Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Light output simulation of LYSO single crystal  

E-Print Network (OSTI)

We used the Geant4 simulation toolkit to estimate the light collection in a LYSO crystal by using cosmic muons and E=105 MeV electrons. The light output as a function of the crystal length is studied. Significant influence of the crystal wrapping in the reflective paper and optical grease coupling to the photodetectors on the light output is demonstrated.

Usubov, Zafar

2013-01-01T23:59:59.000Z

2

Energy conserving automatic light output system  

SciTech Connect

An energy conserving lighting system is provided wherein a plurality of fluorescent lamps are powered by a poorly regulated voltage source power supply which provides a decreasing supply voltage with increasing arc current so as to generally match the volt-ampere characteristics of the lamps. A transistor ballast and control circuit connected in the arc current path controls the arc current, and hence the light output, in accordance with the total ambient light, i.e., the light produced by the lamps together with whatever further light is produced by other sources such as daylight. In another embodiment, a transistor ballast is utilized in combination with an inductive ballast. The transistor ballast provides current control over a wide dynamic range up to a design current maximum at which maximum the transistor is saturated and the inductive ballast takes over the current limiting function. An operational amplifier is preferably connected in the base biassing circuit of the control transistor of the transistor ballast. In an embodiment wherein two sets of lamps with separate inductive ballasts are provided, the arc currents for the two ballasts are scaled or matched to provide the desired light output.

Widmayer, D.F.

1983-07-19T23:59:59.000Z

3

TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT  

E-Print Network (OSTI)

1 TRICOLOR LIGHT EMITTING DIODE DOT MATRIX DISPLAY SYSTEM WITHAUDIO OUTPUT Grantham Pang, Chi emitting diodes; tricolor display; audio communication. I. Introduction This paper relates to a tricolor broadcasting through the visible light rays transmitted by the display panel or assembly. Keywords: light

Pang, Grantham

4

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

5

Emerging Lighting Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Lighting Technology Emerging Lighting Technology Bruce Kinzey Pacific Northwest National Laboratory FUPWG - Portland, OR April 20, 2011 www.ssl.energy.gov 2 | Solid-State Lighting Program GATEWAY Demonstration Program * Purpose: demonstrate new SSL products in real-world applications that save energy, match or improve illumination, and are cost- effective * Demos generate critical field experience providing: - Feedback to manufacturers - Data for utility incentives - Market readiness of specific applications to users - Advancement in lighting knowledge Central Park, NY Photo: Ryan Pyle Smithsonian American Art Museum, Washington, D.C. Photo: Scott Rosenfeld www.ssl.energy.gov 3 | Solid-State Lighting Program LED Product Explosion www.ssl.energy.gov 4 | Solid-State Lighting Program LEDs are Not a Universal Lighting

6

Technology reviews: Lighting systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize lighting system in the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

7

Lighting Technology Panel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Panel Technology Panel Federal Utility Partnership Working Group N b 2009 November 1 1 8, 2009 Doug Avery Southern California Edison Southern California Edison National Energy Conservation M d t Mandates * There are Federal and State Mandates to reduce energy consumption - California Investor Owned Electric Utilities are ordered to save around 3 Billion kWh's each y year from 2007-2113 - Federal buildings ordered to reduce electrical Federal buildings ordered to reduce electrical energy consumption 35% by 2012 Energy Consump ption gy Lighting accounts for 42 7% of energy consumption Lighting accounts for 42.7% of energy consumption Data Courtesy of SDG&E Data Courtesy of SDG&E Energy Consump ption gy More than ¾ of the lighting load is non-residential. Data Courtesy of SDG&E

8

Evaluation of Lighting and Lighting Control Technologies  

Science Conference Proceedings (OSTI)

Energy efficient lighting and lighting controls have been a means to significant energy savings for many facilities around the world. Advances in lighting sources often allow for the conservation of quality of light while providing more flexibility in the control of light. Additionally, advances in core technologies within the lighting marketplace regularly lead to the introduction of new lamps, fixtures and controls.  With the rapid introduction of new products and designs, it is important to ...

2013-11-15T23:59:59.000Z

9

New Lighting Technologies  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update continues the technical assessment of advanced lighting technologies in the following product areas—linear LED T8 fluorescent replacements, Edison-based dimmable LED lamps, commercial replacement side-lit LED fixtures, Edison-based reduced-consumption halogen lamps designed to replace 100W incandescent lamps, high bay induction LED lamps, and architectural LED lamps. Many of the products in this year’s report are designed as ...

2012-10-08T23:59:59.000Z

10

Universal Lighting Technologies | Open Energy Information  

Open Energy Info (EERE)

Product Universal Lighting Technologies develops, manufactures and markets energy efficient lighting technologies including HID, CFLs and ballasts. References Universal...

11

Input--output capital coefficients for energy technologies. [Input-output model  

DOE Green Energy (OSTI)

Input-output capital coefficients are presented for five electric and seven non-electric energy technologies. They describe the durable goods and structures purchases (at a 110 sector level of detail) that are necessary to expand productive capacity in each of twelve energy source sectors. Coefficients are defined in terms of 1967 dollar purchases per 10/sup 6/ Btu of output from new capacity, and original data sources include Battelle Memorial Institute, the Harvard Economic Research Project, The Mitre Corp., and Bechtel Corp. The twelve energy sectors are coal, crude oil and gas, shale oil, methane from coal, solvent refined coal, refined oil products, pipeline gas, coal combined-cycle electric, fossil electric, LWR electric, HTGR electric, and hydroelectric.

Tessmer, R.G. Jr.

1976-12-01T23:59:59.000Z

12

Radioluminescent lighting technology  

SciTech Connect

The glow-in-the-dark stereotype that characterizes the popular image of nuclear materials is not accidental. When the French scientist, Henri Becquerel, first discovered radioactivity in 1896, he was interested in luminescence. Radioluminescence, the production of light from a mixture of energetic and passive materials, is probably the oldest practical application of the unstable nucleus. Tritium-based radioluminescent lighting, in spite of the biologically favorable character of the gaseous tritium isotope, was included in the general tightening of environmental and safety regulations. Tritium light manufacturers would have to meet two fundamental conditions: (1) The benefit clearly outweighed the risk, to the extent that even the perceived risk of a skeptical public would be overcome. (2) The need was significant enough that the customer/user would be willing and able to afford the cost of regulation that was imposed both in the manufacture, use and eventual disposal of nuclear materials. In 1981, researchers at Oak Ridge National Laboratory were investigating larger radioluminescent applications using byproduct nuclear material such as krypton-85, as well as tritium. By 1982, it appeared that large source, (100 Curies or more) tritium gas tube, lights might be useful for marking runways and drop zones for military operations and perhaps even special civilian aviation applications. The successful development of this idea depended on making the light bright enough and demonstrating that large gas tube sources could be used and maintained safely in the environment. This successful DOE program is now in the process of being completed and closed-out. Working closely with the tritium light industry, State governments and other Federal agencies, the basic program goals have been achieved. This is a detailed report of what they have learned, proven, and discovered. 91 refs., 29 figs., 5 tabs. (JF)

1990-01-01T23:59:59.000Z

13

IntenCity - 2 Solid State Outdoor Luminaire SL-3200 High Output LED Street Light  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a solid state outdoor luminarie light emitting diode (LED) street lighting system designed to provide various levels of direct white light.

2008-06-12T23:59:59.000Z

14

Photonic Crystals: Enhancing the Light Output of Scintillation Based Detectors  

E-Print Network (OSTI)

A scintillator is a material which emits light when excited by ionizing radiation. Such materials are used in a diverse range of applications; From high energy particle physics experiments, X-ray security, to nuclear cameras or positron emission tomography. Future high-energy physics (HEP) experiments as well as next generation medical imaging applications are more and more pushing towards better scintillation characteristics. One of the problems in heavy scintillating materials is related to their high index of refraction. As a consequence, most of the scintillation light produced in the bulk material is trapped inside the crystal due to total internal reflection. The same problem also occurs with light emitting diodes (LEDs) and has for a long time been considered as a limiting factor for their overall efficiency. Recent developments in the area of nanophotonics were showing now that those limitations can be overcome by introducing a photonic crystal (PhC) slab at the outcoupling surface of the substrate. P...

Knapitsch, Arno Richard

15

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification  

E-Print Network (OSTI)

Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate in determining the power efficiency of organic light emitting diodes OLEDs is the coupling effi- ciency ( cp 1999; accepted for publication 1 February 2000 The emission intensity of an organic light-emitting

16

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

17

Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 13, 2: August 13, 2007 Refinery Output by World Region to someone by E-mail Share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Facebook Tweet about Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Twitter Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Google Bookmark Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Delicious Rank Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on Digg Find More places to share Vehicle Technologies Office: Fact #482: August 13, 2007 Refinery Output by World Region on AddThis.com... Fact #482: August 13, 2007

18

Solid-State Lighting: Technology Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Fact Sheets to Technology Fact Sheets to someone by E-mail Share Solid-State Lighting: Technology Fact Sheets on Facebook Tweet about Solid-State Lighting: Technology Fact Sheets on Twitter Bookmark Solid-State Lighting: Technology Fact Sheets on Google Bookmark Solid-State Lighting: Technology Fact Sheets on Delicious Rank Solid-State Lighting: Technology Fact Sheets on Digg Find More places to share Solid-State Lighting: Technology Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Fact Sheets This page contains links to fact sheets describing solid-state lighting,

19

Solid-State Lighting: Technology Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Roadmaps to someone Technology Roadmaps to someone by E-mail Share Solid-State Lighting: Technology Roadmaps on Facebook Tweet about Solid-State Lighting: Technology Roadmaps on Twitter Bookmark Solid-State Lighting: Technology Roadmaps on Google Bookmark Solid-State Lighting: Technology Roadmaps on Delicious Rank Solid-State Lighting: Technology Roadmaps on Digg Find More places to share Solid-State Lighting: Technology Roadmaps on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans

20

Using light emitting diode arrays as touchsensitive input and output devices  

E-Print Network (OSTI)

Light Emitting Diodes (LEDs) offer long life, low cost, efficiency, brightness, and a full range of colors. Because of these properties, they are widely used for simple displays in electronic devices. A previously characterized, but little known property of LEDs allows them to be used as photo sensors. In this paper, we show how this capability can be used to turn unmodified, off the shelf, LED arrays into touch sensitive input devices (while still remaining capable of producing output). The technique is simple and requires little or no extra hardware – in some cases operating with the same micro-controller based circuitry normally used to produce output, requiring only software changes. We will describe a simple hybrid input/output device prototype implemented with this technique, and discuss the design opportunities that this type of device opens up. Categories and Subject Descriptors:

Scott E. Hudson

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Lighting Technologies Application Guidelines: 1990  

SciTech Connect

The Advanced Lighting Technologies Application Guidelines document consists of eight guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting products. Lighting Design Practice assesses energy-efficient lighting strategies and explains how to obtain quality lighting design and consulting services. Luminaries and Lighting Systems surveys advanced lighting fixture products designed to take advantage of current energy-efficient lamp technologies and includes luminaire tables to allow users to collect photometric performance characteristics for common commercial luminaires. Each of the remaining six guidelines -- Computer-Aided Lighting Design, Energy-efficient and Electronic Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Conventional Shape Tungsten-Halogen Lamps, and Compact Metal Halide and White High Pressure Sodium Lamps -- includes a technology overview section, a description of current products available on the market, and an applications section. The document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C. (Eley (Charles) Associates, San Francisco, CA (United States))

1992-09-01T23:59:59.000Z

22

New Lighting Technologies Demonstrated at Defense Commissaries  

Science Conference Proceedings (OSTI)

New and emerging lighting technologies, such as LEDs, can improve lighting quality while reducing maintenance and energy costs. The Defense Commissary Agency, with support from the Department of Energy's Federal Energy Management Program and the Pacific Northwest National Laboratory, demonstrsted the use of LED lighting in a large freezer storage room and fiber optic lighting in a series of verticial reach-in display freezer cases at the Fort George G. Meade Commissary. The LEDs resulted in an 85% reduction in lighting energy and a reduction in maintenance requirements. The fiber optic lighting system resulted in a 56% reduction in lighting energy.

Parker, Steven A.; Konrade, Joseph; Shepherd III, E Carroll

2008-10-02T23:59:59.000Z

23

New Lighting Technologies Demonstrated at Defense Commissaries  

Science Conference Proceedings (OSTI)

New and emerging lighting technologies, such as LEDs, can improve lighting quality while reducing maintenance and energy costs. The Defense Commissary Agency, with support from the Department of Energy's Federal Energy Management Program and the Pacific Northwest National Laboratory, demonstrsted the use of LED lighting in a large freezer storage room and fiber optic lighting in a series of verticial reach-in display freezer cases at the Fort George G. Meade Commissary. The LEDs resulted in an 85% reduction in lighting energy and a reduction in maintenance requirements. The fiber optic lighting system resulted in a 56% reduction in lighting energy.

Parker, Steven; Konrade, Joseph; Shepherd III, E Carroll

2009-01-31T23:59:59.000Z

24

Smart Grid Technology Gives Small Business New Light | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not...

25

Technology: Lighting the Way to Tomorrow  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology: Lighting the Way to Tomorrow Technology: Lighting the Way to Tomorrow Speaker(s): Jeff Quinlan Date: June 28, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Abby Enscoe Over the course of the last decade there have been a series of technological changes that have significantly impacted the lighting industry. This presentation examines a few of these changes. In particular, it will discuss the advent of lighting grade LEDs, the spread of controls from luminaires to the grid, and market factors that are spurring the need for improved systems. Starting with an examination of the macro economic trends, continuing through various elements of luminaire design, and concluding with a vision of better integrated systems, this presentation will show the state of the art in lighting technology and discuss what is

26

Solid-state lighting technology perspective.  

SciTech Connect

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

27

Lighting technology specifications for relighting federal buildings  

SciTech Connect

Under a Federal Relighting Initiative (FRI) project, a set of Master Lighting Technology Specifications was developed for use by the Federal sector in relighting buildings. The specifications were to cover all major lighting technologies. The initial set was developed and issued for extensive peer review in December 1991. Extensive comments were received from industry, Federal sector participants (DOD, GSA, NASA, DOE, etc.), national laboratories, professional lighting organizations, private lighting professionals, and recognized experts in the lighting community. The document underwent extensive revision and was reissued in June 1992 for a second round of peer review. The current FRI Lighting Technology Specifications are organized into two sections: (1) Technical Notes and (2) Master Specifications. The Technical Notes contain explanations that enable the users to understand the background and reasons for specification requirements. The Master Specifications are organized in the Construction Specifications Institute (CSI) format and are intended to form the basis for competitive bidding and contracting to undertake relighting initiatives.

Harris, L. [USDOE, Washington, DC (United States); Purcell, C. [Pacific Northwest Lab., Richland, WA (United States); Gordon, H. [Burt Hill Kosar Rittelmann Associates (United States); McKay, H. [McKay (Hayden) Lighting Design (United States)

1992-10-01T23:59:59.000Z

28

Science and Technology of Future Light Sources  

E-Print Network (OSTI)

DESY) Herman Winick (SLAC) Mike Zisman (LBNL) WHITE PAPER of Future Light Sources A White Paper Report prepared byheart of the all- 24  WHITE PAPER  Science and Technology of

Bergmann, Uwe

2009-01-01T23:59:59.000Z

29

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

30

Recovery Act - Solid-State Lighting Core Technologies Funding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act - Solid-State Lighting Core Technologies Funding Opportunity Recovery Act - Solid-State Lighting Core Technologies Funding Opportunity A report detailling the Solid State...

31

Pages that link to "Beijing Sanyuan Green Lighting Technology...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Pages that link to "Beijing Sanyuan Green Lighting Technology Development Co Ltd" Beijing Sanyuan Green Lighting Technology...

32

Changes related to "Beijing Sanyuan Green Lighting Technology...  

Open Energy Info (EERE)

page on Facebook icon Twitter icon Changes related to "Beijing Sanyuan Green Lighting Technology Development Co Ltd" Beijing Sanyuan Green Lighting Technology...

33

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

34

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

Manufacturing advances have now made the use of light-emitting diode (LED) technology practical for street and area lighting. To better understand the application, the Electric Power Research Institute (EPRI) teamed with Southern Company and Gulf Power to install LED street lights at a demonstration site and measure their performance. The data showed several disadvantages for the LED lights, such as a lower efficacy compared to traditional technology and lower immunity to electrical disturbances, but an ...

2012-04-06T23:59:59.000Z

35

Transforming the Lighting Sector with Semiconductor Lighting Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

17-TED-000924-9/27 SR#2000-2333C 17-TED-000924-9/27 SR#2000-2333C Transforming the Lighting Sector With Semiconductor Lighting Technologies Thomas Drennen Sandia National Laboratories Roland Haitz Agilent Technologies Jeffrey Tsao E20 Communications Sandia National Laboratories USAEE/IAEE Annual Meetings Philadelphia, PA September 24-27, 2000 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000 2 6217-TED-000924-9/27 SR#2000-2333C Overview * Introduction * U.S. Lighting Demand * Evolution of LEDs * The LED Simulation Model (LEDSim) * Results 3 6217-TED-000924-9/27 SR#2000-2333C Introduction 0 50 100 150 200 1970 1980 1990 2000 2010 2020 Efficiency (lm/W) Year Incandescent Halogen Fluorescent Semi- conductor

36

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

37

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

38

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

Manufacturing advances have now made the use of light-emitting diode (LED) technology practical for street and area lighting. To better understand the application, the Electric Power Research Institute (EPRI) teamed with Southern Company and Alabama Power to install LED street lights at a demonstration site and measure the performance. The data showed several disadvantages such as a lower efficacy compared to traditional technology and lower immunity to electrical disturbances, but advantages in energy s...

2012-04-20T23:59:59.000Z

39

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

In 2008, the Tennessee Valley Authority (TVA) and Benton County Electric System partnered with the Electric Power Research Institute (EPRI) to launch an investigation into the use of LED technology for area lighting. The goal of the project—called the LED Street and Area Lighting Demonstration—was to discover a better light bulb, one that not only meets the outdoor lighting requirements of consumers, but also uses less electricity in doing so. This case study discusses the results of ...

2012-09-28T23:59:59.000Z

40

Adapting Wireless Technology to Lighting Control and Environmental Sensing  

SciTech Connect

The high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multi-sensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 30% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years.

Dana Teasdale; Francis Rubinstein; Dave Watson; Steve Purdy

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: Harmonization of Wireless Dimming Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Harmonization of Harmonization of Wireless Dimming Lighting Controls Research Project to someone by E-mail Share Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on Facebook Tweet about Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on Twitter Bookmark Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on Google Bookmark Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on Delicious Rank Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on Digg Find More places to share Building Technologies Office: Harmonization of Wireless Dimming Lighting Controls Research Project on

42

Advanced Lighting Technology Program for Federal Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E's Innovative Federal Collaboration E's Innovative Federal Collaboration Advanced Lighting Technology Program for Federal Buildings Federal Utility Partnership Working Group November 1, 2006 "A 3 MW Success Story: Delivering on the Promise" Today's Presentation * Setting the Scene - U.S & Global Perspective * Program Overview: - Advanced Lighting Technology Program for Federal Buildings * Benefits - Energy and environmental * Conclusion: - The Lamborghini Analogy Setting the Scene U.S. Policy: The National Direction "The answer to high energy prices is the kind of comprehensive approach embraced by the President-that includes...increasing our reliance on energy efficiency and conservation. "Let me be clear: Encouraging greater energy efficiency is part and parcel of changing the way we power our homes and

43

Vision 2020: Lighting Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Vision 2020: Lighting Technology Roadmap Vision 2020: Lighting Technology Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vision 2020: Lighting Technology Roadmap Agency/Company /Organization: United States Department of Energy, LBNL International Energy Studies, International Association of Lighting Designers, International Association of Lighting Management Companies Partner: NAED, NEMA, NEMRA, NECA, NAILD Sector: Energy Focus Area: Energy Efficiency Topics: Market analysis, Technology characterizations Resource Type: Guide/manual Website: www.nrel.gov/docs/fy00osti/27996.pdf References: Vision 2020: Lighting Technology Roadmap[1] Overview "Continued innovation in lamps and other system components, as well as in design practices, have made lighting progressively more effective,

44

Event:Technology Transfer in Energy and Efficient Lighting to...  

Open Energy Info (EERE)

in Energy and Efficient Lighting to Combat Climate Change Jump to: navigation, search Calendar.png Technology Transfer in Energy and Efficient Lighting to Combat Climate Change: on...

45

Envelope & Lighting Technologies to Reduce Electric Demand in...  

NLE Websites -- All DOE Office Websites (Extended Search)

of light shelf reflectors. Deploying Integrated Systems Realizing the full energy-saving potential of envelope and lighting technologies for commercial buildings means...

46

Comparing Light Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies  

Science Conference Proceedings (OSTI)

High-power light-emitting diode (LED) technology holds great promise for outdoor illumination. This case study discusses the results of the LED Street and Area Lighting Demonstration performed by Tennessee Valley Authority (TVA), Knoxville Utilities Board (KUB), and EPRI. Data was collected on Wall Avenue, a busy thoroughfare in downtown Knoxville, using a specially developed computer-controlled mobile light measurement vehicle with a global positioning system.Early reports from the ...

2012-09-28T23:59:59.000Z

47

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

48

LED traffic lights: New technology signals major energy savings  

SciTech Connect

Using light-emitting diode technology to replace incandescent lamps in traffic signals promises energy savings upwards of 60 percent for each of the estimated quarter of a million controlled intersections in the United States. LED units use only 9 to 25 watts instead of the 67 to 150 watts used by each incandescent lamp. Though their first cost is relatively high, energy savings result in paybacks of 1 to 5 years. LED retrofit kits are available for red signal disks and arrows, and installations in several states have proven successful, although minor improvements are addressing concerns about varying light output and controller circuitry. Retrofitting green lamps is not yet feasible, because color standards of the Institute of Traffic Engineers cannot be met with existing LED technology. Yellow lamps have such low duty factors (they`re on only 3 percent of the time) that retrofitting with LED signals is not cost-effective. LEDs last much longer than incandescents, allowing municipalities to not only reduce their electricity bills, but to save on maintenance costs as well. As further incentive, some utilities are beginning to implement rebate programs for LED traffic signal retrofits. Full approval of LED units is still awaited from the Institute of Traffic Engineers (ITE), the standard-setting body for traffic safety devices. Local and state governments ultimately decide what specifications to require for traffic lights, and the growing body of successful field experience with LEDs appears to be raising their comfort level with the technology. The California Department of Transportation is developing an LED traffic light specification, and two California utilities, Southern California Edison and Pacific Gas and Electric, have provided rebates for some pilot installations.

Houghton, D.

