmart Sees the Light for Parking Lots November 1, 2011 - 1:03pm Addthis This Walmart in Leavenworth, Kansas, was the first to include LED parking lot lighting based on a specification developed through the Energy Department's Building Technologies Program, the Retail Energy Alliance and the retailer. Since January, Walmart has planned to install similar lighting system at more than 225 new sites. | Photo courtesy of Walmart. This Walmart in Leavenworth,

  9. Monte Carlo Simulation of Light Transport in Tissue, Beta Version

    Energy Science and Technology Software Center (OSTI)

    2003-12-09

    Understanding light-tissue interaction is fundamental in the field of Biomedical Optics. It has important implications for both therapeutic and diagnostic technologies. In this program, light transport in scattering tissue is modeled by absorption and scattering events as each photon travels through the tissue. the path of each photon is determined statistically by calculating probabilities of scattering and absorption. Other meausured quantities are total reflected light, total transmitted light, and total heat absorbed.

  10. Energy Department Launches Better Buildings Alliance Indoor Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Campaign for Commercial Buildings | Department of Energy Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings Energy Department Launches Better Buildings Alliance Indoor Lighting Campaign for Commercial Buildings May 27, 2015 - 7:30am Addthis Today the Energy Department launched a new indoor lighting campaign to increase the use of high efficiency lighting technologies in commercial buildings. Through the Better Buildings Alliance, the Department is working

  11. Light Water Reactor Sustainability (LWRS) Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure long-term reliability, productivity, safety, and security. The program is conducted in collaboration with national

  12. Solid-State Lighting Webcasts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webcasts Solid-State Lighting Webcasts Below you'll find links to information about past webcast presentations related to solid-state lighting, including presentation slides and question-and-answer sessions, where available. CONNECTED OUTDOOR LIGHTING SYSTEMS FOR MUNICIPALITIES October 22, 2015 A presentation on the current state of connected outdoor lighting system technology and where it is heading. A TECHNICAL DISCUSSION OF TM-30-15 September 22, 2015 A presentation on why and how TM-30-15

  13. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  14. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  15. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    SciTech Connect (OSTI)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen Liu, Bin; Wang, Lianhui; Shi, Hongying

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using ?-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  16. Fail safe controllable output improved version of the electromechanical battery

    DOE Patents [OSTI]

    Post, R.F.

    1999-01-19

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition. 4 figs.

  17. Fail safe controllable output improved version of the Electromechanical battery

    DOE Patents [OSTI]

    Post, Richard F. (Walnut Creek, CA)

    1999-01-01

    Mechanical means are provided to control the voltages induced in the windings of a generator/motor. In one embodiment, a lever is used to withdraw or insert the entire stator windings from the cavity where the rotating field exists. In another embodiment, voltage control and/or switching off of the output is achievable with a variable-coupling generator/motor. A stator is made up of two concentric layers of windings, with a larger number of turns on the inner layer of windings than the outer layer of windings. The windings are to be connected in series electrically, that is, their voltages add vectorially. The mechanical arrangement is such that one or both of the windings can be rotated with respect to the other winding about their common central axis. Another improved design for the stator assembly of electromechanical batteries provides knife switch contacts that are in electrical contact with the stator windings. The operation of this embodiment depends on the fact that an abnormally large torque will be exerted on the stator structure during any short-circuit condition.

  18. Keeping Light in Tune | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping Light in Tune Much like being slightly off the frequency of a radio station destroys radio reception, the quality of light-emitting technologies has, until now, been severely limited by random fluctuations in the frequency of the emitted photons. Scientists demonstrated how this photon detuning can be suppressed using a series of short, controlled pulses applied to the emitter. The elegant solution is robust and applicable for many quantum systems, removing a major roadblock on the way

  19. solid state lighting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solid-State Lighting Solid-State Lighting (SSL) is an emerging technology with the potential to address the urgent challenges of revitalizing America's economy, strengthening our national energy security, and reducing our country's greenhouse gas emissions. SSL will mean greener homes and businesses that use substantially less electricity, making them less dependent on fossil fuels. In the coming decade, SSL will become a key to affordable high-performance buildings - buildings that consume less