1994-12-31T23:59:59.000Z

49

Technologies for Upgrading Light Water Reactor Outlet Temperature  

SciTech Connect

Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

2013-07-01T23:59:59.000Z

50

Adapting Wireless Technology to Lighting Control and Environmental Sensing  

SciTech Connect

Although advanced lighting control systems offer significant energy savings, the high cost of retrofitting buildings with advanced lighting control systems is a barrier to adoption of this energy-saving technology. Wireless technology, however, offers a solution to mounting installation costs since it requires no additional wiring to implement. To demonstrate the feasibility of such a system, a prototype wirelessly-controlled advanced lighting system was designed and built. The system includes the following components: a wirelessly-controllable analog circuit module (ACM), a wirelessly-controllable electronic dimmable ballast, a T8 3-lamp fixture, an environmental multi-sensor, a current transducer, and control software. The ACM, dimmable ballast, multi-sensor, and current transducer were all integrated with SmartMesh{trademark} wireless mesh networking nodes, called motes, enabling wireless communication, sensor monitoring, and actuator control. Each mote-enabled device has a reliable communication path to the SmartMesh Manager, a single board computer that controls network functions and connects the wireless network to a PC running lighting control software. The ACM is capable of locally driving one or more standard 0-10 Volt electronic dimmable ballasts through relay control and a 0-10 Volt controllable output, in addition to 0-24 Volt and 0-10 Volt inputs. The mote-integrated electronic dimmable ballast is designed to drive a standard 3-lamp T8 light fixture. The environmental multisensor measures occupancy, light level and temperature. The current transducer is used to measure the power consumed by the fixture. Control software was developed to implement advanced lighting algorithms, including open and closed-loop daylight ramping, occupancy control, and demand response. Engineering prototypes of each component were fabricated and tested in a bench-scale system. Based on standard industry practices, a cost analysis was conducted. It is estimated that the installation cost of a wireless advanced lighting control system for a retrofit application is at least 20% lower than a comparable wired system for a typical 16,000 square-foot office building, with a payback period of less than 3 years. At 30% market penetration saturation, a cumulative 695 Billion kWh of energy could be saved through 2025, a cost savings of $52 Billion.

Dana Teasdale; Francis Rubinstein; David S. Watson; Steve Purdy

2006-04-30T23:59:59.000Z

51

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting Development, Adoption, and Compliance Guide BUILDING TECHNOLOGIES PROGRAM I Lighting BUILDING TECHNOLOGIES PROGRAM Development, Adoption, and Compliance Guide Lighting BUILDING TECHNOLOGIES PROGRAM September 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 | PNNL-SA-90653 Development, Adoption, and Compliance Guide 3.3 Exterior Lighting Controls ...........................................................................24 3.3.1 Dusk to Dawn Controls ...............................................................................25 3.3.2 Lighting Power Reduction Controls ........................................................25 3.3.3 Parking Garage Controls ............................................................................26

52

California Lighting Technology Center (University of California, Davis) |  

Open Energy Info (EERE)

Lighting Technology Center (University of California, Davis) Lighting Technology Center (University of California, Davis) Jump to: navigation, search Name California Lighting Technology Center (University of California, Davis) Place Davis, CA Website http://cltc.ucdavis.edu/ References CLTC Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections California Lighting Technology Center (University of California, Davis) is a research institution located in Davis, CA. References ↑ "CLTC Website" Retrieved from "http://en.openei.org/w/index.php?title=California_Lighting_Technology_Center_(University_of_California,_Davis)&oldid=381592"

53

New and Underutilized Technology: Airfield LED Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology: Airfield LED Lighting Technology: Airfield LED Lighting New and Underutilized Technology: Airfield LED Lighting October 7, 2013 - 8:57am Addthis The following information outlines key deployment considerations for airfield LED lighting within the Federal sector. Benefits Airfield LED lighting is a good application for colored LED lights since the LED is monochromatic. Reduced maintenance costs dramatically improve economics over existing incandescent. Application Airfield LED lighting is applicable at airports as wells military and domestic air stations and bases. Key Factors for Deployment Federal agencies must determine Federal Aviation Administration (FAA) approval requirements before deployment. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

54

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

55

Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: September 5, 8: September 5, 2005 Proposed Light Truck CAFE Standards to someone by E-mail Share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Facebook Tweet about Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Twitter Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Google Bookmark Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Delicious Rank Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on Digg Find More places to share Vehicle Technologies Office: Fact #388: September 5, 2005 Proposed Light Truck CAFE Standards on AddThis.com...

56

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

57

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

58

Solid-State Lighting: Frequently Asked Questions About the Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions Frequently Asked Questions About the Technology Demonstration GATEWAY Program to someone by E-mail Share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Facebook Tweet about Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Twitter Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Google Bookmark Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Delicious Rank Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on Digg Find More places to share Solid-State Lighting: Frequently Asked Questions About the Technology Demonstration GATEWAY Program on

59

New and Underutilized Technology: Interior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interior LED/Solid State Lighting Interior LED/Solid State Lighting New and Underutilized Technology: Interior LED/Solid State Lighting October 4, 2013 - 4:53pm Addthis The following information outlines key deployment considerations for interior LED/solid state lighting within the Federal sector. Benefits Interior LED retrofits are currently viable for down lights, track lighting, sconces, and both line and low voltage task lighting. Replacements for incandescent A-lamps have also been improving rapidly. Replacements for fluorescent tube lighting may be viable for high-cost maintenance areas. Application Interior LED/solid state lighting is a rapidly improving technology currently most applicable for down lights, track lights, task lighting, accenting, high ceiling, and high cost maintenance areas.

60

Advanced Lighting Technologies:Energy Efficiency and Power Quality of Lighting Sources  

Science Conference Proceedings (OSTI)

his EPRI technical update is the third in a series of technical assessments of advanced lighting technologies. A total of seven lighting products were assessed in 2013: low cost screw based light-emitting diode (LED) lamps, retrofit LED ceiling fixtures, suspended LED fixtures, LED-based 2x4 troffers, LED high bay fixtures, innovative LED screw based lamps, and LED hospitality lighting. Prior to beginning an in-depth assessment, the EPRI Lighting Group evaluated each of the tested technologies to ...

2013-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

IMPACT OF NEW LIGHTING TECHNOLOGIES ON OFFICE ERGONOMICS.  

E-Print Network (OSTI)

??The goal of this study was to find the impact of cutting-edge light-emitting diodes (LED) lighting technologies on the office ergonomics in modern offices. An… (more)

Li, Linjie

2013-01-01T23:59:59.000Z

62

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

63

Vehicle Technologies Office: Fact #714: February 13, 2012 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

4: February 13, 2012 Light Truck Sales on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 714: February 13, 2012 Light Truck Sales on the Rise on Facebook...

64

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

65

Solid-State Lighting Issue 14: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spring, Maryland. TIR Systems has received a CDN 9 million contract from BP to light service stations. Uniroyal Technology files for bankruptcy protection and estimates...

66

Flicker Performance of Newer Lighting Technologies and Other Sensitive Equipment  

Science Conference Proceedings (OSTI)

This report presents preliminary results of the response of the modern lighting technologies and sensitive household electronic loads to the voltage fluctuations in the supply system.

2011-12-22T23:59:59.000Z

67

Beijing Sanyuan Green Lighting Technology Development Co Ltd...  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Beijing Sanyuan Green Lighting Technology Development Co Ltd Jump to: navigation, search Name Beijing Sanyuan Green...

68

Technology Focus - Hybrid Solar Lighting Illuminates Energy Savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

taxpayer dollars taxpayer dollars in federal facilities in federal facilities Hybrid Solar Lighting Illuminates Energy Savings for Government Facilities New technology provides...

69

Solid-State Lighting: LED Essentials - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications, Advantages, Disadvantages to someone by E-mail Share Solid-State Lighting: LED Essentials - Technology, Applications, Advantages, Disadvantages on Facebook Tweet...

70

New and Underutilized Technology: Exterior LED/Solid State Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior LED/Solid State Lighting Exterior LED/Solid State Lighting New and Underutilized Technology: Exterior LED/Solid State Lighting October 4, 2013 - 4:55pm Addthis The following information outlines key deployment considerations for exterior LED/solid state lighting within the Federal sector. Benefits LED lighting economics can work in high electric cost areas with high hours of use. Pricing continually decreases for LED lighting. This technology provides quality, white, even lighting with good color rendition. Greater cost savings can be achieved when combined with bi-level motion sensors to reduce light levels in parking areas, garages, and walkways. Application Exterior LED/solid state lighting is applicable in areas where security and visual performance are critical, including street lighting, parking lots,

71

LED Street and Area Lighting Technologies  

Science Conference Proceedings (OSTI)

Light emitting diodes (LEDs) are being used for applications beyond just indicator lights. One of those applications, street and area lighting, is of considerable interest. This interest is generated by potential reductions that can be achieved in operating costs resulting from lower maintenance costs as well as potentially lower electricity costs that result from the higher efficiency of LED lamps in the systems, the capability to dim and control LED systems, and better light quality. This white paper l...

2008-07-09T23:59:59.000Z

72

New and Underutilized Technology: Bi-level Stairwell Lighting | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stairwell Lighting Stairwell Lighting New and Underutilized Technology: Bi-level Stairwell Lighting October 7, 2013 - 8:53am Addthis The following information outlines key deployment considerations for bi-level stairwell lighting within the Federal sector. Benefits Bi-level stairwell lighting uses integral occupancy sensor motion detectors to monitor the stairwell. When occupancy is detected, the lights go to full level. When the space has been vacated after a programmed period, the fixture goes to a minimum level. Application Bi-level stairwell lighting is applicable in most multi-story buildings. Key Factors for Deployment Bi-level stairwell lighting is a good technology to implement concurrently with an overall building lighting improvement project. Ranking Criteria Federal energy savings, cost-effectiveness, and probability of success are

73

Light-Emitting Diode Street and Area Lighting Technologies Assessment  

Science Conference Proceedings (OSTI)

Iberdrola has been investigating the use of energy-efficient technologies and systems for several years to better understand the needs of their customers in both residential and commercial sectors. Through a combination of Ibedrola’s own work and their membership in the Electric Power Research Institute (EPRI) Energy Efficiency Program 170, Iberdrola has kept up to date on the developments of various energy efficiency and distributed generation options. Although energy-efficiency technologies ...

2014-01-09T23:59:59.000Z

74

Technology Tracking Reports - Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

| Headline News | Tracking Reports | Archived Tracking Reports | Hot Technical Papers | Citation Analysis Method | Credits & Disclaimer | SCIENCE, TECHNOLOGY, BUSINESS AND...

75

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

76

1366 Technologies Shines a Light on American Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366 Technologies Shines a Light on American Innovation 366 Technologies Shines a Light on American Innovation 1366 Technologies Shines a Light on American Innovation December 3, 2010 - 7:09pm Addthis 1366 Technologies Shines a Light on American Innovation John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Earlier this year, we visited 1366 Technologies in North Lexington, Massachusetts to get an inside look at their innovative approach to solar manufacturing and document how a $4 million grant from the Advanced Research Projects Agency-Energy (ARPA-E), through the Recovery Act, was helping to make their ambitious goal of producing "solar at the cost of coal" a reality. A lot has happened since that time, with the company announcing plans to bring its novel wafer manufacturing process into production by 2012, thanks

77

Building Technologies Office: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

of two pages from the CALiPER Snapshot Report on A lamps. CALiPER Product Snapshot on LED Light Bulbs Report on the current state of the market for LED A lamp and omnidirectional...

78

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

Electrical 16. "Highway Lighting by So­ dium Vapor Lamps,"Possibilities of Street: Lighting Improve­ ments," TheLaunches Broad Street Lighting Promotion Campaign," The

Holden, Alfred

1992-01-01T23:59:59.000Z

79

Lighting the Night: Technology, Urban Life and the Evolution of Street Lighting [Light in Place  

E-Print Network (OSTI)

May 1912), 783. 8. "New Street Lights Increase Trade 3 5 Perlight, including street light, became part of America'sBeautiful-inspired street­ lights graced wealthy residen­

Holden, Alfred

1992-01-01T23:59:59.000Z

80

FEMP Exterior Solid-State Lighting Technology Pilot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Fall 2012 FUPWG Fall 2012 FEMP Exterior Solid-State Lighting Technology Pilot Jeff McCullough, LC October 17, 2012 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * State of SSL Technology - Introducing MOBLI * Federal Energy Management Program (FEMP) - Technology Deployment Matrix - Federal Exterior Market Size - FEMP Exterior SSL Initiative - FEMP-designated Efficiency Requirements - Plans for FY13 * Commercial Building Energy Alliance (CBEA) - About CBEA - Lighting Specifications * High Efficiency Troffers * Parking Structures * Parking Lots - The LEEP Campaign * Introducing MOBLI This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

82

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Technology Deployment Federal Technology Deployment Pilot: Exterior Solid State Lighting Jeff McCullough, LC October 24, 2011 Pacific Northwest National Laboratory Richland, Washington 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Overview of DOE's Solid-State Lighting Program * Federal Technology Deployment Pilot: Exterior Solid State Lighting * FEMP Technology Deployment Matrix This Morning's Topics 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Energy Savings Potential of Solid-State Lighting SSL Multi-Year Program Plan, May 2011: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_mypp2011_web.pdf 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov A Market in Motion * Tsunami of new products coming to market * Significant learning curve for

83

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

84

New and Underutilized Technology: High Bay LED Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Bay LED Lighting High Bay LED Lighting New and Underutilized Technology: High Bay LED Lighting October 7, 2013 - 8:55am Addthis The following information outlines key deployment considerations for high bay LED lighting within the Federal sector. Benefits LED light sources offer several potential benefits compared to metal halide or fluorescent lighting, including reduced energy consumption due to the ability to provide a more precise light distribution; longer operating life and lower maintenance requirements; less heat introduced into the space; and greater controllability for dimming and on/off control. Relevant to the cold storage application, LED performance improves in colder temperatures. Application High bay LED lighting is applicable for facilities containing high bay

85

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

86

Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces  

SciTech Connect

InGaN-based light emitting diodes (LEDs) with a top pattern-nanoporous p-type GaN:Mg surface were fabricated by using a photoelectrochemical (PEC) process. The peak wavelengths of electroluminescence (EL) and operating voltages were measured as 461.2 nm (3.1 V), 459.6 nm (9.2 V), and 460.1 nm (3.3 V) for conventional, nanoporous, and pattern-nanoporous LEDs using 20 mA operation current. The EL spectrum of the nanoporous LED had a larger blueshift phenomenon as a result of a partial compression strain release in the InGaN active layer through the formation of a top nanoporous surface. The light output power had 12.1% and 26.4% enhancements for the nanoporous and the pattern-nanoporous LEDs compared with conventional LEDs. The larger operating voltage of the nanoporous LED was due to the non-ohmic contact on the PEC treated p-type GaN:Mg surface. By using a pattern-nanoporous p-type GaN:Mg structure, the operating voltage of the pattern-nanoporous LED was reduced to 3.3 V. A lower compression strain in the InGaN active layer and a higher light extraction efficiency at the top nanoporous surface were observed in pattern-nanoporous LEDs for higher efficiency nitride-based LED applications.

Yang, C.C.; Lin, C.F.; Lin, C.M.; Chang, C.C.; Chen, K.T.; Chien, J.F.; Chang, C.Y. [Department of Materials Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)

2008-11-17T23:59:59.000Z

87

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

88

Turbine Technologies for High Performance Light Water Reactors  

SciTech Connect

Available turbine technologies for a High Performance Light Water Reactor (HPLWR) have been analysed. For the envisaged steam pressures and temperatures of 25 MPa and 500 deg. C, no further challenges in turbine technologies have to be expected. The results from a steam cycle analysis indicate a net plant efficiency of 43.9% for the current HPLWR design. (authors)

Bitterman, D. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

2004-07-01T23:59:59.000Z

89

New and Underutilized Technology: Spectrally Enhanced Lighting | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spectrally Enhanced Lighting Spectrally Enhanced Lighting New and Underutilized Technology: Spectrally Enhanced Lighting October 4, 2013 - 4:50pm Addthis The following information outlines key deployment considerations for spectrally enhanced lighting within the Federal sector. Benefits U.S. Department of Energy (DOE) research studies show that simply shifting the color of fluorescent lamps from the warmer yellow to the cooler blue end of the color spectrum allows people to see things more clearly and for spaces to appear brighter. By changing the light color to be more like daylight, lighting levels can be reduced to save energy while still achieving the same visual acuity. Conventional practices use lamps with correlated color temperature (CCT) of 3,000K to 4,100K. Spectrally enhanced lighting uses lamps with a CCT of

90

Zhejiang Guangyi Light Energy Technologies Co Gytech | Open Energy  

Open Energy Info (EERE)

Zhejiang Guangyi Light Energy Technologies Co Gytech Zhejiang Guangyi Light Energy Technologies Co Gytech Jump to: navigation, search Name Zhejiang Guangyi Light Energy Technologies Co (Gytech) Place Zhuji, Zhejiang Province, China Sector Solar Product Solar products company engaged in PV cell and module as well solar heating and lighting systems production. Coordinates 29.71121°, 120.245216° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.71121,"lon":120.245216,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes  

DOE Green Energy (OSTI)

This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

Gordon, Kelly L.; Gilbride, Theresa L.

2008-05-22T23:59:59.000Z

92

Synchrotron light sources: A powerful tool for science and technology  

SciTech Connect

A new generation of synchrotron light sources is producing extremely bright beams of vacuum-ultraviolet and x-ray radiation, powerful new tools for research in a wide variety of basic and applied sciences. Spectromicroscopy using high spectral and spatial resolution is a new way of seeing, offering many opportunities in the study of matter. Development of a new light source provides the country or region of the world in which the light source is located many new opportunities: a focal point for research in many scientific and technological areas, a means of upgrading the technology infrastructure of the country, a means of training students, and a potential service to industry. A light source for Southeast Asia would thus be a major resource for many years. Scientists and engineers from light sources around the world look forward to providing assistance to make this a reality in Southeast Asia.

Schlachter, F.; Robinson, A.

1996-01-01T23:59:59.000Z

93

LightSpin Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

LightSpin Technologies Inc LightSpin Technologies Inc Jump to: navigation, search Name LightSpin Technologies Inc Place Bethesda, Maryland Zip 20815 Sector Solar Product Early-development-stage company, affiliated with Yale University, developing new indium phosphide compound semiconductors which may have solar cell applications. Coordinates 40.020185°, -81.073819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.020185,"lon":-81.073819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Lighting Business Case -- A Report Analyzing Lighting Technology Opportunities with High Return on Investment Energy Savings for the Federal Sector  

SciTech Connect

This document analyzes lighting technology opportunities with high return on investment energy savings for the Federal sector.

Jones, Carol C.; Richman, Eric E.

2005-12-30T23:59:59.000Z

95

Science and Technology of Future Light Sources  

Science Conference Proceedings (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects. The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Dierker,S.; Bergmann, U.; Corlett, J.; Dierker, S.; Falcone, R.; Galayda, J.; Gibson, M.; Hastings, J.; Hettel, B.; Hill, J.; Hussain, Z.; Kao, C.-C.; Kirx, J.; Long, G.; McCurdy, B.; Raubenheimer, T.; Sannibale, F.; Seeman, J.; Shen, Z.-X.; Shenoy, g.; Schoenlein, B.; Shen, Q.; Stephenson, B.; Stohr, J.; Zholents, A.

2008-12-01T23:59:59.000Z

96

Science and Technology of Future Light Sources  

Science Conference Proceedings (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, Janos; Long, Danielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Schenoy, Gopal; Schoenlein, Bob; Shen, Qun; Stephenson, Brian; Stöhr, Joachim; Zholents, Alexander

2009-01-28T23:59:59.000Z

97

Pacific Northwest Laboratory's Lighting Technology Screening Matrix: Let there be energy-efficient light  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory has developed the Lighting Technology Screen Matrix (LTSM), a software tool to evaluate alternative lighting retrofit technologies according to life-cycle cost. The LTSM can be used to evaluate retrofits for most configurations of fluorescent, incandescent, high-intensity discharge, and exit lighting systems for any level of operation, electricity price, discount rate, and utility rebate. The tool was developed in support of the Federal Relighting Initiative as part of the US Department of Energy's Office of Federal Energy Management Program (DOE/FEMP) to assist federal government facilities in their efforts to comply with federal energy regulations. This article describes the LTSM and demonstrates its application in case studies at federal installations.

Stucky, D.; Shankle, S.; Schultz, R.; Richman, E.; Dirks, J. (Pacific Northwest Lab., Richland, WA (United States))

1994-01-01T23:59:59.000Z

98

Pacific Northwest Laboratory`s Lighting Technology Screening Matrix  

SciTech Connect

Pacific Northwest Laboratory has developed the Lighting Technology Screening Matrix (LTSM), a software tool to evaluate alternative lighting retrofit technologies according to life-cycle cost. The LTSM can be used to evaluate retrofits for most configurations of fluorescent, incandescent, high- and low-pressure sodium, metal halide, mercury vapor, and exit lighting systems for any level of operation, electricity price, discount rate, and utility rebate. This tool was developed, in support of the Federal Relighting Initiative as part of the Department of Energy`s Office of Federal Energy Management Program (DOE/FEMP) to assist federal government facilities in their efforts to comply with the 10 CFR 436 mandated life-cycle costing for energy equipment investments. The LTSM has been used in the course of seven site modernization projects. These projects consisted of determining the cost-effective, energy-efficiency potential at military installations. Each project treated the entire military installation as an integrated system, proposed a large number of potential efficiency projects affecting all end-uses and fuel types, and analyzed the cost-effectiveness of each project. The LTSM was used for the lighting portion of these projects. Lighting was, overall, one of the major areas of potential efficiency improvements, accounting for over 30% of the cost-effective resource. Altogether over $43 million worth of cost-effective efficiency investments were identified, worth an estimated $6 million annually in energy, demand, and operations and maintenance (O&M) savings. This paper describes the LTSM and demonstrates its application in a case study at one of the federal installations analyzed.

Harris, L.R. [USDOE, Washington, DC (United States); Stucky, D.J.; Dirks, J.A.; Schultz, R.W.; Shankle, S.A.; Richman, E.E.; Purcell, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-04-01T23:59:59.000Z

99

Performance Evaluation of Energy-Efficient Lighting and Office Technologies in New York City  

Science Conference Proceedings (OSTI)

Lighting and office equipment are significant electricity end uses in commercial office buildings. Recent technology developments offer significant improvements in lighting quality along with potentially substantial reductions in lighting and office equipment electricity use. This project demonstrated successful application of energy-efficient lighting and office technologies in an office building in New York City.

1997-09-15T23:59:59.000Z

100

Archived Technology Tracking Reports - Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

4/16/2003 4/16/2003 | Headline News | Tracking Reports | Archived Tracking Reports | Hot Technical Papers |Credits & Disclaimer | ARCHIVED SCIENCE, TECHNOLOGY, BUSINESS AND NATIONAL NEWS TRACKING REPORTS This table contains archived tracking reports of news and literature related to solid-state lighting. Material from newswires, newspapers, magazines, websites, and technical journals is included. For these archived reports, links to full-text sources have been provided, but are not guaranteed to work. Issue # Dates Science & Technology Literature Business & National News 21 2003-2004 (Mid December 2003 – Early February 2004) button button 20 2003 (Mid Sept – Early December) button button 19 2003 (Mid July – Mid-September) button button 18 Archived Issue

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Light output enhancement of InGaN/GaN light-emitting diodes with contrasting indium tin-oxide nanopatterned structures  

Science Conference Proceedings (OSTI)

Various nanopatterns on the transparent conducting indium tin oxide (ITO) layer are investigated to enhance the light extraction efficiency of the InGaN/GaN light-emitting diodes (LEDs). Triangular, square, and circular nanohole patterns with the square ...

Sang Hyun Jung, Keun Man Song, Young Su Choi, Hyeong-Ho Park, Hyun-Beom Shin, Ho Kwan Kang, Jaejin Lee

2013-01-01T23:59:59.000Z

102

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

E-Print Network (OSTI)

Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

Johnstone, Peter

2009-01-01T23:59:59.000Z

103

Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 6, 1: January 6, 2014 Light Vehicle Sales Recoveries to someone by E-mail Share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Facebook Tweet about Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Twitter Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Google Bookmark Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Delicious Rank Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on Digg Find More places to share Vehicle Technologies Office: Fact #811: January 6, 2014 Light Vehicle Sales Recoveries on AddThis.com... Fact #811: January 6, 2014 Light Vehicle Sales Recoveries

104

Lighting  

DOE Green Energy (OSTI)

For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

Sue A. Carter

2012-09-07T23:59:59.000Z

105

Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 18, 2009 1: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation to someone by E-mail Share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Facebook Tweet about Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Twitter Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Google Bookmark Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Delicious Rank Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on Digg Find More places to share Vehicle Technologies Office: Fact #571: May 18, 2009 Light Truck CAFE Standards - 2006 Reformation on

106

Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: August 9, 2: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 to someone by E-mail Share Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Facebook Tweet about Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Twitter Bookmark Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Google Bookmark Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Delicious Rank Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on Digg Find More places to share Vehicle Technologies Office: Fact #332: August 9, 2004 New Light Vehicle Market Shares, 1976-2003 on

107

Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 31, 7: January 31, 2005 Growth in Light Truck Registrations to someone by E-mail Share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Facebook Tweet about Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Twitter Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Google Bookmark Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Delicious Rank Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on Digg Find More places to share Vehicle Technologies Office: Fact #357: January 31, 2005 Growth in Light Truck Registrations on AddThis.com...

108

Comparing Light-Emitting Diode (LED) Street and Area Lighting to Traditional Lighting Technologies: Assessing LED Performance at Gul f Power in Pensacola, Florida  

Science Conference Proceedings (OSTI)

Manufacturing advances have now made the use of light-emitting diode (LED) technology practical for street and area lighting. To better understand the application, the Electric Power research Institute (EPRI teamed with Southern Company and Gulf Power to install LED street lights at a demonstration site and measure the performance. The data showed several disadvantages such as a lower efficacy compared to traditional technology and lower immunity to electrical disturbances, but advantages in energy savin...

2012-04-21T23:59:59.000Z

109

Light Rail System Safety Improvements Using ITS Technologies  

E-Print Network (OSTI)

the flu side of the street onto the light rail track i thewhere a multi-lane street crosses the light rail tracks. Theran" the red light on the cross street, and started to enter

Chira-chavala, Ted; Coifman, Ben; Empey, Dan; Hansen, Mark; Lechner, Ed; Porter, Chris

1997-01-01T23:59:59.000Z

110

NREL: Technology Transfer - Brilliant White Light with Amber ...  

LED bulbs are the future of lighting for industry, business, and consumers. ... the LED bulbs can make brighter white light with better color more ...

111

Solid-State Lighting Issue 23: Selected Business and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Phoenix Group through a stock swap. Lighting Science is "preparing to introduce LED light bulbs for both commercial and residential applications" in late 2004. Phoenix Group...

112

Spin-out in cutting-edge light source technology  

E-Print Network (OSTI)

and Biochemsitry Organic light emitting diode (OLED) synthesis Information and Safety Research Facilities Education: Vojislav Sradnov Faculty Supervisor: Department: Chemistry and Biochemistry ORGANIC LIGHT EMITTING DIODE

Mottram, Nigel

113

Solid-State Lighting Issue 21: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

(February 2, 2004). Electronic Engineering Times Asia carried the article, "Light-emitting diode-based lighting positioned for profit" on February 2, 2004. IEEE Spectrum has...

114

Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: August 1, 3: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Google Bookmark Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Delicious Rank Vehicle Technologies Office: Fact #383: August 1, 2005 U.S. Light Vehicle Manufacturing Locations, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #383:

115

Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light  

NLE Websites -- All DOE Office Websites (Extended Search)

8: July 30, 2012 8: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing to someone by E-mail Share Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Facebook Tweet about Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Twitter Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Google Bookmark Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Delicious Rank Vehicle Technologies Office: Fact #738: July 30, 2012 Number of New Light Vehicle Dealerships Decreasing on Digg Find More places to share Vehicle Technologies Office: Fact #738:

116

Energy Recovered Light Source Technology at TJNAF | U.S. DOE...  

Office of Science (SC) Website

Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives...

117

Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology  

SciTech Connect

The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

2003-01-01T23:59:59.000Z

118

Solid-State Lighting Issue 20: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

doses of light bright enough to mimic dawn, between 2,500 to 10,000 lux. This amount of light is unattainable by incandescent bulbs, and largely inconvenient with fluorescent...

119

NREL: Technology Transfer - Brilliant White Light with Amber...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th November 12, 2013 LED bulbs are the future of lighting for industry, business, and consumers. As the...

120

NREL: Technology Deployment - Brilliant White Light with Amber...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th November 12, 2013 LED bulbs are the future of lighting for industry, business, and consumers. As the...

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office: Fact #50: December 22, 1997 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

0: December 22, 1997 Light Trucks Enjoy a Substantial Regulatory Advantage Over Cars: A Comparison of Regulations for Cars and Light Trucks to someone by E-mail Share Vehicle...

122

Commercialization of Quantum Dot White Light Emitting Diode technology  

E-Print Network (OSTI)

It is well known that the use of high-brightness LEDs for illumination has the potential to substitute conventional lighting and revolutionize the lighting industry over the next 10 to 20 years. However, successful penetration ...

Zhao, Xinyue, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

123

Solid-State Lighting Issue 22: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

were derived from the sale of its existing product line of solar powered light-emitting diode hazard and safety lights to marine, roadway and aviation markets, from the sale...

124

Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond  

SciTech Connect

Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

1999-06-01T23:59:59.000Z

125

EXC-12-0005 - In the Matter of Halco Lighting Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - In the Matter of Halco Lighting Technologies 5 - In the Matter of Halco Lighting Technologies EXC-12-0005 - In the Matter of Halco Lighting Technologies On July 10, 2012, OHA issued a decision granting an Application for Exception filed by Halco Lighting Technologies (Halco) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, Halco asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service Fluorescent Lamps (GSFL). Specifically, Halco cited previous requests for

126

Low-cost light-weight efficient 1. 5 kW inverters with and without output transformers. Final report, January 1976--June 1977  

SciTech Connect

Optimization efforts were completed on the 1.5 kW inverter described in report DECC-61098-003 (September 1975). A second inverter design was developed; in the second design the output transformer was eliminated. Tests were performed on both the optimized transformer-output inverter and the transformerless-output inverter. Tests included environmental tests on the transformer-output inverter. (Author)

Suelzle, L.R.; Suelzle, J.S.

1977-10-01T23:59:59.000Z

127

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehiclespassenger cars, sport utility vehicles, pickup trucks, and minivans is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in NEMS; however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

Information Center

2006-02-01T23:59:59.000Z

128

Program on Technology Innovation: Advanced Light Source Research  

Science Conference Proceedings (OSTI)

The Advanced Light Source (ALITE) research program is aimed at breakthrough basic research to achieve approximately 150 to 200 lumens per watt for fluorescent light sources, and to increase high intensity discharge light source efficiency by up to 50%. This report describes work on high intensity discharge (HID) lamps. These commercially available lamps currently have efficacies up to 120 lumens per watt (LPW), and radiate approximately 36% of their energy in the visible spectrum and 53% in the infrared ...

2006-03-27T23:59:59.000Z

129

Solid-State Lighting Issue 28: Selected Business and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

be arranged in modules designed to replace cold cathode fluorescent lamps (CCFL), surface light emitting devices such as electro-luminescent panels, and bulbs for car headlights....

130

Solid-State Lighting Issue 12: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

News. Osram Opto Semiconductors white LED lights were on display inthe 2002 Lincoln Navigator on display at the 2002 Chicago Auto Show. Osrams white Power TOPLED,...

131

Vehicle Technologies Office: Fact #387: August 29, 2005 Light...  

NLE Websites -- All DOE Office Websites (Extended Search)

details. Note: Market share is based on model year sales projections submitted to EPA by vehicle manufacturers. Supporting Information New Light Vehicle Market Shares by EPA Size...

132

A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results  

SciTech Connect

This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energy’s Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped engage distributors including Costco, the Home Depot, Bonneville Power Administration, and utility organizations.

Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

2008-05-19T23:59:59.000Z

133

Resource-technology combinations for domestic lighting in rural India: A comparative financial evaluation  

Science Conference Proceedings (OSTI)

Financial analysis and evaluation of various resource-technology combinations for rural domestic lighting is undertaken. The options include kerosene lamps, liquefied petroleum gas (LPG) and biogas lamps, solar photovoltaic lighting systems, and electric lamps. The figures of merit considered for financial comparison are the cost per hour of lighting and the cost per unit of useful energy for lighting. Sensitivity of these figures of merit to the uncertainties in the values of some of the input variables has also been studied.

Rubab, S.; Kandpal, T.C. [Indian Inst. of Tech., New Delhi (India). Centre for Energy Studies

1997-10-01T23:59:59.000Z

134

Supporting the Next Generation of White Lighting Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

per watt, it will be possible to achieve a low- cost LED competitive with incandescent light bulbs. We think it will take a ten-year sustained R&D investment to reach 160 lumens...

135

Solid-State Lighting Issue 13: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

(IWNS) will be held July 22-25, 2002, in Aachen, Germany. The conference Light Emitting Diodes 2002 will be held October 21-23, 2002 in San Diego, Calif. Lumex...

136

Solid-State Lighting Issue 19: Selected Business & Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

is suing Epistar (Taiwan) for willfully infringing on its US patent 5,008,718, "Light-emitting diode with an electrically conductive window." Lumileds is seeking both enhanced...

137

Science and Technology Challenges in Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

of 20,000 hours). The operating cost is the cost (per Mlm-hour or Mlmh) to run a light bulb or lamp - basically the ratio between the cost of the fuel and the luminous...

138

Light Rail System Safety Improvements Using ITS Technologies  

E-Print Network (OSTI)

1975b. * Cox, J. J. Road-Rail Protection Audible WarningInfluencing Safety at Highway-Rail Grade Crossings. NationalWalmsley, D.A (1 992) Light Rail Accidents in Europe and

Chira-chavala, Ted; Coifman, Ben; Empey, Dan; Hansen, Mark; Lechner, Ed; Porter, Chris

1997-01-01T23:59:59.000Z

139

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector needs, and provide guidance on tools and materials to support those needs. LED RoadStar luminaire with Dynadimmer dimming technology NGL Recognized Winner 2010...

140

Solid-State Lighting Issue 24: Selected Business and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

technology. Epistar, in July, began withdrawing from the blue LED market in South Korea. Epitech, ramping up production at its plant in Taiwan, has ordered seven MOCVD...

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Flicker Performance of Modern Lighting Technologies including Impacts of Dimmers  

Science Conference Proceedings (OSTI)

The existing industry standards on flicker measurement and assessment are based on the response of general purpose incandescent lamps. However, worldwide these lamps are being replaced with more energy efficient lamps including Compact Fluorescent Lamps (CFLs) and Light emitting Diode (LED) lamps. In order to keep the flicker standards relevant, the industry standard bodies on the subject are in need of the evidence that compares the flicker performance of new lighting ...

2012-12-12T23:59:59.000Z

142

New and Underutilized Technology: Low Ambient/Task Lighting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Ambient/Task Lighting Low Ambient/Task Lighting New and Underutilized Technology: Low Ambient/Task Lighting October 4, 2013 - 4:51pm Addthis The following information outlines key deployment considerations for low ambient/task lighting within the Federal sector. Benefits The low ambient/task lighting strategy improves the visual environment by adding controllable task fixtures that provide light directly where needed for a given task, while reducing the overhead (ambient) light level. Occupancy sensors can also be incorporated into the system. Application Low ambient/task lighting is applicable in most building categories. Key Factors for Deployment Low ambient/task lighting is suitable for most office spaces, including both cubicle and private office space environments, and should be

143

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Landfill Gas: Consumption for Useful Thermal Output, B. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 993 0 116 0 876 2004 2,174 0 735 10 1,429 2005 1,923 0 965 435 522 2006 2,051 0 525 1,094 433 2007 1,988 0 386 1,102 501 2008 1,025 0 454 433 138 2009 793 0 545 176 72 2010 1,623 0 1,195 370 58 2011 3,195 0 2,753 351 91 2012 3,189 0 2,788 340 61 2010 January 118 0 83 30 5 February 110 0 79 27 5 March 132 0 94 32 6 April 131 0 93 33 6 May 132 0 92 34 6 June 139 0 104 30 5 July 140 0 102 33 5 August 132 0 95 32 5 September 148 0 113 30 5

144

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Coke: Consumption for Useful Thermal Output, B. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 517 0 111 6 399 2003 763 0 80 9 675 2004 1,043 0 237 8 798 2005 783 0 206 8 568 2006 1,259 0 195 9 1,055 2007 1,262 0 162 11 1,090 2008 897 0 119 9 769 2009 1,007 0 126 8 873 2010 1,059 0 98 11 950 2011 1,080 0 112 6 962 2012 1,346 0 113 11 1,222 2010 January 92 0 10 1 81 February 93 0 10 1 82 March 84 0 12 1 71 April 76 0 9 1 66 May 84 0 10 0 75 June 93 0 8 0 86 July 89 0 8 0 80 August 87 0 2 1 84 September 82 0 2 1 79

145

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 193,120 57,296 105,416 227 30,182 2003 197,827 69,695 92,384 309 35,440 2004 245,389 116,086 90,747 259 38,297 2005 256,441 115,727 111,098 260 29,356 2006 246,687 102,117 98,314 269 45,987 2007 208,198 77,941 81,845 348 48,064 2008 180,034 64,843 79,856 280 35,055 2009 166,449 77,919 52,428 245 35,856 2010 173,078 94,331 41,090 340 37,317 2011 176,349 99,257 40,167 173 36,752 2012 144,266 60,862 24,925 353 58,126 2010 January 14,949 7,995 3,716 38 3,199

146

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Coal: Consumption for Electricity Generation and Useful Thermal Output, C. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,005,144 767,803 209,703 1,405 26,232 2003 1,031,778 757,384 247,732 1,816 24,846 2004 1,044,798 772,224 244,044 1,917 26,613 2005 1,065,281 761,349 276,135 1,922 25,875 2006 1,053,783 753,390 273,246 1,886 25,262 2007 1,069,606 764,765 280,377 1,927 22,537 2008 1,064,503 760,326 280,254 2,021 21,902 2009 955,190 695,615 238,012 1,798 19,766 2010 1,001,411 721,431 253,621 1,720 24,638 2011 956,470 689,316 243,168 1,668 22,319 2012 845,066 615,467 208,085 1,450 20,065

147

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Landfill Gas: Consumption for Useful Thermal Output, E. Landfill Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 500 0 61 0 439 2004 1,158 0 415 5 738 2005 994 0 519 212 263 2006 1,034 0 267 549 218 2007 985 0 226 532 228 2008 552 0 271 211 70 2009 440 0 313 91 37 2010 847 0 643 174 30 2011 1,635 0 1,422 165 48 2012 1,630 0 1,441 156 32 2010 January 61 0 44 14 3 February 58 0 42 13 3 March 67 0 49 15 3 April 67 0 49 15 3 May 68 0 49 16 3 June 73 0 56 14 3 July 73 0 55 16 2 August 69 0 52 15 3 September 79 0 62 14 3 October 75 0 59 14 2

148

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Coal: Consumption for Useful Thermal Output, B. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 17,561 0 2,255 929 14,377 2003 17,720 0 2,080 1,234 14,406 2004 24,275 0 3,809 1,540 18,926 2005 23,833 0 3,918 1,544 18,371 2006 23,227 0 3,834 1,539 17,854 2007 22,810 0 3,795 1,566 17,449 2008 22,168 0 3,689 1,652 16,827 2009 20,507 0 3,935 1,481 15,091 2010 21,727 0 3,808 1,406 16,513 2011 21,532 0 3,628 1,321 16,584 2012 19,333 0 2,790 1,143 15,400 2010 January 1,972 0 371 160 1,440 February 1,820 0 347 139 1,334 March 1,839 0 338 123 1,378 April 2,142 0 284 95 1,764

149

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Other Waste Biomass: Consumption for Useful Thermal Output, E. Other Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 29,854 0 10,655 757 18,442 2004 30,228 0 12,055 2,627 15,547 2005 38,010 0 10,275 2,086 25,649 2006 36,966 0 8,561 2,318 26,087 2007 41,757 0 10,294 2,643 28,820 2008 41,851 0 9,674 1,542 30,635 2009 41,810 0 10,355 1,638 29,817 2010 47,153 0 8,436 1,648 37,070 2011 43,483 0 6,460 1,566 35,458 2012 46,863 0 6,914 1,796 38,153 2010 January 4,885 0 1,088 137 3,661 February 4,105 0 943 137 3,025 March 4,398 0 845 136 3,417 April 4,224 0 399 138 3,688

150

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Coke: Consumption for Useful Thermal Output, E. Petroleum Coke: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 14,395 0 3,192 179 11,024 2003 21,170 0 2,282 244 18,644 2004 29,342 0 6,768 226 22,347 2005 22,224 0 5,935 228 16,061 2006 38,169 0 5,672 236 32,262 2007 38,033 0 4,710 303 33,019 2008 27,100 0 3,441 243 23,416 2009 29,974 0 3,652 213 26,109 2010 31,303 0 2,855 296 28,152 2011 31,943 0 3,244 153 28,546 2012 38,777 0 3,281 315 35,181 2010 January 2,683 0 285 33 2,365 February 2,770 0 302 29 2,439 March 2,424 0 338 36 2,050 April 2,257 0 255 22 1,980

151

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Other Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 64,629 2,456 26,514 5,323 30,337 2004 49,443 2,014 21,294 6,935 19,201 2005 55,862 2,485 17,640 6,763 28,974 2006 54,693 2,611 16,348 6,755 28,980 2007 60,840 2,992 19,155 6,692 32,001 2008 66,139 3,409 22,419 5,227 35,085 2009 66,658 3,679 23,586 5,398 33,994 2010 77,150 3,668 22,884 5,438 45,159 2011 74,255 4,488 22,574 5,382 41,810 2012 77,205 4,191 22,654 5,812 44,548 2010 January 7,109 189 2,166 458 4,295 February 6,441 275 2,151 429 3,586

152

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,135,572 2,307,358 3,481,961 75,985 1,270,268 2003 6,498,549 1,809,003 3,450,177 60,662 1,178,707 2004 6,912,661 1,857,247 3,749,945 73,744 1,231,725 2005 7,220,520 2,198,098 3,837,717 69,682 1,115,023 2006 7,612,500 2,546,169 3,847,644 69,401 1,149,286 2007 8,181,986 2,808,500 4,219,827 71,560 1,082,099 2008 7,900,986 2,803,283 4,046,069 67,571 984,062 2009 8,138,385 2,981,285 4,062,633 77,077 1,017,390 2010 8,694,186 3,359,035 4,191,241 87,357 1,056,553

153

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, B. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 1,358 0 311 865 182 2004 2,743 0 651 1,628 464 2005 2,719 0 623 1,536 560 2006 2,840 0 725 1,595 520 2007 2,219 0 768 1,136 315 2008 2,328 0 806 1,514 8 2009 2,426 0 823 1,466 137 2010 2,287 0 819 1,316 152 2011 2,044 0 742 1,148 154 2012 1,986 0 522 1,273 190 2010 January 191 0 69 107 14 February 178 0 61 106 11 March 204 0 66 126 12 April 207 0 67 127 13 May 249 0 67 167 15 June 204 0 69 120 14 July 194 0 68 115 11

154

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, C. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 137,414 9,168 122,100 3,280 2,865 2004 146,018 11,250 126,584 4,091 4,093 2005 143,822 11,490 124,030 5,232 3,070 2006 162,084 16,617 136,632 7,738 1,096 2007 168,762 17,442 144,490 5,699 1,131 2008 196,802 20,465 170,001 5,668 668 2009 207,585 19,583 181,234 6,106 661 2010 219,954 19,975 193,623 5,905 451 2011 235,990 22,086 183,609 29,820 474 2012 259,564 25,193 204,753 27,012 2,606 2010 January 17,649 1,715 15,406 491 37 February 16,300 1,653 14,198 410 38

155

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Coke: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 7,353 2,125 3,691 8 1,529 2003 7,067 2,554 3,245 11 1,257 2004 8,721 4,150 3,223 9 1,339 2005 9,113 4,130 3,953 9 1,020 2006 8,622 3,619 3,482 10 1,511 2007 7,299 2,808 2,877 12 1,602 2008 6,314 2,296 2,823 10 1,184 2009 5,828 2,761 1,850 9 1,209 2010 6,053 3,325 1,452 12 1,264 2011 6,092 3,449 1,388 6 1,248 2012 5,021 2,105 869 13 2,034 2010 January 525 283 130 1 110 February 497 258 131 1 106 March 522 308 119 1 94

156

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, E. Biogenic Municipal Solid Waste: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 13,694 0 3,118 8,858 1,718 2004 19,991 0 4,746 12,295 2,950 2005 20,296 0 4,551 11,991 3,754 2006 21,729 0 5,347 12,654 3,728 2007 16,174 0 5,683 8,350 2,141 2008 18,272 0 6,039 12,174 59 2009 18,785 0 6,229 11,535 1,021 2010 17,502 0 6,031 10,333 1,138 2011 16,766 0 5,807 9,731 1,227 2012 16,310 0 4,180 10,615 1,515 2010 January 1,476 0 518 851 107 February 1,365 0 444 835 86 March 1,572 0 486 992 93 April 1,598 0 495 1,003 100

157

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Petroleum Liquids: Consumption for Useful Thermal Output, B. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 12,228 0 286 384 11,558 2003 14,124 0 1,197 512 12,414 2004 20,654 0 1,501 1,203 17,951 2005 20,494 0 1,392 1,004 18,097 2006 14,077 0 1,153 559 12,365 2007 13,462 0 1,303 441 11,718 2008 7,533 0 1,311 461 5,762 2009 8,128 0 1,301 293 6,534 2010 4,866 0 1,086 212 3,567 2011 3,826 0 1,004 168 2,654 2012 3,097 0 992 122 1,984 2010 January 606 0 105 31 470 February 504 0 78 26 401 March 335 0 46 7 281 April 355 0 86 9 260 May 340 0 93 14 232

158

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Natural Gas: Consumption for Useful Thermal Output, E. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 885,987 0 267,675 45,359 572,953 2003 762,779 0 250,120 21,238 491,421 2004 1,085,191 0 398,476 40,122 646,593 2005 1,008,404 0 392,842 35,037 580,525 2006 968,574 0 339,047 33,928 595,599 2007 894,272 0 347,181 36,689 510,402 2008 813,794 0 333,197 33,434 447,163 2009 836,863 0 312,553 42,032 482,279 2010 841,521 0 308,246 47,001 486,274 2011 861,006 0 315,411 40,976 504,619 2012 909,087 0 330,354 48,944 529,788 2010 January 74,586 0 27,368 4,148 43,070 February 65,539 0 24,180 3,786 37,573

159

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 2. Useful Thermal Output by Energy Source: Electric Power Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 40,020 1,319 2,550 214,137 5,961 12,550 4,732 281,269 2003 38,249 5,551 1,828 200,077 9,282 19,785 3,296 278,068 2004 39,014 5,731 2,486 239,416 18,200 17,347 3,822 326,017 2005 39,652 5,571 2,238 239,324 36,694 18,240 3,884 345,605 2006 38,133 4,812 2,253 207,095 22,567 17,284 4,435 296,579 2007 38,260 5,294 1,862 212,705 20,473 19,166 4,459 302,219 2008 37,220 5,479 1,353 204,167 22,109 17,052 4,854 292,234 2009 38,015 5,341 1,445 190,875 19,830 17,625 5,055 278,187