  20. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at

    Office of Scientific and Technical Information (OSTI)

    the I-35W Bridge, Minneapolis, MN (Technical Report) | SciTech Connect Roadway Lighting at the I-35W Bridge, Minneapolis, MN Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under

  1. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  2. PHOTOVOLTAIC LIGHTING SYSTEM PERFORMANCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid-Tied PV System Energy Smoothing Thomas D. Hund, Sigifredo Gonzalez, and Keith Barrett *Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico, USA ABSTRACT Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time

  3. Method for optimizing the mechanical output of a fluid pressure free piston engine

    SciTech Connect (OSTI)

    Dibrell, E.W.; Schaich, W.A.

    1988-07-05

    The method is described for minimizing rotational speed variations of a centrifugal piston expander engine comprising the steps of: (1) supplying a pressured gas to a centrifugal piston expander engine having a rotatable output element and a discharge conduit for cooled exhaust gas; (2) expanding and cooling the pressured gas in the centrifugal piston expander engine to produce cyclically varying oppositely directed, positive and negative torques on the rotatable output shaft; (3) driving a rotary load in the positive torque direction by the rotatable output element through one rotatable element of a unidirectional clutch having two rotating elements relatively movable in only the negative torque direction; and (4) connecting a battery operated motor-generator unit to the rotatable output shaft to supplement the rotary speed of the output shaft during periods of negative torque output by the centrifugal piston expander engine and to recharge the battery during periods of maximum positive torque output of the centrifugal expander engine.

  4. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  5. Arrangement for multiplexing and intensity splitting light beams for interface into fiber optic cables

    DOE Patents [OSTI]

    Johnson, Steve A.

    1990-01-01

    An arrangement especially suitable for use in a laser apparatus for converting a plurality of different input light beams, for example copper vapor laser beams, into a plurality of substantially identical light beams is disclosed herein. This arrangement utilizes an optical mixing bar which is preferably integrally formed as a single unit and which includes a main body for mixing light therein, a flat input surface on one end of the main body, and a multi-faceted output face on the opposite end of the main body. This arrangement also includes means for directing the plurality of different input light beams onto the input face of the mixing base, whereby to cause the different beams to mix within the main body of the mixing bar and exit the latter from its multi-faceted output face as the desired plurality of substantially identical output beams.

  6. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  7. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  8. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  9. New runners to boost peak output at Niagara Falls

    SciTech Connect (OSTI)

    Reason, J.

    1990-01-01

    Retrofitted Francis turbines will improve the value of power generated from Niagara Falls by increasing the peak output of the hydroturbine units at the Robert Moses hydroelectric plant. The computer-designed runners are expected to add 330 MW to the peak capacity of the 28-yr-old plant and significantly increase the efficiency at high flow rates. Next year, the first new runner will be retrofit to the highly instrumented Unit 4. If the retrofit unit meets it increased-performance expectations, the other 12 units will be upgraded between 1993 and 1998. The work is part of an overall expansion of the Niagara Power Project designed to made better use of the power value of Niagara river water, within the constraints of a treaty with Canada and the scenic value of the falls. These constraints, together with varying flows and heads, introduced enormous complexities into the selection and design of the new runners. The alterations being made to Unit 4, in addition to replacing the turbine runner, include modifying the draft tube-liners, increasing the wicket-gate stroke, replacing the turbine discharge ring (to accommodate longer blades), making various electrical modifications to the generator, and replacing the transformer. But the key to the retrofit is the computer-designed runner. Charles Grose, senior project manager, New York Power Authority, White Plains, NY, emphasizes that such computer design techniques were not available a few years ago; neither were the computer-controlled machining techniques necessary to manufacture the new runners. Other aspects of the upgrading that were analyzed include runner stability, resonance, shaft torsional stress, and runaway speed.