160

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Petroleum Liquids: Consumption for Useful Thermal Output, E. Petroleum Liquids: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 76,737 0 1,669 3,276 71,788 2003 85,488 0 6,963 3,176 75,349 2004 124,809 0 8,592 7,219 108,997 2005 125,689 0 8,134 6,145 111,410 2006 87,137 0 6,740 3,481 76,916 2007 82,768 0 7,602 2,754 72,412 2008 45,481 0 7,644 2,786 35,051 2009 48,912 0 7,557 1,802 39,552 2010 29,243 0 6,402 1,297 21,545 2011 22,799 0 5,927 1,039 15,833 2012 18,233 0 5,871 746 11,616 2010 January 3,648 0 614 190 2,843 February 3,027 0 422 157 2,447 March 2,015 0 272 43 1,699

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, C. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Barrels) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 146,643 88,595 39,320 1,210 17,517 2003 189,260 105,319 62,617 1,394 19,929 2004 185,761 103,793 57,843 1,963 22,162 2005 185,631 98,223 63,546 1,584 22,278 2006 87,898 53,529 18,332 886 15,150 2007 95,895 56,910 24,097 691 14,198 2008 61,379 38,995 14,463 621 7,300 2009 51,690 31,847 11,181 477 8,185 2010 44,968 30,806 9,364 376 4,422 2011 31,152 20,844 6,637 301 3,370 2012 25,702 17,521 5,102 394 2,685 2010 January 6,193 4,381 1,188 48 576

162

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, E. Wood / Wood Waste Biomass: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 682,060 0 9,585 727 671,747 2003 746,375 0 10,893 762 734,720 2004 1,016,124 0 14,968 1,493 999,663 2005 997,331 0 19,193 1,028 977,111 2006 1,049,161 0 18,814 1,045 1,029,303 2007 982,486 0 21,435 1,756 959,296 2008 923,889 0 18,075 1,123 904,690 2009 816,285 0 19,587 1,135 795,563 2010 876,041 0 18,357 1,064 856,620 2011 893,314 0 16,577 1,022 875,716 2012 883,158 0 19,251 949 862,958 2010 January 73,418 0 1,677 91 71,651 February 67,994 0 1,689 81 66,224

163

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, F. Landfill Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 66,270 3,930 59,149 1,753 1,438 2004 70,489 5,373 60,929 2,098 2,089 2005 68,897 5,650 59,144 2,571 1,532 2006 77,004 8,287 64,217 3,937 563 2007 80,697 8,620 68,657 2,875 544 2008 94,768 10,242 81,300 2,879 346 2009 100,261 9,748 87,086 3,089 337 2010 106,681 10,029 93,405 3,011 236 2011 114,173 11,146 91,279 11,497 251 2012 125,927 12,721 101,379 10,512 1,315 2010 January 8,502 853 7,379 251 19 February 7,882 830 6,823 209 20

164

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 3. Useful Thermal Output by Energy Source: Commerical Sector Combined Heat and Power, 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 18,477 2,600 143 36,265 0 6,902 4,801 69,188 2003 22,780 2,520 196 16,955 0 8,296 6,142 56,889 2004 22,450 4,118 165 21,851 0 8,936 6,350 63,871 2005 22,601 3,518 166 20,227 0 8,647 5,921 61,081 2006 22,186 2,092 172 19,370 0.22 9,359 6,242 59,422 2007 22,595 1,640 221 20,040 0 6,651 3,983 55,131 2008 22,991 1,822 177 20,183 0 8,863 6,054 60,091 2009 20,057 1,095 155 25,902 0 8,450 5,761 61,420 2010 19,216 845 216 29,791 13 7,917 5,333 63,330 2011 17,234 687 111 24,848 14 7,433 5,988 56,314

165

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, F. Petroleum Liquids: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 912,218 553,390 243,561 7,229 108,031 2003 1,174,795 658,868 387,341 8,534 120,051 2004 1,156,763 651,712 358,685 11,763 134,603 2005 1,160,733 618,811 395,489 9,614 136,820 2006 546,529 335,130 112,052 5,444 93,903 2007 595,191 355,999 147,579 4,259 87,354 2008 377,848 242,379 87,460 3,743 44,266 2009 315,420 196,346 66,834 2,903 49,336 2010 273,357 188,987 55,444 2,267 26,660 2011 186,753 125,755 39,093 1,840 20,066 2012 153,189 105,179 29,952 2,364 15,695

166

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

B. Natural Gas: Consumption for Useful Thermal Output, B. Natural Gas: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Million Cubic Feet) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 860,024 0 263,619 41,435 554,970 2003 721,267 0 225,967 19,973 475,327 2004 1,052,100 0 388,424 39,233 624,443 2005 984,340 0 384,365 34,172 565,803 2006 942,817 0 330,878 33,112 578,828 2007 872,579 0 339,796 35,987 496,796 2008 793,537 0 326,048 32,813 434,676 2009 816,787 0 305,542 41,275 469,970 2010 821,775 0 301,769 46,324 473,683 2011 839,681 0 308,669 39,856 491,155 2012 886,103 0 322,607 47,883 515,613 2010 January 72,867 0 26,791 4,086 41,990

167

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

E. Coal: Consumption for Useful Thermal Output, E. Coal: Consumption for Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 421,084 0 50,041 23,099 347,944 2003 416,700 0 47,817 28,479 340,405 2004 564,497 0 87,981 34,538 441,978 2005 548,666 0 88,364 34,616 425,685 2006 532,561 0 84,335 34,086 414,140 2007 521,717 0 83,838 34,690 403,189 2008 503,096 0 81,416 36,163 385,517 2009 462,674 0 90,867 32,651 339,156 2010 490,931 0 90,184 30,725 370,022 2011 479,822 0 84,855 28,056 366,911 2012 420,923 0 58,275 23,673 338,975 2010 January 44,514 0 8,627 3,445 32,442 February 40,887 0 8,041 3,024 29,823

168

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, F. Wood / Wood Waste Biomass: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2002 1,287,114 10,659 139,532 1,196 1,135,727 2003 1,265,669 16,545 150,745 1,199 1,097,180 2004 1,360,258 19,973 145,216 1,661 1,193,408 2005 1,352,582 27,373 157,600 1,235 1,166,373 2006 1,399,235 27,455 154,360 1,314 1,216,106 2007 1,335,511 31,568 154,388 2,040 1,147,516 2008 1,262,675 29,150 148,198 1,410 1,083,917 2009 1,136,729 29,565 150,481 1,408 955,276 2010 1,225,571 40,167 155,429 1,338 1,028,637 2011 1,240,937 35,474 146,684 1,504 1,057,275

169

Smart Grid Technology Gives Small Business New Light | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs "New technology opens doors for all sorts of trades really -- somebody's got to install it and wire it up." Gary Miklethun, Owner of Narrows Electric

170

Smart Grid Technology Gives Small Business New Light | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs "New technology opens doors for all sorts of trades really -- somebody's got to install it and wire it up." Gary Miklethun, Owner of Narrows Electric

171

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 1. Useful Thermal Output by Energy Source: Total Combined Heat and Power (All Sectors), 2002 - 2012 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Renewable Sources Other Total Annual Totals 2002 336,848 61,313 11,513 708,738 117,513 571,509 48,263 1,855,697 2003 333,361 68,329 16,934 610,122 110,263 632,366 54,960 1,826,335 2004 351,871 80,824 16,659 654,242 126,157 667,341 45,456 1,942,550 2005 341,806 79,362 13,021 624,008 138,469 664,691 41,400 1,902,757 2006 332,548 54,224 24,009 603,288 126,049 689,549 49,308 1,878,973 2007 326,803 50,882 25,373 554,394 116,313 651,230 46,822 1,771,816 2008 315,244 29,554 18,263 509,330 110,680 610,131 23,729 1,616,931 2009 281,557 32,591 20,308 513,002 99,556 546,974 33,287 1,527,276

172

Best practices for the sustainable scaleup of lighting technologies in bottom of the pyramid communities  

E-Print Network (OSTI)

This thesis deduces a set of best practices for sustainably scaling up lighting technologies in developing countries with a focus on Bottom-of-the-Pyramid (BOP) communities, whose annual incomes are US $3000 or less (in ...

Alekal, Pragnya Y. (Pragnya Yogesh), 1977-

2007-01-01T23:59:59.000Z

173

Event:Technology Transfer in Energy and Efficient Lighting to Combat  

Open Energy Info (EERE)

in Energy and Efficient Lighting to Combat in Energy and Efficient Lighting to Combat Climate Change Jump to: navigation, search Calendar.png Technology Transfer in Energy and Efficient Lighting to Combat Climate Change: on 2011/09/28 The objective of the workshop is to assess opportunities for transition to efficient lighting in the Middle East and North African region. In addition to detailed Country Lighting Assessments, UNEP will present a report on state of efficient lighting in the region by listing projects, activities and identifying obstacles and challenges facing the lighting sector. The workshop will further examine the economic and environmental benefits from shifting to efficient lighting. Space is limited so pre-registration is required. Please contact Abdul-Majeid Haddad, Regional Climate Change

174

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

4. Nitrogen Oxides Control Technology Emissions Reduction Factors 4. Nitrogen Oxides Control Technology Emissions Reduction Factors Nitrogen Oxides Control Technology EIA-Code(s) Reduction Factor Advanced Overfire Air AA 30% Alternate Burners BF 20% Flue Gas Recirculation FR 40% Fluidized Bed Combustor CF 20% Fuel Reburning FU 30% Low Excess Air LA 20% Low NOx Burners LN 30% Other (or Unspecified) OT 20% Overfire Air OV 20% Selective Catalytic Reduction SR 70% Selective Catalytic Reduction With Low Nitrogen Oxide Burners SR and LN 90% Selective Noncatalytic Reduction SN 30% Selective Noncatalytic Reduction With Low NOx Burners SN and LN 50% Slagging SC 20% Notes: Starting with 1995 data, reduction factors for Advanced Overfire Air, Low NOx Burners, and Overfire Air were reduced by 10 percent.

175

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and F. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 161,803 5,766 132,065 21,953 2,020 2004 161,567 3,705 129,562 25,204 3,096 2005 164,635 4,724 131,080 24,914 3,918 2006 168,716 4,078 135,127 25,618 3,893 2007 162,482 4,557 133,509 21,393 3,022 2008 166,723 4,476 136,080 26,108 59 2009 165,755 3,989 132,877 27,868 1,021 2010 162,436 3,322 130,467 27,509 1,138 2011 152,007 3,433 121,648 25,664 1,262 2012 152,045 3,910 117,598 28,923 1,614 2010 January 13,015 244 10,405 2,260 107

176

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

1. Emissions from Energy Consumption at 1. Emissions from Energy Consumption at Conventional Power Plants and Combined-Heat-and-Power Plants 2002 through 2012 (Thousand Metric Tons) Year Carbon Dioxide (CO2) Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) 2002 2,423,963 10,881 5,194 2003 2,445,094 10,646 4,532 2004 2,486,982 10,309 4,143 2005 2,543,838 10,340 3,961 2006 2,488,918 9,524 3,799 2007 2,547,032 9,042 3,650 2008 2,484,012 7,830 3,330 2009 2,269,508 5,970 2,395 2010 2,388,596 5,400 2,491 2011 2,287,071 4,845 2,406 2012 2,156,875 3,704 2,148 Notes: The emissions data presented include total emissions from both electricity generation and the production of useful thermal output. See Appendix A, Technical Notes, for a description of the sources and methodology used to develop the emissions estimates.

177

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and C. Biogenic Municipal Solid Waste: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2002 - 2012 (Thousand Tons) Electric Power Sector Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector Annual Totals 2003 22,554 695 18,611 2,952 296 2004 22,330 444 17,959 3,439 488 2005 22,089 560 17,655 3,289 584 2006 22,469 500 18,068 3,356 545 2007 21,796 553 17,885 2,921 437 2008 22,134 509 18,294 3,323 8 2009 22,095 465 17,872 3,622 137 2010 21,725 402 17,621 3,549 152 2011 19,016 388 15,367 3,103 158 2012 18,954 418 14,757 3,577 203 2010 January 1,737 30 1,402 291 14 February 1,562 25 1,276 250 11 March 1,854 36 1,500 306 12

178

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 9. Total Capacity of Distributed and Dispersed Generators by Technology Type, 2005 through 2012 Capacity (MW) Year Internal Combustion Combustion Turbine Steam Turbine Hydro Wind Photovoltaic Storage Other Wind and Other Total Number of Generators Distributed Generators 2005 4,025.0 1,917.0 1,830.0 999.0 -- -- -- -- 995.0 9,766.0 17,371 2006 3,646.0 1,298.0 2,582.0 806.0 -- -- -- -- 1,081.0 9,411.0 5,044 2007 4,624.0 1,990.0 3,596.0 1,051.0 -- -- -- -- 1,441.0 12,702.0 7,103 2008 5,112.0 1,949.0 3,060.0 1,154.0 -- -- -- -- 1,588.0 12,863.0 9,591 2009 4,339.0 4,147.0 4,621.0 1,166.0 -- -- -- -- 1,729.0 16,002.0 13,006 2010 886.8 186.0 109.9 97.4 98.9 236.3 -- 372.7 -- 1,988.0 15,630

179

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

10.6. Advanced Metering Count by Technology Type, 10.6. Advanced Metering Count by Technology Type, 2007 through 2012 Year Residential Commercial Industrial Transportation Total Automated Meter Reading (AMR) 2007 25,785,782 2,322,329 44,015 109 28,152,235 2008 36,425,943 3,529,985 77,122 13 40,033,063 2009 41,462,111 4,239,531 107,033 11 45,808,686 2010 43,913,225 4,611,877 159,315 626 48,685,043 2011 41,451,888 4,341,105 172,692 77 45,965,762 2012 43,455,437 4,691,018 185,862 125 48,330,822 Advanced Metering Infrastructure (AMI) 2007 2,202,222 262,159 9,106 2 2,473,489 2008 4,190,244 444,003 12,757 12 4,647,016 2009 8,712,297 876,419 22,675 10 9,611,401 2010 18,369,908 1,904,983 59,567 67 20,334,525 2011 33,453,548 3,682,159 154,659 7 37,290,373

180

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 0. Net Metering Customers and Capacity by Technology Type, by End Use Sector, 2003 through 2012 Capacity (MW) Customers Year Residential Commercial Industrial Transportation Total Residential Commercial Industrial Transportation Total Historical Data 2003 N/A N/A N/A N/A N/A 5,870 775 168 -- 6,813 2004 N/A N/A N/A N/A N/A 14,114 1,494 215 3 15,826 2005 N/A N/A N/A N/A N/A 19,244 1,565 337 -- 21,146 2006 N/A N/A N/A N/A N/A 30,689 2,553 376 -- 33,618 2007 N/A N/A N/A N/A N/A 44,450 3,513 391 -- 48,354 2008 N/A N/A N/A N/A N/A 64,400 5,305 304 -- 70,009 2009 N/A N/A N/A N/A N/A 88,205 7,365 919 -- 96,489 Photovoltaic 2010 697.890 517.861 243.051 -- 1,458.802 137,618 11,897 1,225 -- 150,740

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) A. Net Summer Capacity of Utility Scale Units by Technology and by State, 2012 and 2011 (Megawatts) Census Division and State Renewable Sources Fossil Fuels Hydroelectric Pumped Storage Other Energy Storage Nuclear All Other Sources All Sources Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 Year 2012 Year 2011 New England 4,157.7 3,805.2 24,619.1 24,153.6 1,753.4 1,709.4 3.0 3.0 4,630.3 4,653.7 48.0 26.0 35,211.5 34,350.9 Connecticut 294.7 299.9 6,607.7 6,674.5 29.4 29.4 0.0 0.0 2,102.5 2,102.5 26.0 26.0 9,060.3 9,132.3 Maine 1,704.5 1,640.8 2,764.9 2,737.4 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 4,491.4 4,378.2 Massachusetts 761.5 710.9 11,155.2 10,637.8 1,724.0 1,680.0 3.0 3.0 677.3 684.7 0.0 0.0 14,321.0 13,716.4

182

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson, Li Tao, Mathew Goeckner, Walter Hua)  

E-Print Network (OSTI)

High-density organic light emitting diodes by nanoimprint technology Krutarth Trivedi, Caleb Nelson sources. Despite the considerable development of inorganic semiconductor based light emitting diodes of miniaturization to nanoscale. Organic light emitting diode (OLED) technology is immune to quantum confinement

Hu, Wenchuang "Walter"

183

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

184

Energy Recovered Light Source Technology at TJNAF | U.S. DOE Office of  

Office of Science (SC) Website

Energy Recovered Light Source Energy Recovered Light Source Technology at TJNAF Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Energy Recovered Light Source Technology at TJNAF Print Text Size: A A A RSS Feeds FeedbackShare Page Application/instrumentation: Energy-recovered linac/TJNAF Free Electron Laser Developed at: Thomas Jefferson National Accelerator Facility, Brookhaven National

185

New EM Technology: Spray Lights up Contamination Hot Spots | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Technology: Spray Lights up Contamination Hot Spots EM Technology: Spray Lights up Contamination Hot Spots New EM Technology: Spray Lights up Contamination Hot Spots July 24, 2013 - 12:00pm Addthis The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99. The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99. An image intensified camera system captured an image of the simulated debris material in dark conditions. An image intensified camera system captured an image of the simulated debris material in dark conditions. The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99.

186

New EM Technology: Spray Lights up Contamination Hot Spots | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New EM Technology: Spray Lights up Contamination Hot Spots New EM Technology: Spray Lights up Contamination Hot Spots New EM Technology: Spray Lights up Contamination Hot Spots July 24, 2013 - 12:00pm Addthis The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99. The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99. An image intensified camera system captured an image of the simulated debris material in dark conditions. An image intensified camera system captured an image of the simulated debris material in dark conditions. The ORNL researchers conducted a test in which they sprayed the scintillating phosphor on simulated debris material marked with technetium-99.

187

Tired of changing light bulbs AND want to save money? Still using 100 year-old technology?  

E-Print Network (OSTI)

Tired of changing light bulbs AND want to save money? Still using 100 year-old technology? TAKE THE COMPACT FLUORESCENT LIGHT BULB CHALLENGE! · A 23 W Compact bulb gives the same light as a 100W regular are you waiting for? Count up the number of light bulbs in your home and go out and replace them

188

Science and Technology of Future Light Sources: A White Paper  

Science Conference Proceedings (OSTI)

Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

2009-02-03T23:59:59.000Z

189

Lighting.  

SciTech Connect

Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

United States. Bonneville Power Administration.

1992-09-01T23:59:59.000Z

190

Lighting  

Energy.gov (U.S. Department of Energy (DOE))

There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include:

191

Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstrated Petroleum Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles James Francfort (PI) Timothy Murphy Larry Zirker Oil Bypass Filter Technology Evaluation * Funded by the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program * Performed by Idaho National Engineering and Environmental Laboratory (INEEL) Fleet Operations * Goal - Support DOE's efforts to reduce petroleum consumption & ensure the energy security of the United States Oil Bypass Filter Technology Evaluation * Objectives - Test the concept of using oil bypass filters to minimize engine oil changes & the generation of waste oils - Demonstration the economics of oil bypass filter systems - Estimate potential engine oil saving from bypass filter technologies that can be achieved by INEEL,

192

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

SciTech Connect

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

193

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectronic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availability of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology. The primary objective of this project was to develop a commercially viable process for 'Substrates' (Substrate/ undercoat/ TCO topcoat) to be used in production of OLED devices (lamps/luminaries/modules). This project focused on using Arkema's recently developed doped ZnO technology for the Fenestration industry and applying the technology to the OLED lighting industry. The secondary objective was the use of undercoat technology to improve light extraction from the OLED device. In optical fields and window applications, technology has been developed to mitigate reflection losses by selecting appropriate thicknesses and refractive indices of coatings applied either below or above the functional layer of interest. This technology has been proven and implemented in the fenestration industry for more than 15 years. Successful completion of

Martin Bluhm; James Coffey; Roman Korotkov; Craig Polsz; Alexandre Salemi; Robert Smith; Ryan Smith; Jeff Stricker; Chen Xu; Jasmine Shirazi; George Papakonstantopulous; Steve Carson; Claudia Goldman; Soren Hartmann; Frank Jessen; Bianca Krogmann; Christoph Rickers; Manfred Ruske; Holger Schwab; Dietrich Bertram

2011-01-02T23:59:59.000Z

194

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

195

Solid-State Lighting Issue 27: Selected Business and Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

7: BUSINESS AND TECHNOLOGY NEWS (Mid-February to Mid-May 2005) 7: BUSINESS AND TECHNOLOGY NEWS (Mid-February to Mid-May 2005) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Activities, Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · 911EP, Inc. has filed a patent infringement lawsuit against four companies over the use of its LED technology in emergency lighting products. · Agilent's market strategy is discussed in a feature article at CompoundSemiconductor magazine.

196

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Linear Fluorescent Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update is one of four in a series that addresses the basic dimming performance of advanced lighting sources8212linear electronic fluorescent ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth dimming methods used in advanced lighting sources and controls for incandescent, fluores...

2008-12-15T23:59:59.000Z

197

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Light-Emitting Diode (LED) Fixtures, Lamps, and Drivers  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and LED sources. Chapter 3 ad...

2008-12-19T23:59:59.000Z

198

Solid-State Lighting Issue 26: Selected Business and Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

6: BUSINESS AND TECHNOLOGY NEWS (Mid-December 2004 to Early February 2005) 6: BUSINESS AND TECHNOLOGY NEWS (Mid-December 2004 to Early February 2005) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · Adaptive Micro Systems was featured in an article in Business Journal titled "Lighting the way." · Aixtron announced its new board of directors in advance of its merger with Genus.

199

Solid-State Lighting Issue 15: Selected Business & Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

9/2002 9/2002 | Table of Contents | Abstracts | Credit and Disclaimer | ISSUE 15: BUSINESS AND TECHNOLOGY NEWS (September - November 2002) A selection of news appears in this section. A. Developer News B. New Products C. Research Results D. Government Activities and Funding News E. Overview Articles Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · Amtech Lighting Services will provide LED traffic signals for City of Dallas, TX. · ATMI received a $9.46 million ONR grant to develop AlGaN/GaN HEMTs on 4-inch GaN and SiC substrates, part of DARPA’s Wide Bandgap Semiconductor Technology Initiative.

200

Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0  

SciTech Connect

End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis  

SciTech Connect

With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

2011-04-15T23:59:59.000Z

202

New Research Center to Increase Safety and Power Output of U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Research Center to Increase Safety and Power Output of U.S. New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors May 3, 2011 - 3:41pm Addthis Oak Ridge, Tenn. - Today the Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology. CASL researchers are using supercomputers to study the performance of light water reactors and to develop highly sophisticated modeling that will help accelerate upgrades at existing U.S. nuclear plants. These upgrades could improve the energy output of our existing reactor fleet by as much as seven reactors' worth at a fraction of the cost of building new reactors, while providing continued improvements in

203

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Technologies: Dimmable Advanced Lighting Tech nologies -- Electronic Fluorescent, High-Intensity Discharge, and Light-Emitting Diode  

Science Conference Proceedings (OSTI)

This EPRI Technical Report is a compilation of four technical updates that address the basic dimming performance of advanced lighting sources: EPRI report 1018476 for linear fluorescent ballasts, 1018477 for hot and cold cathode compact fluorescent lamps, 1018479 for electronic high-intensity discharge (HID) ballasts, and 1018480 for light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting con...

2008-12-22T23:59:59.000Z

204

Lighting  

SciTech Connect

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

205

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting  

Science Conference Proceedings (OSTI)

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be used in optoelectonic applications. The costs of elemental zinc is over 2 orders of magnitude less than indium, reflecting the relative abundance and availablility of the elements. Arkema Inc. and an international primary glass manufacturing company, which is located in the United States, have developed doped zinc oxide technology for solar control windows. The genesis of this DOE SSL project was to determine if doped zinc oxide technology can be taken from the commodity based window market and translate the technology to OLED lighting. Thus, Arkema Inc. sought out experts, Philips Lighting, Pacific Northwest National Laboratories (PNNL) and National Renewable Research Laboratories (NREL), in OLED devices and brought them into the project. This project had a clear focus on economics and the work plan focused both on doped ZnO process and OLED device structure that would be consistent with the new TCO. The team successfully made 6 inch OLEDs with a serial construction. More process development is required to optimize commercial OLED structures. Feasibility was demonstrated on two different light extraction technologies: 1/4 lambda refractive index matching and high-low-high band pass filter. Process development was also completed on the key precursors for the TCO, which are ready for pilot-plant scale-up. Subsequently, Arkema has developed a cost of ownership model that is consistent with DOE SSL R&D Manufacturing targets as outlined in the DOE SSL R&D Manufacturing 2010 report. The overall outcome of this project was the demonstration that doped zinc oxide can be used for OLED devices without a drop-off in performance while gaining the economic and sustainable benefits of a more readily available TCO. The broad impact of this project, is the facilitation of OLED lighting market penetration into general illumination, resulting in significant energy savings, decreased greenhouse emissions, with no environmental impact issues such as mercury found in Fluorescent technology.

Gary Silverman; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert; Smith, Ryan; Stricker, Jeff; Xu,Chen; Shirazi, Jasmine; Papakonstantopulous, George; Carson, Steve Philips Lighting GmbH Goldman, Claudia; Hartmann, Sören; Jessen, Frank; Krogmann, Bianca; Rickers, Christoph; Ruske, Manfred, Schwab, Holger; Bertram, Dietrich

2011-01-02T23:59:59.000Z

206

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network (OSTI)

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

207

Article #11, May 23, 2006 AJ's Technical Tips: Technologies for Lighting in Rural Africa  

E-Print Network (OSTI)

- enriched light (PAM 101 light emitting diode, 650 nm) for 5 min, during which time fluorescence emission measurements, PS I-enriched light (PAM 102 FR light emitting diode, 730 nm) was added to the PS II light

Jacobson, Arne

208

test output enable Veto  

E-Print Network (OSTI)

to BIP/FSCC's RESET to (NIM) test output FSCC/COM (NIM) INPUT TRIGGER GLOBAL 0.08­19.5 usec adjustable

Berns, Hans-Gerd

209

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

210

Advanced lighting guidelines, 1993: Revision 1  

SciTech Connect

The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten- Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers' representatives, and other lighting professionals.

Eley, C.; Tolen, T.M. (Eley Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States)); Rubinstein, F.; Verderber, R. (Lawrence Berkeley Lab., CA (United States))

1993-05-01T23:59:59.000Z

211

Advanced lighting guidelines: 1993. Final report  

Science Conference Proceedings (OSTI)

The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halide and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.

Eley, C.; Tolen, T.M. [Eley Associates, San Francisco, CA (United States); Benya, J.R. [Luminae Souter Lighting Design, San Francisco, CA (United States); Rubinstein, F.; Verderber, R. [Lawrence Berkeley Lab., CA (United States)

1993-12-31T23:59:59.000Z

212

Electric Technologies for Light-duty Vehicles in the United States Abstract  

E-Print Network (OSTI)

This paper is concerned with the present status and future projections for emerging technologies that can be utilized in light-duty vehicles in the next five to ten years to significantly reduce their CO2 emissions. The emerging technologies considered are modern clean diesel engines and hybrid-electric powertrains using batteries and/or ultracapacitors for energy storage. Throughout the study, six classes of vehicles –compact passenger cars to large SUVs-were considered. For each vehicle class, computer simulations (Advisor 2002) and cost analyses were performed for conventional ICE and mild and full parallel hybrids using port-fuel injected and lean burn gasoline engines and direct-injection turbo-charged diesel engines to determine the fuel economy and differential costs for the various vehicle designs using the conventional gasoline PFI engine vehicle as the baseline. CO2 emissions (gmCO2/mi) for each driveline and vehicle case were calculated from the fuel economy values. On a percentage or ratio basis, the analyses indicated that the fuel economy gains, CO2 emissions reductions, and cost/price increases due to the use of the advanced engines and hybrid-electric drivelines were essentially independent of vehicle class. This means that a regulation specifying the same fractional

United States; Andrew Burke; Ethan Abeles; Andrew Burke; Ethan Abeles

2004-01-01T23:59:59.000Z

213

Intelligent street lighting application for electric power distribution systems the business case for smartgrid technology.  

E-Print Network (OSTI)

??This research project builds upon previous work related to intelligent and energy efficient lighting in modern street and outdoor lighting systems. The concept of implementing… (more)

Davis, Wesley O'Brian Sr.

2011-01-01T23:59:59.000Z

214

July 18, 2012 Using QECBs for Street Lighting Upgrades  

E-Print Network (OSTI)

lighting technologies (e.g. light-emitting diodes, induction lighting) can reduce street light energy

215

Evaluation of advanced technologies for residential appliances and residential and commercial lighting  

SciTech Connect

Section 127 of the Energy Policy Act requires that the Department of Energy (DOE) prepare a report to Congress on the potential for the development and commercialization of appliances that substantially exceed the present federal or state efficiency standards. Candidate high-efficiency appliances must meet several criteria including: the potential exists for substantial improvement (beyond the minimum established in law) of the appliance`s energy efficiency; electric, water, or gas utilities are prepared to support and promote the commercialization of such appliances; manufacturers are unlikely to undertake development and commercialization of such appliances on their own, or development and production would be substantially accelerated by support to manufacturers. This report describes options to improve the efficiency of residential appliances, including water heaters, clothes washers and dryers, refrigerator/freezers, dishwashers, space heating and cooling devices, as well as residential and commercial lighting products. Data from this report (particularly Appendix 1)were used to prepare the report to Congress mentioned previously. For the residential sector, national energy savings are calculated using the LBL Residential Energy Model. This model projects the number of households and appliance saturations over time. First, end-use consumption is calculated for a base case where models that only meet the standard replace existing models as these reach the end of their lifetime. Second, models with efficiencies equal to the technology under consideration replace existing models that reach the end of their lifetime. For the commercial sector, the COMMEND model was utilized to project national energy savings from new technologies. In this report, energy savings are shown for the period 1988 to 2015.

Turiel, I.; Atkinson, B.; Boghosian, S.; Chan, P.; Jennings, J.; Lutz, J.; McMahon, J.; Rosenquist, G.

1995-01-01T23:59:59.000Z

216

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

SciTech Connect

The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

2009-02-11T23:59:59.000Z

217

Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya  

SciTech Connect

The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

2009-02-11T23:59:59.000Z

218

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

219

Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.  

DOE Green Energy (OSTI)

The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

Plotkin, S.

1999-01-01T23:59:59.000Z

220

The live test demonstration (LTD) of lighting retrofit technologies at the DOE Forrestal Building  

SciTech Connect

DOE`s Forrestal Building in Washington, DC, has successfully awarded a performance-based shared energy savings contract for retrofit of office and hallway lighting systems. The winning contractor estimates that the retrofit (and associated occupancy sensors) will lead to savings of up to 62% of the power currently used for lighting, with an estimated annual cost savings of $340,000. The retrofit will also increase lighting levels to required levels, while reducing total harmonic distortion on the lighting circuits. The performance-based shared energy savings approach to lighting retrofits will result in a guaranteed contract to maintain lighting levels and savings for the next seven years. Over the life of the contract, the shared energy savings approach will provide $1 million each for DOE and the contractor.

Halverson, M.A.; Schmelzer, J.R. [Pacific Northwest Lab., Richland, WA (United States); Harris, L.G. [USDOE, Washington, DC (United States)

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Recovered Light Source Technology at TJNAF | U.S. DOE...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

222

Persistence of energy savings of lighting retrofit technologies at the Forrestal Building  

SciTech Connect

In 1989, the Forrestal Building, headquarters for the U.S. Department of Energy, was chosen for a major lighting retrofit project. The project replaced the aging fighting system newer, energy-efficient fixtures. Pacific Northwest Laboratory conducted a three-part monitoring study at the Forrestal Building to (1) characterize building energy use, (2) empirically measure savings realized by the lighting retrofit, and (3) determine the persistence of energy savings. This report summarizes the findings from the third and final monitoring phase. Two data loggers were left installed at the Forrestal Building and data were collected for a 12-month period after the lighting retrofit was completed. An analysis-of-variance test indicated that the mean monthly lighting demand is increasing. A regression analysis performed on the data indicated that the mean monthly lighting demand for workdays is increasing at a rate of 0.3652{+-}0.1101 kW/mo. The nonworkday demand is increasing at a rate of 0.3408{+-}0.1027 kW/mo. During the same period, workday mean monthly plug load demand increased 0.0912{+-}0.0275 kW/mo., while nonworkday plug loads decreased slightly. The gradual increase, though significant, is reduced when compared to the 56% savings recorded after the lighting retrofit. The increase is attributed to a combination of occupants returning to original (pre-retrofit poor) behavior and a small set of occupancy sensors being defeated by building occupants. Degradation of lighting fixtures from {open_quotes}burn-in time{close_quotes} was ruled out because all burn-in time is expected in the first few months and the increasing trend persists over the 11 months of this study. Because the lighting demand was still increasing at the end of the study, without further data collection, it was not possible to determine when the increase would level out. Therefore, the true energy savings from the lighting retrofit remain unknown.

Chvala, W.D. Jr.; Wahlstrom, R.R.; Halverson, M.A.

1995-06-01T23:59:59.000Z

223

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

hydrogen in storage varies between the various energy storagethe energy storage characteristics of the various hydrogenthat the energy densities of hydrogen storage technologies

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

224

Solid-State Lighting Issue 10: Selected Business & Technology News (July -  

NLE Websites -- All DOE Office Websites (Extended Search)

0: BUSINESS AND TECHNOLOGY NEWS 0: BUSINESS AND TECHNOLOGY NEWS (July - Mid-October, 2001) A selection of news appears in this section. Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News · BCC to issue market research report on compound semiconductors in December. · Cermet and Isonics to jointly develop pure zinc-64 oxides for blue LED substrates. · Color Kinetics among fastest growing companies in New England. · Color Kinetics issued patent on intelligent power technology. · Cree introduces first UV LED (InGaN on SiC) for illumination market (405/395 nm versions). · Cree introduces 3-inch off-axis n-type SiC wafers.

225

Solid-State Lighting Issue 11: Selected Business & Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

1: BUSINESS AND TECHNOLOGY NEWS 1: BUSINESS AND TECHNOLOGY NEWS (Mid-October 2001 to early February 2002) A selection of news appears in this section. Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News · Arima Optoelectronics will expand ultra-high-brightness LED production. · AXT producing brighter AlInGaN HB-LEDs; company expanding fab facilities in China. · BMDO changing its name to the Missile Defense Agency (MDA). · Brown University/Agilent/Lumileds researchers create a monolithic dual-wavelength InGaN LED. · Cermet receives BMDO contracts to develop bulk GaN substrate and GaN FET technology.

226

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic High-Intensity Discharge Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of electronic high-intensity discharge (HID) ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and light-emit...

2008-12-18T23:59:59.000Z

227

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic (Hot and Cold Cathode) Compact Fluorescent Lamps and Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update (EPRI report 1018477) is one of four in a series that addresses basic dimming performance of advanced lighting sourceselectronic (hot and cold cathode) compact fluorescent lamps and ballasts Chapter 1 discusses basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth dimming methods used in advanced lighting sources and co...

2008-12-19T23:59:59.000Z

228

Using light detection and ranging (LiDAR) technology to assess bird-habitat relationships| A case study from the Northwoods of Maine.  

E-Print Network (OSTI)

?? Airborne light detection and ranging (LiDAR) is a remote sensing technology that quantifies the travel time of photons emitted in pulses from a LiDAR… (more)

Newton, Wesley Eugene

2012-01-01T23:59:59.000Z

229

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

230

Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies  

Science Conference Proceedings (OSTI)

The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

Jiangeng Xue; Elliot Douglas

2011-03-31T23:59:59.000Z

231

Advanced Nuclear Technology Advanced Light Water Reactor Utility Requirements Document, Revision 12  

Science Conference Proceedings (OSTI)

The utility requirement document (URD) is an industry-developed technical foundation for the design of advanced light water reactors (ALWRs). It was created with the objective of providing a comprehensive set of plant functional requirements that are considered important to utilities considering the construction of a nuclear plant and in ensuring successful deployment and operation of the plant. The scope of the URD is broad, addressing the entire plant (including the nuclear steam supply system, ...

2013-12-16T23:59:59.000Z

232

Program on Technology Innovation: Cooling Water Review of the Advanced Light Water Reactor Utility Requirements Document  

Science Conference Proceedings (OSTI)

The EPRI Utility Requirements Document (URD) was developed and last revised in 1999 to provide a list of requirements for the design and construction of new nuclear power plants. The objective of this project was to review URD Vol. III. This volume covers passive advanced light water reactors (ALWRs) for plant design requirements with respect to operations and maintenance (O&M) practices of the plant's cooling water systems (not including the circulating water system used for condenser cooling). The revi...

2007-07-26T23:59:59.000Z

233

Lighting Retrofit Workbook A PRACTICAL"HOW TO" GUIDE  

E-Print Network (OSTI)

comparison for incandescent, CFL, and LED exit signs Source Type Incandescent CFL LED Power 40 watts 10/year based on a comparison of a 40 W A-lamp, a 15 W CFL, and a 5W LED, 24 hours per day, 365 days a year output, etc. · Reduced maintenance and labor costs Improvements in lighting technologies have led

Diamond, Richard

234

Mapping of Indian computer science research output, 1999---2008  

Science Conference Proceedings (OSTI)

The research output of India in computer science during 1999---2008 is analyzed in this paper on several parameters including total research output, its growth, rank and global publication share, citation impact, share of international collaborative ... Keywords: Computer science, Information technology, Mapping, Research priorities in computer

B. M. Gupta; Avinash Kshitij; Charu Verma

2011-02-01T23:59:59.000Z

235

Solid-State Lighting Issue 18: Selected Business & Technology News (Late  

NLE Websites -- All DOE Office Websites (Extended Search)

8/2003 8/2003 | Table of Contents | Abstracts | Credit and Disclaimer | ISSUE 18: BUSINESS AND TECHNOLOGY NEWS (Late May - Late July 2003) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · AXT announced that it is discontinuing optoelectronics production. · Carmanah has sold $25,000 worth of their solar illuminated bus stops to Chicago's Regional Transportation Agency.

236

Solid-State Lighting Issue 16: Selected Business & Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

1/2003 1/2003 | Table of Contents | Abstracts | Credit and Disclaimer | ISSUE 16: BUSINESS AND TECHNOLOGY NEWS (December 2002 - Mid-March 2003) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · Aculight and Zia Laser demonstrated an external cavity laser containing a quantum dot-based gain chip.

237

Solid-State Lighting Issue 25: Selected Business and Technology News (Mid  

NLE Websites -- All DOE Office Websites (Extended Search)

2/2004 2/2004 | Table of Contents | Abstracts | Credit and Disclaimer | ISSUE 25: BUSINESS AND TECHNOLOGY NEWS (Mid July - November 2004) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · Agilent is reportedly considering building a high-brightness LED manufacturing center in Kwangju, southern Korea.

238

Solid-State Lighting Issue 17: Selected Business & Technology News  

NLE Websites -- All DOE Office Websites (Extended Search)

24/2003 24/2003 | Table of Contents | Abstracts | Credit and Disclaimer | ISSUE 17: BUSINESS AND TECHNOLOGY NEWS (Mid-March to Late May 2003) A selection of news appears in this section. A. Developer News B. New Products C. Novel or Interesting LED Applications/Uses D. Market Information E. Overviews F. Research Results G. Selected Events of Interest H. Government Funding News and Opportunities Where possible, links to full-text articles and press releases have been included in the abstracts. Click on the links in the table below to go directly to the abstract. Table of Contents: Business and Technology News A. Developer News · Aixtron has sold a MOCVD platform to Shanghai LanBao for manufacturing blue LEDs. · Aixtron has sold a GaN MOCVD reactor to RPI for ultra high brightness LED research.

239

Passive and inherent safety technologies for light-water nuclear reactors  

SciTech Connect

Passive/inherent safety implies a technical revolution in our approach to nuclear power safety. This direction is discussed herein for light-water reactors (LWRs) -- the predominant type of power reactor used in the world today. At Oak Ridge National Laboratory (ORNL) the approach to the development of passive/inherent safety for LWRs consists of four steps: identify and quantify safety requirements and goals; identify and quantify the technical functional requirements needed for safety; identify, invent, develop, and quantify technical options that meet both of the above requirements; and integrate safety systems into designs of economic and reliable nuclear power plants. Significant progress has been achieved in the first three steps of this program. The last step involves primarily the reactor vendors. These activities, as well as related activities worldwide, are described here. 27 refs., 7 tabs.

Forsberg, C.W.

1990-07-01T23:59:59.000Z

240

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

Project Summaries ELEMENT 2: ADVANCE LIGHTING TECHNOLOGIES PROJECT 2.1 LIGHT EMITTING DIODE (LED light emitting diodes (LED) technology for general lighting applications by developing a task lamp

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

8.5. Adding New Outputs  

Science Conference Proceedings (OSTI)

... have fixed values in the Output definition will not ... are a few example Output definitions, extracted from ... an example, illustrating the Energy output and ...

2013-08-23T23:59:59.000Z

242

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

2005-12-19T23:59:59.000Z

243

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

DOE Green Energy (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

John H. Stang

2005-12-31T23:59:59.000Z

244

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

Stang, John H.

1997-12-01T23:59:59.000Z

245

What`s new in codes and standards - Office of Building Technologies (OBT): Appliance and lighting standards  

SciTech Connect

US homeowners spend $110 billion each year to power such home appliances as refrigerators, freezers, water heaters, furnaces, air conditioners, and lights. These uses account for about 70% of all the primary energy consumed in homes. During its typical 10-15-year lifetime, the appliance`s operating costs may exceed its initial purchase price several times over. Nevertheless, many consumers do not consider energy efficiency when making purchases. And manufacturers are reluctant to invest in more efficient technology that may not be accepted in the highly competitive marketplace. Recognizing the great potential for energy savings, many states began prescribing minimum energy efficiencies for appliances. Anticipating the burden of complying with differing state standards, manufacturers supported developing federal standards that would preempt state standards.

1995-09-01T23:59:59.000Z

246

Implementation of Double Pulse Width Modulation for Uniformity of LED Light Bars in LCD Back-Light.  

E-Print Network (OSTI)

??This thesis proposes a dimming approach with Double Pulse Width Modulation for equalizing the light output of the back light with light emitted diodes (LEDs)… (more)

Huang, Chao-Hsuan

2011-01-01T23:59:59.000Z

247

Coded output support vector machine  

Science Conference Proceedings (OSTI)

The authors propose a coded output support vector machine (COSVM) by introducing the idea of information coding to solve multi-class classification problems for large-scale datasets. The COSVM is built based on the support vector regression (SVR) machine ... Keywords: coded output, multi-class classification, number system, parallel implementation, support vector machine (SVM)

Tao Ye; Xuefeng Zhu

2012-07-01T23:59:59.000Z

248

New Technology Demonstration Program - Results of an Attempted Field Test of Full-Spectrum Polarized Lighting in a Mail Processing/Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of full-spectrum polarized lighting in a work space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual mail processing/office work area provided the capability of evaluating the technologies effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

249

New Technology Demonstration Program - Results of an Attempted Field Test of Multi-Layer Light Polarizing Panels in an Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of multi-layer light polarizing panels in an office space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual working office area provided the capability of evaluating the technology's effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

250

New Technology Demonstration Program - Results of an Attempted Field Test of Full-Spectrum Polarized Lighting in a Mail Processing/Office Space  

SciTech Connect

An assessment of the potential energy savings associated with the use of full-spectrum polarized lighting in a work space was initiated as part of the Department of Energy's (DOE) Federal Energy Management Program (FEMP) New Technology Demonstration Program (NTDP) in 1997. This project was intended to provide information on the effectiveness and application of this technology that could help federal energy managers and other interested individuals determine whether this technology had benefits for their occupied spaces. The use of an actual mail processing/office work area provided the capability of evaluating the technologies effectiveness in the real world.

Richman, Eric E.

2001-06-14T23:59:59.000Z

251

Advanced Lighting Guidelines  

Science Conference Proceedings (OSTI)

Information about energy-effective lighting technologies is required to be updated as old technologies become obsolete and new technologies begin to make important market impacts. Providing a comprehensive, state-of-the-art update of lighting technology application and information is necessary to ensure that lighting decision-makers have the best possible information available at all times.

2001-10-22T23:59:59.000Z

252

Lighting Group: Sources and Ballasts: LED Task Light  

NLE Websites -- All DOE Office Websites (Extended Search)

light The goal of this project is to accelerate the use of energy efficient light emitting diode (LED) technology for general lighting applications by developing a task lamp...

253

Program on Technology Innovation: Review of EPRI Advanced Light Water Reactor Utility Requirement Document to Include Small Modular Light Water Reactors  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) conducted a limited scope assessment to better understand what areas of the current EPRI advanced light water reactor (ALWR) Utility Requirement Document (URD) should be modified to ensure that the document is applicable to light water small modular reactors (LWSMRs). The LWSMRs differ from current light water reactors in that LWSMRs are significantly smaller than existing plants and utilize revolutionary design and construction strategies.

2011-04-25T23:59:59.000Z

254

THE FABRICATION AND ANALYSIS OF QUANTUM-DOT THIN FILM LIGHT EMITTING DIODES FOR USE IN DISPLAYS TECHNOLOGIES.  

E-Print Network (OSTI)

??The quantum dot has many applications, one of which is the light emitting diode. Quantum dot light emitting diodes were fabricated for their use in… (more)

Pickering, Shawn

2011-01-01T23:59:59.000Z

255

rifsimp_output.html - CECM  

E-Print Network (OSTI)

Whenever DiffConstraint or UnSolve entries are present in the output, some parts of the algorithm have been disabled by options, and the resulting cases must ...

256

Light Emitting Diode (LED) Lighting and Systems  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising and unique energy efficient light source light emitting diode (LED) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the LED and LED lighting market. Future technical improvements to LEDs and systems are also emphasized. Discussion of the importance of utility involvement in helping their customers make the switch from traditional lighting to LED lighting is provided. LED lighting technologies are covered in...

2007-12-21T23:59:59.000Z

257

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

Pappas, Daniel S. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

258

Fusion pumped light source  

DOE Patents (OSTI)

Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the lasing medium. 3 figs.

Pappas, D.S.

1988-09-01T23:59:59.000Z

259

Quantum Dot Light Enhancement Substrate for OLED Solid-State Lighting  

SciTech Connect

With DOE Award No. DE-EE00000628, QD Vision developed and demonstrated a cost-competitive solution for increasing the light extraction efficiency of OLEDs with efficient and stable color rendering index (CRI) for solid state lighting (SSL). Solution processable quantum dot (QD) films were integrated into OLED ITO-glass substrates to generate tunable white emission from blue emitting OLED) devices as well as outcouple light from the ITO film. This QD light-enhancement substrate (QD-LED) technology demonstrated a 60% increase in OLED forward light out-coupling, a value which increases to 76% when considering total increase in multi-directional light output. The objective for the first year was an 80% increase in light output. This project seeks to develop and demonstrate a cost-competitive solution for realizing increased extraction efficiency organic light emitting devices (OLEDs) with efficient and stable color rendering index (CRI) for SSL. Solution processible quantum dot (QD) films will be utilized to generate tunable white emission from blue emitting phosphorescent OLED (Ph-OLED) devices.

James Perkins; Matthew Stevenson; Gagan Mahan; Seth Coe-Sullivan; Peter Kazlas

2011-01-21T23:59:59.000Z

260

Single Inductor Dual Output Buck Converter  

E-Print Network (OSTI)

The portable electronics market is rapidly migrating towards more compact devices with multiple functionalities. Form factor, performance, cost and efficiency of these devices constitute the factors of merit of devices like cell phones, MP3 players and PDA's. With advancement in technology and more intelligent processors being used, there is a need for multiple high integrity voltage supplies for empowering the systems in portable electronic devices. Switched mode power supplies (SMPS's) are used to regulate the battery voltage. In an SMPS, maximum area is taken by the passive components such as the inductor and the capacitor. This work demonstrates a single inductor used in a buck converter with two output voltages from an input battery with voltage of value 3V. The main focus areas are low cross regulation between the outputs and supply of completely independent load current levels while maintaining desired values (1.2V,1.5V) within well controlled ripple levels. Dynamic hysteresis control is used for the single inductor dual output buck converter in this work. Results of schematic and post layout simulations performed in CADENCE prove the merits of this control method, such as nil cross regulation and excellent transient response.

Eachempatti, Haritha

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

262

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

263

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

264

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

265

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

266

TouchLight: an imaging touch screen and display for gesture-based interaction  

Science Conference Proceedings (OSTI)

A novel touch screen technology is presented. TouchLight uses simple image processing techniques to combine the output of two video cameras placed behind a semi-transparent plane in front of the user. The resulting image shows objects that are on the ... Keywords: computer human interaction, computer vision, displays, gesture recognition, videoconferencing

Andrew D. Wilson

2004-10-01T23:59:59.000Z

267

Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon  

SciTech Connect

This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

Kinzey, Bruce R.; Myer, Michael

2009-11-01T23:59:59.000Z

268

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

269

Matrix-addressable III-nitride light emitting diode arrays on silicon substrates by flip-chip technology.  

E-Print Network (OSTI)

??xiv, 81 leaves : ill. ; 30 cm HKUST Call Number: Thesis ECED 2007 Keung Matrix-addressable light emitting diode (LED) micro-arrays on sapphire substrates have… (more)

Keung, Chi Wing

2007-01-01T23:59:59.000Z

270

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

271

Standards Set for Energy-Conserving LED Lighting  

Science Conference Proceedings (OSTI)

... standard LM-79, which describes the methods for testing solid-state lighting products for their light output (lumens), energy efficiency (lumens per ...

2011-05-03T23:59:59.000Z

272

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

273

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

274

Reading Municipal Light Department - Business Lighting Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reading Municipal Light Department - Business Lighting Rebate Reading Municipal Light Department - Business Lighting Rebate Program Reading Municipal Light Department - Business Lighting Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Commercial Customers: $10,000 per calendar year Municipal Customers: $15,000 per calendar year Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount T-8/T-5 Lamp with Electronic Ballasts: $11 - $35/fixture Interior High Output Lamp with Electronic Ballasts: $100/fixture De-lamping: $4 - $9/lamp Lighting Sensors: $20/sensor LED Exit Signs: $20/fixture Provider Incentive Programs

275

Prospects for LED lighting.  

SciTech Connect

Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

2003-08-01T23:59:59.000Z

276

Overload protection circuit for output driver  

DOE Patents (OSTI)

A protection circuit for preventing excessive power dissipation in an output transistor whose conduction path is connected between a power terminal and an output terminal. The protection circuit includes means for sensing the application of a turn on signal to the output transistor and the voltage at the output terminal. When the turn on signal is maintained for a period of time greater than a given period without the voltage at the output terminal reaching a predetermined value, the protection circuit decreases the turn on signal to, and the current conduction through, the output transistor.

Stewart, Roger G. (Neshanic Station, NJ)

1982-05-11T23:59:59.000Z

277

Avista Utilities (Electric) - Commercial Lighting Energy Efficiency...  

Open Energy Info (EERE)

Applicable Sector Commercial Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

278

Ameren Illinois - Lighting Rebates for Businesses (Illinois)...  

Open Energy Info (EERE)

Technologies CustomOthers pending approval, Lighting, Lighting ControlsSensors, LED Exit Signs, LED Lighting Active Incentive Yes Implementing Sector Utility Energy...

279

Background Overview of Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

light sources Dramatic changes are unfolding in lighting technology. Semiconductor light-emitting diodes (LEDs), until recently used mainly as simple indicator lamps in...

280

Report from the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies  

SciTech Connect

The Light Water Reactor Sustainability (LWRS) Program is a research and development (R&D) program sponsored by the U.S. Department of Energy (DOE). The program is operated in close collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of Nuclear Power Plants that are currently in operation. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. Advanced instruments and control (I&C) technologies are needed to support the safe and reliable production of power from nuclear energy systems during sustained periods of operation up to and beyond their expected licensed lifetime. This requires that new capabilities to achieve process control be developed and eventually implemented in existing nuclear assets. It also requires that approaches be developed and proven to achieve sustainability of I&C systems throughout the period of extended operation. The strategic objective of the LWRS Program Advanced Instrumentation, Information, and Control Systems Technology R&D pathway is to establish a technical basis for new technologies needed to achieve safety and reliability of operating nuclear assets and to implement new technologies in nuclear energy systems. This will be achieved by carrying out a program of R&D to develop scientific knowledge in the areas of: • Sensors, diagnostics, and prognostics to support characterization and prediction of the effects of aging and degradation phenomena effects on critical systems, structures, and components (SSCs) • Online monitoring of SSCs and active components, generation of information, and methods to analyze and employ online monitoring information • New methods for visualization, integration, and information use to enhance state awareness and leverage expertise to achieve safer, more readily available electricity generation. As an initial step in accomplishing this effort, the Light Water Reactor Sustainability Workshop on Advanced Instrumentation, Information, and Control Systems and Human-System Interface Technologies was held March 20–21, 2009, in Columbus, Ohio, to enable industry stakeholders and researchers in identification of the nuclear industry’s needs in the areas of future I&C technologies and corresponding technology gaps and research capabilities. Approaches for collaboration to bridge or fill the technology gaps were presented and R&D activities and priorities recommended. This report documents the presentations and discussions of the workshop and is intended to serve as a basis for the plan under development to achieve the goals of the I&C research pathway.

Bruce P. Hallbert; J. J. Persensky; Carol Smidts; Tunc Aldemir; Joseph Naser

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Optimal Filtering of AC Output Anemometers  

Science Conference Proceedings (OSTI)

The output of pulsed and AC output anemometers suffer from discretization noise when such anemometers are sampled at fast rates (>1 Hz). This paper describes the construction of an optimal filter designed to reduce this noise. By comparing the ...

J. C. Barnard; L. L. Wendell; V. R. Morris

1998-12-01T23:59:59.000Z

282

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

283

Federal Energy Management Program: New and Underutilized Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Technologies to someone by E-mail Lighting Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Lighting Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Lighting Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Lighting Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Lighting Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Lighting Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Lighting Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy

284

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

285

Lighting Group: Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Links Organizations Illuminating Engineering Society of North America (IESNA) International Commission on Illumination (CIE) International Association of Lighting Designers (IALD) International Association of Energy-Efficient Lighting Lightfair International Energy Agency - Task 21: Daylight in Buildings: Design Tools and Performance Analysis International Energy Agency - Task 31: Daylighting Buildings in 21st Century National Association on Qualifications for the Lighting Professions (NCQLP) National Association of Independent Lighting Distributors (NAILD) International Association of Lighting Management Companies (NALMCO) Research Centers California Lighting Technology Center Lighting Research Center Lighting Research at Canada Institute for Research in Construction

286

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

287

Program on Technology Innovation: Weld Metals and Welding Processes for Fabrication of Advanced Light Water Reactor Pressure Vessels  

Science Conference Proceedings (OSTI)

Light water reactors have traditionally been constructed using roll-formed plates for the reactor pressure vessel (RPV) shells, which were assembled via horizontal and vertical seam welds. Weld filler metals often contained significant quantities of copper, other residual elements such as vanadium, and nonmetallic elements such as phosphorous and sulfur. Low-alloy steel weld filler metals of this chemical composition contributed to the degree of neutron radiation-induced embrittlement of vessel ...

2013-06-26T23:59:59.000Z

288

Non-contact pumping of light emitters via non-radiative energy transfer  

DOE Patents (OSTI)

A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

Klimov, Victor I. (Los Alamos, NM); Achermann, Marc (Los Alamos, NM)

2010-01-05T23:59:59.000Z

289

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

290

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

291

White Light Emitting Diode Development for General Illumination Applications  

SciTech Connect

This report contains a summary of technical achievements during a 3-year project aimed at developing the chip and packaging technology necessary to demonstrate efficient, high flux light-emitting diode (LED) arrays using Cree's gallium nitride/silicon carbide (GaN/SiC) LED technology as the starting point. Novel chip designs and fabrication processes are described that led to high power blue LEDs that achieved 310 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 32.5% and 26.5%, respectively. When combined with phosphor, high power white LEDs with luminous output of 67 lumens and efficacy of 57 lumens per watt were also demonstrated. Advances in packaging technology are described that enabled compact, multi-chip white LED lamp modules with 800-1000 lumens output at efficacies of up to 55 lumens per watt. Lamp modules with junction-to-ambient thermal resistance as low as 1.7 C/watt have also been demonstrated.

James Ibbetson

2006-05-01T23:59:59.000Z

292

Choose best option for enhancing combined-cycle output  

SciTech Connect

This article describes several methods available for boosting the output of gas-turbine-based combined-cycle plants during warm-weather operation. The technology comparisons help choose the option that is most appropriate. Amidst the many advantages of gas-turbine (GT) combined cycles (CC), one drawback is that their achievable output decreases significantly as ambient temperature increases. Reason: The lower density of warm air reduces mass flow through the GT. Unfortunately, hot weather typically corresponds to peak power loads in many areas. Thus, the need to meet peak-load and power-sales contract requirements causes many plant developers to compensate for ambient-temperature-related output loss. The three most common methods of increasing output include: (1) injecting water or steam into the GT, (2) precooling GT inlet air, and/or (3) supplementary firing of the heat-recovery steam generator (HRSG). All of these options require significant capital outlays and affect other performance parameters. In addition, they may uniquely impact the operation and/or selection of other components, including boiler feedwater and condensate pumps, valves, steam turbine/generators, condensers, cooling towers, and emissions control systems. Although plant-specific issues will have a significant effect on selecting an option, comparing the performance of different systems based on a theoretical reference plant can be helpful. The comparisons here illustrate the characteristics, advantages, and disadvantages of the major power augmentation technologies now in use.

Boswell, M.; Tawney, R.; Narula, R.

1993-09-01T23:59:59.000Z

293

Lighting Retrofit Study  

SciTech Connect

The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

Kromer, S.; Morse, O.; Siminovitch, M.

1991-09-01T23:59:59.000Z

294

Edmund G. Brown Jr. LIGHTING CALIFORNIA'S FUTURE  

E-Print Network (OSTI)

Edmund G. Brown Jr. Governor LIGHTING CALIFORNIA'S FUTURE: SMART LIGHT-EMITTING DIODE LIGHTING's Future: Smart LightEmitting Diode Lighting in Residential Fans. California Energy Commission, PIER. For the Smart Light emitting Diode Lighting in Residential Fans Project, the California Lighting Technology

295

A Dual Supply Buck Converter with Improved Light Load Efficiency  

E-Print Network (OSTI)

Power consumption is the primary concern in battery-operated portable applications. Buck converters have gained popularity in powering portable devices due to their compact size, good current delivery capability and high efficiency. However, portable devices are operating under light load condition for the most of the time. Conventional buck converters suffer from low light-load efficiency which severely limits battery lifetime. In this project, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective input supply voltage at light load. This is achieved by switching between two different input voltages (3.3V and 1.65V) depending on the output current value. Experimental results show that this technique improves the efficiency at light loads by 18.07%. The buck voltage possesses an output voltage of 0.9V and provides a maximum output current of 400mA. The buck converter operates at a switching frequency of 1MHz. The prototype was fabricated using 0.18µm CMOS technology, and occupies a total active area of 0.6039mm^2.

Chen, Hui

2013-05-01T23:59:59.000Z

296

Per-Pixel Lighting Data Analysis  

E-Print Network (OSTI)

Views of the Problem”. Lighting research and Technology, v.in Architectural Physics: Lighting. Hopkinson, R.G. London:Presence on Glare”. Lighting Research and Technology, v. 24,

Inanici, Mehlika

2005-01-01T23:59:59.000Z

297

Savannah River National Laboratory Technology Marketing ...  

Energy Analysis; Energy ... criteria to calculate key fate and transport result output data. ... tank cleaning technologies currently on the market, ...

298

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

299

Spectrally Enhanced Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2007 November 2007 AfterImage + s p a c e 1 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Brian Liebel, PE, LC Brian Liebel, PE, LC November 29, 2007 November 29, 2007 Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 29, 2007 November 29, 2007 29 November 2007 AfterImage + s p a c e 2 Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting Spectrally Enhanced Lighting This is not a technology; just a This is not a technology; just a different way to quantify light based on different way to quantify light based on well established scientific findings well established scientific findings Can be used in conjunction with ANY Can be used in conjunction with ANY type of lighting design to gain

300

Present Status and Marketing Prospects of the Emerging Hybrid-Electric and Diesel Technologies to Reduce CO2 Emissions of New Light-Duty Vehicles in California  

E-Print Network (OSTI)

the engine and emission aftertreatment technologies toengine technology and the utilization of complex emissions aftertreatment

Burke, Andy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Today LED Holiday Lights, Tomorrow the World?  

SciTech Connect

This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

Gordon, Kelly L.

2004-12-20T23:59:59.000Z

302

First National Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

9 10 First National Technology First National Technology Center Center The Nature of the Grid - Industrial Age Power - Normal Course Voltage Interruptions: 2-3 seconds Lights and...

303

Light Logger Placement Guidelines for Residential Lighting Studies  

Science Conference Proceedings (OSTI)

New technological advancements in lighting have increased the efficiency of residential lighting loads. Light loggers, which use a photocell to sense when lights are on or off, provide valuable metering information for use in measuring technology effectiveness and designing marketing programs. Placement of the loggers is critical to the accuracy and reliability of the measurements. This report provides placement recommendations for various types of lighting, expected accuracy compared to metered energy, ...

1996-03-28T23:59:59.000Z

304

Metameric Modulation for Diffuse Visible Light Communications with Constant Ambient Lighting  

E-Print Network (OSTI)

untapped for wireless communications. Advancements in light emitting diode (LED) technology are making

Little, Thomas

305

Hybrid lighting: Illuminating our future  

SciTech Connect

Hybrid lighting is a combination of natural and artificial illumination to be used indoors for all lighting needs. Ideally, hybrid lighting is effectively indistinguishable from standard artificial lighting except in quality and cost, where it will likely be an improvement. Hybrid lighting systems are produced by a combination of four technologies: collecting natural light, generating artificial light, transporting and distributing light to where it is needed, and controlling the amounts of both natural and artificial light continuously during usage. Lighting demands a large fraction of our energy needs. If we can control or decrease this demand, we are able to accommodate societal growth without energy demand growth.

Cates, M.R.

1996-12-31T23:59:59.000Z

306

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

307

Partnerships and Technology Transfer  

... and photovoltaic materials. This technology is applicable to quantum dot solid-state lighting, flexible electronics, thin film batteries, and ...

308

Characterizing output bottlenecks in a supercomputer  

Science Conference Proceedings (OSTI)

Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below ...

Bing Xie; Jeffrey Chase; David Dillow; Oleg Drokin; Scott Klasky; Sarp Oral; Norbert Podhorszki

2012-11-01T23:59:59.000Z

309

Dynamical Properties of Model Output Statistics Forecasts  

Science Conference Proceedings (OSTI)

The dynamical properties of forecasts corrected using model output statistics (MOS) schemes are explored, with emphasis on the respective role of model and initial condition uncertainties. Analytical and numerical investigations of low-order ...

S. Vannitsem; C. Nicolis

2008-02-01T23:59:59.000Z

310

Ensemble Model Output Statistics for Wind Vectors  

Science Conference Proceedings (OSTI)

A bivariate ensemble model output statistics (EMOS) technique for the postprocessing of ensemble forecasts of two-dimensional wind vectors is proposed, where the postprocessed probabilistic forecast takes the form of a bivariate normal probability ...

Nina Schuhen; Thordis L. Thorarinsdottir; Tilmann Gneiting

2012-10-01T23:59:59.000Z

311

LED Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

312

New Research Center to Increase Safety and Power Output of U.S. Nuclear Reactors  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy dedicated the Consortium for Advanced Simulation of Light Water Reactors (CASL), an advanced research facility that will accelerate the advancement of nuclear reactor technology.

313

Building Technologies Office: About Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration Water Heating: heat pump water heaters and solar water heaters

314

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Kanda, Naohiro

2011-01-01T23:59:59.000Z

315

Light-Light Scattering  

E-Print Network (OSTI)

For a long time, it is believed that the light by light scattering is described properly by the Lagrangian density obtained by Heisenberg and Euler. Here, we present a new calculation which is based on the modern field theory technique. It is found that the light-light scattering is completely different from the old expression. The reason is basically due to the unphysical condition (gauge condition) which was employed by the QED calcualtion of Karplus and Neumann. The correct cross section of light-light scattering at low energy of $(\\frac{\\omega}{m} \\ll 1)$ can be written as $ \\displaystyle{\\frac{d\\sigma}{d\\Omega}=\\frac{1}{(6\\pi)^2}\\frac{\\alpha^4} {(2\\omega)^2}(3+2\\cos^2\\theta +\\cos^4\\theta)}$.

Naohiro Kanda

2011-06-03T23:59:59.000Z

316

Detroit Public Lighting Department - Residential Energy Wise...  

Open Energy Info (EERE)

Multi-Family Residential, Residential Eligible Technologies Ceiling Fan, Lighting, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

317

Connecticut Light & Power - Commercial Energy Efficiency Rebates...  

Open Energy Info (EERE)

Technologies Lighting, Lighting ControlsSensors, Heat pumps, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, Motors, HVAC Controls Active Incentive No...

318

Research Output from Pakistan This analysis takes into account the Publications from Pakistani Universities,  

E-Print Network (OSTI)

Research Output from Pakistan This analysis takes into account the Publications from Pakistani NONE 01 68. University of Management & Technology NONE 01 Other Institutions 1. Pakistan Institute of Nuclear Science & Technology 106 171 2. Pakistan Council for Scientific & Industrial Research 38 110 3

Siddiqi, Sajjad Ahmed

319

MHK Technologies/Ocean Energy Rig | Open Energy Information  

Open Energy Info (EERE)

Rig Rig < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Energy Rig is a hybrid concept harnessing tidal stream with increased velocity from venturi system wave and wind power The rig also uses solar panels to power computers and warning lights Other unique features include a water ballasting system with automatic self levelling and wave ramps to maximize FreeFlow 69 s new wave power device It is envisaged that the Ocean Energy Rig would be assembled and maintained in dry docks and would be towed out into position before being semi submerged and anchored for operation Power output of the production model would be at least 10MW

320

Central Electric Cooperative - Non-Residential Lighting Rebate...  

Open Energy Info (EERE)

Government, Tribal Government Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Event:Lighting Our Path: The Philips Experience in Promoting...  

Open Energy Info (EERE)

Lighting Our Path: The Philips Experience in Promoting Advanced Lighting Technologies Jump to: navigation, search Calendar.png Lighting Our Path: The Philips Experience in...

322

Growing Glowing Nanowires to Light Up the Nanoworld  

Science Conference Proceedings (OSTI)

... to the peak wavelength emitted with electric field perpendicular to the wire. ... in high light output compared to the bulk material.** The wires also can ...

2013-03-27T23:59:59.000Z

323

Light bulb standards begin taking effect in 2012 - Today in ...  

U.S. Energy Information Administration (EIA)

On January 1, 2012, efficiency standards will start taking effect for brighter, higher-wattage general service bulbs. Based on its light output of ...

324

Good lighting with energy conservation  

SciTech Connect

The publicity and economic impact of the oil embargo of 1973-74 has frequently caused over-reactive, indiscriminate reductions in lighting without eliminating many of the truly energy-wasteful aspects of lighting system usage. With current technology and a clear knowledge of the lighting requirements significant contributions to energy conservation can be achieved without unnecessarily sacrificing the benefits of good lighting.

Clark, G.W.

1976-01-01T23:59:59.000Z

325

Recommended methods for evaluating the benefits of ECUT Program outputs. [Energy Conversion and Utilization  

SciTech Connect

This study was conducted to define and develop techniques that could be used to assess the complete spectrum of positive effects resulting from the Energy Conversion and Utilization Technologies (ECUT) Program activities. These techniques could then be applied to measure the benefits from past ECUT outputs. In addition, the impact of future ECUT outputs could be assessed as part of an ongoing monitoring process, after sufficient time has elapsed to allow their impacts to develop.

Levine, L.O.; Winter, C.

1986-03-01T23:59:59.000Z

326

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

327

Inverse Lighting for Photography  

E-Print Network (OSTI)

We introduce a technique for improving photographs using inverse lighting, a new process based on algorithms developed in computer graphics for computing the reflection of light in 3D space. From a photograph and a 3D surface model for the object pictured, inverse lighting estimates the directional distribution of the incident light. We then use this information to process the photograph digitally to alter the lighting on the object. Inverse lighting is a specific example of the general idea of inverse rendering. This refers to the practice of using the methods of computer graphics, which normally are used to render images from scene information, to infer scene information from images. Our system uses physically based rendering technology to construct a linear least squares system that we solve to find the lighting. As an application, the results are then used to simulate a change in the incident light in the photograph. An implementation is described that uses 3D models from a laser...

Stephen R. Marschner; Donald P. Greenberg

1997-01-01T23:59:59.000Z

328

BIM-Based Digital Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

industry has been slow to embrace new technologies and concepts, and electrical installers are largely unfamiliar with digital control technologies. For a lighting controls...

329

Boosting America's Hydropower Output | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

330

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

331

Federal Energy Management Program: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

& Initiatives Solid State Lighting Working Group Distributed Energy ResourcesCombined Heat & Power Resources Renewable Energy Technology Deployment NEW Technology...

332

Integrated Envelope and Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

333

Visible Light Photoreduction of CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Group techtransfer@netl.doe.gov May 2013 Opportunity Research is currently active on the patent-pending technology "Visible Light Photoreduction of CO 2 Using Heterostructured...

334

Lighting Group: Controls: Wireless Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless Controls Wireless Lighting Control System (with DUST Networks) Objective The project objectives are to: 1. Demonstrate that wireless technology can be cost-effectively...

335

Light pipe - design for efficiency  

Science Conference Proceedings (OSTI)

The high cost and availability of materials which are clear enough to transmit light without absorption has limited the idea of piping large-scale quantities of light. The light pipe uses the principle of Total Internal Reflection, with the light guided by very accurate prisms. The transmission of light directed into the end of a Light Pipe at an angle of less than 27.6 degrees is theoretically 100% efficient. The author describes its uses and advantages for lighting offices, cold storage areas, difficult access and hazardous areas, and for solar lighting. Future directions will be to improve the economics and accuracy of the technology. 4 references, 2 figures.

Hockey, S.N.

1985-08-01T23:59:59.000Z

336

Building Technologies Office: SAVING ENERGY  

NLE Websites -- All DOE Office Websites (Extended Search)

and money to operate. Business owners have long recognized the potential of light-emitting diode (LED) technology in parking lot lighting-to save energy, reduce maintenance...

337

LED Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Light-emitting diodes (LEDs) are light sources that differ from more traditional sources of light in that they are semiconductor devices that produce light when an electrical current is applied....

338

Embodied Energy and Off-Grid Lighting  

E-Print Network (OSTI)

Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity28, no. 4, pp. 533-546. Lighting Africa (prepared by Dalberg

Alstone, Peter

2012-01-01T23:59:59.000Z

339

Baseline vs. Replacement High Bay Lighting Evaluation  

Science Conference Proceedings (OSTI)

Energy efficient lighting has been a means to significant energy savings for many facilities around the world. New developments in fluorescent, induction, LED (light-emitting diode), and plasma lighting technologies have spurred various building managers to replace or retrofit existing lighting fixtures. These advances in lighting sources often allow conservation of electricity, better quality of light, and more flexibility in the control of light. However, these new lighting sources still have ...

2013-11-06T23:59:59.000Z

340

New Energy-Saving Fiber Optic Lighting System Lights Up Public Spaces  

Energy.gov (U.S. Department of Energy (DOE))

Case study covering Energy Focus, Inc. and its lighting technology that delivers light comparable to conventional lamps while using significantly less energy per lumen.

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solid-State Lighting: Standards Development for Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

IES G-2, Guideline for the Application of General Illumination ("White") Light-Emitting Diode (LED) Technologies Provides lighting and design professionals with a general...

342

Multiple output timing and trigger generator  

SciTech Connect

In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

Wheat, Robert M. [Los Alamos National Laboratory; Dale, Gregory E [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

343

NREL: Technology Transfer - Technologies Available for Licensing  

National Renewable Energy Laboratory Technology Transfer New Amber LEDs for High-Efficiency Solid-State Lighting. NREL is closing the LED "green gap" ...

344

System dynamics model of construction output in Kenya.  

E-Print Network (OSTI)

??This study investigates fluctuations of construction output, and growth of the output in Kenya. Fluctuation and growth of construction activity are matters of concern in… (more)

Mbiti, T

2008-01-01T23:59:59.000Z

345

Lighting fundamentals handbook: Lighting fundamentals and principles for utility personnel  

SciTech Connect

Lighting accounts for approximately 30% of overall electricity use and demand in commercial buildings. This handbook for utility personnel provides a source of basic information on lighting principles, lighting equipment, and other considerations related to lighting design. The handbook is divided into three parts. Part One, Physics of Light, has chapters on light, vision, optics, and photometry. Part Two, Lighting Equipment and Technology, focuses on lamps, luminaires, and lighting controls. Part Three, Lighting Design Decisions, deals with the manner in which lighting design decisions are made and reviews relevant methods and issues. These include the quantity and quality of light needed for visual tasks, calculation methods for verifying that lighting needs are satisfied, lighting economics and methods for evaluating investments in efficient lighting systems, and miscellaneous design issues including energy codes, power quality, photobiology, and disposal of lighting equipment. The handbook contains a discussion of the role of the utility in promoting the use of energy-efficient lighting. The handbook also includes a lighting glossary and a list of references for additional information. This convenient and comprehensive handbook is designed to enable utility lighting personnel to assist their customers in developing high-quality, energy-efficient lighting systems. The handbook is not intended to be an up-to-date reference on lighting products and equipment.

Eley, C.; Tolen, T. (Eley (Charles) Associates, San Francisco, CA (United States)); Benya, J.R. (Luminae Souter Lighting Design, San Francisco, CA (United States))

1992-12-01T23:59:59.000Z

346

A Dual-Supply Buck Converter with Improved Light-Load Efficiency  

E-Print Network (OSTI)

Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load.

Zhang, Chao

2011-05-01T23:59:59.000Z

347

Industrial lighting handbook  

SciTech Connect

Technological advances in industrial lighting system components now make it possible to reduce lighting system consumption by up to 50% or more without loss of the benefits inherent in good quality electric illumination. Management involvement in decisions about industrial lighting is essential, however, and this document provides generalized information in lay terms to help decision-makers become familiar with the concerns that affect industrial environment and the financial well-being of their companies. The five sections (1) discuss the benefits of good lighting, (2) review certain major lighting issues and terms, (3) identify procedures for developing a lighting energy management plan, (4) identify lighting energy management options (LEMOs), and (5) discuss sources of assistance. 19 figures, 8 tables.

1985-01-01T23:59:59.000Z

348

Outputs and Outcomes of NIST Laboratory Research  

Science Conference Proceedings (OSTI)

... and fiberoptic power and energy calibration, EEEL ... models, Enable new markets Increase R&D ... Laboratory ITL: Information Technology Laboratory.

2010-10-05T23:59:59.000Z

349

Light Metals  

Science Conference Proceedings (OSTI)

... Aluminum Reduction Technology, and Electrode Technology for Aluminum ... Materials for Energy and Sustainability, Nanomaterials, Nuclear Materials ...

350

Cornell University Electric Lighting Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Lighting Quality Electric Lighting Quality The CUSD lighting design team utilized energy efficient products that meshed well with our daylighting scheme. We chose to use fluorescent tubes or compact fluorescent bulbs with an energy consumption of between 15 and 30 Watts throughout the house. The ballasts for all lamps dim to a 1% light output, so the interior and exterior lights can be adjusted as the level of available daylight fluctuates. Light sensors have been placed in front of our two largest apertures, allowing us to control how much artificial light is supplied to each space. The control of our ballasts is intricate, but refined and tested to avoid dysfunctional dimming or switching. While automatic controls are included, manual user overrides are provided in case the occupant prefers

351

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2005-01-01T23:59:59.000Z

352

Building Technologies Program - 1995 Annual Report  

E-Print Network (OSTI)

Daylighting Innovative Technology and Systems Fenestration Performance, Building Applications, and Design Tools Lighting Systems Advanced

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

353

Characterizing output bottlenecks in a supercomputer  

SciTech Connect

Supercomputer I/O loads are often dominated by writes. HPC (High Performance Computing) file systems are designed to absorb these bursty outputs at high bandwidth through massive parallelism. However, the delivered write bandwidth often falls well below the peak. This paper characterizes the data absorption behavior of a center-wide shared Lustre parallel file system on the Jaguar supercomputer. We use a statistical methodology to address the challenges of accurately measuring a shared machine under production load and to obtain the distribution of bandwidth across samples of compute nodes, storage targets, and time intervals. We observe and quantify limitations from competing traffic, contention on storage servers and I/O routers, concurrency limitations in the client compute node operating systems, and the impact of variance (stragglers) on coupled output such as striping. We then examine the implications of our results for application performance and the design of I/O middleware systems on shared supercomputers.

Xie, Bing [Duke University; Chase, Jeffrey [Duke University; Dillow, David A [ORNL; Drokin, Oleg [Intel Corporation; Klasky, Scott A [ORNL; Oral, H Sarp [ORNL; Podhorszki, Norbert [ORNL

2012-01-01T23:59:59.000Z

354

UFO - The Universal FeynRules Output  

E-Print Network (OSTI)

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Degrande, Céline; Fuks, Benjamin; Grellscheid, David; Mattelaer, Olivier; Reiter, Thomas

2011-01-01T23:59:59.000Z

355

UFO - The Universal FeynRules Output  

E-Print Network (OSTI)

We present a new model format for automatized matrix-element generators, the so- called Universal FeynRules Output (UFO). The format is universal in the sense that it features compatibility with more than one single generator and is designed to be flexible, modular and agnostic of any assumption such as the number of particles or the color and Lorentz structures appearing in the interaction vertices. Unlike other model formats where text files need to be parsed, the information on the model is encoded into a Python module that can easily be linked to other computer codes. We then describe an interface for the Mathematica package FeynRules that allows for an automatic output of models in the UFO format.

Céline Degrande; Claude Duhr; Benjamin Fuks; David Grellscheid; Olivier Mattelaer; Thomas Reiter

2011-08-09T23:59:59.000Z

356

Monitoring of Photovoltaic Plant Output and Variability  

Science Conference Proceedings (OSTI)

The performance of photovoltaic (PV) systems, including variability characteristics, is of increasing interest to utilities as they integrate more solar energy onto the electric grid. This study is part of a multi-year research series to investigate influencing factors that affect PV plant output, variability, and approaches to system management. It explores PV variability both from a grid perspective and through examination of project design aspects that can affect annual power production. ...

2012-12-12T23:59:59.000Z

357

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

358

Comparison of CAISO-run Plexos output with LLNL-run Plexos output  

SciTech Connect

In this report we compare the output of the California Independent System Operator (CAISO) 33% RPS Plexos model when run on various computing systems. Specifically, we compare the output resulting from running the model on CAISO's computers (Windows) and LLNL's computers (both Windows and Linux). We conclude that the differences between the three results are negligible in the context of the entire system and likely attributed to minor differences in Plexos version numbers as well as the MIP solver used in each case.

Schmidt, A; Meyers, C; Smith, S

2011-12-20T23:59:59.000Z

359

Arnold Schwarzenegger LIGHTING RESEARCH PROGRAM  

E-Print Network (OSTI)

fluorescent task lamp. The prototype used commercially available materials: 1watt light emitting diodes to the mounting board. Development of LightEmitting Diode Task Lamp using Advanced Technologies: Prototype 2 lightemitting diode task lamp. The problem of developing an energy efficient light emitting diode task lamp

360

Fluorescence Enhancement of White-Light Cadmium Selenide Nanocrystals.  

E-Print Network (OSTI)

??Advances are being made in lighting technology, as incandescent and fluorescent light bulbs become less efficient compared to solid-state lighting devices, especially light-emitting diodes (LEDs).… (more)

Rosson, Teresa Ellen

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lighting Techniques  

Science Conference Proceedings (OSTI)

...Lighting is very critical in photography. The specimen should be placed on a background which will not detract from the resolution of the fracture surface. For basic lighting, one spotlight is suggested. The light is then raised or lowered, and

362

Lighting Research Group: Facilities: Integrating Sphere  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrating Sphere Integrating Sphere integrating sphere Integrating Sphere Gonio-photometer | Integrating sphere | Power analyzer | Spectro-radiometer The integrating sphere is used to quickly measure the total light output of a lamp. The lamp being tested is placed in the center of the integrating sphere. At one side of the sphere is a light meter which measures the light output of the lamp. Between the lamp and the light meter there is a baffle to prevent the meter from seeing any direct light from the lamp. The inside of the sphere (including the baffle) is coated with a very white paint that reflects all wavelengths equally. This allows us to get very accurate measurements. The light from the lamp bounces around the sphere until it reaches the light meter. It is important that nothing else is in the sphere besides the lamp and the

363

Tendencies in scientific output on carbon nanotubes and graphene in global centers of excellence for nanotechnology  

Science Conference Proceedings (OSTI)

A change has been taking place in the world of nanotechnologies since 2009, marking the beginning of a new era of end consumer goods related to these new technologies. In this article, our aim is to know the dominant tendencies observed in scientific ... Keywords: Carbon nanotubes (CNTs), Graphene, Nanotechnology applications, Scientific output

Goio Etxebarria; Mikel Gomez-Uranga; Jon Barrutia

2012-04-01T23:59:59.000Z

364

Integrated LED-based luminare for general lighting  

DOE Patents (OSTI)

Lighting apparatus and methods employing LED light sources are described. The LED light sources are integrated with other components in the form of a luminaire or other general purpose lighting structure. Some of the lighting structures are formed as Parabolic Aluminum Reflector (PAR) luminaires, allowing them to be inserted into conventional sockets. The lighting structures display beneficial operating characteristics, such as efficient operation, high thermal dissipation, high output, and good color mixing.

Dowling, Kevin J.; Lys, Ihor A.; Roberge, Brian; Williamson, Ryan C.; Roberts, Ron; Datta, Michael; Mollnow, Tomas; Morgan, Frederick M.

2013-03-05T23:59:59.000Z

365

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

366

System Compatibility of Modern Lighting Control Systems  

Science Conference Proceedings (OSTI)

Development of lighting control technologies continues at rapid rates in efforts to reduce energy usage and improve quality of light and color. Utilities, efficiency engineers, and end users should be aware of emissions and immunity performance of a lighting device before it is accepted for use in incentive and rebate programs prior to deployment in customer facilities. Continuing its efforts in evaluating new lighting control technologies, EPRI, within its Program 170, has tested four lighting control p...

2010-12-23T23:59:59.000Z

367

Available Technologies: Novel Structured LED and OLED Devices  

APPLICATIONS OF TECHNOLOGY: Light Emitting Diode (LED) and Organic LED devices for. Energy-efficient area lighting ; Information displays

368

Lighting Group: Light Distribution Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Alternatives to Incandescent Downlights Hotel and Institutional Bathroom Lighting Portable Office Lighting Systems Low Glare Outdoor Retrofit Luminaire LED Luminaires...

369

Lighting Research Center Lighting Products  

Science Conference Proceedings (OSTI)

... 12) Solid State Lighting Luminaires - Color Characteristic Measurements. [22/S04] IES LM-16:1993 Practical Guide to Colorimetry of Light Sources. ...

2013-07-26T23:59:59.000Z

370

Lighting Energy Efficiency in Parking Campaign  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

371

Lighting Energy Efficiency in Parking Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

372

Outlaw lighting  

SciTech Connect

Demand-side management programs by utilities and the federal government`s Green Lights program have made significant inroads in promoting energy-efficient lighting. But the Energy Policy Act now prohibits certain types of lighting. This article provides analysis to help architects determine new lamp performance compared with older lighting products.

Bryan, H.

1994-12-01T23:59:59.000Z

373

Lighting Group: Sources and Ballasts: HID Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts and Controls for HID Lighting Ballasts and Controls for HID Lighting Systems Evaluation of Electronic Ballasts and Related Controls for HID Lighting Systems Objective HID ballast The goal of this project is to evaluate the potential of electronic ballasts and related controls for HID lighting systems to improve the efficiency of current technology. The specific objectives of this project are to: Test, analyze and determine the potential of electronic ballasts for HID lighting systems in cooperation with manufacturers as an emerging energy efficient technology to reduce lighting loads in commercial, industrial and municipal applications. Identify control strategies to further improve the energy efficiency of these systems with a municipal partner. Provide appropriate recommendations for incorporating these technologies into current state codes and regulations.

374

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

the Toyota and Honda Hybrid Cars (2003) V e h i c l e Hondavehicles Full Hybrid Vehicle class Compact car Mid-size carthe hybrid powertrain technologies in the new car fleet

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

375

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

the Toyota and Honda Hybrid Cars (2003) V e h i c l e Hondavehicles Full Hybrid Vehicle class Compact car Mid-size carthe hybrid powertrain technologies in the new car fleet

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

376

Feasible Café Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

C.J. , The Future of Hybrid- Electric Vehicles and FuelsWith the emergence of hybrid-electric vehicles from JapaneseTechnologies 2.1 Hybrid-electric vehicles Hybrid-electric

Burke, Andy; Abeles, Ethan

2004-01-01T23:59:59.000Z

377

Feasible CAFE Standard Increases Using Emerging Diesel and Hybrid-Electric Technologies for Light-Duty Vehicles in the United States  

E-Print Network (OSTI)

C.J. , The Future of Hybrid- Electric Vehicles and FuelsWith the emergence of hybrid-electric vehicles from JapaneseTechnologies 2.1 Hybrid-electric vehicles Hybrid-electric

Burke, Andy; Abeles, Ethan C.

2004-01-01T23:59:59.000Z

378

Photovoltaic module with light reflecting backskin  

DOE Patents (OSTI)

A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

Gonsiorawski, Ronald C. (Danvers, MA)

2007-07-03T23:59:59.000Z

379

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING ACCELERATION OF RADIANCE FOR LIGHTING SIMULATION BY USING PARALLEL COMPUTING WITH OPENCL Wangda Zuo, Andrew McNeil, Michael Wetter, Eleanor Lee Building Technologies Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ABSTRACT We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross- platform parallel programming language. Numerical

380

LBA-ECO DECAF Model Output Data Set Published  

NLE Websites -- All DOE Office Websites (Extended Search)

DECAF Model Output Data Set Published The ORNL DAAC announces the publication of the model output data product, Deforestation Carbon Flux (DECAF), from the LBA Land Use-Land Cover...

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Compact waveguide power divider with multiple isolated outputs  

DOE Patents (OSTI)

The waveguide power divider comprises an input waveguide of rectangular cross-section coupled to multiple reduced height output waveguides of rectangular cross-section. The input is coupled to the output waveguides by axial slots. The length of the slots is selected such that the wave direction of the input waveguide is preserved in the output waveguides. The width of the output guide is equal to the width of the input waveguide so that the input and output guides have the same cutoff wavelength. Waves will then travel with the same phase velocity in the input and output guides. The unused ends of the input and output guides are terminated in matched loads. The load at the end of the input guide absorbs power that is not coupled to the output guides.

Moeller, C.P.

1986-05-27T23:59:59.000Z

382

Robust MPC with output feedback of integrating systems  

Science Conference Proceedings (OSTI)

In this work, it is presented a new contribution to the design of a robust MPC with output feedback, input constraints, and uncertain model. Multivariable predictive controllers have been used in industry to reduce the variability of the process output ...

J. M. Perez; D. Odloak; E. L. Lima

2012-01-01T23:59:59.000Z

383

Lighting Group: Controls: IBECS  

NLE Websites -- All DOE Office Websites (Extended Search)

IBECS IBECS Integrated Building Environmental Communications System Objective The overall technical goal of the IBECS project is to develop an integrated building equipment communications network that will allow appropriate automation of lighting and envelope systems to increase energy efficiency, improve building performance, and enhance occupant experience in the space. This network will provide a low-cost means for occupants to control local lighting and window systems, thereby improving occupant comfort, satisfaction and performance. A related goal is to improve existing lighting control components and accelerate development of new daylighting technologies that will allow daylighting to be more extensively applied to a larger proportion of building floor space.

384

The series is designed to provide an industry perspective on smart lighting technologies and markets. Each speaker will also share personal insights about their career paths.  

E-Print Network (OSTI)

and skylights, however we do not have adequate sensor driven systems that can autonomously detect the daylight will be served) Sensor-Processing Systems: A New Wave Of Environmentally Aware Lighting Sajol Ghoshal Director, OSL Business Unit AMS-TAOS USA Abstract: Today adequate daylight is available through windows

Linhardt, Robert J.

385

Advanced Modular Inverter Technology Development  

DOE Green Energy (OSTI)

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

386

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04T23:59:59.000Z

387

ComEd - Business Instant Lighting Discounts Program (Illinois...  

Open Energy Info (EERE)

Industrial, Multi-Family Residential, Private Schools Eligible Technologies Lighting, LED Lighting, Reduced Wattage Metal Halide Lamps, LED Trim Kits, Screw-In CFL's Active...

388

DOE Science Showcase - Read about Energy-Efficient Lighting ...  

Office of Scientific and Technical Information (OSTI)

Development Novel Smart Windows Based on Transparent Phosphorescent OLEDs Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes...

389

Solid-State Lighting Recovery Act Award Selections | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Recovery Act Award Selections Solid-State Lighting Recovery Act Award Selections A chart highlighting core technology research projects and product development...

390

First Light  

E-Print Network (OSTI)

The first dwarf galaxies, which constitute the building blocks of the collapsed objects we find today in the Universe, had formed hundreds of millions of years after the big bang. This pedagogical review describes the early growth of their small-amplitude seed fluctuations from the epoch of inflation through dark matter decoupling and matter-radiation equality, to the final collapse and fragmentation of the dark matter on all mass scales above \\~10^{-4} solar masses. The condensation of baryons into halos in the mass range of ~10^5-10^{10} solar masses led to the formation of the first stars and the re-ionization of the cold hydrogen gas, left over from the big bang. The production of heavy elements by the first stars started the metal enrichment process that eventually led to the formation of rocky planets and life. A wide variety of instruments currently under design [including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency arrays for the detection of redshifted 21cm radiation], will establish better understanding of the first sources of light during an epoch in cosmic history that was largely unexplored so far. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficently high resolution to identify the sources of the ionizing radiation. The technological challenges for observations and the computational challenges for numerical simulations, will motivate intense work in this field over the coming decade.

Abraham Loeb

2006-03-14T23:59:59.000Z

391

Quantifying National Energy Savings Potential of Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

Performance of Occupancy-Based Lighting Control Systems: AReview. ” Lighting Residential Technology 42:415-431. Itron,Information Template – Indoor Lighting Controls. Pacific Gas

Williams, Alison

2013-01-01T23:59:59.000Z

392

Functional Imprinting Structures on GaN-Based Light-Emitting ...  

Science Conference Proceedings (OSTI)

Keywords: GaN, light-emitting diode (LED), imprinting technology, far-field pattern modulation, light extraction. 1. Introduction. GaN-based light-emitting diodes ...

393

Tunable pulsed narrow bandwidth light source  

DOE Patents (OSTI)

A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

2002-01-01T23:59:59.000Z

394

Lighting Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

corridors. The overall range of savings was six to 80 percent. The Advanced Lighting Guidelines On-Line Edition New Buildings Institute 2011 presents a table of lighting energy...

395

Solid-State Lighting: Text-Alternative Version: LED Essentials -  

NLE Websites -- All DOE Office Websites (Extended Search)

Essentials - Technology, Applications, Advantages, Disadvantages to someone Essentials - Technology, Applications, Advantages, Disadvantages to someone by E-mail Share Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Facebook Tweet about Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Twitter Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Google Bookmark Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Delicious Rank Solid-State Lighting: Text-Alternative Version: LED Essentials - Technology, Applications, Advantages, Disadvantages on Digg

396

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2004-01-01T23:59:59.000Z

397

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2005-01-01T23:59:59.000Z

398

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2001-01-01T23:59:59.000Z

399

Quasi light fields: Extending the light field to coherent radiation  

E-Print Network (OSTI)

Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of ...

Accardi, Anthony J.

400

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

402

Shape the light, light the shape - lighting installation in performance.  

E-Print Network (OSTI)

??This thesis investigates the lighting design theory Light Inside Out, which is the technique of shaping light toward a creation of lighting installation in performance… (more)

Yu, Lih-Hwa, 1972-

2010-01-01T23:59:59.000Z

403

Hybrid Infrared and Visible Light Projection for Location Tracking  

E-Print Network (OSTI)

-output light emitting diodes. Figure 5. Inside our projector: A) LED light source B) culminating lens C) DMD for application content. In [4], Nii et al. created an infrared projector prototype using discrete light emitting diodes (LEDs). The projection lens focused directly onto the LED array creating a low resolution infrared

Olsen Jr., Dan R.

404

Lighting Group: Controls and Communications  

NLE Websites -- All DOE Office Websites (Extended Search)

Communications Communications Controls and Communications The Controls and Communications research activity investigates how digital technologies, such as Bluetooth, can be applied to building lighting control systems to increase building efficiency and improve occupant comfort and productivity. Projects range from embedded device networks applied to building lighting systems, to WiFi and environmental sensing and monitoring. light switch Current Projects IBECS (Integrated Building Environmental Communications System) Wireless Lighting Controls (with DUST Networks) HPCBS Advanced Digital Controls Building Control Systems Integration Completed Projects CEC Public Interest Energy Research (PIER) Projects 450 Golden Gate Project New Publications Standardizing Communication Between Lighting Devices: A Role for

405

Lighting Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

406

Controls for Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency Program and Market Trends High Technology and Industrial Buildings Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations Windows...

407

Reflective Coherent Spatial Light Modulator (RCSLM)  

Reflective Coherent Spatial Light Modulator (RCSLM) Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

408

Lighting Demonstrations in Defense Commissary Freezer Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

in Defense Commissary Freezer Systems New lighting technology reduces energy consumption while maintaining effective illumination The Defense Commissary Agency operates a...

409

Federal Energy Management Program: Lighting Control Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Control Lighting Control Types to someone by E-mail Share Federal Energy Management Program: Lighting Control Types on Facebook Tweet about Federal Energy Management Program: Lighting Control Types on Twitter Bookmark Federal Energy Management Program: Lighting Control Types on Google Bookmark Federal Energy Management Program: Lighting Control Types on Delicious Rank Federal Energy Management Program: Lighting Control Types on Digg Find More places to share Federal Energy Management Program: Lighting Control Types on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories Product Designation Process Low Standby Power Energy & Cost Savings Calculators Model Acquisitions Language Working Group Resources Technology Deployment Renewable Energy

410

Commercial Lighting and LED Lighting Incentives  

Energy.gov (U.S. Department of Energy (DOE))

Incentives for energy efficient commercial lighting equipment as well as commercial LED lighting equipment are available to businesses under the Efficiency Vermont Lighting and LED Lighting...

411

Home and Building Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home and Building Technologies Home and Building Technologies Homes and other buildings use energy every day for space heating and cooling, for lighting and hot water, and for...

412

Information Resources: LED Essentials - Technology, Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation for Philips Solid-State Lighting Solutions, presented a broad introduction to LED technology, and discussed the technology status, advantages and disadvantages, current...

413

CEYX Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

California Zip CA 92123 Product CEYX Technologies Inc, provides software-enabled control systems for light emitting devices. References CEYX Technologies Inc1 LinkedIn...

414

The History of the Light Bulb | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Future is Here One of the fastest developing lighting technologies today is the light-emitting diode (or LED). A type of solid-state lighting, LEDs use a semiconductor to convert...

415

Alexandria Light and Power - Residential Energy Efficiency Rebate...  

Open Energy Info (EERE)

Technologies Central Air conditioners, Clothes Washers, Dehumidifiers, Dishwasher, Energy Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Programmable Thermostats,...

416

A Practical Primer to LED Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Practical Primer to LED Technology A Practical Primer to LED Technology A Practical Primer to LED Technology More Documents & Publications EnergySavingsLightEmittingDiodesNi...

417

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

418

Luminous Efficacy Standards for General Purpose Lights | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

output) per watt (measure of power input). The efficacy of a typical incandescent light bulb ranges between 12 lmW and 18 lmW. The efficacy of a typical compact fluorescent...

419

Light Flicker in Compact Fluorescent Lamps Caused by Voltage Fluctuations  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents tests performed at the EPRI Power Electronics Applications Center (PEAC) Power Quality Test Facility to characterize the light output of an incandescent lamp and compact fluorescent lamps during voltage fluctuations.

2003-12-31T23:59:59.000Z

420

Windows and lighting program  

SciTech Connect

More than 30% of all energy use in buildings is attributable to two sources: windows and lighting. Together they account for annual consumer energy expenditures of more than $50 billion. Each affects not only energy use by other major building systems, but also comfort and productivity -- factors that influence building economics far more than does direct energy consumption alone. Windows play a unique role in the building envelope, physically separating the conditioned space from the world outside without sacrificing vital visual contact. Throughout the indoor environment, lighting systems facilitate a variety of tasks associated with a wide range of visual requirements while defining the luminous qualities of the indoor environment. Windows and lighting are thus essential components of any comprehensive building science program. Despite important achievements in reducing building energy consumption over the past decade, significant additional savings are still possible. These will come from two complementary strategies: (1) improve building designs so that they effectively apply existing technologies and extend the market penetration of these technologies; and (2) develop advanced technologies that increase the savings potential of each application. Both the Windows and Daylighting Group and the Lighting System Research Group have made substantial contributions in each of these areas, and continue to do so through the ongoing research summarized here. 23 refs., 16 figs.

1990-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Using the output file from a Gaussian frequency calculation to ...  

Science Conference Proceedings (OSTI)

... extract the essential data from a Gaussian output file and compute thermodynamic functions at several temperatures. The basic data are also ...

2012-10-18T23:59:59.000Z

422

Today in Energy - Seasonal hydroelectric output drives down ...  

U.S. Energy Information Administration (EIA)

Increased hydroelectric output in the Pacific Northwest drove daily, on-peak prices of electricity below $10 per megawatthour in late April (see chart above) at the ...

423

Solid-State Lighting on a Shoestring Budget: The Economics of Off-Grid Lighting for Small Businesses in Kenya  

E-Print Network (OSTI)

Report #3 Solid-State Lighting on a Shoestring Budget:The Economics of Off-Grid Lighting for Small Businesses inProject includes an Off-Grid Lighting Technology Assessment

Radecsky, Kristen

2009-01-01T23:59:59.000Z

424

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lightingSavings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2000-01-01T23:59:59.000Z

425

Light Metals  

Science Conference Proceedings (OSTI)

Alternative processes; Anode design and operation; Cell fundamentals and ... Hot-rolling technologies; Deformation of materials; Primary metal production.

426

Lighting energy management for colleges and universities  

SciTech Connect

The degree to which lighting satisfies the diverse illumination requirements of colleges and universities depends on the quality of lighting involved, how well it is designed, and how well it is maintained. It is unfortunate that lighting quality is often made secondary to energy consumption because the two are totally compatible if the difference between lighting energy conservation and lighting energy management is understood. Lighting energy management considers lighting interrelationships as well as illumination technology, and requires three types of knowledge: lighting systems and their components, lighting's impact on activities and safety, and an awareness of the existing lighting systems. The authors develop these concepts and present a variety of lighting options and guidelines for designing a lighting system. 16 figures, 3 tables.

1982-01-01T23:59:59.000Z

427

A Meta-Analysis of Energy Savings from Lighting Controls in Commercial Buildings  

E-Print Network (OSTI)

Technologies Program: hotel guest room energy controls. Sanhotel and institutional bathroom lighting. [CEC] California Energy

Williams, Alison

2012-01-01T23:59:59.000Z

428

New Electronic Light Sources for Sustainability in a Greener Environment  

Science Conference Proceedings (OSTI)

This EPRI Technical Update continues the technical assessment of advanced lighting technologies in the product areaselectronic linear fluorescent, electronic compact fluorescent, electronic high-intensity discharge (HID), and light-emitting diode (LED). This year, a new type of light sourcesolid-state plasma lighting (a miniature HID technology)was assessed. This project demonstrates how light sources are making their way into new designs providing new types of light fixtures. A total of seven products w...

2010-12-31T23:59:59.000Z

429

About Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emerging Technologies » About Emerging Technologies Emerging Technologies » About Emerging Technologies About Emerging Technologies The Emerging Technologies team funds the research and development of cost-effective, energy-efficient building technologies within five years of commercialization. Learn more about the: Key Technologies Benefits Results Key Technologies Specific technologies pursued within the Emerging Technologies team include: Lighting: advanced solid-state lighting systems, including core technology research and development, manufacturing R&D, and market development Heating, ventilation, and air conditioning (HVAC): heat pumps, heat exchangers, and working fluids Building Envelope: highly insulating and dynamic windows, cool roofs, building thermal insulation, façades, daylighting, and fenestration

430

New Energy-Saving Fiber Optic Lighting System Lights Up Public Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Focus to develop a Energy Focus to develop a breakthrough lighting technology that delivers light comparable to conventional lamps while using significantly less energy per lumen, reducing watts per square foot without sacrificing light levels. As a result of DOE SBIR and other government funding, EFO (efficient fiber optics) Lighting Systems can deliver as much as 80% energy savings over halogen or

431

Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon  

SciTech Connect

In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

2008-11-10T23:59:59.000Z

432

Lighting market sourcebook for the US  

Science Conference Proceedings (OSTI)

Throughout the United States, in every sector and building type, lighting is a significant electrical end-use. Based on the many and varied studies of lighting technologies, and experience with programs that promote lighting energy-efficiency, there is a significant amount of cost-effective energy savings to be achieved in the lighting end use. Because of such potential savings, and because consumers most often do not adopt cost-effective lighting technologies on their own, programs and policies are needed to promote their adoption. Characteristics of lighting energy use, as well as the attributes of the lighting marketplace, can significantly affect the national pattern of lighting equipment choice and ownership. Consequently, policy makers who wish to promote energy-efficient lighting technologies and practices must understand the lighting technologies that people use, the ways in which they use them, and marketplace characteristics such as key actors, product mix and availability, price spectrum, and product distribution channels. The purpose of this report is to provide policy-makers with a sourcebook that addresses patterns of lighting energy use as well as data characterizing the marketplace in which lighting technologies are distributed, promoted, and sold.

Vorsatz, D.; Shown, L.; Koomey, J.; Moezzi, M.; Denver, A.; Atkinson, B.

1997-12-01T23:59:59.000Z

433

Northern Lights  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

434

Available Technologies: Small, Photostable, Non-blinking ...  

Optoelectronic communications ; ADVANTAGES: Efficiently upconverts infrared to visible light; ... This new Berkeley Lab technology overcomes these limitations.

435

Radioluminescent lighting for Alaskan runway lighting and marking  

SciTech Connect

Alaska and other far northern areas have special logistical, environmental, and economic problems that make radioluminescent (RL) lighting applications, especially in the area of airport lighting, an attractive alternative to electrical systems and flare pots. Tests and demonstrations of prototype systems conducted in Alaska over the past two years have proved the basic technological worth of RL airport lighting systems for civilian and military use. If regulatory issues and other factors identified during these tests can be favorably resolved and if the system and its components can be refined through production engineering, attractive applications for RL airfield lighting systems in Alaska and other remote locations could result.

Jensen, G.A.; Leonard, L.E.

1985-03-01T23:59:59.000Z

436

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

Science Conference Proceedings (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

437

Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond  

DOE Green Energy (OSTI)

By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

Zapata, L.; Beach, R.; Payne, S.

2000-06-01T23:59:59.000Z

438

Lighting Research Group: Facilities: Spectro-Radiometer  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectro-Radiometer Spectro-Radiometer Spectro-Radiometer spectro-radiometer Gonio-photometer | Integrating sphere | Power analyzer | Spectro-radiometer The spectro-radiometer is used to measure the light output of a light source at each wavelength. The part that looks like a video camera (to the far right in the picture) can look at each wavelength separately. The spectro-radiometer can also be used as a standard light meter and measure all visible wavelengths at once to obtain the total light output of a source. The console portion of the spectro-radiometer is used to display the meter readings and also to adjust measurement settings like the sensitivity. The computer is interfaced with the spectro-radiometer and is used to send commands to the machine and receive, store, and analyze the data.

439

SLAC 16-channel differential TTL output module (Engineering Materials)  

SciTech Connect

The drawings listed on the Drawing List provide the data and specifications for constructing a SLAC 16-channel differential TTL output module as used in the SLAC PEP storage ring instrumentation and control system. It is a CAMAC module used as an output interface module from CAMAC signals.

Not Available

1983-04-05T23:59:59.000Z

440

Strategy Guideline: High Performance Residential Lighting  

SciTech Connect

The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

Holton, J.

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Light Organizing/Organizing Light [Light in Place  

E-Print Network (OSTI)

a street through alter­ nating areas of dark and light, welandscapes, streets and squares. Light summons our spiritfor changing light, both outside rooms (such as streets and

Schwartz, Martin

1992-01-01T23:59:59.000Z

442

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

443

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

444

Adura Technologies | Open Energy Information  

Open Energy Info (EERE)

California Zip CA 94105 Product San Francisco-based, producer of wireless lighting control systems. References Adura Technologies1 LinkedIn Connections CrunchBase Profile No...

445

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

446

Standardization of user interfaces for lighting controls  

Science Conference Proceedings (OSTI)

Standardization of human-machine interfaces has proved beneficial in a number of technology areas. Lighting control is a home and office technology that is of central importance in energy efficiency and could potentially benefit from standardization, ... Keywords: CIE, Concepts, HVAC, IEANA, IEC, ISO, Indicators, LED, Lighting controls, NEMA, SAE, Standards, Symbols, User interfaces

Bruce Nordman; Jessica Granderson; Kelly Cunningham

2012-02-01T23:59:59.000Z

447

Efficient Light Sources Today  

E-Print Network (OSTI)

This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high performance fluorescent systems. Cost analyses will show that typical owning and operating cost reductions of 15 to 65% can be achieved without sacrificing illumination levels when the right system is chosen and properly applied.

Hart, A. L.

1982-01-01T23:59:59.000Z

448

Ultra High p-doping Material Research for GaN Based Light Emitters  

Science Conference Proceedings (OSTI)

The main goal of the Project is to investigate doping mechanisms in p-type GaN and AlGaN and controllably fabricate ultra high doped p-GaN materials and epitaxial structures. Highly doped p-type GaN-based materials with low electrical resistivity and abrupt doping profiles are of great importance for efficient light emitters for solid state lighting (SSL) applications. Cost-effective hydride vapor phase epitaxial (HVPE) technology was proposed to investigate and develop p-GaN materials for SSL. High p-type doping is required to improve (i) carrier injection efficiency in light emitting p-n junctions that will result in increasing of light emitting efficiency, (ii) current spreading in light emitting structures that will improve external quantum efficiency, and (iii) parameters of Ohmic contacts to reduce operating voltage and tolerate higher forward currents needed for the high output power operation of light emitters. Highly doped p-type GaN layers and AlGaN/GaN heterostructures with low electrical resistivity will lead to novel device and contact metallization designs for high-power high efficiency GaN-based light emitters. Overall, highly doped p-GaN is a key element to develop light emitting devices for the DOE SSL program. The project was focused on material research for highly doped p-type GaN materials and device structures for applications in high performance light emitters for general illumination P-GaN and p-AlGaN layers and multi-layer structures were grown by HVPE and investigated in terms of surface morphology and structure, doping concentrations and profiles, optical, electrical, and structural properties. Tasks of the project were successfully accomplished. Highly doped GaN materials with p-type conductivity were fabricated. As-grown GaN layers had concentration N{sub a}-N{sub d} as high as 3 x 10{sup 19} cm{sup -3}. Mechanisms of doping were investigated and results of material studies were reported at several International conferences providing better understanding of p-type GaN formation for Solid State Lighting community. Grown p-type GaN layers were used as substrates for blue and green InGaN-based LEDs made by HVPE technology at TDI. These results proved proposed technical approach and facilitate fabrication of highly conductive p-GaN materials by low-cost HVPE technology for solid state lighting applications. TDI has started the commercialization of p-GaN epitaxial materials.

Vladimir Dmitriev

2007-06-30T23:59:59.000Z

449

NETL: News Release - DOE-Led Partnership Creates Tool to Raise Output of  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2007 16, 2007 DOE-Led Partnership Creates Tool to Raise Output of Non-Conventional Natural Gas Improves Ability to Optimize Development of Reserves Critical to Domestic Production WASHINGTON, DC - The Department of Energy and Pinnacle Technologies have successfully demonstrated a new technology that will help optimize the output of natural gas from the often-grudging non-conventional reserves on which the U.S. will have to depend for half its domestic production in the future. Non-conventional natural gas reserves found in tight sandstone formations, gas shales and coal seams are critical to maintaining the level of domestic production in the near term, according to the National Petroleum Council. Current projections of the Energy Information Administration see non-conventional production growing by 2.2 trillion cubic feet (Tcf), or 28 percent through 2030. Such production was 34 percent of domestic output, or 8 Tcf, in 2005 and is expected to be 50 percent, or 10.2 Tcf, in 2030.

450

Energy Conversion: Solid-State Lighting  

E-Print Network (OSTI)

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

451

Dynamic Solid State Lighting Matthew Aldrich  

E-Print Network (OSTI)

to the fluorescent technology's lower color rendering ability and quality of light [26, 4, 58, 24]. LED implicit and explicit user goals. In this work, the focus in on the efficient control of a LED-based lighting network. This thesis presents a first-of-its-kind pentachromatic LED-based lighting network

452

An Integrated Solid-State LED Luminaire for General Lighting  

Science Conference Proceedings (OSTI)

A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

2009-03-31T23:59:59.000Z

453

The effect of lighting system components on lighting quality, energy use, and life-cycle cost  

SciTech Connect

A computational method was developed to examine the effect of lamp, ballast, and fixture selection on the quality and quantity of illumination, energy consumption, and life-cycle cost of lighting systems. Applying this analysis to lighting layouts using different lamp/ballast/fixture combinations suggested that combinations with higher lumen outputs reduced the uniformity of the illuminance distribution at the workplace but did not reduce visibility levels. The use of higher lumen output lamp/ballast/fixture systems and higher efficiency components tended to reduce life-cycle costs as long as the premium cost of the components was not too high.

Rubinstein, F.; Clark, T.; Siminovitch, M.; Verderber, R.

1986-07-01T23:59:59.000Z

454

Solid-State Lighting: LED Lighting Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

455

Alliant Energy Interstate Power and Light - Residential Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Residential Renewable Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar Thermal Water Heater: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: $1.25/kWh x estimated first year output Standard Solar PV: $0.75/kWh x estimated first year output Energy Efficient Wind: $0.75/kWh x estimated first year output Standard Wind: 0.25/kWh x estimated first year output Solar Thermal Water Heater (electric): $0.35 x annual kWh savings Solar Thermal Water Heater (natural gas): $2.50 x annual therm savings

456

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 21, 2011 ... TMS Social Network and Site Tools .... Development of low-cost, novel hydrogen storage vessels and/or low-cost fibers for composite ... storage technologies for both stationary and light-duty vehicle transportation applications.

457

Dual output acoustic wave sensor for molecular identification  

DOE Patents (OSTI)

A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

Frye, Gregory C. (Cedar Crest, NM); Martin, Stephen J. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

458

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the tranducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, J.R.; Bemis, C.E. Jr.

1984-07-17T23:59:59.000Z

459

Device for frequency modulation of a laser output spectrum  

DOE Patents (OSTI)

A device is provided for fast frequency modulating the output spectrum of multimode lasers and single frequency lasers that are not actively stabilized. A piezoelectric transducer attached to a laser cavity mirror is driven in an unconventional manner to excite resonance vibration of the transducer to rapidly, cyclicly change the laser cavity length. The result is a cyclic sweeping of the output wavelength sufficient to fill the gaps in the laser output frequency spectrum. When such a laser is used to excite atoms or molecules, complete absorption line coverage is made possible.

Beene, James R. (Oak Ridge, TN); Bemis, Jr., Curtis E. (Oak Ridge, TN)

1986-01-01T23:59:59.000Z

460

IEEE Instrumentation and Measurement Technology Conference  

E-Print Network (OSTI)

, and light emitting diode brake- light messaging. These technologies all focus on improving the signal- ance, sensor, radar, fluorescence, light emitting diode. I. INTRODUCTION As a compromise between · Radar reflection-enhanced license plates · Vehicle-to-vehicle light emitting diode (LED) brake- light

Gillespie, Brent

Note: This page contains sample records for the topic "technology light output" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MHK Technologies/Hidroflot | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Hidroflot.jpg Technology Profile Primary Organization Hidroflot S L Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Hidroflot is a floating platform with 16 wave captors floats The wave action moves the floaters through the columns The up and down movement of each two buoys drives an electromechanical system The design allows the system to gather each unit s individual push into a single output line Each platform acts as an independent power station producer of 6MW A wave power park consisting of 8 10 platforms in a one square mile area could generate an electrical output of 50 MW All the platforms are connected to a single output point from where the energy produced is delivered to onshore transmission

462

Solid-State Lighting: Project Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Reports to someone by Project Reports to someone by E-mail Share Solid-State Lighting: Project Reports on Facebook Tweet about Solid-State Lighting: Project Reports on Twitter Bookmark Solid-State Lighting: Project Reports on Google Bookmark Solid-State Lighting: Project Reports on Delicious Rank Solid-State Lighting: Project Reports on Digg Find More places to share Solid-State Lighting: Project Reports on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Project Reports This page contains links to project reports summarizing the solid-state lighting projects funded by DOE, providing project descriptions and

463

Solid-State Lighting: Program Fact Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Fact Sheets to someone Program Fact Sheets to someone by E-mail Share Solid-State Lighting: Program Fact Sheets on Facebook Tweet about Solid-State Lighting: Program Fact Sheets on Twitter Bookmark Solid-State Lighting: Program Fact Sheets on Google Bookmark Solid-State Lighting: Program Fact Sheets on Delicious Rank Solid-State Lighting: Program Fact Sheets on Digg Find More places to share Solid-State Lighting: Program Fact Sheets on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Program Fact Sheets This page contains links to fact sheets describing solid-state lighting

464

Development of Regional Wind Resource and Wind Plant Output Datasets...  

NLE Websites -- All DOE Office Websites (Extended Search)

50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

465

Generalized Exponential Markov and Model Output Statistics: A Comparative Verification  

Science Conference Proceedings (OSTI)

We performed a comparative verification of Model Output Statistics (MOS) against Generalized Exponential Markov (GEM), a single station forecasting technique which uses only the surface observation and climatology as input. The verification was ...

Thomas J. Perrone; Robert G. Miller

1985-09-01T23:59:59.000Z

466

Model-Inspired Predictors for Model Output Statistics (MOS)  

Science Conference Proceedings (OSTI)

This article addresses the problem of the choice of the predictors for the multiple linear regression in model output statistics. Rather than devising a selection procedure directly aimed at the minimization of the final scores, it is examined ...

Piet Termonia; Alex Deckmyn

2007-10-01T23:59:59.000Z

467

Community Climate System Model (CCSM) Experiments and Output Data  

DOE Data Explorer (OSTI)

The CCSM web makes the source code of various versions of the model freely available and provides access to experiments that have been run and the resulting output data.

468

Technology reviews: Shading systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

469

Technology reviews: Glazing systems  

SciTech Connect

We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

1992-09-01T23:59:59.000Z

470

LED Lighting: Just the Facts, Please! | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LED Lighting: Just the Facts, Please! LED Lighting: Just the Facts, Please! LED Lighting: Just the Facts, Please! January 4, 2010 - 7:30am Addthis John Lippert My June 16, 2009 blog gave tips on purchasing high-quality LED lights. Now there's another arsenal in the toolbox to help consumers find LED lights they can trust: the Lighting Facts(tm) label. As part of the SSL Quality Advocates voluntary pledge program developed jointly by the U.S. Department of Energy and the Next Generation Lighting Industry Alliance (NGLIA), the label is similar to the familiar nutrition label found on most food products. The label contains a lot of information that can help a consumer compare lighting products, including: light output in lumens; watts, the power the light consumes; lumens per watt, a measure of the product's efficacy (how

471

Light Computing  

E-Print Network (OSTI)

A configuration of light pulses is generated, together with emitters and receptors, that allows computing. The computing is extraordinarily high in number of flops per second, exceeding the capability of a quantum computer for a given size and coherence region. The emitters and receptors are based on the quantum diode, which can emit and detect individual photons with high accuracy.

Gordon Chalmers

2006-10-13T23:59:59.000Z

472

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

473

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

474

EK101 Engineering Light Smart Lighting  

E-Print Network (OSTI)

extensively in concert lighting and are finding increased usage in dance lighting because refers to the upstage back curtain (is white or a light color), which can be us for lighting or special Mixer #12;Monitor House speaker Lighting System Control Board: Similar to the sound board, the light

Bifano, Thomas

475

Federal Energy Management Program: New and Underutilized Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Interior LEDSolid State Lighting to someone by E-mail Share Federal Energy Management Program: New and Underutilized Technology: Interior LEDSolid State Lighting on Facebook...

476

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-