  10. Metacapacitors for LED Lighting: Metacapacitors

    SciTech Connect (OSTI)

    2010-09-02

    ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

  11. Tips: Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tips: Lighting Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting choices save you money....

  12. Review of light water reactor safety

    SciTech Connect (OSTI)

    Cheng, H.S.

    1980-12-01

    A review of the present status of light water reactor (LWR) safety is presented. The review starts with a brief discussion of the outstanding accident scenarios concerning LWRs. Where possible the areas of present technological uncertainties are stressed. To provide a better perspective of reactor safety, it then reviews the probabilistic assessment of the outstanding LWR accidents considered in the Reactor Safety Study (WASH-1400) and discusses the potential impact of the present technological uncertainties on WASH-1400.

  13. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  14. LED Lighting: Applying Lessons Learned from the CFL Experience

    SciTech Connect (OSTI)

    McCullough, Jeffrey J.; Gilbride, Theresa L.; Gordon, Kelly L.; Ledbetter, Marc R.; Sandahl, Linda J.; Ton, My K.

    2008-08-20

    Light emitting diode (LED) technology has emerged as an exciting new lighting alternative with the potential for significant energy savings. There is concern, however, that white light LEDs for general illumination could take a long, bumpy course similar to another energy-efficient lighting technology – compact fluorescent lights (CFLs). Recognizing the significant potential energy-efficient lighting has to reduce U.S. energy consumption, Congress mandated in the Energy Policy Act of 2005 that the U.S. Department of Energy (DOE) develop Solid State Lighting (SSL) through a Next Generation Lighting Initiative. DOE’s first step was to analyze the market introduction of compact fluorescent lighting to determine what lessons could be learned to smooth the introduction of SSL in the United States (Sandahl et al. 2006). This paper summarizes applicable lessons learned from the market introduction of CFLs and describe how DOE and others are applying those lessons to speed the development and market introduction of energy-efficient LED lighting for general illumination applications. A description of the current state of LED technology and compares LEDs to incandescent, fluorescent, and halogen lights is also provided.

  15. Connected Lighting Systems Meeting

    Broader source: Energy.gov [DOE]

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  16. CONNECTED LIGHTING SYSTEMS MEETING

    Broader source: Energy.gov [DOE]

    There is a lot of buzz today about the Internet of Things and the convergence of intelligent controllable light sources, communication networks, sensors, and data exchange in future lighting...

  17. Outdoor Lighting Resources

    Broader source: Energy.gov [DOE]

    DOE offers a variety of resources to guide municipalities, utilities, and others in their evaluation of LED street lighting products.

  18. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determine the Feasibility of Installing Energy Efficient Lighting In this part of the exercise, you will plan a new approach to lighting your school library. This new plan will use less energy, cost less, and result in less greenhouse gas. Your plan will also include bottom line calculations and decision factors such as: identifying the costs and payback for buying and installing new lighting equipment and making a determination about whether or not the new, more efficient lighting will provide

  19. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  20. Stirling converters for space dynamic power concepts with 2 to 130 W{sub e} output

    SciTech Connect (OSTI)

    Ross, B.A.

    1995-12-31

    Three innovative Stirling converter concepts are described. Two concepts are based on Pluto Fast Flyby (PFF) mission requirements, where two General Purpose Heat Source (GPHS) modules provide the thermal input. The first concept (PFF2) considers a power system with two opposed Stirling converters; the second concept (PFF4) considers four opposed Stirling converters. For both concepts the Stirling converters are designed to vary their power production capability to compensate for the failure of one Stirling converter. While the net thermal efficiency of PFF4 is a few percentage points lower than PFF2, the total Stirling converter mass of PFF4 is half that for PFF2. The third concept (ITTI) is designed to supply 2 watts of power for weather stations on the Martian surface. The predicted thermal performance of the ITTI is low compared to PFF2 and PFF4, yet the ITTI concept offers significant advantages compared to currently available power systems at the 2-watt power level. All three concepts are based on long-life technology demonstrated by an 11-watt output Stirling generator that as of March 1995 has accumulated over 15,000 operating hours without maintenance.

  1. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect (OSTI)

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  2. Solid-State Lighting-Lighting Facts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid-State Lighting-Lighting Facts Presenter: Marc Ledbetter, Pacific Northwest National Laboratory The LED Lighting Facts program provides credible, verified performance ...

  3. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  4. Light-storing photocatalyst

    SciTech Connect (OSTI)

    Zhang Junying; Pan Feng; Hao Weichang; Ge Qi; Wang Tianmian

    2004-12-06

    Light-storing photocatalyst was prepared by coating light-storing phosphor and TiO{sub 2} photocatalyst in sequence on ceramic. The light-storing photocatalyst can store light irradiation and emit slowly. Consequently, the photocatalyst remains active when the irradiation source is cut off. Rhodamine B (RhB) can be decomposed efficiently by this photocatalyst in the dark after it absorbs light irradiation. This photocatalyst is photoreactive in an outdoor environment or can save energy by supplying irradiation intermittently for the photocatalyst.

  5. NREL: Energy Analysis - Wind Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Hydropower Technology Analysis Wind and hydropower analysis supports advanced technologies that convert more of the nation's wind into electricity. Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation imposes on the overall grid. At present, the generation and transmission operational impacts that occur due to wind variability are not well quantified. This

  6. Photonic crystal light source

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Bur, James A.

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  7. Thermoelectric Development at Hi-Z Technology

    SciTech Connect (OSTI)

    Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

    2002-08-25

    An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

  8. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  9. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  10. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  11. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  12. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Engineering- Long Fiber Injection Moldings * USAMP : Validation of Front Bumper Crash Models of Polymer Composites - Light Metals * PNNL : Mechanistic-based Ductility ...

  13. Private Companies, Local Government, and Utilities to Work with Energy Department to Upgrade Interior Lighting

    Broader source: Energy.gov [DOE]

    The Energy Department today announced over 65 organizations are participating in the Better Buildings Alliance's Interior Lighting Campaign (ILC) and committing to drive greater energy efficiency through new interior lighting technologies.

  14. Dayton Power and Light- Business and Government Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Dayton Power and Light's (DP&L) non-residential electricity customers are eligible for a wide range of energy efficient technology rebates. Rebates are available for lighting, heating and...

  15. Lighting Design | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Lighting Design Energy-efficient indoor and outdoor lighting design focuses on ways to improve both the quality and efficiency of lighting. | Photo courtesy of ...

  16. Tips: Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Follow Us followontwitter.png followonfacebook.png Lighting Blogs Buying the Perfect Energy-Efficient Light Bulb in 5 Easy Steps Big Savings on Outdoor Lighting ...

  17. Epoch Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: 311201 Sector: Solar Product: Distributor of PV outdoor lights and solar thermal water heating systems. References: Epoch Energy Technology Co Ltd1 This article is a...

  18. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  19. Vehicle Technologies Office Merit Review 2015: High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion in Multi-Cylinder Light-Duty Engines Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies ...

  20. Vehicle Technologies Office Merit Review 2015: Use of Low Cetane...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Combustion Vehicle Technologies Office Merit Review 2015: High Efficiency Clean Combustion in Multi-Cylinder Light-Duty Engines Sandia Optical Hydrogen-fueled Engine

  1. New Director to lead Technology Development and Commercialization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LLC, a startup company commercializing a breakthrough air cooling technology developed at Sandia National Laboratories for applications in LED lighting and power electronics. ...

  2. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  3. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The ... of their total market (e.g. electricity, cars and lighting), they are growing rapidly. ...

  4. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty ...

  5. Vehicle Technologies Office Merit Review 2014: Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts - enabling systems and solutions for high efficiency light duty...

  6. Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc...

    Open Energy Info (EERE)

    Developing PV encapsulates, next generation solar cells, solar power storage, and LED lightings. References: Sunovia Energy Technologies Inc (formerly Sun Energy Solar...

  7. Fact #805: November 25, 2013 Vehicle Technology Penetration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 37 75% 99% 78% 38 99% 83% Source: Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2012, ...

  8. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2010. Supporting Information Leases as a ...

  9. Ramping-up Investments in Advanced Vehicle Technologies | Department...

    Energy Savers [EERE]

    From state-of-the-art electric drive batteries to light-weight vehicles, these projects ... Advanced cells and design technology for electric drive batteries: Twelve projects to ...

  10. Transformations in Lighting: The Seventh Annual Solid-State Lighting R&D Workshop

    Broader source: Energy.gov [DOE]

    More than 350 researchers, manufacturers, and other industry insiders and observers gathered in Raleigh, N.C., February 2–4, 2010, to participate in the "Transformations in Lighting" Solid-State Lighting R&D Workshop, hosted by DOE. The workshop was the seventh annual DOE meeting to accelerate SSL technology advances and guide market introduction of quality SSL products, and it brought together a diverse gathering of participants to share insights, ideas, and updates.

  11. Wisconsin Business Sheds Light on Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wisconsin Business Sheds Light on Lighting Wisconsin Business Sheds Light on Lighting April 29, 2010 - 4:59pm Addthis When this photograph was taken, the upper floors of ...

  12. Testimonials - Partnerships in Solid-State Lighting - Cree, Inc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Opto Electronics Technology, Cree, Inc." and footage of a man in a showcase room. ... Footage of a man in lab opening a consule full of lights in a lab, followed by a variety ...

  13. Future Synchrotron Light Sources Based on Ultimate Storage Rings...

    Office of Scientific and Technical Information (OSTI)

    It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users ...

  14. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Download the presentation slides from the Fuel Cell Technologies Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. PDF icon Fuel Cell Mobile Lighting Webinar Slides More Documents & Publications DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Fuel Cell Product

  15. Exploration Technologies Technology Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's Geothermal Technologies Program and prepared by Energetics Incorporated under the guidance of Hildigunnur (Hidda) Thorsteinsson, Technology Development Manager of the Exploration Technologies Subprogram, and Tim Reinhardt, Technology Development Manager of the Low-Temperature, Coproduced, and Geopressured Geothermal Subprogram. Amanda I. Greene of Energetics Incorporated was the lead author and designer of the

  16. NREL Technologies Win National Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 17, 1997—Technologies developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have been selected to receive two 1997 R&D 100 Awards by Research and Development Magazine. The annual awards recognize the years 100 most important, unique and useful innovations. The magazine recognized PV Optics as one of the most important technological advances of 1997. PV Optics is the first computer program capable of accurately analyzing light trapping

  17. Light metal production

    DOE Patents [OSTI]

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  18. Clean Energy Manufacturing Initiative Solid-State Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solid-State Lighting Clean Energy Manufacturing Initiative Solid-State Lighting Addthis Description Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the United States. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase

  19. Integrated Plastic Substrates for OLED Lighting | Department of Energy

    Energy Savers [EERE]

    Plastic Substrates for OLED Lighting Integrated Plastic Substrates for OLED Lighting Lead Performer: Sinovia Technologies - Foster City, CA Partners: - Eastman Kodak Company - Rochester, NY - Vitriflex - San Jose, CA - Solvay, USA Inc. - Houston, TX DOE Total Funding: $1,211,240 Cost Share: $1,249,430 Project Term: 8/1/15 - 3/1/17 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0001171) Project Objective This project will combine a barrier film technology with a

  20. Light diffusing fiber optic chamber (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: light; diffusing; fiber; optic; chamber; light; diffusion; transmitting; light; target; light; transmitted; ...

  1. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lores

    hires

    The purpose of the Lighting in the Library Activity is to calculate the electricity used to provide lighting in the school library and determine the feasibility of saving energy and money by using energy efficient lighting fixtures. Your students will assume the role of an energy auditor assigned the task of assessing the current situation and making a recommendation for energy-efficient improvements. This activitity requires a trip to the library, an examination of the

  2. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  3. High efficiency incandescent lighting

    DOE Patents [OSTI]

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  4. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    SciTech Connect (OSTI)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  5. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  6. Extragalactic Background Light

    Office of Scientific and Technical Information (OSTI)

    Extragalactic Background Light from Hierarchical Galaxy Formation: Gamma-ray Attenuation up to the Epoch of Cosmic Reionization and the First Stars Yoshiyuki Inoue 1 , Susumu Inoue...

  7. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Illuminance Assignments for CBECS Building Activity Categories Illuminance ranges were adopted from the 1987 Illuminating Engineering Society (IES) Lighting Handbook. The IES...

  8. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    from the engineering literature, based on CBECS building activity.) 4. Efficacy: an energy efficiency measure. Technically, the amount of light produced per unit of energy...

  9. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    energy are presented in this section. Statistics are presented by subgroups based on building characteristics, and by subgroups based on lighting equipment. The three sets of...

  10. Light Duty Vehicle Pathways

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  11. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Partners: Auburn University Cree SAS Institute PPG Industries State of North Carolina ... Consortium Auburn University SAS Institute Cree Lighting PPG Industries State of North ...

  12. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model; Sept. 2013 Auburn University Cree SAS Institute PPG Industries LED Systems ... Consortium Auburn University SAS Institute Cree Lighting PPG Industries Communications: ...

  13. And there was light

    SciTech Connect (OSTI)

    Bertulani, C. A.

    2015-02-24

    I discuss the use of light as a collection of real and virtual photons to study some lingering questions in particle and nuclear physics.

  14. Comparing Light Bulbs

    Broader source: Energy.gov [DOE]

    In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

  15. CALiPER Snapshot Report: Outdoor Area Lighting

    SciTech Connect (OSTI)

    none,

    2014-07-01

    Snapshot reports use data from DOE's LED Lighting Facts product list to compare the LED performance to standard technologies, and are designed to help lighting retailers, distributors, designers, utilities, energy efficiency program sponsors, and other stakeholders understand the current state of the LED market and its trajectory.

  16. LED Street Lighting Conversion Workshop Presentations | Department of

    Energy Savers [EERE]

    Energy Research & Development » Technology Application R&D » Municipal Consortium » News & Events » LED Street Lighting Conversion Workshop Presentations LED Street Lighting Conversion Workshop Presentations This page provides links to the presentations given at the National League of Cities Mobile Workshop, LED Street Lighting Conversion: Saving Your Community Money, While Improving Public Safety, held November 13, 2013, in Seattle, WA. Presentations and Materials State of

  17. Light Water Reactor Sustainability Technical Documents | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Reactor Technologies » Light Water Reactor Sustainability Program » Light Water Reactor Sustainability Technical Documents Light Water Reactor Sustainability Technical Documents April 30, 2015 LWRS Program and EPRI Long-Term Operations Program - Joint R&D Plan To address the challenges associated with pursuing commercial nuclear power plant operations beyond 60 years, the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) and the Electric Power Research

  18. Standards Development for Solid-State Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Technology Application R&D » Standards Development for Solid-State Lighting Standards Development for Solid-State Lighting To accelerate the development and implementation of needed standards for solid-state lighting products, DOE works closely with a network of standards-setting organizations and offers technical assistance and support. Since 2006, DOE has facilitated ongoing dialogue with key standards development organizations to foster greater coordination

  19. Solid-State Lighting Subprogram Overview - 2016 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solid-State Lighting Subprogram Overview - 2016 BTO Peer Review Solid-State Lighting Subprogram Overview - 2016 BTO Peer Review Presenter: James R. Brodrick, U.S. Department of Energy This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office's Solid-State Lighting subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs. PDF icon 2016 BTO Peer Review

  20. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    SciTech Connect (OSTI)

    Karen Johnson; Michael Jensen

    1996-11-08

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR