Sample records for technology life verification

  1. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01T23:59:59.000Z

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technology’s life capability with a high degree of confidence.

  2. Battery Technology Life Verification Test Manual Revision 1

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2012-12-01T23:59:59.000Z

    The purpose of this Technology Life Verification Test (TLVT) Manual is to help guide developers in their effort to successfully commercialize advanced energy storage devices such as battery and ultracapacitor technologies. The experimental design and data analysis discussed herein are focused on automotive applications based on the United States Advanced Battery Consortium (USABC) electric vehicle, hybrid electric vehicle, and plug-in hybrid electric vehicle (EV, HEV, and PHEV, respectively) performance targets. However, the methodology can be equally applied to other applications as well. This manual supersedes the February 2005 version of the TLVT Manual (Reference 1). It includes criteria for statistically-based life test matrix designs as well as requirements for test data analysis and reporting. Calendar life modeling and estimation techniques, including a user’s guide to the corresponding software tool is now provided in the Battery Life Estimator (BLE) Manual (Reference 2).

  3. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  4. Environmental Technology Verification Program

    E-Print Network [OSTI]

    Activities.................4 Table 2.0 Records Management Responsibilities for the MMR CenterEnvironmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS

  5. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01T23:59:59.000Z

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  6. College of Agriculture & Life Sciences Agricultural Technology

    E-Print Network [OSTI]

    Virginia Tech

    College of Agriculture & Life Sciences Agricultural Technology Applied Agricultural Management Option Checksheet for Students Graduating in Calendar Year 2013 Associate of Agriculture Degree Required Agricultural Technology Core Courses (31 credits) 3 AT 0104 Computer Applications 3 AT 0114 Applied

  7. U.S. EPA Environmental Technology Verification (ETV) Program Advanced Monitoring Systems (AMS) Center

    E-Print Network [OSTI]

    Carbon Dioxide from Sequestration Applications. These technology categories have been priorities evaluation, Nebraska Department of Environmental Quality (NDEQ) for microcystins, and EPA Region 7 for carbon sequestration. Climate change technology verification ideas Dr. McKernan also presented several ideas

  8. Vehicle Technologies Office - AVTA: All Electric USPS Long Life...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USPS Long Life Vehicle Conversions Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle Conversions The Vehicle Technologies Office's Advanced Vehicle Testing...

  9. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect (OSTI)

    Kadner, S.P. [Aquila Technologies Group, Inc., Albuquerque, NM (United States); Reisman, A. [Brookhaven National Lab., Upton, NY (United States); Turpen, E. [Aquila Technologies Group, Inc., Cambridge, MA (United States)

    1996-10-01T23:59:59.000Z

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  10. Greenhouse gas (GHG) mitigation and monitoring technology performance: Activities of the GHG Technology Verification Center. Report for January 1998--January 1999

    SciTech Connect (OSTI)

    Masemore, S.; Kirchgessner, D.A.

    1999-05-01T23:59:59.000Z

    The paper discusses greenhouse gas (GHG) mitigation and monitoring technology performance activities of the GHG Technology Verification Center. The Center is a public/private partnership between Southern Research Institute and the US EPA`s Office of Research and Development. The Center is part of EPA`s Environmental Technology Verification (ETV) Program, which has established 12 verification centers to evaluate a wide range of technologies in various environmental media and technology areas. The Center has published the results of its first verification: use of a phosphoric acid fuel cell to produce electricity from landfill gas. It has also initiated three new field verifications, two on technologies that reduce methane emissions from natural gas transmissions compressors, and one on a new microturbine electricity production technology.

  11. U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation Center

    E-Print Network [OSTI]

    staff have been fielding inquiries from new technology vendors with interest in verification testing received before the teleconference. · Albah's Cold Spray Process for repairing and protecting underground and aboveground storage tanks (USTs and ASTs) was first discovered in the USSR in 1982 and then brought to the U

  12. INDEPENDENT VERIFICATION SURVEY REPORT FOR ZONE 1 OF THE EAST TENNESSEE TECHNOLOGY PARK IN OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    King, David A.

    2012-08-16T23:59:59.000Z

    Oak Ridge Associated Universities (ORAU) conducted in-process inspections and independent verification (IV) surveys in support of DOE's remedial efforts in Zone 1 of East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Inspections concluded that the remediation contractor's soil removal and survey objectives were satisfied and the dynamic verification strategy (DVS) was implemented as designed. Independent verification (IV) activities included gamma walkover surveys and soil sample collection/analysis over multiple exposure units (EUs).

  13. Computer-Aided Verification: How to Trust a Machine with Your Life

    E-Print Network [OSTI]

    Pace, Gordon J.

    are used to control all sorts of devices -- from washing machines and microwave ovens to braking systems is formidable. The formal verification of a five-line algorithm can easily run into pages of dense mathematical

  14. Patent Litigation for High Technology and Life Sciences Companies

    E-Print Network [OSTI]

    Shamos, Michael I.

    Patent Litigation for High Technology and Life Sciences Companies #12;© 2005 Fenwick & West LLP Corporate (emerging growth, financings, securities, mergers & acquisitions) n Intellectual Property (patent, copyright, licensing, trademark) n Litigation (patent and other IP, securities, antitrust, employment

  15. Patent Breadth, Patent Life, and the Pace of Technological Progress

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Patent Breadth, Patent Life, and the Pace of Technological Progress TED O'DONOGHUE Department improve each other's products, a patent can terminate either because it expires or because a non of these happens as the effective patent life, and show how it depends on patent breadth. We distinguish lagging

  16. Technology to Extend Battery Life Coming Soon

    Broader source: Energy.gov [DOE]

    A cost-sharing award through the Recovery Acy is helping a technology firm in Albany, New York demonstrate a commercially viable, methanol fuel cell-powered charger for the consumer electronics market.

  17. Life-Cycle Analysis of Geothermal Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofsDepartmentLife With

  18. Sandia technology. Volume 13, number 2 Special issue : verification of arms control treaties.

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    Nuclear deterrence, a cornerstone of US national security policy, has helped prevent global conflict for over 40 years. The DOE and DoD share responsibility for this vital part of national security. The US will continue to rely on nuclear deterrence for the foreseeable future. In the late 1950s, Sandia developed satellite-borne nuclear burst detection systems to support the treaty banning atmospheric nuclear tests. This activity has continued to expand and diversify. When the Non-Proliferation Treaty was ratified in 1970, we began to develop technologies to protect nuclear materials from falling into unauthorized hands. This program grew and now includes systems for monitoring the movement and storage of nuclear materials, detecting tampering, and transmiting sensitive data securely. In the late 1970s, negotiations to further limit underground nuclear testing were being actively pursued. In less than 18 months, we fielded the National Seismic Station, an unattended observatory for in-country monitoring of nuclear tests. In the mid-l980s, arms-control interest shifted to facility monitoring and on-site inspection. Our Technical On-site Inspection Facility is the national test bed for perimeter and portal monitoring technology and the prototype for the inspection portal that was recently installed in the USSR under the Intermediate-Range Nuclear Forces accord. The articles in the special issue of Sundiu Technology describe some of our current contributions to verification technology. This work supports the US policy to seek realistic arms control agreements while maintaining our national security.

  19. Case study of verification, validation, and testing in the Automated Data Processing (ADP) system development life cycle

    SciTech Connect (OSTI)

    Riemer, C.A.

    1990-05-01T23:59:59.000Z

    Staff of the Environmental Assessment and Information Sciences Division of Argonne National Laboratory (ANL) studies the role played by the organizational participants in the Department of Veterans Affairs (VA) that conduct verification, validation, and testing (VV T) activities at various stages in the automated data processing (ADP) system development life cycle (SDLC). A case-study methodology was used to assess the effectiveness of VV T activities (tasks) and products (inputs and outputs). The case selected for the study was a project designed to interface the compensation and pension (C P) benefits systems with the centralized accounts receivable system (CARS). Argonne developed an organizational SDLC VV T model and checklists to help collect information from C P/CARS participants on VV T procedures and activities, and these were then evaluated against VV T standards.

  20. Foundations of Software Technology and Theoretical Computer Science (2009) Submission Deductive Verification of Continuous

    E-Print Network [OSTI]

    Tiwari, Ashish

    2009-01-01T23:59:59.000Z

    state transition systems is a powerful modeling formalism, it is inadequate for modeling systems Verification of Continuous Dynamical Systems Ankur Taly1 , Ashish Tiwari2 1 Computer Science Department inference rules for safety verification of polynomial continuous dynamical systems. We present two different

  1. Geothermal completion technology life-cycle cost model (GEOCOM)

    SciTech Connect (OSTI)

    Mansure, A.J.; Carson, C.C.

    1982-01-01T23:59:59.000Z

    GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

  2. TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program builds directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern.

  3. Independent Validation and Verification of Process Design and Optimization Technology Diagnostic and Control of Natural Gas Fired Furnaces via Flame Image Analysis Technology

    SciTech Connect (OSTI)

    Cox, Daryl [ORNL

    2009-05-01T23:59:59.000Z

    The United States Department of Energy, Industrial Technologies Program has invested in emerging Process Design and Optimizations Technologies (PDOT) to encourage the development of new initiatives that might result in energy savings in industrial processes. Gas fired furnaces present a harsh environment, often making accurate determination of correct air/fuel ratios a challenge. Operation with the correct air/fuel ratio and especially with balanced burners in multi-burner combustion equipment can result in improved system efficiency, yielding lower operating costs and reduced emissions. Flame Image Analysis offers a way to improve individual burner performance by identifying and correcting fuel-rich burners. The anticipated benefit of this technology is improved furnace thermal efficiency, and lower NOx emissions. Independent validation and verification (V&V) testing of the FIA technology was performed at Missouri Forge, Inc., in Doniphan, Missouri by Environ International Corporation (V&V contractor) and Enterprise Energy and Research (EE&R), the developer of the technology. The test site was selected by the technology developer and accepted by Environ after a meeting held at Missouri Forge. As stated in the solicitation for the V&V contractor, 'The objective of this activity is to provide independent verification and validation of the performance of this new technology when demonstrated in industrial applications. A primary goal for the V&V process will be to independently evaluate if this technology, when demonstrated in an industrial application, can be utilized to save a significant amount of the operating energy cost. The Seller will also independently evaluate the other benefits of the demonstrated technology that were previously identified by the developer, including those related to product quality, productivity, environmental impact, etc'. A test plan was provided by the technology developer and is included as an appendix to the summary report submitted by Environ (Appendix A). That plan required the V&V contractor to: (1) Establish the as-found furnace operating conditions; (2) Tune the furnace using currently available technology to establish baseline conditions; (3) Tune the furnace using the FIA technology; and (4) Document the improved performance that resulted from application of the FIA technology. It is important to note that the testing was not designed to be a competition or comparison between two different methodologies that could be used for furnace tuning. Rather, the intent was to quantify improvements in furnace performance that could not be achieved with existing technology. Therefore, the measure of success is improvement beyond the furnace efficiency obtainable using existing furnace optimization methods rather than improvement from the as found condition.

  4. Technology shapes every facet of modern life. Familiarity with the characteristics,

    E-Print Network [OSTI]

    Ge, Qiaode Jeff

    Technology shapes every facet of modern life. Familiarity with the characteristics, capabilities, and limitations of current and emerging technologies is indispen- sable to wise and effective decisions and address the problems that technology often presents. Technologi- cal developments are indeed re

  5. U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation (MMR) Center

    E-Print Network [OSTI]

    ) and identified priority areas: tire recycling, electronics recycling, sorting technologies, manufactured soils

  6. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment for Green Technology: life-cycle assessment of a brownfield redevelopment project Thomas Brecheisen1 Online at stacks.iop.org/ERL/8/015038 Abstract The sustainable development of brownfields reflects

  7. Converter performance TFE Verification Program. Final test report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report details TFE Verification Program, the objective, of which is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program built directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addressed that concern.

  8. U.S. EPA Environmental Technology Verification (ETV) Program Advanced Monitoring Systems (AMS) Center

    E-Print Network [OSTI]

    for Microcystins in Freshwater Sources Monitoring Technologies for Measuring Stored Carbon Dioxide from Sequestration Applications. These technology categories have been priorities for the AMS Center stakeholders, Nebraska Department of Environmental Quality (NDEQ) for microcystins, and EPA Region 7 for carbon

  9. Postdoctoral position in microfluidics for life and medical sciences at Technion -Israel Institute of Technology

    E-Print Network [OSTI]

    Rimon, Elon

    Postdoctoral position in microfluidics for life and medical sciences at Technion - Israel Institute of Technology The Microfluidic Technologies Laboratory at Technion, led by Prof. Moran Bercovici, is seeking of novel bio-microfluidic tools and assays. The Microfluidic Technologies Laboratory (microfluidics

  10. Physical and Life Sciences 2008 Science & Technology Highlights

    SciTech Connect (OSTI)

    Correll, D L; Hazi, A U

    2009-05-06T23:59:59.000Z

    This document highlights the outstanding research and development activities in the Physical and Life Sciences Directorate that made news in 2008. It also summarizes the awards and recognition received by members of the Directorate in 2008.

  11. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01T23:59:59.000Z

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  12. System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)

    SciTech Connect (OSTI)

    Emmanuel Ohene Opare, Jr.; Charles V. Park

    2011-06-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

  13. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

    1997-12-31T23:59:59.000Z

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  14. Technology transfer equipment qualification methodology for shelf life determination

    SciTech Connect (OSTI)

    Anderson, J.W. [Wyle Labs., Huntsville, AL (United States)] [Wyle Labs., Huntsville, AL (United States)

    1995-08-01T23:59:59.000Z

    Discussions with a number of Nuclear Utilities revealed that equipment qualified for 10 to 40 years in the harsh environment of the plant was being assigned shelf lives of only 5 to 10 years in the benign environment of the warehouse, and then the materials were being trashed. One safety-related equipment supplier was assigning a 10-year qualified life, from date of shipment, with no recognition of the difference in the aging rate in the plant vs. that in the warehouse. Many suppliers assign shelf lives based on product warranty considerations rather than actual product degradation. An EPRI program was initiated to evaluate the methods used to assign shelf lives and to adapt the Arrhenius methodology, used in equipment qualification, to assign technically justifiable shelf lives. Temperature is the main factor controlling shelf life; however, atmospheric pressure, humidity, ultraviolet light, ozone and other atmospheric contaminants were also considered. A list of 70 representative materials was addressed in the program. All of these were found to have shelf lives of 14 years to greater than 60 years, except for 19 items. For 18 of these items, there was no data available except for the manufacturer`s recommendation.

  15. Life cycle assessment of buildings technologies: High-efficiency commercial lighting and residential water heaters

    SciTech Connect (OSTI)

    Freeman, S.L.

    1997-01-01T23:59:59.000Z

    In this study the life cycle emissions and energy use are estimated for two types of energy technologies. The first technology evaluated is the sulfur lamp, a high-efficiency lighting system under development by the US Department of Energy (DOE) and Fusion Lighting, the inventor of the technology. The sulfur lamp is compared with conventional metal halide high-intensity discharge lighting systems. The second technology comparison is between standard-efficiency and high-efficiency gas and electric water heaters. In both cases the life cycle energy use and emissions are presented for the production of an equivalent level of service by each of the technologies. For both analyses, the energy use and emissions from the operation of the equipment are found to dominate the life cycle profile. The life cycle emissions for the water heating systems are much more complicated. The four systems compared include standard- and high-efficiency gas water heaters, standard electric resistance water heaters, and heat pump water heaters.

  16. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  17. Improving environmental performances of organic spreading technologies through the use of life cycle

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving environmental performances of organic spreading technologies through the use of life) is generally used to assess environmental performances of a product or a system. Some agricultural LCA were carried out to assess environmental performances of fertilisation processes, but they barely take

  18. Environmental impacts of lighting technologies - Life cycle assessment and sensitivity analysis

    SciTech Connect (OSTI)

    Welz, Tobias; Hischier, Roland, E-mail: Roland.Hischier@empa.ch; Hilty, Lorenz M.

    2011-04-15T23:59:59.000Z

    With two regulations, 244/2009 and 245/2009, the European Commission recently put into practice the EuP Directive in the area of lighting devices, aiming to improve energy efficiency in the domestic lighting sector. This article presents a comprehensive life cycle assessment comparison of four different lighting technologies: the tungsten lamp, the halogen lamp, the conventional fluorescent lamp and the compact fluorescent lamp. Taking advantage of the most up-to-date life cycle inventory database available (ecoinvent data version 2.01), all life cycle phases were assessed and the sensitivity of the results for varying assumptions analysed: different qualities of compact fluorescent lamps (production phase), different electricity mixes (use phase), and end-of-life scenarios for WEEE recycling versus municipal solid waste incineration (disposal phase). A functional unit of 'one hour of lighting' was defined and the environmental burdens for the whole life cycle for all four lamp types were calculated, showing a clearly lower impact for the two gas-discharge lamps, i.e. the fluorescent and the compact fluorescent lamp. Differences in the product quality of the compact fluorescent lamps reveal to have only a very small effect on the overall environmental performance of this lamp type; a decline of the actual life time of this lamp type doesn't result in a change of the rank order of the results of the here examined four lamp types. It was also shown that the environmental break-even point of the gas-discharge lamps is reached long before the end of their expected life-span. All in all, it can be concluded that a change from today's tungsten lamp technology to a low-energy-consuming technology such as the compact fluorescent lamp results in a substantial environmental benefit.

  19. Nuclear disarmament verification

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-12-31T23:59:59.000Z

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  20. Vehicle Technologies Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Penn State at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy, long cycle life...

  1. Introduction Verification

    E-Print Network [OSTI]

    Kuhn, Matthew R.

    Introduction Model Verification Entropy model for granular materials at the critical state Matthew at the critical state. 2D materials only. Biaxial loading conditions. Six contact quantities Objective: Contact forces, movements, and orientations at the critical state. 2D materials only. Biaxial loading

  2. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  3. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    SciTech Connect (OSTI)

    Sullivan, John

    2013-06-04T23:59:59.000Z

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  4. addressing verification challenges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kulyukin Computer Technologies and Information Sciences Websites Summary: A Cartesian Robot for RFID Signal Distribution Model Verification Aliasgar Kutiyanawala Vladimir (PRF)...

  5. automated verification process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kulyukin Computer Technologies and Information Sciences Websites Summary: A Cartesian Robot for RFID Signal Distribution Model Verification Aliasgar Kutiyanawala Vladimir (PRF)...

  6. Analyzing the Life Cycle Energy Savings of DOE Supported Buildings Technologies

    SciTech Connect (OSTI)

    Cort, Katherine A.; Hostick, Donna J.; Dirks, James A.; Elliott, Douglas B.

    2009-08-31T23:59:59.000Z

    This report examines the factors that would potentially help determine an appropriate analytical timeframe for measuring the U.S. Department of Energy's Building Technology (BT) benefits and presents a summary-level analysis of the life cycle savings for BT’s Commercial Buildings Integration (CBI) R&D program. The energy savings for three hypothetical building designs are projected over a 100-year period using Building Energy Analysis and Modeling System (BEAMS) to illustrate the resulting energy and carbon savings associated with the hypothetical aging buildings. The report identifies the tasks required to develop a long-term analytical and modeling framework, and discusses the potential analytical gains and losses by extending an analysis into the “long-term.”

  7. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    -digital effects · Heterogeneous systems · Analog-Mixed signal · Soft failures · Verification for redundancy #12; · Robustness · Verification metrics · Software · Reuse · Specialized verification methodology · Specialized

  8. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01T23:59:59.000Z

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  9. Integrating Human Performance and Technology

    SciTech Connect (OSTI)

    Ronald K. Farris; Heather Medema

    2012-05-01T23:59:59.000Z

    Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

  10. The KeY Platform for Verification and Analysis of Java Programs

    E-Print Network [OSTI]

    Mostowski, Wojciech

    pure functional verification. We use the current release of the KeY system as an example to explain and prove this claim. 1 Overview Motivation. Over the last decades the reach and power of verification of real world systems. The basic technologies of deductive program verification have matured. State

  11. Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  12. Mixing Sourcing Technologies to Extend the Operational Life of Ultra-Portable Micro-Scale Electronics

    E-Print Network [OSTI]

    Rincon-Mora, Gabriel A.

    -film lithium and lithium-ion batteries," Solid State Ionics, vol. 135, no. 1-4, pp. 33-45, Nov. 2000. [3] C-CELL ENERGY HARVESTER MIXER CHARGER SUPPLY IC THIN-FILM LITHIUM-ION BATTERY Fig. 1. Integrated Hybrid Power is to exploit the power-delivery advantages of Li Ion batteries and extend their life by drawing energy from

  13. Monitoring and verification R&D

    SciTech Connect (OSTI)

    Pilat, Joseph F [Los Alamos National Laboratory; Budlong - Sylvester, Kory W [Los Alamos National Laboratory; Fearey, Bryan L [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existing energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.

  14. Nuclear Data Verification and Standardization

    SciTech Connect (OSTI)

    Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

    2011-10-01T23:59:59.000Z

    The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

  15. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect (OSTI)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30T23:59:59.000Z

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

  16. Verification Testing Test Driven Development Testing with JUnit Verification

    E-Print Network [OSTI]

    Peters, Dennis

    Verification Testing Test Driven Development Testing with JUnit Verification Any activity should be verified. #12;Verification Testing Test Driven Development Testing with JUnit Approaches to verification 1 Testing 2 Static Analysis · Peer review · Insepction/Walk-through/Structured review · Formal

  17. Dredging: Technology and environmental aspects. (Latest citations from the Life Sciences collection database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and environmental impacts of dredging. Equipment, including semi-submersible cutter platforms, is described. Other topics include sediment movement, factors affecting sediment movement, the disposal of dredged material, and computer models predicting the fate of the dredged materials. The environmental impacts of the dredged areas and the effects of ocean dumping of dredged material are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Dredging: Technology and environmental aspects. (Latest citations from the Life Sciences Collection data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The bibliography contains citations concerning the technology and environmental impacts of dredging. Equipment, including semi-submersible cutter platforms, is described. Other topics include sediment movement, factors affecting sediment movement, the disposal of dredged material, and computer models predicting the fate of the dredged materials. The environmental impacts of the dredged areas and the effects of ocean dumping of dredged material are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  19. Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors

    SciTech Connect (OSTI)

    Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

    2012-07-01T23:59:59.000Z

    A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

  20. INDEPENDENT VERIFICATION SURVEY REPORT FOR EXPOSURE UNITS Z2-24, Z2-31, Z2-32, AND Z2-36 IN ZONE 2 OF THE EAST TENNESSEE TECHNOLOGY PARK OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    none,

    2013-10-10T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management selected Oak Ridge Associated Universities (ORAU), through the Oak Ridge Institute for Science and Education (ORISE) contract, to perform independent verification (IV) at Zone 2 of the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. ORAU has concluded IV surveys, per the project-specific plan (PSP) (ORAU 2013a) covering exposure units (EUs) Z2-24, -31, -32, and -36. The objective of this effort was to verify the following. • Target EUs comply with requirements in the Zone 2 Record of Decision (ROD) (DOE 2005), as implemented by using the dynamic verification strategy presented in the dynamic work plan (DWP) (BJC 2007) • Commitments in the DWP were adequately implemented, as verified via IV surveys and soil sampling The Zone 2 ROD establishes maximum remediation level (RLmax) values and average RL (RLavg) values for the primary contaminants of concern (COCs) U-234, U-235, U-238, Cs-137, Np-237, Ra-226, Th-232, arsenic, mercury, and polychlorinated biphenyls (PCBs). Table 1.1 lists Zone 2 COCs with associated RLs. Additional radiological and chemical contaminants were also identified during past characterization and monitoring actions, though the ROD does not present RLs for these potential contaminants. IV activities focused on the identification and quantification of ROD-specific COCs in surface soils, but also generated data for other analytes to support future decisions. ORAU personnel also reviewed EU-specific phased construction completion reports (PCCRs) to focus IV activities and identify potential judgmental sample locations, if any.

  1. TFE verification program

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    The program objective is to demonstrate the technology readiness of a thermionic fuel element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. This report states progress made in the following tasks: concept design, converter performance, insulator seal, sheath insulator, fueled emitter, cesium reservoir and interconnective TFE components, and thermionic fuel element testing. 20 refs., 39 refs., 32 figs. (GHH)

  2. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24T23:59:59.000Z

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  3. University of Massachusetts Amherst Measurement & Verification Guidelines

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    University of Massachusetts Amherst Measurement & Verification Guidelines & Template Plan 11 ..............................................................................................................1 UMASS AMHERST MEASUREMENT & VERIFICATION (M&V) GUIDELINES ..........3 PREFACE ....................................................................................................................................................................3 BENEFITS OF MEASUREMENT & VERIFICATION

  4. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Environmental Management (EM)

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

  5. Engine coolant technology, performance, and life for light-duty applications

    SciTech Connect (OSTI)

    Turcotte, D.E.; Lockwood, F.E. [Valvoline Co., Lexington, KY (United States); Pfitzner, K.K.; Meszaros, L.L. [BASF Aktiengesellschaft, Ludwigshafen (Germany); Listebarger, J.K. [Ashland Chemical, Dublin, OH (United States)

    1999-08-01T23:59:59.000Z

    Recently there has been interest by motor vehicle manufacturers in developing longer-lived automotive engine coolants with an emphasis on organic acid technology (OAT). Paradoxically, the lifetime of conventional technology remains largely undefined. Concerns arising from the depleting nature of silicate have led to modern conservative change recommendations of 30,000 to 50,000 miles ({approximately}48,279 to 80,464 km). In the present work, laboratory bench test, engine dynamometer and vehicle service data from traditional silicate, hybrid and nonsilicate coolants are compared and contrasted. A new electrochemical test is used to examine passivation kinetics on aluminum. It is shown that performance and lifetime are independent of chemistry and cannot be generalized. Examples include an American silicate coolant with excellent performance on high-heat-rejecting aluminum (80 W/cm{sup 2}). European and American silicate coolants with performance defined lifetimes in excess of 300,000 miles (482,790 km), and an OAT coolant with laboratory high lead solder protection. It is concluded that the primary benefit of OAT is to meet global specifications that include chemical limitations.

  6. Voltage verification unit

    DOE Patents [OSTI]

    Martin, Edward J. (Virginia Beach, VA)

    2008-01-15T23:59:59.000Z

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  7. Verification of RADTRAN

    SciTech Connect (OSTI)

    Kanipe, F.L.; Neuhauser, K.S.

    1995-12-31T23:59:59.000Z

    This document presents details of the verification process of the RADTRAN computer code which was established for the calculation of risk estimates for radioactive materials transportation by highway, rail, air, and waterborne modes.

  8. TFE Verification Program. Semiannual report for the period ending March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program builds directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern.

  9. International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. Feasibility of a Mobility Option for Infants

    E-Print Network [OSTI]

    Stansfield, Sharon

    3 rd International Symposium on Quality of Life Technology, Toronto, ON, Canada. June 6-7, 2011. TheWeeBot: Feasibility of a Mobility Option for Infants Carole W. Dennis, Sc.D, OTR/L OccupationalBot, a mobile robot controlled by weight shift over a Wii balance board, over five training sessions. Infants

  10. A qualitative study of technology-based training in organizations that hire agriculture and life sciences students

    E-Print Network [OSTI]

    Frazier, Leslie Jean

    2007-09-17T23:59:59.000Z

    Technological advances have created unlimited opportunities in education. Training and technology have merged to create new methods referred to as technology-based training. Technology-based training, for the purpose of this study, was defined...

  11. Comments for A Conference on Verification in the 21st Century

    SciTech Connect (OSTI)

    Doyle, James E. [Los Alamos National Laboratory

    2012-06-12T23:59:59.000Z

    The author offers 5 points for the discussion of Verification and Technology: (1) Experience with the implementation of arms limitation and arms reduction agreements confirms that technology alone has never been relied upon to provide effective verification. (2) The historical practice of verification of arms control treaties between Cold War rivals may constrain the cooperative and innovative use of technology for transparency, veification and confidence building in the future. (3) An area that has been identified by many, including the US State Department and NNSA as being rich for exploration for potential uses of technology for transparency and verification is information and communications technology (ICT). This includes social media, crowd-sourcing, the internet of things, and the concept of societal verification, but there are issues. (4) On the issue of the extent to which verification technologies are keeping pace with the demands of future protocols and agrements I think the more direct question is ''are they effective in supporting the objectives of the treaty or agreement?'' In this regard it is important to acknowledge that there is a verification grand challenge at our doorstep. That is ''how does one verify limitations on nuclear warheads in national stockpiles?'' (5) Finally, while recognizing the daunting political and security challenges of such an approach, multilateral engagement and cooperation at the conceptual and technical levels provides benefits for addressing future verification challenges.

  12. The thermionic fuel element verification program: Technical accomplishments and goals

    SciTech Connect (OSTI)

    Houts, M.G. (Los Alamos National Lab., NM (United States)); Wharton, W.R. Jr. (Department of Energy, Germantown, MD (United States)); Begg, L.L. (General Atomics, San Diego, CA (United States)); Lawrence, L.A. (Westinghouse Hanford Company, Richland, WA (United States))

    1993-01-01T23:59:59.000Z

    The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a thermionic fuel element in a thermionic reactor having an electric power output in the 0.5- to 5-MW(electric) range and a full-power life of 7 yr. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4 x 10[sup 22] n/cm[sup 2], E > 0. 1 MeV) and the required burnup (5.3%) of a 2-MW(electric) system. Technology developed under the TFEVP also supports the 5- to 40-kW(electric) thermionic systems currently of interest to the Strategic Defense Initiative Organization and the US Air Force. The fast-neutron flux in certain 5- to 40-kW(electric) systems is up to a factor of 7 less than that in 0.5- to 5-MW(electric) systems. Component technology that has been developed for 0.5- to 5-MW(electric) systems will thus be suitable for use in long-life, high-performance, 5- to 40-kW(electric) systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and inter- connective TFE components. In addition, the TFEVP has created a preliminary 2-MW(electric) system design and is currently evaluating converter performance under various conditions. Prototypical TFEs are also being tested. The TFEVP is developing accurate converter-performance models that are correlated to observed test data.

  13. Electric Utility Measurement & Verification Program

    E-Print Network [OSTI]

    Lau, K.; Henderson, G.; Hebert, D.

    Electric Utility Measurement & Verification Program Ken Lau, P.Eng., CMVP Graham Henderson, P.Eng., CMVP Dan Hebert, P.Eng.,CMVP Mgr, Measurement & Verification Engineering Team Leader Senior Engineer BC Hydro Burnaby, BC Canada...

  14. MULTIVESSEL BATCH DISTILLATION EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    MULTIVESSEL BATCH DISTILLATION ­ EXPERIMENTAL VERIFICATION Bernd Wittgens and Sigurd Skogestad 1 The experimental verification of the operation of a multivessel batch distillation column, operated under total vessels, provides a generalization of previously proposed batch distillation schemes. We propose a simple

  15. Verification and validation benchmarks.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01T23:59:59.000Z

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

  16. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  17. Verification of Workflow Nets W.M.P. van der Aalst

    E-Print Network [OSTI]

    van der Aalst, Wil

    Verification of Workflow Nets W.M.P. van der Aalst Eindhoven University of Technology, P.O. Box 513 we focus on a class of Petri nets suitable for the representation, validation and verification of these proce- dures. We will show that the correctness of a procedure represented by such a Petri net can

  18. On Incremental Quantitative Verification for Probabilistic Systems

    E-Print Network [OSTI]

    Oxford, University of

    . Quantitative verification is an automated method to establish quantitative properties of a system model, non- probabilistic verification, which, in addition to exhaustive exploration of a system modelOn Incremental Quantitative Verification for Probabilistic Systems Marta Kwiatkowska, David Parker

  19. EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________

    E-Print Network [OSTI]

    Bolding, M. Chad

    Rev. 10/04 EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________ (Family Name) (First) (Middle Initial) TO BE COMPLETED BY EMPLOYER OR HIRING DEPARTMENT: Employment Department__________________________________________________ Employment Position

  20. Decision support software technology demonstration plan

    SciTech Connect (OSTI)

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01T23:59:59.000Z

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  1. Formal verification of complex properties on PLC programs

    E-Print Network [OSTI]

    Darvas, D; Voros, A; Bartha, T; Blanco Vinuela, E; Gonzalez Suarez, V M

    2014-01-01T23:59:59.000Z

    Formal verification has become a recommended practice in the safety-critical application areas. However, due to the complexity of practical control and safety systems, the state space explosion often prevents the use of formal analysis. In this paper we extend our former verification methodology with effective property preserving reduction techniques. For this purpose we developed general rule-based reductions and a customized version of the Cone of Influence (COI) reduction. Using these methods, the verification of complex requirements formalised with temporal logics (e.g. CTL, LTL) can be orders of magnitude faster. We use the NuSMV model checker on a real-life PLC program from CERN to demonstrate the performance of our reduction techniques.

  2. Security and Verification Provable cryptography

    E-Print Network [OSTI]

    Gregoire, Benjamin - Institut National de Recherche en Informatique et en Automatique, Centre de recherche Sophia Antipolis

    Security and Verification Provable cryptography Benjamin Grégoire1 Tamara Rezk1 1INRIA Sophia Antipolis - Méditerranée, France Cours de Master 2 Univerisité de Nice Sophia-Antipolis Security and Verification 1/ 33 #12;Cryptanalysis-driven Security Propose a cryptographic scheme Wait for someone to come

  3. Software Verification and Validation Procedure

    SciTech Connect (OSTI)

    Olund, Thomas S.

    2008-09-15T23:59:59.000Z

    This Software Verification and Validation procedure provides the action steps for the Tank Waste Information Network System (TWINS) testing process. The primary objective of the testing process is to provide assurance that the software functions as intended, and meets the requirements specified by the client. Verification and validation establish the primary basis for TWINS software product acceptance.

  4. ORISE: Independent verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisisIndependent verification ORISE

  5. Model Verification and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model Verification and Validation Engineering

  6. Environmental Technology Verification of Mobile Sources Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoals During NREL Tour | Department

  7. An on-line human signature verification system

    E-Print Network [OSTI]

    Simsek, Burc A

    2000-01-01T23:59:59.000Z

    of Prisons Other Prisons U. S. Department of State U. S. Department of Treasury Internal Revenue Service U. S. Secret Service Bureau of Printing and Engraving Border Patrol evaluating facial imaging, voice verification, hand geometry, and finger... for smart gun technology. A smart gun incorporates, for example, biometric technology into the operating system of a firearm to restrict the firing of the weapon to authorized users. Finger imaging to secure access to information about narcotics Hand...

  8. Vehicle Technologies Office Merit Review 2014: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high energy...

  9. VAMOS: The verification and monitoring options study: Current research options for in-situ monitoring and verification of contaminant remediation and containment within the vadose zone

    SciTech Connect (OSTI)

    Betsill, J.D. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps., Inc., Albuquerque, NM (United States)

    1995-09-01T23:59:59.000Z

    The Verification and Monitoring Options Study Project (VAMOS) was established to identify high-priority options for future vadose-zone environmental research in the areas of in-situ remediation monitoring, post-closure monitoring, and containment emplacement and verification monitoring. VAMOS examined projected needs not currently being met with applied technology in order to develop viable monitoring and verification research options. The study emphasized a compatible systems approach to reinforce the need for utilizing compatible components to provide user friendly site monitoring systems. To identify the needs and research options related to vadose-zone environmental monitoring and verification, a literature search and expert panel forums were conducted. The search included present drivers for environmental monitoring technology, technology applications, and research efforts. The forums included scientific, academic, industry, and regulatory environmental professionals as well as end users of environmental technology. The experts evaluated current and future monitoring and verification needs, methods for meeting these needs, and viable research options and directions. A variety of high-priority technology development, user facility, and technology guidance research options were developed and presented as an outcome of the literature search and expert panel forums.

  10. Learning Minimal Separating DFA's for Compositional Verification

    E-Print Network [OSTI]

    Clarke, Edmund M.

    version is evaluated on the LTSA benchmarks and compared with other automated com- positional verification

  11. Verification of Shell GTL Fuel as CARB Alternative Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Biomass to Liquids and Coal to Liquids technologies Life cycle analysis: GTL vs. Refinery system GTL less impact on on air acidification and smog formation Comparable...

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  14. Runtime verification for stochastic systems

    E-Print Network [OSTI]

    Wilcox, Cristina M

    2010-01-01T23:59:59.000Z

    We desire a capability for the safety monitoring of complex, mixed hardware/software systems, such as a semi-autonomous car. The field of runtime verification has developed many tools for monitoring the safety of software ...

  15. Software Modeling and Verification Professors

    E-Print Network [OSTI]

    Ábrahám, Erika

    Software Modeling and Verification Staff · Professors Prof. Dr. Ir. Joost-Pieter Katoen Prof. em) Mark Timmer (Uni Twente, NL) Dr. Olga Tveretina (Karlsruhe University, D) Ralf Wimmer (Universität

  16. EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________

    E-Print Network [OSTI]

    Bolding, M. Chad

    Rev. 10/04 EMPLOYMENT VERIFICATION LETTER Student's Name: ________________________________________________________ (Family Name) (First) (Middle Initial) TO BE COMPLETED BY EMPLOYER OR HIRING DEPARTMENT: Employment Department_ Clemson University ________________________________ Employment Posn Title

  17. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-04-30T23:59:59.000Z

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  18. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect (OSTI)

    Luke, S J

    2011-12-20T23:59:59.000Z

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the genetic information associated with the various pathogens. In addition, it has been determined that a suitable information barrier could be applied to this technology when the verification regime has been defined. Finally, the report posits a path forward for additional development of information barriers in a biological weapons verification regime. This path forward has shown that a new analysis approach coined as Information Loss Analysis might need to be pursued so that a numerical understanding of how information can be lost in specific measurement systems can be achieved.

  19. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    SciTech Connect (OSTI)

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01T23:59:59.000Z

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  20. Monitoring/Verification Using DMS: TATP Example

    SciTech Connect (OSTI)

    Kevin Kyle; Stephan Weeks

    2008-03-01T23:59:59.000Z

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operationsmanagement systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biological materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. GC is the leading analytical method for the separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.

  1. Monitoring/Verification using DMS: TATP Example

    SciTech Connect (OSTI)

    Stephan Weeks, Kevin Kyle, Manuel Manard

    2008-05-30T23:59:59.000Z

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations-management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a “smart dust” sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the illegal use of explosives or chemical and biological materials. DMS is currently one of the foremost emerging technologies for field separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. Fast GC is the leading field analytical method for gas phase separation of chemical species in complex mixtures. Low-thermal-mass GC columns have led to compact, low-power field systems capable of complete analyses in 15–300 seconds. A collaborative effort optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for peroxide-based explosive measurements.

  2. Generation of RTL verification input stimulus

    E-Print Network [OSTI]

    Selvarathinam, Anand Manivannan

    2001-01-01T23:59:59.000Z

    This thesis presents an approach for generating input stimulus for verification of register-transfer level (RTL) design of VLSI circuits. RTL design is often subjected to a significant verification effort due to errors introduced during manual...

  3. Technical challenges for dismantlement verification

    SciTech Connect (OSTI)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-11-01T23:59:59.000Z

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion.

  4. Verification = Specification + Deduction + Computation + Abstraction Logical foundations

    E-Print Network [OSTI]

    Jouannaud, Jean-Pierre

    of powerful, secure, interactive tools #12;Verification Given a system to be analyzed, 1. elaborate a model, interactive tools #12;Verification Given a system to be analyzed, 1. elaborate a model of the system. 2. Test;Verification Given a system to be analyzed, 1. elaborate a model of the system. 2. Test some liveness property

  5. Functional Verification through Operation Diagnostics

    E-Print Network [OSTI]

    Burgoyne, B.

    ICEBO'11 Abstract Burgoyne 110328.docx Page 1 of 1 ? Ebert & Baumann Consulting Engineers, Inc. A B S T R A C T ICEBO 2011 New York City March 28, 2011 Functional Verification through Operation Diagnostics One of the core objectives... of actual operation produces the most accurate results. This is accomplished through trend logging. With analysis of regularly recorded control point data through visualization (including graphs, charts, etc.), a quick and accurate diagnosis of incorrect...

  6. Modeling and Verification of a Distributed Transmission Protocol Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    -parallel poset verification is a powerful methodology for proving the design correctness of complex systemsModeling and Verification of a Distributed Transmission Protocol Lubomir Ivanov Department verification methodologies has evolved in two directions: powerful, general techniques capable of accurately

  7. The thermionic fuel element verification program: Technical progress and future plans

    SciTech Connect (OSTI)

    Houts, M.G. (Los Alamos National Laboratory, MS K551, Los Alamos, New Mexico 87545 (United States)); Wharton, W.R. Jr. (Department of Energy, Office of Defence Energy Projects NE-52, MS B-435, Germantown, Maryland 20874 (United States)); Begg, L.L. (General Atomics, P.O. Box 85608, San Diego, California 92138-5608 (United States)); Lawrence, L.A. (Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States))

    1993-01-20T23:59:59.000Z

    The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor having an electric power output in the 0.5- to 5-MWe range and a full-power life of seven years. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4[times]10[sup 22] n/cm[sup 2], E[gt]0.1 MeV) and the required burnup (5.3%). Technology developed under the TFEVP also supports the 5- to 40-kWe thermionic systems currently of interest to the Strategic Defense Initiative Organization and the United States Air Force. The fast-neutron flux in certain 5- to 40-kWe systems is up to a factor of five less than that in 0.5- to 5-MWe system. Component technology that has been developed for 0.5- to 5-MWe systems will thus be suitable for use in long-life, high-performance, 5- to 40-kWe systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and interconnective TFE components. In addition, the TFEVP has created a preliminary 2-MWe-system design and is presently evaluating converter performance under various conditions. Prototypic TFEs are also being tested. The TFEVP has encountered and surmounted problems in developing and testing long-life TFEs. The emphasis of the US thermionic reactor development effort is shifting to the development of a 40-kWe thermionic space nuclear power supply. The TFEVP will be closed out by the end of fiscal year 1994, with the close-out optimized for yielding the maximum overall program benefit-to-cost ratio. Information gained during the close-out will be very useful to the development of the 40-kWe thermionic system.

  8. Employment Verifications Requests for verification of title and dates of employment for Harvard staff are

    E-Print Network [OSTI]

    Paulsson, Johan

    Employment Verifications Requests for verification of title and dates of employment for Harvard information during the verification process. Need Proof of Employment? Give the person needing proof of your employment the following information: Your Social Security Number Harvard University Employer Code: 14392

  9. Verifying disarmament: scientific, technological and political challenges

    SciTech Connect (OSTI)

    Pilat, Joseph R [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    There is growing interest in, and hopes for, nuclear disarmament in governments and nongovernmental organizations (NGOs) around the world. If a nuclear-weapon-free world is to be achievable, verification and compliance will be critical. VerifYing disarmament would have unprecedented scientific, technological and political challenges. Verification would have to address warheads, components, materials, testing, facilities, delivery capabilities, virtual capabilities from existing or shutdown nuclear weapon and existing nuclear energy programs and material and weapon production and related capabilities. Moreover, it would likely have far more stringent requirements. The verification of dismantlement or elimination of nuclear warheads and components is widely recognized as the most pressing problem. There has been considerable research and development done in the United States and elsewhere on warhead and dismantlement transparency and verification since the early 1990s. However, we do not today know how to verifY low numbers or zero. We need to develop the needed verification tools and systems approaches that would allow us to meet this complex set of challenges. There is a real opportunity to explore verification options and, given any realistic time frame for disarmament, there is considerable scope to invest resources at the national and international levels to undertake research, development and demonstrations in an effort to address the anticipated and perhaps unanticipated verification challenges of disarmament now andfor the next decades. Cooperative approaches have the greatest possibility for success.

  10. EMERGING RENEWABLES PROGRAM SYSTEMS VERIFICATION REPORT

    E-Print Network [OSTI]

    survey that measured customer experience in applying to the ERP, receiving utility interconnection, renewable energy, shading, solar, system performance, system verification, utility interconnection, wind #12

  11. Guide to good practices for independent verification

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    This Guide to Good Practices is written to enhance understanding of, and provide direction for, Independent Verification, Chapter X of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing independent verification activities. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Independent Verification is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for coordinated independent verification activities to promote safe and efficient operations.

  12. Verification and Validation of Facilities Procedures Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Verification and Validation of Facilities Procedures Assessment Plan NNSANevada Site Office Independent Oversight Division Performance Objective: The purpose of this assessment is...

  13. DOE Zero Energy Ready Home Verification...

    Broader source: Energy.gov (indexed) [DOE]

    Zero Energy Ready Home Verification Summary DRAFT REMRate - Residential Energy Analysis and Rating Software v14.5.1 This information does not constitute any warranty of energy...

  14. Assessment of Evaluation, Measurement, and Verification Methods...

    Broader source: Energy.gov (indexed) [DOE]

    smart meters, devices, and analytics to enable the delivery of streamlined measurement and verification (M&V) that reduces cost while increasing the speed and accuracy of...

  15. Reviewing Measurement and Verification Plans for Federal ESPC...

    Office of Environmental Management (EM)

    Measurement and Verification Plans for Federal ESPC Projects Reviewing Measurement and Verification Plans for Federal ESPC Projects Document provides a framework for implementing...

  16. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Introduction to Measurement & Verification for DOE Super ESPC Projects Introduction to Measurement and Verification for DOE Super ESPC Projects DRAFT...

  17. ENERGY STAR Test Procedures and Verification | Department of...

    Energy Savers [EERE]

    ENERGY STAR ENERGY STAR Test Procedures and Verification ENERGY STAR Test Procedures and Verification The Department of Energy (DOE) is the lead agency in the development and...

  18. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0) Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects...

  19. CARB Verification of Catalyzed Diesel Particulate Filters for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets CARB Verification of Catalyzed Diesel Particulate Filters for Emergency Generator Sets 2005...

  20. Measurement and Verification Plan and Savings Calculations Methods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ...

  1. ADDRESSING PROCESS PLANNING AND VERIFICATION ISSUES WITH MTCONNECT

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David; Artisanal Software; Remmele Engineering Inc.

    2009-01-01T23:59:59.000Z

    Surfaces in the Cybercut Process Planning Pipeline”, Trans.ADDRESSING PROCESS PLANNING AND VERIFICATION ISSUES WITHInc. Big Lake, MN KEYWORDS Process planning verification,

  2. Int. J. HumanComputer Studies (1996) 44, 123125 Editorial: special issue on verification and validation

    E-Print Network [OSTI]

    Preece, Alun

    and validation ROBERT PLANT Department of Computer Information Systems, Uni ersity of Miami, Coral Gables, FL: Robert Plant, co-editor of this issue); $ at ECAI-94 in Amsterdam, The Netherlands (Chairman: Alun Preece. ÷ 1996 Academic Press Limited 1. KBS verification and testing In recent years, the main technological

  3. Formal verification of functional properties of a SCR-style software requirements specification using PVS*

    E-Print Network [OSTI]

    safety; Software requirements specification; Formal methods; Formal verification; Nuclear power plant Department and AITRC/SPIC/IIRTRC, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305 September 2004 Abstract Industrial software companies developing safety-critical systems are required to use

  4. Optimal PID-Control for First Order Plus Time Delay Systems & Verification of the

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal PID-Control for First Order Plus Time Delay Systems & Verification of the SIMC Rules Chriss and Technology (NTNU), Trondheim, Norway e-mail: skoge@ntnu.no Abstract: Optimal cascade PID-settings are found with a modified SIMC-rule for PID- control (Figure 1). Optimality (performance) is defined in terms

  5. Optimal PID-Control on First Order Plus Time Delay Systems & Verification of the

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal PID-Control on First Order Plus Time Delay Systems & Verification of the SIMC Rules Chriss and Technology (NTNU), Trondheim, Norway e-mail: skoge@ntnu.no Abstract: Optimal PID-settings are found, and is the time delay. We consider only the cascade form PID-controller K(s) = Kc Is + 1 Is (Ds + 1) (2) where Kc

  6. Optimal PID-Control on First Order Plus Time Delay Systems & Verification of the

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal PID-Control on First Order Plus Time Delay Systems & Verification of the SIMC Rules Chriss and Technology (NTNU), Trondheim, Norway e-mail: skoge@ntnu.no Abstract: Optimal PID-settings are found. We consider only the cascade form PID-controller K(s) = Kc Is + 1 Is (Ds + 1) (2) where Kc, I and D

  7. Formal Specification and Verification of Concurrent

    E-Print Network [OSTI]

    Berry, Daniel M.

    Formal Specification and Verification of Concurrent ProgramsCurriculum Module SEI-CM-27-1.0 #12;Formal Specification and Verification of Concurrent Programs SEI Curriculum Module SEI-CM-27-1.0 February 1993 Daniel M. Berry Technion and Software Engineering Institute Software Engineering Institute

  8. The monitoring and verification of nuclear weapons

    SciTech Connect (OSTI)

    Garwin, Richard L., E-mail: RLG2@us.ibm.com [IBM Fellow Emeritus, IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2014-05-09T23:59:59.000Z

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  9. Department of Computer Science AUTOMATIC VERIFICATION OF

    E-Print Network [OSTI]

    Oxford, University of

    Department of Computer Science AUTOMATIC VERIFICATION OF COMPETITIVE STOCHASTIC SYSTEMS Taolue Chen Automatic verification techniques for probabilistic systems have been success- fully applied in a variety systems also exhibit non- deterministic behaviour, e.g. due to concurrency, underspecification or control

  10. Verification after Synthesis Alan Mishchenko Robert Brayton

    E-Print Network [OSTI]

    Brayton, Robert K.

    in verification based on BDDs, SAT, and AIGs (And-Inverter Graphs), these results do not readily transfer to large are necessary to advance both synthesis and verification. We propose a methodology for scalable sequential it by a functionally equivalent one (up to complementation of outputs). (2) Retiming changes the positions of one

  11. A Verification Platform System on Chip

    E-Print Network [OSTI]

    Melham, Tom

    A Verification Platform for System on Chip Kong Woei Susanto A Dissertation submitted a platform based design method, called a system integration platform. In this design methodology, a system specifications. Subsequently, a similar platform can be constructed for formal verification. Every component

  12. Technical Documentation and Verification for the

    E-Print Network [OSTI]

    PNNL-15202 Technical Documentation and Verification for the Buildings Module in the Visual Sample://www.ntis.gov/ordering.htm This document was printed on recycled paper. (9/2003) #12;PNNL-15202 Technical Documentation and Verification ...................................................................... 1 2.0 Documentation of Statistical Methods and Computations

  13. Guaranteed Verification of Finite Element Solutions of Heat Conduction

    E-Print Network [OSTI]

    Wang, Delin

    2012-07-16T23:59:59.000Z

    Engineering iii ABSTRACT Guaranteed Verification of Finite Element Solutions of Heat Conduction. (May 2011) Delin Wang, B.E., Qingdao University of Science & Technology, China; M.S., Jilin University, China; M.E., Texas A&M University Chair of Advisory... level and ? ky kx is the characteristic thickness of the boundary layer. . . . . 37 3.5 Model problem with interface layer. The relative value of the energy norm of the error ErelU = ||eSp?h ||U / ||uEX||U? 100% versus #15; for n = 1, 2, 3...

  14. Design verification and cold-flow modeling test report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  15. Technological innovation, venture formation and resource allocation : the impact of economic downturn on life sciences venture capital and start-ups

    E-Print Network [OSTI]

    Wolfson, Avidon M

    2010-01-01T23:59:59.000Z

    The Massachusetts life sciences supercluster is a source of tremendous innovation. The Commonwealth's academic and industrial institutions produce a consistent stream of cutting-edge scientific research and the region has ...

  16. Term-Level Verification of a Pipelined CISC Microprocessor

    E-Print Network [OSTI]

    Term-Level Verification of a Pipelined CISC Microprocessor Randal E. Bryant December, 2005 CMU verification, Microprocessor verification, UCLID #12;Abstract By abstracting the details of the data representations and operations in a microprocessor, term-level verification can formally prove that a pipelined

  17. TermLevel Verification of a Pipelined CISC Microprocessor

    E-Print Network [OSTI]

    Term­Level Verification of a Pipelined CISC Microprocessor Randal E. Bryant December, 2005 CMU verification, Microprocessor verification, UCLID #12; Abstract By abstracting the details of the data representations and operations in a microprocessor, term­level verification can formally prove that a pipelined

  18. Reuse of Verification Results Conditional Model Checking, Precision Reuse,

    E-Print Network [OSTI]

    Beyer, Dirk

    further verification runs of the system; information about the level of abstraction in the abstract modelReuse of Verification Results Conditional Model Checking, Precision Reuse, and Verification checker which parts of the system should be verified; thus, later verification runs can use the output

  19. The KivApproach to Software Verification ? Wolfgang Reif

    E-Print Network [OSTI]

    Reif, Wolfgang

    systems, a powerful proof component, and an evolutionary verification model supporting incremen­ tal error approach to the design and verification of large sequential systems. It is based on structured alge­ braic correction and verification. We present the design methodology for modular systems, a feasible verification

  20. Example Measurement & Verification Plan for a Super ESPC Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORTING FOR VERIFICATION ACTIVITIES ... 5 2.4 OPERATIONS, PREVENTIVE MAINTENANCE, REPAIR, AND REPLACEMENT REPORTING REQUIREMENTS...

  1. VALIDATION AND VERIFICATION OF CMST-CP REMOTE SURVEILLANCE SENSORS

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    In its original form, this project was intended to utilize the capabilities of the Analytical Laboratory at Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) to carry out validation and verification of data obtained in the field for purposes of characterization, monitoring, and sensing in relation to closure and post-closure of various sites throughout the DOE complex. To do this, technologies were to be identified that had already been deployed and had produced field data. The role of the FIU-HCET Analytical Laboratory was considered first as part of a round robin team with other laboratories or, alternatively, to act as an objective third-party laboratory in evaluating validation data by others. Shortly after the onset of the project, FIU-HCET determined that specific deployed technologies were not readily identifiable. Thus, the direction of the project was changed to one in which the FKJ-HCET Analytical Laboratory would investigate DOE needs that require validation. These needs were examined primarily on the Internet, as listed by each specific site. In addition, needs having validation implications for regulatory agencies, such as the EPA, were also investigated. Furthermore, contact was made with laboratories with which the FIU-HCET Analytical Laboratory could act in a round robin or third-party capacity. Included in this report are potentially deployable technologies that would lend themselves to validation and verification of field data. FIU-HCET intends to monitor the deployment of these technologies with a view toward carrying out the validation activities originally proposed.

  2. verification

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2A en NGSI Safeguards by Design

  3. Certainty in Stockpile Computing: Recommending a Verification and Validation Program for Scientific Software

    SciTech Connect (OSTI)

    Lee, J.R.

    1998-11-01T23:59:59.000Z

    As computing assumes a more central role in managing the nuclear stockpile, the consequences of an erroneous computer simulation could be severe. Computational failures are common in other endeavors and have caused project failures, significant economic loss, and loss of life. This report examines the causes of software failure and proposes steps to mitigate them. A formal verification and validation program for scientific software is recommended and described.

  4. Life Before Earth

    E-Print Network [OSTI]

    Alexei A. Sharov; Richard Gordon

    2013-03-28T23:59:59.000Z

    An extrapolation of the genetic complexity of organisms to earlier times suggests that life began before the Earth was formed. Life may have started from systems with single heritable elements that are functionally equivalent to a nucleotide. The genetic complexity, roughly measured by the number of non-redundant functional nucleotides, is expected to have grown exponentially due to several positive feedback factors: gene cooperation, duplication of genes with their subsequent specialization, and emergence of novel functional niches associated with existing genes. Linear regression of genetic complexity on a log scale extrapolated back to just one base pair suggests the time of the origin of life 9.7 billion years ago. This cosmic time scale for the evolution of life has important consequences: life took ca. 5 billion years to reach the complexity of bacteria; the environments in which life originated and evolved to the prokaryote stage may have been quite different from those envisaged on Earth; there was no intelligent life in our universe prior to the origin of Earth, thus Earth could not have been deliberately seeded with life by intelligent aliens; Earth was seeded by panspermia; experimental replication of the origin of life from scratch may have to emulate many cumulative rare events; and the Drake equation for guesstimating the number of civilizations in the universe is likely wrong, as intelligent life has just begun appearing in our universe. Evolution of advanced organisms has accelerated via development of additional information-processing systems: epigenetic memory, primitive mind, multicellular brain, language, books, computers, and Internet. As a result the doubling time of complexity has reached ca. 20 years. Finally, we discuss the issue of the predicted technological singularity and give a biosemiotics perspective on the increase of complexity.

  5. GE Healthcare Life Sciences provides products and services used as tools for biopharmaceutical manufacturing, drug discovery and the latest in cellular technologies, thereby enabling our customers

    E-Print Network [OSTI]

    Uppsala Universitet

    GE Healthcare Life Sciences provides products and services used as tools for biopharmaceutical protein purification at Protein Tools, GE Healthcare, Uppsala Background Immobilized metal affinity independently and in collaborations. The master thesis will be carried out at GE Healthcare in Uppsala and last

  6. The Mechanized Verification of Garbage Collector Implementations

    E-Print Network [OSTI]

    Abstract The Mechanized Verification of Garbage Collector Implementations Andrew Evan Mc complex, requiring a garbage collector. Garbage collectors are becoming increasingly sophis- ticated to adapt them to high-performance, concurrent and real-time applications, making internal collector

  7. Runtime verification of object lifetime specifications

    E-Print Network [OSTI]

    Benjamin, Zev (Zev A.)

    2009-01-01T23:59:59.000Z

    This thesis reports on the implementation of a runtime verification system for object lifetime specifications. This system is used to explore and evaluate the expressiveness object lifetime specifications. Object lifetime ...

  8. An assessment of potential for benefit from integrating geographic information systems technology into life-cycle management of infrastructures a focus for infrastructure management practice

    E-Print Network [OSTI]

    Millegan, Harold Lynn

    1997-01-01T23:59:59.000Z

    : Dr. Robert L. Lytton Infrastructure life-cycle management phases with the greatest potential for benefit from Geographic Information Systems (GIS), is the subject of this thesis. The planning, design, construction, operations, maintenance... then focuses on analysis of data collected by a questionnaire sent to in&astructure managers in Texas. The survey was made to assess how important and frequently they deal with issues associated with the planning, design, construction, operation, maintenance...

  9. Recycling and Life Cycle Issues

    SciTech Connect (OSTI)

    Das, Sujit [ORNL

    2010-01-01T23:59:59.000Z

    This chapter addresses recycling and life cycle considerations related to the growing use of lightweight materials in vehicles. The chapter first addresses the benefit of a life cycle perspective in materials choice, and the role that recycling plays in reducing energy inputs and environmental impacts in a vehicle s life cycle. Some limitations of life cycle analysis and results of several vehicle- and fleet-level assessments are drawn from published studies. With emphasis on lightweight materials such as aluminum, magnesium, and polymer composites, the status of the existing recycling infrastructure and technological challenges being faced by the industry also are discussed.

  10. Life sciences

    SciTech Connect (OSTI)

    Day, L. (ed.)

    1991-04-01T23:59:59.000Z

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  11. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  12. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  13. Monitoring/Verification using DMS: TATP Example

    SciTech Connect (OSTI)

    Stephan Weeks; Kevin Kyle

    2008-03-01T23:59:59.000Z

    Field-rugged and field-programmable differential mobility spectrometry (DMS) networks provide highly selective, universal monitoring of vapors and aerosols at detectable levels from persons or areas involved with illicit chemical/biological/explosives (CBE) production. CBE sensor motes used in conjunction with automated fast gas chromatography with DMS detection (GC/DMS) verification instrumentation integrated into situational operations management systems can be readily deployed and optimized for changing application scenarios. The feasibility of developing selective DMS motes for a 'smart dust' sampling approach with guided, highly selective, fast GC/DMS verification analysis is a compelling approach to minimize or prevent the use of explosives or chemical and biological weapons in terrorist activities. Two peroxide-based liquid explosives, triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD), are synthesized from common chemicals such as hydrogen peroxide, acetone, sulfuric acid, ammonia, and citric acid (Figure 1). Recipes can be readily found on the Internet by anyone seeking to generate sufficient quantities of these highly explosive chemicals to cause considerable collateral damage. Detection of TATP and HMTD by advanced sensing systems can provide the early warning necessary to prevent terror plots from coming to fruition. DMS is currently one of the foremost emerging technologies for the separation and detection of gas-phase chemical species. This is due to trace-level detection limits, high selectivity, and small size. DMS separates and identifies ions at ambient pressures by utilizing the non-linear dependence of an ion's mobility on the radio frequency (rf) electric field strength. GC is widely considered to be one of the leading analytical methods for the separation of chemical species in complex mixtures. Advances in the technique have led to the development of low-thermal-mass fast GC columns. These columns are capable of completing runs in less than 3 minutes. Fast GC columns are also more compact than their traditional counterparts. An earlier collaborative effort involving these authors optimized a handheld, fast GC/DMS, equipped with a non-rad ionization source, for the detection of TATP (Figure 2). The unit combines the separation capabilities of GC with the selectivity of DMS. Analytes are identified both by their elution time from the column and by the characteristic response in the DMS spectrum. Analysis times required to obtain results for these analytes are approximately 80 seconds for TATP and 160 seconds for HMTD (Figure 3). The limit of detection for both TATP and HMTD is approximately 1 ng/{micro}L. Substances that could interfere with the detection of peroxide-based explosives have been studied. Both the GC elution time and the DMS spectral peak locations were unique and do not hinder the detection of either TATP or HMTD.

  14. MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP

    E-Print Network [OSTI]

    MODELING, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS, VERIFICATION AND OPTIMIZATION OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS Thesis Approved by: Dr.................................................................................................................... 16 MODELING OF HYBRID GROUND SOURCE HEAT PUMP SYSTEMS IN ENERGYPLUS

  15. M&V Guidelines: Measurement and Verification for Federal Energy...

    Office of Environmental Management (EM)

    M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0) M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 3.0)...

  16. A Tutorial on Text-Independent Speaker Verification

    E-Print Network [OSTI]

    Bimbot, Frederic

    This paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, ...

  17. ECE/CS 584: Fall 2012 Embedded System Verification

    E-Print Network [OSTI]

    Liberzon, Daniel

    powerful software tools (model checkers, SMT solvers, & theorem provers) for designing & analyzing systems · Real-time and hybrid system models, stability verification: Multiple Lyapunov functions, slow switchingECE/CS 584: Fall 2012 Embedded System Verification URL: http

  18. Verification of full functional correctness for imperative linked data structures

    E-Print Network [OSTI]

    Zee, Karen K

    2010-01-01T23:59:59.000Z

    We present the verification of full functional correctness for a collection of imperative linked data structures implemented in Java. A key technique that makes this verification possible is a novel, integrated proof ...

  19. Measurement and Verification for Commissioning Projects: Challenges and Opportunities

    E-Print Network [OSTI]

    Heinemeier, K.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-49 1 Measurement and Verification for Commissioning Projects: Challenges and Opportunities Kristin Heinemeier, Ph.D., P.E. Portland Energy Conservation, Inc., Sacramento CA Measurement and Verification (M&V) is a key...

  20. Draft M&V Guidelines: Measurement and Verification for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version 4.0) Draft M&V Guidelines: Measurement and Verification for Federal Energy Projects (Version...

  1. Shared Signals: Using Existing Facility Meters for Energy Savings Verification

    E-Print Network [OSTI]

    McBride, J. R.; Bohmer, C. J.; Price, S. D.; Carlson, K.; Lopez, J.

    of metering. Facility engineers wonder whether existing meters can be used for savings verification purposes. They want to know whether an existing energy management and control system (EMCS) can serve double duty and be used for savings verification... an existing EMCS for energy savings verification purposes is even more complex. While at first glance the idea of using an existing EMCS for energy savings verification purposes seems absolutely reasonable, the practicality of the situation must...

  2. Plug-and-Play Architectural Design and Verification

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    uses finite-state verification techniques (e.g., SPIN [17], SMV [19], LTSA [22], FLAVERS [10]) to check

  3. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  4. Dredging: Technology and environmental aspects. May 1978-July 1989 (Citations from the Life Sciences Collection data base). Report for May 1978-July 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    This bibliography contains citations concerning the technology and environmental impacts of dredging. Equipment, including semi-submersible cutter platforms, is described. Sediment movement, factors affecting sediment movement, and the disposal of dredged material, are discussed, and computer models predicting the fate of the dredged materials are considered. The environmental impacts of the dredged areas and the effects of ocean dumping of dredged material are also discussed. (This updated bibliography contains 352 citations, 22 of which are new entries to the previous edition.)

  5. Active alignment/contact verification system

    DOE Patents [OSTI]

    Greenbaum, William M. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

  6. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect (OSTI)

    YANOCHKO, R.M.

    2000-01-27T23:59:59.000Z

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  7. Software Verification and Testing Lecture Notes: Testing I

    E-Print Network [OSTI]

    Struth, Georg

    of Testing Methods dynamic testing: software component is executed with concrete input values (in a realSoftware Verification and Testing Lecture Notes: Testing I #12;Motivation verification: · powerful · automated techniques rather limited testing: (as "poor man's verification") · can only detect presence

  8. Competition on Software Verification University of Passau, Germany

    E-Print Network [OSTI]

    Beyer, Dirk

    and Analysis of Systems (TACAS). 1 Introduction The area of verification, in particular model checking, has). Several new and powerful software-verification tools became available, but they have not been comparedCompetition on Software Verification (SV-COMP) Dirk Beyer University of Passau, Germany Abstract

  9. Applied Verification: The Ptolemy Approach Chihhong Patrick Cheng

    E-Print Network [OSTI]

    stronger claims regarding the correctness of the system. Theoretically, modeling and verification should face when doing formal verifi- cation. Existing theories and practices in verification are powerful, but when applying formal techniques, the use of detailed mathematical model descriptions in verification

  10. MODELING AND VERIFICATION OF A PIPELINED CPU Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    of complex hardware and software systems. Several powerful verification methods, such as Symbolic ModelMODELING AND VERIFICATION OF A PIPELINED CPU Lubomir Ivanov Department of Computer Science, Iona interleavings of events in a system. In [8] we introduced a new partial order verification method, referred

  11. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect (OSTI)

    Moon, Duk-ho (Korean Consulate General in New York)

    2003-12-01T23:59:59.000Z

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  12. Fuel Retrieval System Design Verification Report

    SciTech Connect (OSTI)

    GROTH, B.D.

    2000-04-11T23:59:59.000Z

    The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway. Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR). A Design Verification Status Questionnaire, Table 1, is included which addresses Corrective Action SNF-EG-MA-EG-20000060, Item No.9 (Miller 2000).

  13. Measurement and Verification (M&V)

    E-Print Network [OSTI]

    Masuda, H

    2014-01-01T23:59:59.000Z

    5. Continuous Commissioning Measures 6. Measurement and Verification 2 ESL-KT-14-11-39 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Measurement and Verification (M&V) Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko...Workshop on the Continuous Commissioning® Process Joseph T. Martinez, PCC Carlos Yagua, PE Hiroko Masuda, Juan-Carlos Baltazar, PhD, PE Ahmet Ugursal, PhD Clean Air Through Energy Efficiency (CATEE) Conference, Dallas, Texas. November 18, 2014...

  14. Environmental Technology Verification Coatings and Coating Equipment Program (ETV CCEP)

    E-Print Network [OSTI]

    .2 Quality Assurance for the ETV CCEP.....................................................................1.................................................................11 2.2.12 Determination of Total Volatile Content of the UV-Curable Coating.......14 2.3 Schedule.0 QUALITY ASSURANCE OBJECTIVES.......................................

  15. Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification

    E-Print Network [OSTI]

    Bryant, Randal E.

    . Bryant Carnegie Mellon University Pittsburgh, PA 15213 Randy.Bryant@cs.cmu.edu http://www.cs.cmu/~bryant

  16. Rapid Freeform Sheet Metal Forming: Technology Development and System Verification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency2014 |

  17. Rapid Freeform Sheet Metal Forming: Technology Development and System Verification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide: PowerFrequency2014 |Matthew J. Zaluzec, Ford

  18. EXPERIMENTAL VERIFICATION OF DYNAMIC OPERATION OF

    E-Print Network [OSTI]

    Skogestad, Sigurd

    - ponent mixtures can be separated into a number of product fractions, whereas in continuous distillationEXPERIMENTAL VERIFICATION OF DYNAMIC OPERATION OF CONTINUOUS AND MULTIVESSEL BATCH DISTILLATION to the paper "Evaluation of Dynamic Models of Distillation Columns with Emphasis on the Initial Response

  19. SAVCBS 2003 Specification and Verification of

    E-Print Network [OSTI]

    Leavens, Gary T.

    ://www.cs.iastate.edu/SAVCBS/ September 1-2, 2003 Helsinki, Finland Workshop at ESEC/FSE 2003 9th European Software Engineering ConferenceSAVCBS 2003 Specification and Verification of Component-Based Systems ESEC/FSE 2003 9th European Software Engineering Conference and 11th ACM SIGSOFT Symposium on the Foundations of Software Engineering

  20. SOCIAL SECURITY NUMBER AND NAME VERIFICATION

    E-Print Network [OSTI]

    Amin, S. Massoud

    SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 2014­2015 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 2014­2015 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security

  1. SOCIAL SECURITY NUMBER AND NAME VERIFICATION

    E-Print Network [OSTI]

    Amin, S. Massoud

    SOCIAL SECURITY NUMBER AND NAME VERIFICATION Academic Year 2013­2014 *FA552-A* Please recycle. DIRECTIONS--You must verify your name and Social Security number for processing of your 2013­2014 Free Application for Federal Student Aid (FAFSA) to continue. Please attach a legible copy of your Social Security

  2. Machine Learning for Signature Verification Harish Srinivasan

    E-Print Network [OSTI]

    types of learning to be accomplished. In the first, the training set consists of genuines and forgeriesMachine Learning for Signature Verification Harish Srinivasan , Sargur N. Srihari and Matthew J it can be viewed as one that involves machine learning from a population of signatures. There are two

  3. Formal Verification of Hybrid Systems Rajeev Alur

    E-Print Network [OSTI]

    Alur, Rajeev

    -1-4503-0714-7/11/10 ...$5.00. mathematical model for design of embedded control systems is hybrid systems that combines for dynamical systems. Such models can capture both the controller -- the system under design, and the plant@cis.upenn.edu ABSTRACT In formal verification, a designer first constructs a model, with mathematically precise semantics

  4. RELAP-7 SOFTWARE VERIFICATION AND VALIDATION PLAN

    SciTech Connect (OSTI)

    Smith, Curtis L [Idaho National Laboratory; Choi, Yong-Joon [Idaho National Laboratory; Zou, Ling [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    This INL plan comprehensively describes the software for RELAP-7 and documents the software, interface, and software design requirements for the application. The plan also describes the testing-based software verification and validation (SV&V) process—a set of specially designed software models used to test RELAP-7.

  5. Vehicle Technologies Office Merit Review 2014: DC Fast Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE...

  6. Specification of Selected Performance Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas

    2006-10-06T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) is assisting the U.S. Department of Energy (DOE) Distributed Energy (DE) Program by developing advanced control algorithms that would lead to development of tools to enhance performance and reliability, and reduce emissions of distributed energy technologies, including combined heat and power technologies. This report documents phase 2 of the program, providing a detailed functional specification for algorithms for performance monitoring and commissioning verification, scheduled for development in FY 2006. The report identifies the systems for which algorithms will be developed, the specific functions of each algorithm, metrics which the algorithms will output, and inputs required by each algorithm.

  7. Life Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us count theLienert namedLife Sciences Life

  8. DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY

    E-Print Network [OSTI]

    Walter, M.Todd

    DEGREE REQUIREMENTS BIOLOGICAL ENGINEERING TECHNOLOGY ENVIRONMENTAL ENGINEERING TECHNOLOGY The curriculum in the technology programs must satisfy the College of Agriculture and Life Sciences (CALS for the technology programs are listed by subject matter in three major categories: (A) Basic Subjects, (B) Advanced

  9. verification | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1U CO FVehicle Technologies

  10. Conceptual design. Final report: TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

  11. GRIMHX verification and validation action matrix summary

    SciTech Connect (OSTI)

    Trumble, E.F.

    1991-12-01T23:59:59.000Z

    WSRC-RP-90-026, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification of the code is an integral part of this process. This document identifies the work performed and documentation generated to satisfy these action items for the Reactor Physics computer code GRIMHX. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but are found in the references. The publication of this document signals the validation and verification effort for the GRIMHX code is completed.

  12. NGSI: IAEA Verification of UF6 Cylinders

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2012-06-05T23:59:59.000Z

    The International Atomic Energy Agency (IAEA) is often ignorant of the location of declared, uranium hexafluoride (UF6) cylinders following verification, because cylinders are not typically tracked onsite or off. This paper will assess various methods the IAEA uses to verify cylinder gross defects, and how the task could be ameliorated through the use of improved identification and monitoring. The assessment will be restricted to current verification methods together with one that has been applied on a trial basis—short-notice random inspections coupled with mailbox declarations. This paper is part of the NNSA Office of Nonproliferation and International Security’s Next Generation Safeguards Initiative (NGSI) program to investigate the concept of a global monitoring scheme that uniquely identifies and tracks UF6 cylinders.

  13. Finite Model Finding for Parameterized Verification

    E-Print Network [OSTI]

    Lisitsa, Alexei

    2010-01-01T23:59:59.000Z

    In this paper we investigate to which extent a very simple and natural "reachability as deducibility" approach, originated in the research in formal methods in security, is applicable to the automated verification of large classes of infinite state and parameterized systems. The approach is based on modeling the reachability between (parameterized) states as deducibility between suitable encodings of states by formulas of first-order predicate logic. The verification of a safety property is reduced to a pure logical problem of finding a countermodel for a first-order formula. The later task is delegated then to the generic automated finite model building procedures. In this paper we first establish the relative completeness of the finite countermodel finding method (FCM) for a class of parameterized linear arrays of finite automata. The method is shown to be at least as powerful as known methods based on monotonic abstraction and symbolic backward reachability. Further, we extend the relative completeness of ...

  14. Research Data Practice in the Life Sciences 

    E-Print Network [OSTI]

    Macdonald, Stuart

    The broad aim of the RIN-funded Case Studies in Life Sciences project, undertaken by a team of social scientists and information specialists from the Institute for the Study of Science, Technology and Innovation (ISSTI) ...

  15. Survey of Existing Tools for Formal Verification.

    SciTech Connect (OSTI)

    Punnoose, Ratish J.; Armstrong, Robert C.; Wong, Matthew H.; Jackson, Mayo

    2014-12-01T23:59:59.000Z

    Formal methods have come into wide use because of their effectiveness in verifying %22safety and security%22 requirements of digital systems; a set of requirements for which testing is mostly ineffective. Formal methods are routinely used in the design and verification of high-consequence digital systems in industry. This report outlines our work in assessing the capabilities of commercial and open source formal tools and the ways in which they can be leveraged in digital design workflows.

  16. artificial life body: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    press) in Jessica Riskin (ed.) The Sistine Gap: Essays on the History and Philosophy of Artificial Life. Computer Technologies and Information Sciences Websites Summary:...

  17. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  18. Electric Vehicles: Performances, Life Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

  19. TFE design package final report, TFE Verification Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. A TFE for a megawatt class system is described. Only six cells are considered for simplicity; a megawatt class TFE would have many more cells, the exact number dependent on optimization trade studies.

  20. Logic verification using recursive learning, ATPG and transformations

    E-Print Network [OSTI]

    Paul, Debjyoti

    1996-01-01T23:59:59.000Z

    17 Example Circuits for Verification Showing an Existing Condi- tional Don't Care Condition. 33 18 Justification of the Conditional Don't Care Condition in the Ex- ample Circuits. FIGURE Page Transformation Using Conditional Don't Care Condition... of the Implementation Verification phase, sometimes it is termed Design Verification as in [17j. In this case the specification and design are both at logic level. Logic circuits can be combinational or sequential. If the circuits being compared are combinational, i...

  1. SAT-based Verification for Analog and Mixed-signal Circuits

    E-Print Network [OSTI]

    Deng, Yue

    2012-07-16T23:59:59.000Z

    The wide application of analog and mixed-signal (AMS) designs makes the verification of AMS circuits an important task. However, verification of AMS circuits remains as a significant challenge even though verification techniques for digital circuits...

  2. A golden anniversary for space-based treaty verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enabled serendipitous discoveries of remarkable natural phenomena such as cosmic gamma-ray bursts, X-ray novae and solar wind composition. Modern space-based verification systems...

  3. Introduction to Measurement and Verification for DOE Super ESPC...

    Broader source: Energy.gov (indexed) [DOE]

    and verification is conducted in super energy savings performance contracts (ESPC) projects. Topics include allocating project risk, steps to verify savings, and M&V...

  4. Measurement and Verification for Federal Energy Savings Performance Contracts

    Broader source: Energy.gov [DOE]

    Measurement and verification (M&V) activities help agencies confirm that legally and contractually required savings guarantees are met in federal energy savings performance contracts (ESPCs).

  5. Example Measurement & Verification Plan for a Super ESPC Project

    Broader source: Energy.gov [DOE]

    Report features a comprehensive measurement and verification (M&V) plan for a fictitious super energy savings performance contract (ESPC) project.

  6. ESPC Measurement and Verification (M&V) Planning Tool

    Broader source: Energy.gov [DOE]

    Document provides instructions for Federal agencies on how to use a measurement and verification (M&V) planning tool for energy savings performance contracts (ESPCs).

  7. Optimization Online - Termination and Verification for Ill-Posed ...

    E-Print Network [OSTI]

    Christian Jansson

    2005-06-17T23:59:59.000Z

    Jun 17, 2005 ... Termination and Verification for Ill-Posed Semidefinite Programming Problems. Christian Jansson (jansson ***at*** tu-harburg.de). Abstract: ...

  8. assertions based verification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A possible explanation is given. 1 SCIAMACHY'S PMD CHANNELS Graaf, Martin de 418 LTSA-WS: a tool for modelbased verification of web service compositions and choreography...

  9. Thermal Hydraulic Modeling: Cross-Verification, Validation and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aleks Obabko, Paul Fischer, and Tim Tautges, Argonne National Laboratory Thermal Hydraulic Modeling: Cross-Verification, Validation and Co-design PI Name: Paul F. Fischer PI...

  10. attribute verification system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our results are well founded. Index TermsBiometric verification systems, statistical pattern recognition, Bayes error rate, rejection error rate, hand geometry, human face....

  11. Measurement and Verification, Best Practices in Design and Implementation

    E-Print Network [OSTI]

    Martin, T.; Khatami, H.

    2013-01-01T23:59:59.000Z

    . Measurement?and? Verification,?Best?Practices? in?Design?and? Implementation Tom?Martin? CMVP,?LEED?AP Homay?Khatami? CEM,?LEED?AP PMP,?CMC? 1. Definition?of?Measurement?and?Verification?(M&V) 2. Applications?of?M&V 3. Specific.... Analyze?? Reporting M&V,?Best?Practices?in?Design?and?Implementation ?Measurement?and?Verification?is?the?process? of?using?measurements?to?reliably?determine? actual?savings? International?Performance?Measurement?and? Verification?Protocol?? Vol I...

  12. NEMVP: North American energy measurement and verification protocol

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This measurement and verification protocol discusses procedures that,when implemented, allow buyers, sellers, and financiers of energy projects to quantify energy conservation measure performance and savings.

  13. Mechanical Verification of Hypercube Algorithms Eric Gascard, Laurence Pierre

    E-Print Network [OSTI]

    Pierre, Laurence

    Mechanical Verification of Hypercube Algorithms Eric Gascard, Laurence Pierre LIM ­ CMI in the development of parallel programs, rather few results have been reported re­ garding solutions for formally

  14. Advanced Waste Management Now Available as Accredited SEP Verification...

    Office of Environmental Management (EM)

    "Our auditing teams provide robust, independent confirmation that a facility conforms to ISO 50001 and has really improved its energy performance." SEP Verification Bodies...

  15. Technical safety requirements control level verification

    SciTech Connect (OSTI)

    STEWART, J.L.

    1999-05-21T23:59:59.000Z

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL concluded that the TSR control level verification process is clear and logically based upon DOE Order 5480.22, Technical Safety Requirements, and other TSR control selection guidelines. The process provides a documented, traceable basis for TSR level decisions and is a valid reference for preparation of new TSRs.

  16. Measurement and Verification Options for Federal Energy- and Water-Saving Projects

    Broader source: Energy.gov [DOE]

    Federal Energy Management Program (FEMP) measurement and verification (M&V) guidelines and International Performance Measurement and Verification Protocol M&V methodologies are broken into four options.

  17. A role for arms control and technology in peace-keeping operations

    SciTech Connect (OSTI)

    Indusi, J.; Allentuck, J.

    1995-08-01T23:59:59.000Z

    This paper describes a potential role for arms control monitoring technology in peace-keeping operations. The basic idea is to utilize monitoring technology developed or suggested for treaty verification (primarily Conventional Forces Europe (CFE), but other treaties as well) to minimize the exposure of humans as part of ``peace-keeping`` forces in various trouble spots throughout the world. The impetus comes from the dangers and high costs of stationing peace-keeping of forces in areas such as Bosnia-Herzegovina. Aside from the costs associated with such efforts the loss of life has escalated recently from 743 peace keepers lost from 1948 to 1988, to 180 lives lost in 1993 alone. Some potential advantages to using technology for certain monitoring roles are discussed in the paper and include: minimizing exposure/risk to peace-keeping personnel from hostile fire, hostage taking, etc.; sharable technology will allow all parties to view results, assess violations or transgressions, etc.; can be applied to equipment, railways, roads, etc., to confirm human and other monitoring capabilities; and provides data to settle disputes on which side initiated hostilities.

  18. Synergy among international monitoring system technologies

    SciTech Connect (OSTI)

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C.; Preston, R.R.; Trost, L.C.

    1996-08-01T23:59:59.000Z

    This paper describes the results of an International Monitoring System synergy study using Sandia National Laboratory`s IVSEM (Integrated Verification System Evaluation Model). The study compares individual subsystem performance (seismic, infrasound, radionuclide, and hydroacoustic) with integrated system performance. The integrated system exhibits synergy because different sensor technologies cover different locations; thus, the integrated system covers more locations than can any individual subsystem. Energy and system performance can be further enhanced by allowing mixed technology detection and location.

  19. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30T23:59:59.000Z

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  20. The EPRI/DOE Utility Wind Turbine Performance Verification Program

    SciTech Connect (OSTI)

    Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-01-01T23:59:59.000Z

    In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

  1. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  2. Prospective Life Cycle and Technology Analysis

    Energy Savers [EERE]

    Published * Huang, R., M.E. Riddle, D.J. Graziano, J.A. Warren, S. Das, S. Nimbalkar, J. Cresko, and E. Masanet (2015). "The Energy and Emissions Saving Potential of...

  3. SCIENCE, TECHNOLOGY AND THE QUALITY OF LIFE

    E-Print Network [OSTI]

    Calvin, Melvin

    2012-01-01T23:59:59.000Z

    which will use the sun 1 s energy as a source of materialsis fusion energy, with the fusion reactor, i.e. , the sun,

  4. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next >PresentationsNowPromotingDepartmentProspective

  5. Bringing Technology to Life | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials FindAdvanced MaterialsDepartment

  6. Optimal combination of data verification and materials accountancy

    SciTech Connect (OSTI)

    Beedgen, R.; Hafer, J.F.

    1982-01-01T23:59:59.000Z

    Materials accountancy accompanied by data verification is one of the main elements in international safeguards of nuclear material. In this paper statistical combinations of materials accountancy and data verification are discussed with the boundary condition of a fixed total false-alarm probability.

  7. Evaluating Verification and Validation Methods in Knowledge Engineering

    E-Print Network [OSTI]

    Chen-Burger, Yun-Heh (Jessica)

    Evaluating Verification and Validation Methods in Knowledge Engineering Alun Preece University: Verification and validation (V&V) techniques have always been an essential part of the knowledge engineering effective V&V techniques. 1. The Art of Knowledge Engineering Knowledge-based systems (KBS) have proven

  8. Comparison-based File Server Verification Yuen-Lin Tan

    E-Print Network [OSTI]

    Comparison-based File Server Verification Yuen-Lin Tan£ , Terrence Wong, John D. Strunk, Gregory R. Ganger Carnegie Mellon University Abstract Comparison-based server verification involves testing a server by comparing its responses to those of a refer- ence server. An intermediary, called a "server Tee," in

  9. First Eye Movement Verification and Identification Competition at BTAS 2012

    E-Print Network [OSTI]

    Oleg, Komogortsev - Department of Computer Science, Texas State University

    First Eye Movement Verification and Identification Competition at BTAS 2012 Pawel Kasprowski11,ak26}@txstate.edu Abstract--This paper presents the results of the first eye movement verification and methods used in the competition. The results highlight the importance of very careful eye positional data

  10. Verification of Probabilistic Real-time Systems Marta Kwiatkowska1

    E-Print Network [OSTI]

    Oxford, University of

    widely taken up (downloaded more than 20,000 times) and used for quan- titative verification in a broad of (priced) probabilistic timed automata. These model systems exhibiting probabilistic, nondeterministic-time characteristics, through support for verification of (priced) probabilistic timed automata. PRISM already provides

  11. Modular Verification of Timed Circuits Using Automatic Abstraction

    E-Print Network [OSTI]

    Zheng, Hao

    Modular Verification of Timed Circuits Using Automatic Abstraction Hao Zheng, Eric Mercer, Member for verification of timed circuits using automatic abstraction. This approach partitions the design into modules by the RAPPID instruction length decoder designed at Intel [2]. This design was 3 times faster while using only

  12. Formal Verification of Infinite State Systems Using Boolean Methods #

    E-Print Network [OSTI]

    Bryant, Randal E.

    Formal Verification of Infinite State Systems Using Boolean Methods # Randal E. Bryant School automated formal verification tools are based on a bit­level model of computation, where a set of Boolean state variables encodes the system state. Using powerful inference engines, such as Binary Decision

  13. Quantitative Verification: Models, Techniques and Tools Marta Kwiatkowska

    E-Print Network [OSTI]

    Oxford, University of

    verification is an analogous technique for establishing quantitative properties of a system modelQuantitative Verification: Models, Techniques and Tools Marta Kwiatkowska Oxford University of the state-transition graph of the model and is therefore more powerful than test- ing. Quantitative

  14. Integrating Formal Verification into Computer Organization and Architecture Courses

    E-Print Network [OSTI]

    Ivanov, Lubomir

    to formal verification is based on the theory of - automata [5]. Given a model of the system in terms industry and have led to the development of powerful verification tools. However, the popularity facts about a mathematical model of the system under consideration. The proofs are general enough

  15. Formal Verification of Infinite State Systems Using Boolean Methods

    E-Print Network [OSTI]

    Bryant, Randal E.

    Formal Verification of Infinite State Systems Using Boolean Methods Randal E. Bryant School automated formal verification tools are based on a bit-level model of computation, where a set of Boolean state variables encodes the system state. Using powerful inference engines, such as Binary Decision

  16. Specification and Formal Verification of Interconnect Bus Protocols Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    and functionality of devices has brought about the need for more powerful modeling and verification tools. Classical is using first generation formal verification tools based on Symbolic Model Checking [1] and -Automata of using partial orders in modeling and verifying system behavior is in avoiding the need to study all

  17. VIS Analyzer: A Visual Assistant for VIS Verification and Analysis

    E-Print Network [OSTI]

    Institute of Nuclear Safety), often mandate that developers or SQA (Software Quality Assurance) teams apply in demonstrating the quality of safety-critical [1] systems such as nuclear power plants. We have used the VIS necessary to understand the full verification scenario accurately. Many nuclear engineers and verification

  18. Lawson Job Description Acknowledgment Verification Instructions Log In to Lawson

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    Lawson Job Description Acknowledgment Verification Instructions · Log In to Lawson o Lawson Web Lawson e-mail your password to you. Updated 3/15/10 Page 1 of 3 #12;Lawson Job Description Acknowledgment Verification Instructions Click "Employee's Sign-off of their Job Description" · Click "Employee's Sign

  19. Power Grid Voltage Integrity Verification Department of ECE

    E-Print Network [OSTI]

    Najm, Farid N.

    Power Grid Voltage Integrity Verification Maha Nizam Department of ECE University of Toronto devgan@magma-da.com ABSTRACT Full-chip verification requires one to check if the power grid is safe, i.e., if the voltage drop on the grid does not exceed a cer- tain threshold. The traditional simulation-based solution

  20. ATTRIBUTE VERIFICATION SYSTEMS WITH INFORMATION BARRIERS FOR CLASSIFIED FORMS OF PLUTONIUM IN THE TRILATERAL INITIATIVE

    SciTech Connect (OSTI)

    Langner, D. C. (Diana C.); Hsue, S.-T. (Sin-Tao); MacArthur, D. W. (Duncan W.); Nicholas, N. J. (Nancy J.); Whiteson, R. (Rena); Gosnell, T. B. (Thomas B.); Koening, Z. (Zachary); Wolford, J. K. (James K.); Aparo, Massimo; Kulikov, Iouri; Puckett, J. M. (John M.); Whichello, J. (Julian); Razinkov, S. (Sergei); Livke, A. (Alexander)

    2001-01-01T23:59:59.000Z

    A team of technical experts from the Russian Federation, the International Atomic Energy Agency (IAEA), and the United States has been working since December 1997 to develop a toolkit of instruments that could be used to verify plutonium-bearing items that have classified characteristics in nuclear weapons states. This suite of instruments is similar in many ways to standard safeguards equipment and includes high-resolution gamma-ray spectrometers, neutron multiplicity counters, gross neutron counters, and gross gamma-ray detectors. In safeguards applications, this equipment is known to be robust and authentication methods are well understood. However, this equipment is very intrusive, and a traditional safeguards application of such equipment for verification of materials with classified characteristics would reveal classified information to the inspector. Several enabling technologies have been or are being developed to facilitate the use of these trusted, but intrusive safeguards technologies. In this paper, these new technologies will be described.

  1. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect (OSTI)

    Richman, Eric E.

    2012-10-31T23:59:59.000Z

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  2. Core analysis workstation development and verification

    SciTech Connect (OSTI)

    Mays, C.W.; Kochendarfer, R.A.; Mays, B.E.

    1987-01-01T23:59:59.000Z

    An engineering workstation utilizing a three-dimensional reactor simulator along with a series of auxiliary programs has been developed for use in predicting core reactivity and power distributions. This workstation can be used by both core analysis and core operations personnel. Expected applications are power distribution analyses, technical specification limit verification, and various types of reactivity analyses. Reactor operations personnel can quickly simulate load follow or other reactor maneuvers and, through the interactive graphics capability of the personal computer, the reactor responses, such as power distribution and control rod position, can be displayed and understood by operations personnel.

  3. Headquarters Employment Verification | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAMResourceEmployment Verification Headquarters

  4. Energy Savings Performance Contracting-Savings Measurement and Verification Transcript 2-24-2011.doc

    Broader source: Energy.gov [DOE]

    Energy Savings Performance Contracting-Savings Measurement and Verification Transcript 2-24-2011.doc

  5. State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V)

    Broader source: Energy.gov [DOE]

    State and Local Energy Savings Performance Contracting: Savings Measurement and Verification (M&V) Webinar.

  6. Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

    Broader source: Energy.gov [DOE]

    Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

  7. Verification of the Equilibrium and MHD Stability Codes within the Integrated Tokamak Modeling Task Force

    E-Print Network [OSTI]

    Verification of the Equilibrium and MHD Stability Codes within the Integrated Tokamak Modeling Task Force

  8. Comment submitted by Whirlpool Corporation regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Whirlpool Corporation regarding the Energy Star Verification Testing Program

  9. Compositional Reactive Semantics of SystemC and Verification with RuleBase

    E-Print Network [OSTI]

    Gupta, Rajesh

    C. Keywords: SystemC, semantics, verification, model checking 1 Introduction System-level modeling using for verification of SystemC com- ponents, providing a powerful workbench for testing and verification. 2 OverviewCompositional Reactive Semantics of SystemC and Verification with RuleBase Rudrapatna K

  10. 1-4244-0665-X/06/$20.00 2006 IEEE 781 2006 Electronics Packaging Technology Conference Development of Life Prediction Model for Lead-free Solder at Chip Resistor

    E-Print Network [OSTI]

    Berlin,Technische Universität

    of Life Prediction Model for Lead-free Solder at Chip Resistor Changwoon Han and Byeongsuk Song-mail : cw_han@keti.re.kr Abstract An accelerated thermal cycling test to assess the reliability of lead-free solders at chip resistor has been conducted. Test results indicate that the life of lead-free solder

  11. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  12. Image Hashes as Templates for Verification

    SciTech Connect (OSTI)

    Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.; Seifert, Allen; McDonald, Benjamin S.; White, Timothy A.

    2012-07-17T23:59:59.000Z

    Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images, and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the information contained in the hashed image data (available out-of-IB) cannot be used to extract sensitive information about the imaged object is of primary concern. Thus the techniques are characterized by high unpredictability to guarantee security. We will present an assessment of the performance of our techniques with respect to security, sensitivity and robustness on the basis of a methodical and mathematically precise framework.

  13. Evolving technologies for disaster planning in U.S. Cities

    E-Print Network [OSTI]

    Ng, Vanessa Mei-Yee

    2011-01-01T23:59:59.000Z

    The rapid development of modem technology has increased access to and reliance on sophisticated communication and real time technology. These technologies, which have become embedded within everyday life, have significant ...

  14. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Kulkarni, Gourihar R.; Munley, John T.; Nelson, Danny A.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

    2012-07-17T23:59:59.000Z

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids, producing a small atomic uranium vapor plume. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement is independent of chemical form and degree of dilution with nuisance dust and other materials. LAARS has high relative precision and detection limits approaching the femtogram range for U-235. The sample is scanned and assayed point-by-point at rates reaching 1 million measurements/hour, enabling LAARS to detect and analyze uranium in trace samples. The spectrometer is assembled using primarily commercially available components and features a compact design and automated analysis.Two specific gaseous centrifuge enrichment plant (GCEP) applications of the spectrometer are currently under development: 1) LAARS-Environmental Sampling (ES), which collects and analyzes aerosol particles for GCEP misuse detection and 2) LAARS-Destructive Assay (DA), which enables onsite enrichment DA sample collection and analysis for protracted diversion detection. The two applications propose game-changing technological advances in GCEP safeguards verification.

  15. Automated Verification of Quantum Protocols using MCMAS

    E-Print Network [OSTI]

    F. Belardinelli; P. Gonzalez; A. Lomuscio

    2012-07-04T23:59:59.000Z

    We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC), an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.

  16. Automated Verification of Practical Garbage Collectors

    E-Print Network [OSTI]

    Hawblitzel, Chris

    2010-01-01T23:59:59.000Z

    Garbage collectors are notoriously hard to verify, due to their low-level interaction with the underlying system and the general difficulty in reasoning about reachability in graphs. Several papers have presented verified collectors, but either the proofs were hand-written or the collectors were too simplistic to use on practical applications. In this work, we present two mechanically verified garbage collectors, both practical enough to use for real-world C# benchmarks. The collectors and their associated allocators consist of x86 assembly language instructions and macro instructions, annotated with preconditions, postconditions, invariants, and assertions. We used the Boogie verification generator and the Z3 automated theorem prover to verify this assembly language code mechanically. We provide measurements comparing the performance of the verified collector with that of the standard Bartok collectors on off-the-shelf C# benchmarks, demonstrating their competitiveness.

  17. Patient position verification using small IMRT fields

    SciTech Connect (OSTI)

    Bol, G. H.; Heide, U. A. van der; Nederveen, A. J.; Kotte, A. N. T. J.; Lagendijk, J. J. W. [Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2006-07-15T23:59:59.000Z

    A commonly used approach to quantify and minimize patient setup errors is by using electronic portal imaging devices (EPIDs). The position of the tumor can be verified indirectly by matching the bony anatomy to a reference image containing the same structures. In this paper we present two off-line methods for detecting the position of the bony anatomy automatically, even if every single portal image of each segment of an IMRT treatment beam contains insufficient matching information. Extra position verification fields will no longer be necessary, which reduces the total dose to the patient. The first method, the stack matching method (SMM), stacks the portal image of each segment of a beam to a three dimensional (3D) volume, and this volume is subsequently used during the matching phase. The second method [the averaged projection matching method (APMM)], is a simplification of the first one, since the initially created volume is reduced again to a 2D artificial image, which speeds up the matching procedure considerably, without a significant loss of accuracy. Matching is based on normalized mutual information. We demonstrate our methods by comparing them to existing matching routines, such as matching based on the largest segment. Both phantom and patient experiments show that our methods are comparable with the results obtained from standard position verification methods. The matches are verified by means of visual inspection. Furthermore, we show that when a distinct area of 40-60 cm{sup 2} of the EPID is exposed during one treatment beam, both SMM and APMM are able to deliver a good matching result.

  18. Technology Services @ Pitt 2014 2015 PittStart

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Technology Services @ Pitt 2014 ­ 2015 PittStart #12;Technology Services @ Pitt · We provide the technology tools and services that make your life at Pitt easier! Visit us at technology.pitt.edu Presentation available at technology.pitt.edu\\pittstart #12;Technology Services @ Pitt facebook

  19. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect (OSTI)

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24T23:59:59.000Z

    Engineered covers have been placed on top of buried/subsurface wastes to minimize water infiltration and therefore, release of hazardous contaminants. In order for the cover to protect the environment it must remain free of holes and breaches throughout its service life. Covers are subject to subsidence, erosion, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. The U.S. Department of Energy Environmental Management (DOE-EM) Program 2006 Accelerated Cleanup Plan is pushing for rapid closure of many of the DOE facilities. This will require a great number of new cover systems. Some of these new covers are expected to maintain their performance for periods of up to 1000 years. Long-term stewardship will require monitoring/verification of cover performance over the course of the designed lifetime. In addition, many existing covers are approaching the end of their design life and will need validation of current performance (if continued use is desired) or replacement (if degraded). The need for a reliable method of verification and long-term monitoring is readily apparent. Currently, failure is detected through monitoring wells downstream of the waste site. This is too late as the contaminants have already left the disposal area. The proposed approach is the use of gaseous Perfluorocarbon tracers (PFT) to verify and monitor cover performance. It is believed that PFTs will provide a technology that can verify a cover meets all performance objectives upon installation, be capable of predicting changes in cover performance and failure (defined as contaminants leaving the site) before it happens, and be cost-effective in supporting stewardship needs. The PFTs are injected beneath the cover and air samples taken above (either air samples or soil gas samples) at the top of the cover. The location, concentrations, and time of arrival of the tracer(s) provide a direct measure of cover performance. PFT technology can be used as a non-invasive method (if injection ports are emplaced prior to cover emplacement) on new covers or a minimally invasive method on existing covers. PFT verification will be useful at all buried waste sites using a cover system (e.g., treated or untreated chemical waste landfills) including DOE, commercial, and private sector sites. This paper discusses the initial field trial of the PFT cover monitoring system performed at the Savannah River Site (SRS) in FY01. The experiments provided a successful proof-of-principle test of the PFT technology in monitoring caps and covers. An injection and sampling array was installed in the Bentomat test cap at the SRS Caps Test Facility. This system contained 6 feet of sandy soil beneath a 1/2 inch geosynthetic clay liner covered by an HDPE liner which was covered by 2 feet of clayey top soil. PFTs were injected into the sandy soil though a pre-existing system of access pipes below the cap and soil gas samples were taken on top of the cap. Mid-way into the injection period a series of 1 1/2 inch holes were punched into the cap (through the geomembrane) to provide a positive breach in the cap. Data will be presented that shows the initial cap was fairly tight and leak free and that the artificially induced leaks were detectable within two hours of occurrence.

  20. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    M&V Guidelines: Measurement and Verifi cation for Federal Energy Projects Version 3.0 M&V Guidelines: Measurement and Verification for Federal Energy Projects Version 3.0 Prepared...

  1. M&V Guidelines: Measurement and Verification for Federal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    M&V Guidelines: Measurement and Verification for Federal Energy Projects Version 4.0 Prepared for the U.S. Department of Energy Federal Energy Management Program By

  2. IT Licentiate theses Practical Verification of Real-Time Systems

    E-Print Network [OSTI]

    David, Alexandre

    IT Licentiate theses 2001-013 Practical Verification of Real-Time Systems ALEXANDRE DAVID UPPSALA UPPSALA SWEDEN Dissertation for the degree of Licentiate of Philosophy in Computer Science at Uppsala

  3. IT Licentiate theses Practical Verification of RealTime Systems

    E-Print Network [OSTI]

    David, Alexandre

    IT Licentiate theses 2001­013 Practical Verification of Real­Time Systems ALEXANDRE DAVID UPPSALA UPPSALA SWEDEN Dissertation for the degree of Licentiate of Philosophy in Computer Science at Uppsala

  4. A Framework for Verification of Software with Time and Probabilities

    E-Print Network [OSTI]

    Oxford, University of

    verification techniques are able to establish sys- tem properties such as "the probability of an airbag failing quantitative properties. These might include, for example, "the probability of an airbag failing to deploy

  5. DRAFT Measurement & Verification Guidelines Version 4.0

    Broader source: Energy.gov [DOE]

    Document describes the Federal Energy Management Program's (FEMP) standard procedures and guidelines for measurement and verification (M&V) for federal energy managers, procurement officials, and energy service providers.

  6. Introduction to Measurement and Verification for DOE Super ESPC Projects

    Broader source: Energy.gov [DOE]

    Document offers an overview of why and how measurement and verification is conducted in super energy savings performance contracts (ESPC) projects. Topics include allocating project risk, steps to verify savings, and M&V plans and reports.

  7. INL/EXT-14-33201 RELAP-7 Software Verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 RELAP-7 Software Verification and Validation Plan Curtis L. Smith Yong-Joon Choi Ling Zou September 25, 2014 NOTICE This report was prepared as an account of work sponsored by...

  8. Precise Steps for Choreography Modeling for SOA Validation and Verification

    E-Print Network [OSTI]

    Southampton, University of

    as the next evolutionary step to cope with the software complexity of ERP systems where monolithic approaches component models by verification. This fits well into the model-driven development approach practiced at SAP

  9. Process Abstraction in the Verification of Temporal Properties 

    E-Print Network [OSTI]

    Bruns, Glen R

    as abstraction operations. We show that an abstract process satisfies a property expressed as a temporal logic formula just if the original process satisfies a transformed formula. We define various abstraction operators and illustrate their use in verification...

  10. Commissioning tools for life-cycle building performance assurance

    SciTech Connect (OSTI)

    Piette, M.A. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-05-01T23:59:59.000Z

    This paper discusses information systems for building life-cycle performance analysis and the use of computer-based commissioning tools within this context. There are many reasons why buildings do not perform in practice as well as intended at the design stage. One reason is the lack of commissioning. A second reason is that design intent is not well documented, and performance targets for building components and systems are not well specified. Thus, criteria for defining verification and functional tests is unclear. A third reason is that critical information is often lost throughout the building life-cycle, which causes problems such as misunderstanding of operational characteristics and sequences and reduced overall performance. The life-cycle building performance analysis tools project discussed in this paper are focused on chillers and cooling systems.

  11. Verification and Validation of RADTRAN 5.5.

    SciTech Connect (OSTI)

    Osborn, Douglas.; Weiner, Ruth F.; Mills, George Scott; Hamp, Steve C.

    2005-02-01T23:59:59.000Z

    This document contains a description of the verification and validation process used for the RADTRAN 5.5 code. The verification and validation process ensured the proper calculational models and mathematical and numerical methods were used in the RADTRAN 5.5 code for the determination of risk and consequence assessments. The differences between RADTRAN 5 and RADTRAN 5.5 are the addition of tables, an expanded isotope library, and the additional User-Defined meteorological option for accident dispersion. 3

  12. Enhanced verification test suite for physics simulation codes

    SciTech Connect (OSTI)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory

    2008-09-01T23:59:59.000Z

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  13. A robot manipulator calibration procedure with experimental verification

    E-Print Network [OSTI]

    Padavala, Satya Srinivas

    1988-01-01T23:59:59.000Z

    A ROBOT MANIPULATOR CALIBRATION PROCEDURE WITH EXPERIMENTAL VERIFICATION A Thesis by SATYA SRINIVAS PADAVALA Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1988 Major Subject: Mechanical Engineering A ROBOT MANIPULATOR CALIBRATION PROCEDURE WITH EXPERIMENTAL VERIFICATION A Thesis by SATYA SRINIVAS PADAVALA Approved as to style and content by: njamin W. M ng (Chairman of Co 'ttee) jr gi...

  14. Become an SEP Verification Body | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind SitingVerification Body Become an SEP Verification

  15. Technology's Impact on Production

    SciTech Connect (OSTI)

    Rachel Amann; Ellis Deweese; Deborah Shipman

    2009-06-30T23:59:59.000Z

    As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

  16. Monitoring, Verification and Reporting: Improving Compliance...

    Open Energy Info (EERE)

    S&L programmes. A detailed set of critical elements necessary for successful MVE. Two case studies showing practical applications of MVE to technology types or within a...

  17. Monitoring, Verification, Accounting, and Assessment Archived...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Inc. Harvard School of Public Health Ohio University 382000 National Carbon Sequestration Database and Geographical Information System (NATCARB) University of...

  18. Modelling and Formal Verification of Timing Aspects in Large PLC Programs

    E-Print Network [OSTI]

    Fernandez Adiego, B; Blanco Vinuela, E; Tournier, J-C; Gonzalez Suarez, V M; Blech, J O

    2014-01-01T23:59:59.000Z

    One of the main obstacle that prevents model checking from being widely used in industrial control systems is the complexity of building formal models out of PLC programs, especially when timing aspects need to be integrated. This paper brings an answer to this obstacle by proposing a methodology to model and verify timing aspects of PLC programs. Two approaches are proposed to allow the users to balance the trade-off between the complexity of the model, i.e. its number of states, and the set of specifications possible to be verified. A tool supporting the methodology which allows to produce models for different model checkers directly from PLC programs has been developed. Verification of timing aspects for real-life PLC programs are presented in this paper using NuSMV.

  19. Simplifying EPID dosimetry for IMRT treatment verification

    SciTech Connect (OSTI)

    Pecharroman-Gallego, R.; Mans, Anton; Sonke, Jan-Jakob; Stroom, Joep C.; Olaciregui-Ruiz, Igor; Herk, Marcel van; Mijnheer, Ben J. [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2011-02-15T23:59:59.000Z

    Purpose: Electronic portal imaging devices (EPIDs) are increasingly used for IMRT dose verification, both pretreatment and in vivo. In this study, an earlier developed backprojection model has been modified to avoid the need for patient-specific transmission measurements and, consequently, leads to a faster procedure. Methods: Currently, the transmission, an essential ingredient of the backprojection model, is estimated from the ratio of EPID measurements with and without a phantom/patient in the beam. Thus, an additional irradiation to obtain ''open images'' under the same conditions as the actual phantom/patient irradiation is required. However, by calculating the transmission of the phantom/patient in the direction of the beam instead of using open images, this extra measurement can be avoided. This was achieved by using a model that includes the effect of beam hardening and off-axis dependence of the EPID response on photon beam spectral changes. The parameters in the model were empirically obtained by performing EPID measurements using polystyrene slab phantoms of different thickness in 6, 10, and 18 MV photon beams. A theoretical analysis to verify the sensitivity of the model with patient thickness changes was performed. The new model was finally applied for the analysis of EPID dose verification measurements of step-and-shoot IMRT treatments of head and neck, lung, breast, cervix, prostate, and rectum patients. All measurements were carried out using Elekta SL20i linear accelerators equipped with a hydrogenated amorphous silicon EPID, and the IMRT plans were made using PINNACLE software (Philips Medical Systems). Results: The results showed generally good agreement with the dose determined using the old model applying the measured transmission. The average differences between EPID-based in vivo dose at the isocenter determined using either the new model for transmission and its measured value were 2.6{+-}3.1%, 0.2{+-}3.1%, and 2.2{+-}3.9% for 47 patients treated with 6, 10, and 18 MV IMRT beams, respectively. For the same group of patients, the differences in mean {gamma} analysis (3% maximum dose, 3 mm) were 0.16{+-}0.26%, 0.21{+-}0.24%, and 0.02{+-}0.12%, respectively. For a subgroup of 11 patients, pretreatment verification was also performed, showing similar dose differences at the isocenter: -1.9{+-}0.9%, -1.4{+-}1.2%, and -0.4{+-}2.4%, with somewhat lower mean {gamma} difference values: 0.01{+-}0.09%, 0.01{+-}0.07%, and -0.09{+-}0.10%, respectively. Clinical implementation of the new model would save 450 h/yr spent in measurement of open images. Conclusions: It can be concluded that calculating instead of measuring the transmission leads to differences in the isocenter dose generally smaller than 2% (2.6% for 6 MV photon beams for in vivo dose) and yielded only slightly higher {gamma}-evaluation parameter values in planes through the isocenter. Hence, the new model is suitable for clinical implementation and measurement of open images can be omitted.

  20. New technologies for item monitoring

    SciTech Connect (OSTI)

    Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-01T23:59:59.000Z

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  1. Interim Letter Report - Verification Survey of Partial Grid E9, David Witherspoon, Inc. 1630 Site Knoxville, Tennessee

    SciTech Connect (OSTI)

    P.C. Weaver

    2008-06-12T23:59:59.000Z

    Conduct verification surveys of available grids at the DWI 1630 in Knoxville, Tennessee. A representative with the Independent Environmental Assessment and Verification (IEAV) team from ORISE conducted a verification survey of a partial area within Grid E9.

  2. Organics Verification Study for Sinclair and Dyes Inlets, Washington

    SciTech Connect (OSTI)

    Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

    2006-09-28T23:59:59.000Z

    Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard and Intermediate Maintenance Facility Superfund Site, where further source-control actions and monitoring are under way.

  3. Understanding correlation coefficients in treaty verification. Revised

    SciTech Connect (OSTI)

    DeVolpi, A.

    1993-02-01T23:59:59.000Z

    When a pair of images is compared on a point-by-point basis, the linear-correlation coefficient is usually used as a measure of similarity or dissimilarity. This report evaluates the theoretical underpinnings and limitations of the linear-correlation coefficient, as well as other related statistics, particularly for cases where inherent white noise is present. As a result of the limitations in linear-correlation, an additional step has been derived -- local-sum clustering -- in order to improve recognition of small dissimilarities in a pair of otherwise identical images. Results show an optimal three-stage procedure: first, establish congruence of the two images; second, use the linear-correlation coefficient as a test of true negatives; and, third, qualify a true positive by using the cluster (local-sum) method. These three algorithmic stages would be especially useful in application to arms control treaty verification, particularly for comparison of unique identifiers (tags or seals). This is illustrated by comparing scanning-electron microscope topographical images for an intrinsic-surface tag.

  4. Newsletter No.7 NOV 2002TechnologyScenarios Knowledge and technology

    E-Print Network [OSTI]

    Newsletter No.7 NOV 2002TechnologyScenarios Knowledge and technology are expected to be amongst Technology Scenarios (TES) System Analysis Department Risø National Laboratory P.O. Box 49 DK 4000 Roskilde-mapping, life cycle assessment, and risk analysis. As part of Risø, we profess an understanding of technology

  5. University Life Strategic Plan UNIVERSITY LIFE

    E-Print Network [OSTI]

    for the demands of work, social responsibility, and life in an ever-changing global society. Through a range well-being, post-graduation success Increased retention and timely degree completion Increased Engagement) #12;2 University Life is committed to preparing students for the demands of work, social

  6. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect (OSTI)

    Paul, J. N.; Chin, M. R.; Sjoden, G. E. [Nuclear and Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 770 State St, Atlanta, GA 30332-0745 (United States)

    2013-07-01T23:59:59.000Z

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  7. Wind energy development experience central and south west: EPRI/DOE-turbine verification program

    SciTech Connect (OSTI)

    Marshall, W.; Treece, J. [Central and South West Services, Inc., Dallas, TX (United States)

    1995-12-31T23:59:59.000Z

    The Turbine Verification Program (TVP) is a partnership of the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE) and utility participants. The objectives of the TVP program are as follows: (1) Provide a limited market for newly designed wind turbines prior to their achievement of a fully commercial status. (2) Share the cost of the project so that it can be considered a prudent capital investment. (3) Determine the economic viability of wind turbine generation. (4) Promote utility participation in wind power projects and the evaluation of the latest commercial wind turbines. (5) Determine and document the performance of the wind turbines to meet TVP objectives. (6) Communicate the experiences gained in a turbine verification project to other utilities and turbine manufacturers. (7) Create a project whereby the expertise available through EPRI and DOE National Renewable Energy Laboratory is readily accessible for utilities in their early use of wind power. EPRI and DOE awarded funds to select utilities based on the proposed projects ability to help commercialize state-of-the-art wind turbine technology. The funding will cover a portion of the costs associated with a 6 MW wind farm. In addition to funding the project, EPRI and the DOE National Renewable Energy Laboratory (NREL) provided valuable technical expertise.

  8. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  9. Sandia National Laboratories: rotor structural verification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy Rotor fixation stands, one for each Scaled Wind Farm Technology (SWiFT) facility turbine, have been built. The stands will be used to...

  10. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  11. Field Scale Test and Verification of CHP System at the Ritz Carlton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco,...

  12. Employment Verification and Compensation Release Authorization Form Forward the completed form

    E-Print Network [OSTI]

    Employment Verification and Compensation Release Authorization Form Forward the completed form: Via Research Triangle Park, NC 27709 Attn: Employment Verification Name information relative to my employment with the IBM Corporation

  13. seari.mit.edu 2009 Massachusetts Institute of Technology 1 Better Early Estimation of Human Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    WWII #12;seari.mit.edu © 2009 Massachusetts Institute of Technology 4 Why Measure SE/HSI Cost? Aircraft of Technology 9 Disconnect Between SE/PM Estimate and Life Cycle Cost "Life Cycle Cost of Surface Combatants.mit.edu © 2009 Massachusetts Institute of Technology 10 Comparison of System Life Cycle Costs Surface Combatants

  14. LIFE Target Fabrication Research Plan Sept 2008

    SciTech Connect (OSTI)

    Miles, R; Biener, J; Kucheyev, S; Montesanti, R; Satcher, J; Spadaccini, C; Rose, K; Wang, M; Hamza, A; Alexander, N; Brown, L; Hund, J; Petzoldt, R; Sweet, W; Goodin, D

    2008-11-10T23:59:59.000Z

    The target-system for the baseline LIFE fast-ignition target was analyzed to establish a preliminary estimate for the costs and complexities involved in demonstrating the technologies needed to build a prototype LIFE plant. The baseline fast-ignition target upon which this analysis was developed is shown in Figure 1.0-1 below. The LIFE target-system incorporates requirements for low-cost, high throughput manufacture, high-speed, high accuracy injection of the target into the chamber, production of sufficient energy from implosion and recovery and recycle of the imploded target material residue. None of these functions has been demonstrated to date. Existing target fabrication techniques which lead to current 'hot spot' target costs of {approx}$100,000 per target and at a production rate of 2/day are unacceptable for the LIFE program. Fabrication techniques normally used for low-cost, low accuracy consumer products such as toys must be adapted to the high-accuracy LIFE target. This will be challenge. A research program resulting is the demonstration of the target-cycle technologies needed for a prototype LIFE reactor is expected to cost {approx}$51M over the course of 5 years. The effort will result in targets which will cost an estimated $0.23/target at a rep-rate of 20 Hz or about 1.73M targets/day.

  15. Comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Energizer Battery Manufacturing, Inc. regarding the Energy Star Verification Testing Program

  16. Comment submitted by Hoshizaki America, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hoshizaki America, Inc. regarding the Energy Star Verification Testing Program

  17. Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York

    SciTech Connect (OSTI)

    E.M. Harpenau

    2010-11-15T23:59:59.000Z

    5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

  18. Comment submitted by United Lighting, Inc. regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by United Lighting, Inc. regarding the Energy Star Verification Testing Program

  19. INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint

    SciTech Connect (OSTI)

    E.N. Bailey

    2010-05-26T23:59:59.000Z

    INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint, Argonne Illinois 5061-SR-01-0

  20. Comment submitted by A. O. Smith Corporation regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by A. O. Smith Corporation regarding the Energy Star Verification Testing Program

  1. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  2. Measurement and Verification Activities Required in the Energy Savings Performance Contract Process

    Broader source: Energy.gov [DOE]

    There are four major measurement and verification (M&V) activities in the energy savings performance contract (ESPC) procurement process.

  3. Comment submitted by BSH Home Appliances Corporation regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by BSH Home Appliances Corporation regarding the Energy Star Verification Testing Program

  4. Efficient Methods for Practical Fully-Homomorphic Symmetric-key Encryption, Randomization, and Verification

    E-Print Network [OSTI]

    , and Verification Aviad Kipnis akipnis@nds.com; Eli Hibshoosh ehibshoo@nds.com Abstract We present high performance

  5. EECLP Webinar #2: Quality Assurance and Evaluation Monitoring Verification-- Text Version

    Broader source: Energy.gov [DOE]

    Below is the text version of the EECLP Webinar 2: Quality Assurance and Evaluation Monitoring Verification, presented in December 2014.

  6. Comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the Alliance for Water Efficiency (AWE) regarding the Energy Star Verification Testing Program

  7. age life styles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of user requirements for a single family detached house by analyzing changing technology and life-styles of the traditional and modern ... Ryu, Yoshiko 1982-01-01 2 Style...

  8. An Analysis of Hybrid Life Support Systems for Sustainable Habitats

    E-Print Network [OSTI]

    Shaw, Margaret Miller

    2014-01-01T23:59:59.000Z

    The design of sustainable habitats on Earth, on other planetary surfaces, and in space, has motivated strategic planning with respect to life support (LS) system technology development and habitat design. Such planning ...

  9. Alternative housing designs for changing life-styles in Japan

    E-Print Network [OSTI]

    Ryu, Yoshiko

    1982-01-01T23:59:59.000Z

    The purpose of this thesis is to determine the factors affecting the transformation of user requirements for a single family detached house by analyzing changing technology and life-styles of the traditional and modern ...

  10. Housing and Residential Life

    E-Print Network [OSTI]

    Fernandez, Eduardo

    1 Housing and Residential Life Guidebook 2014-2015 LivingCampus #12;2 fau.edu/housing Welcome! The Housing & Residential Life staff is excited that you've moved home! Florida Atlantic University residence halls and apartments are your home for the 2014-2015 school year. The Housing & Residential Life staff

  11. Life Cycle Cost Estimate

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    Life-cycle costs (LCCs) are all the anticipated costs associated with a project or program alternative throughout its life. This includes costs from pre-operations through operations or to the end of the alternative.This chapter discusses life cycle costs and the role they play in planning.

  12. Electric Vehicles: Performance, Life-Cycle Costs, Emissions, and Recharging Requirements

    E-Print Network [OSTI]

    DeLuchi, Mark A.; Wang, Quanlu; Sperling, Daniel

    1989-01-01T23:59:59.000Z

    battery technology now under options, excluding the metal/air batteries: zinc/life- Zinc--air batteries. Like the Al/air battery, the Zn/

  13. A Zero Knowledge Protocol For Nuclear Warhead Verification

    SciTech Connect (OSTI)

    Glaser, Alexander [Princeton, Univ., NJ (United States). Program on Science and Global Security] [Princeton, Univ., NJ (United States). Program on Science and Global Security; Goldston, Robert J. [Princeton Plasma Physics Lab., Princeton, NJ (United States)] [Princeton Plasma Physics Lab., Princeton, NJ (United States)

    2014-03-14T23:59:59.000Z

    The verification of nuclear warheads for arms control faces a paradox: International inspectors must gain high confidence in the authenticity of submitted items while learning nothing about them. Conventional inspection systems featuring ''information barriers'', designed to hide measurments stored in electronic systems, are at risk of tampering and snooping. Here we show the viability of fundamentally new approach to nuclear warhead verification that incorporates a zero-knowledge protocol, designed such that sensitive information is never measured so does not need to be hidden. We interrogate submitted items with energetic neutrons, making in effect, differential measurements of neutron transmission and emission. Calculations of diversion scenarios show that a high degree of discrimination can be achieved while revealing zero information. Timely demonstration of the viability of such an approach could be critical for the nexxt round of arms-control negotiations, which will likely require verification of individual warheads, rather than whole delivery systems.

  14. Bibliography for Verification and Validation in Computational Simulations

    SciTech Connect (OSTI)

    Oberkampf, W.L.

    1998-10-01T23:59:59.000Z

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  15. Page 1 of 4 Refrigerant Charge Verification: 70F Return Air Requirement

    E-Print Network [OSTI]

    Page 1 of 4 Refrigerant Charge Verification: 70°F Return Air Requirement This article describes refrigerant charge verification when the outdoor temperature is between 55 and 65°F, in accordance than 70°F has been an explicit requirement since the refrigerant charge verification protocol was first

  16. Real-time system verification techniques based on abstraction/deduction and model checking

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Real-time system verification techniques based on abstraction/deduction and model checking Eun in or- der to obtain a powerful and highly automatic verification environment for real-time systems. One-Young.Kang@loria.fr Abstract. Our research focuses on verification techniques for real-time systems based on predicate

  17. A knowledge-based verification method for dynamic access control policies

    E-Print Network [OSTI]

    Ryan, Mark

    . This abstraction of knowledge results in a simpler model, which makes the verification efficient, and is powerful may be a prior knowledge, or gained by exploring the system. In both cases, a verification method proposes a dynamic access control model supporting knowledge- based verification through reasoning about

  18. A Reachability-Based Method for Large-Signal Behavior Verification of DC-DC Converters

    E-Print Network [OSTI]

    Liberzon, Daniel

    -loop, large-signal system behavior verification, and iv) switching detail modeling. In open-loop, large´inguez-Garc´ia, Member, IEEE Abstract--A method for large-signal behavior verification of power electronics DC behavior verification, lengthy time-domain simula- tions are conducted to analyze the system response

  19. Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions

    SciTech Connect (OSTI)

    Doyle, James E [Los Alamos National Laboratory; Meek, Elizabeth [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the key points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the near-term (1-4) years and longer-term (5-10) years planning horizons. Some final observations include acknowledging the enduring nature of several key objectives on the Obama Administration's arms control and nonproliferation agenda. The CTBT, FMCT, bilateral nuclear arms reductions and strengthening the NPT have been sought by successive U.S. Administrations for nearly thirty years. Efforts towards negotiated arms control, although de-emphasized by the G.W. Bush Administration, have remained a pillar of U.S. national security strategy for decades and are likely to be of enduring if not increasing importance for decades to come. Therefore revitalization and expansion of USG capabilities in this area can be a positive legacy no matter what near-term arms control goals are achieved over the next four years. This is why it is important to reconstruct integrated bureaucratic, legislative, budgetary and diplomatic strategies to sustain the arms control and nonproliferation agenda. In this endeavor some past lessons must be taken to heart to avoid bureaucratic overkill and keep interagency policy-making and implementation structures lean and effective. On the Technical side a serious, sustained multilateral program to develop, down select and performance test nuclear weapons dismantlement verification technologies and procedures should be immediately initiated. In order to make this happen the United States and Russia should join with the UK and other interested states in creating a sustained, full-scale research and development program for verification at their respective nuc1ear weapons and defense establishments. The goals include development of effective technologies and procedures for: (1) Attribute measurement systems to certify nuclear warheads and military fissile materials; (2) Chain-of-custody methods to track items after they are authenticated and enter accountability; (3) Transportation monitoring; (4) Storage monitoring; (5) Fissile materials conversion verification. The remainder of this paper focuses on transparency and verification for nuclear arms a

  20. Life Cycle Assessment and Sustainability of Chemical Products

    E-Print Network [OSTI]

    Sahnoune, A.

    2014-01-01T23:59:59.000Z

    Life Cycle Assessment & Sustainability of Chemical Products Abdelhadi Sahnoune ExxonMobil Chemical Company Industrial Energy Technology Conference (IETC 2014) New Orleans, May 20-23, 2014 ESL-IE-14-05-38 Proceedings of the Thrity-Sixth Industrial... Energy Technology Conference New Orleans, LA. May 20-23, 2014 Products in our daily lives Plastics Packaging - Protects and extends shelf life Building & Construction – Insulation, design, flooring Plastics in Automotive Applications - Light weighting...

  1. Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects

    SciTech Connect (OSTI)

    Richman, Eric E.

    2009-11-04T23:59:59.000Z

    This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

  2. Finite countermodels for safety verification of parameterized tree systems

    E-Print Network [OSTI]

    Lisitsa, Alexei

    2011-01-01T23:59:59.000Z

    In this paper we deal with verification of safety properties of parameterized systems with a tree topology. The verification problem is translated to a purely logical problem of finding a finite countermodel for a first-order formula, which further resolved by a generic finite model finding procedure. A finite countermodel method is shown is at least as powerful as regular tree model checking and as the methods based on monotonic abstraction and backwards symbolic reachability. The practical efficiency of the method is illustrated on a set of examples taken from the literature.

  3. Verification for measurement-only blind quantum computing

    E-Print Network [OSTI]

    Tomoyuki Morimae

    2014-06-19T23:59:59.000Z

    Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technlogy can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A {\\bf87}, 050301(R) (2013)]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of client to check the correctness of the computing. In this paper, we propose a protocol of verification for the measurement-only blind quantum computing.

  4. Concepts associated with a unified life cycle analysis

    SciTech Connect (OSTI)

    Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.; Brebbia, C. A.; Almorza Gomar, D.; Klapperich, H.

    2002-01-01T23:59:59.000Z

    There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other, the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.

  5. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This fact sheet describes NREL's accomplishments in analyzing life-cycle costs for hydrogen storage in comparison with other energy storage technologies. Work was performed by the Hydrogen Technologies and Systems Center.

  6. animal cell technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ANIMAL SCIENCE TECHNOLOGY, Animal Management Effective Fall 2012 College of the Environment & Life Sciences (CELS) Geosciences Websites Summary: with experience in animal...

  7. Proceedings of Student/Faculty Research Day, CSIS, Pace University, May 4th Extending the Life of Legacy Software Systems

    E-Print Network [OSTI]

    Tappert, Charles

    as the application of scientific knowledge, especially in industry and business. Ray Kurzweil [5] presented which must be considered when extending the life of a legacy system in light of the Technology Life Obsolescence Surplus Retire Support Antiquity Table 2. Comparison of Technology Life Cycle Models The models

  8. MACCS2 development and verification efforts

    SciTech Connect (OSTI)

    Young, M.; Chanin, D.

    1997-03-01T23:59:59.000Z

    MACCS2 represents a major enhancement of the capabilities of its predecessor MACCS, the MELCOR Accident Consequence Code System. MACCS, released in 1987, was developed to estimate the potential impacts to the surrounding public of severe accidents at nuclear power plants. The principal phenomena considered in MACCS/MACCS2 are atmospheric transport and deposition under time-variant meteorology, short-term and long-term mitigative actions and exposure pathways, deterministic and stochastic health effects, and economic costs. MACCS2 was developed as a general-purpose analytical tool applicable to diverse reactor and nonreactor facilities. The MACCS2 package includes three primary enhancements: (1) a more flexible emergency response model, (2) an expanded library of radionuclides, and (3) a semidynamic food-chain model. In addition, errors that had been identified in MACCS version1.5.11.1 were corrected, including an error that prevented the code from providing intermediate-phase results. MACCS2 version 1.10 beta test was released to the beta-test group in May, 1995. In addition, the University of New Mexico (UNM) has completed an independent verification study of the code package. Since the beta-test release of MACCS2 version 1.10, a number of minor errors have been identified and corrected, and a number of enhancements have been added to the code package. The code enhancements added since the beta-test release of version 1.10 include: (1) an option to allow the user to input the {sigma}{sub y} and {sigma}{sub z} plume expansion parameters in a table-lookup form for incremental downwind distances, (2) an option to define different initial dimensions for up to four segments of a release, (3) an enhancement to the COMIDA2 food-chain model preprocessor to allow the user to supply externally calculated tables of tritium food-chain dose per unit deposition on farmland to support analyses of tritium releases, and (4) the capability to calculate direction-dependent doses.

  9. Verification of the BISON fuel performance code

    SciTech Connect (OSTI)

    D. M. Perez; R. J. Gardner; J. D. Hales; S. R. Novascone; G. Pastore; B. W. Spencer; R. L. Williamson

    2014-09-01T23:59:59.000Z

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Labo- ratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze 1D spherical, 2D axisymmetric, or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISON’s unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI.

  10. Self-adaptive software needs quantitative verification at Radu Calinescu

    E-Print Network [OSTI]

    Oxford, University of

    , performance and operating cost (e.g., energy consumption) of software. These techniques include model checkingSelf-adaptive software needs quantitative verification at runtime Radu Calinescu Department 1: The world and the machine. [19, 30]. In contrast, several mathematically-based modelling

  11. Self-adaptive software needs quantitative verification at Radu Calinescu

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , performance and operating cost (e.g., energy consumption) of software. These techniques include model checkingSelf-adaptive software needs quantitative verification at runtime Radu Calinescu Department"#.&*#.+$ Figure 1: The world and the machine. [19, 30]. In contrast, several mathematically-based modelling

  12. Verification of Network Management System Configurations David L. Cohrs

    E-Print Network [OSTI]

    Miller, Barton P.

    , with the use of simple, ad hoc tools. However in a large network, managing the net- work management system the amount of sharing and coordination possible in configuring the net- work management system. EachVerification of Network Management System Configurations David L. Cohrs (608) 262-6617 dave

  13. Automated Verification of Practical Garbage Collectors Chris Hawblitzel

    E-Print Network [OSTI]

    Petrank, Erez

    Automated Verification of Practical Garbage Collectors Chris Hawblitzel Microsoft Research One Technion Haifa 32000 Israel erez@cs.technion.ac.il Abstract Garbage collectors are notoriously hard in reasoning about reachability in graphs. Several papers have presented verified collectors, but either

  14. Verification of Data-Aware Commitment-Based Multiagent System

    E-Print Network [OSTI]

    De Giacomo, Giuseppe

    on the dynamics of such systems, and on the evolution of their commitments. This requires to lift the commitment I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence--Multiagent Systems; D.2Verification of Data-Aware Commitment-Based Multiagent System Marco Montali Diego Calvanese KRDB

  15. CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1 CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION - EXPERIMENTAL VERIFICATION Submitted to AICheÆcient operation, multicomponent distillation, batch distillation, total re ux operation ABSTRACT. The multivessel batch distillation column, as well as conven- tional batch distillation, may be operated in a closed

  16. Combining Tools for the Verification of FaultTolerant Systems

    E-Print Network [OSTI]

    Peleska, Jan - Fachbereich 3

    and verification of fault­tolerant systems according to the invent&verify paradigm. Our method is based on the CSP specifications (CSP process terms), refinement relations or combinations of these three description formalisms specification paradigms ac­ cording to the specific needs of each development step is essential to cope

  17. Verification of Soundness and Other Properties of Business Processes

    E-Print Network [OSTI]

    Sidorova, Natalia

    © 2007 by Olivia Oanea. All Rights Reserved. CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Oanea Oanea. Eindhoven : Technische Universiteit Eindhoven, 2007. Proefschrift. ISBN 978-90-386-11662 NUR 993 Dissertation Series D101 Printed by University Press Facilities, Eindhoven #12;Verification of Soundness

  18. Formal Verification of Unreliable Failure Detectors in Partially Synchronous Systems

    E-Print Network [OSTI]

    Mousavi, Mohammad

    Formal Verification of Unreliable Failure Detectors in Partially Synchronous Systems M. Atif TU/Eindhoven Dept. of Computer Science P.O. Box 513, 5600 MB Eindhoven, The Netherlands m.atif@tue.nl M.R. Mousavi TU/Eindhoven Dept. of Computer Science P.O. Box 513, 5600 MB Eindhoven, The Netherlands m

  19. MODELING AND VERIFICATION OF AN ATM PORT CONTROLLER IN VIS

    E-Print Network [OSTI]

    Tahar, Sofiène

    MODELING AND VERIFICATION OF AN ATM PORT CONTROLLER IN VIS Jianping Lu and Sofiène Tahar Dept port controller using model checking. The ATM port controller is part of the Cambridge Fairisle ATM on the model checking of the ATM port controller using the VIS tool from UC Berkeley. To this end, we

  20. Software Verification for Weak Memory via Program Transformation

    E-Print Network [OSTI]

    Kröning, Daniel

    on a PowerPC cluster, due to the memory model. We study this bug in detail in Sec. 5. This observation handle the write atomicity relaxation of Power/ARM: generality remains a challenge. Since we want verification w.r.t. weak memory. We present experi- ments for a broad variety of models (from x86-TSO to Power

  1. Getting Out of the Way Safety Verification without Compromise

    E-Print Network [OSTI]

    Sivilotti, Paul

    verification of adaptive cruise control algorithms require both discrete braking modes and overly conservative conditions for adaptive cruise control algorithms that do not require discontinuous braking and also allow · Assume global upper and lower braking bounds · Assume worst-case scenario (WCS) ­ Leader uses strongest

  2. 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    June 2010 3D Scanning for Biometric Identification and Verification Project Leads Anselmo Lastra example the subject's face could be rapidly scanned while his or her smart-card ID is being examined, and the system could then match the scan with data on the ID); (b) identification at a secure site or even

  3. Quantitative verification of ab initio self-consistent laser theory

    E-Print Network [OSTI]

    Stone, A. Douglas

    ­1564 (1998). 6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "TwoQuantitative verification of ab initio self-consistent laser theory Li Ge,1 Robert J. Tandy,1 A¨ureci, A. D. Stone, and B. Collier, "Self-consistent multimode lasing theory for complex or random lasing

  4. LVT: A Layered Verification Technique for Distributed Computing Systems

    E-Print Network [OSTI]

    Olsson, Ron

    LVT: A Layered Verification Technique for Distributed Computing Systems Cui Zhang ? , Brian R of distributed computing systems with multiple component layers. Each lower layer in such a system provides languages as interfaces of systems, LVT treats each layer in a distributed computing system as a distributed

  5. A Proof System for Compositional Verification of Probabilistic Concurrent Processes

    E-Print Network [OSTI]

    Simpson, Alex

    A Proof System for Compositional Verification of Probabilistic Concurrent Processes Matteo Mio1 established itself as a powerful and widely applicable method for verifying properties of systems, with its-state systems. Moreover, even in the finite-state case, the applicability of model checking is limited

  6. Formal Verification of a Microprocessor Control Lubomir Ivanov

    E-Print Network [OSTI]

    Ivanov, Lubomir

    to the modeling and formal verification of the MESI cache coherence protocol for a system of n write-back cache a powerful alternative for dealing with these problems. In this paper we present a mathematical model on a mathematical model of the system under consideration, attempts to prove or disprove facts about the system

  7. Precise Dynamic Verification of Noninterference Gurvan Le Guernic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Precise Dynamic Verification of Noninterference Gurvan Le Guernic INRIA-MSR - Parc Orsay Universit analysis is used to analyze some un- executed pieces of code in order to take into account all types is that nowadays it is nearly impossible for consumers to prevent the execution of "bad" code on their devices

  8. Cleanup Verification Package for the 618-2 Burial Ground

    SciTech Connect (OSTI)

    W. S. Thompson

    2006-12-28T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  9. Verification of Function Block Diagram through Verilog Translation

    E-Print Network [OSTI]

    safety became a critical issue in nuclear power plant area because tra- ditional analog systems are being, Sungdeok Cha1 , Junbeom Yoo2 , and Geeyoung Park3 1 Div. of Computer Science, Korea Advanced Institute Institute, Daejeon, Republic of Korea gypark@kaeri.re.kr Abstract. The formal verification of FBD program

  10. Cleanup Verification Package for the 118-F-6 Burial Ground

    SciTech Connect (OSTI)

    H. M. Sulloway

    2008-10-02T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-6 Burial Ground located in the 100-FR-2 Operable Unit of the 100-F Area on the Hanford Site. The trenches received waste from the 100-F Experimental Animal Farm, including animal manure, animal carcasses, laboratory waste, plastic, cardboard, metal, and concrete debris as well as a railroad tank car.

  11. Formal Development and Verification of a Distributed Railway Control System

    E-Print Network [OSTI]

    Peleska, Jan - Fachbereich 3

    of refinement and verification steps. Concrete safety requirements are derived from an abstract version that can and a controller model introducing the safety­related control mechanisms as a separate entity monitoring if the costs for initial installation, operation and maintenance of the control system are low. Today

  12. Automated Verification of Model Transformations in the Automotive Industry

    E-Print Network [OSTI]

    Cordy, James R.

    Automated Verification of Model Transformations in the Automotive Industry Gehan M. K. Selim1] transformation developed for the automotive industry [29]. More specifically, we check the correctness reported on such industrial expe- riences by discussing the effects of MDD and the issues that still need

  13. Towards automatic verification of ladder logic Bohumir Zoubek

    E-Print Network [OSTI]

    Oxford, University of

    Birmingham, B15 2TT United Kingdom Email: mzk@cs.bham.ac.uk Abstract-- Control system programs are usually techniques of automatic verification to a control program written in ladder logic. A model is constructed procedures for control programs. I. INTRODUCTION Control systems are used in many applications of process

  14. Parameterized Specification and Verification of PLC Systems in Coq

    E-Print Network [OSTI]

    Boyer, Edmond

    Parameterized Specification and Verification of PLC Systems in Coq Hai Wan D.CST, Tsinghua and verify PLC software systems with the theorem proving system Coq. Dependent inductive data types are har to cope with this situation, modular development of PLC software is adopted. During the modular

  15. Improving large-sized PLC programs verification using abstractions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Improving large-sized PLC programs verification using abstractions V. Gourcuff O. de Smet J [2005]) models of PLC programs, which can be verified with well- known model-checkers, like UPPAAL the development of industrial PLC programs up to now (John- son [2007]). Several reasons can explain

  16. Department of Computing CSP||B modelling for railway verification

    E-Print Network [OSTI]

    Doran, Simon J.

    University of Surrey Department of Computing Computing Sciences Report CS-12-03 CSP||B modelling Schneider Helen Treharne March 30th 2012 #12;CSP||B modelling for railway verification: the double junction work in verifying railway systems through CSP k B modelling and analysis. In particular we consider

  17. Timed Verification of the Generic Architecture of a Memory Circuit

    E-Print Network [OSTI]

    Encrenaz-Tiphène, Emmanuelle

    #cient linear constraints relating the delays of the internal gates of the circuit to the exter­ nal delays on the reachability analysis of a timed model of the circuit (with additional abstract interpretation techniques [10Timed Verification of the Generic Architecture of a Memory Circuit Using Parametric Timed Automata

  18. Fast Verification of Wind Turbine Power Summary of Project Results

    E-Print Network [OSTI]

    Fast Verification of Wind Turbine Power Curves: Summary of Project Results by: Cameron Brown ­ s equation on high frequency wind turbine measurement data sampled at one sample per second or more. The aim's Nordtank wind turbine at the Risø site, the practical application of this new method was tested

  19. MEASUREMENT SENSITIVITY AND ACCURACY VERIFICATION FOR AN ANTENNA MEASUREMENT SYSTEM

    E-Print Network [OSTI]

    Arakaki, Dean Y.

    MEASUREMENT SENSITIVITY AND ACCURACY VERIFICATION FOR AN ANTENNA MEASUREMENT SYSTEM Newlyn Hui Luis Obispo, CA 93407 ABSTRACT An antenna measurement system was developed to complement a new an RF link budget is calculated to evaluate the performance of the antenna measurement system. Keywords

  20. c 2013 Zhenqi Huang ON SIMULATION BASED VERIFICATION OF NONLINEAR

    E-Print Network [OSTI]

    Liberzon, Daniel

    navigation benchmarks, room heating benchmarks, non-linear satellite systems and engine hybrid control safety verification of hybrid systems typically involves computing precise reach sets of such systems of a class of deterministic hybrid system. The algo- rithm first constructs a cover of the initial set

  1. Venus: Verification for Untrusted Cloud Storage Alexander Shraer

    E-Print Network [OSTI]

    Keidar, Idit

    Venus: Verification for Untrusted Cloud Storage Alexander Shraer Dept. of Electrical Engineering, Switzerland cca@zurich.ibm.com Asaf Cidon Dept. of Electrical Engineering Technion, Haifa, Israel asaf@cidon.com Idit Keidar Dept. of Electrical Engineering Technion, Haifa, Israel idish@ee.technion.ac.il Yan

  2. HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT ********************

    E-Print Network [OSTI]

    Jawitz, James W.

    HEALTH AND ACCIDENT INSURANCE VERIFICATION ******************** TO BE COMPLETED BY STUDENT Services Office of the university of Florida requires that s/he has health and accident insurance with your participating in study abroad activate hold health and accident insurance with a minimum coverage of $200

  3. Multi-canister overpack project -- verification and validation, MCNP 4A

    SciTech Connect (OSTI)

    Goldmann, L.H.

    1997-11-10T23:59:59.000Z

    This supporting document contains the software verification and validation (V and V) package used for Phase 2 design of the Spent Nuclear Fuel Multi-Canister Overpack. V and V packages for both ANSYS and MCNP are included. Description of Verification Run(s): This software requires that it be compiled specifically for the machine it is to be used on. Therefore to facilitate ease in the verification process the software automatically runs 25 sample problems to ensure proper installation and compilation. Once the runs are completed the software checks for verification by performing a file comparison on the new output file and the old output file. Any differences between any of the files will cause a verification error. Due to the manner in which the verification is completed a verification error does not necessarily indicate a problem. This indicates that a closer look at the output files is needed to determine the cause of the error.

  4. Now available at the DNA Sequencing and Genotyping Core Facility OpenArray High-throughput nanofluidic PCR technology

    E-Print Network [OSTI]

    Ruvinsky, Ilya

    -throughput nanofluidic PCR technology from Life Technologies/Applied Biosystems Application/ Service Area Types · Experimental flexibility ­ open-format layout · Nanofluidic design reduces reagent usage Questions? Contact

  5. Guidelines for the verification and validation of expert system software and conventional software: Survey and assessment of conventional software verification and validation methods. Volume 2

    SciTech Connect (OSTI)

    Mirsky, S.M.; Groundwater, E.H.; Hayes, J.E.; Miller, L.A. [Science Applications International Corp., McLean, VA (United States)

    1995-03-01T23:59:59.000Z

    By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of conventional software. The 153 methods so identified were classified according to their appropriateness for various phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors, four concerning ease-of-use of the methods and four concerning the methods` power to detect defects. Based on these factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit metric and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each method, depending on three classes of needed stringency of V&V (determined by ratings of a system`s complexity and required-integrity). Methods were then rank-ordered for each of the three classes by terms of their overall cost-benefits and effectiveness. The applicability was then assessed of each for the identified components of knowledge-based and expert systems, as well as the system as a whole.

  6. CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013 Hilton Alexandria Old Town Alexandria, Virginia Page 1

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013· Hilton Alexandria Old Town· Alexandria University Abstract Carbon Capture and Storage (CCS) projects are subject to monitoring and verification) on Mt. Simon sandstone (USA) #12;CARBON MANAGEMENT TECHNOLOGY CONFERENCE OCTOBER 21-23, 2013· Hilton

  7. Carbon Storage Monitoring, Verification and Accounting Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building AmericaEnergy Carbon Fiber Technology Facility

  8. Life Sciences in Scotland Ulrike Knies-Bamforth, PhD

    E-Print Network [OSTI]

    Greenaway, Alan

    invasive techniques · Advances in computer technology #12;Scottish Medical Technologies · LifeScan Scotland to bedside KEY BUSINESS SECTORS · Medical technologies: sector with track record of high growth and emerging personal care animal bio Internal dataset of 391 companies #12;Medical Technologies ­ Facts and figures

  9. Study of verification, validation, and testing in the automated data processing system at the Department of Veterans Affairs

    SciTech Connect (OSTI)

    Andrews, A. (Argonne National Lab., IL (USA). Energy Systems Div.); Formento, J.W.; Hill, L.G.; Riemer, C.A. (Argonne National Lab., IL (USA). Environmental Assessment and Information Sciences Div.)

    1990-01-01T23:59:59.000Z

    Argonne National Laboratory (ANL) studied the role of verification, validation, and testing (VV T) in the Department of Veterans Affairs (VA) automated data processing (ADP) system development life cycle (SDLC). In this study, ANL reviewed and compared standard VV T practices in the private and government sectors with those in the VA. The methodology included extensive interviews with, and surveys of, users, analysts, and staff in the Systems Development Division (SDD) and Systems Verification and Testing Division (SV TD) of the VA, as well as representatives of private and government organizations, and a review of ADP standards. The study revealed that VA's approach to VV T already incorporates some industry practices -- in particular, the use of an independent organization that relies on the acceptability of test results to validate a software system. Argonne recommends that the role of SV TD be limited to validation and acceptance testing (defined as formal testing conducted independently to determine whether a software system satisfies its acceptance criteria). It also recommends that the role of the SDD be expanded to include verification testing (defined as formal testing or revaluation conducted by the developer to determine whether a software development satisfies design criteria). Integrated systems testing should be performed by Operations in a production-like environment under stressful situations to assess how trouble-free and acceptable the software is to the end user. A separate, independent, quality assurance group should be responsible for ADP auditing and for helping to establish policies for managing software configurations and should report directly to the VA central office. Finally, and of no less importance, an in-house training program and procedures manual should be instituted for the entire SDLC for all involved staff; it should incorporate or reference ADP standards.

  10. Life sciences: Lawrence Berkeley Laboratory, 1988

    SciTech Connect (OSTI)

    Not Available

    1989-07-01T23:59:59.000Z

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  11. A Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits

    E-Print Network [OSTI]

    Pedram, Massoud

    . Life-Cycle Assessment (LCA) has been increasingly used to assess environmental implicationsA Life-Cycle Energy and Inventory Analysis of FinFET Integrated Circuits Yanzhi Wang, Ying Zhang as the next-generation semiconductor technology. This paper is the first attempt in reporting the life-cycle

  12. Genetic Algorithms Artificial Life

    E-Print Network [OSTI]

    Mitchell, Melanie

    of artificial systems is an important component of artificial life, providing an important modeling tool of evolution in artificial-life systems. GAs have been used both as tools for solving practical problems a system with lifelike properties, even though this is certainly an important role for GAs in artificial

  13. Genetic Algorithms Artificial Life

    E-Print Network [OSTI]

    Forrest, Stephanie

    systems tremendously. Likewise, evolution of artificial systems is an important component of artificial) are currently the most promi­ nent and widely used models of evolution in artificial­life systems. GAs have beenGenetic Algorithms and Artificial Life Melanie Mitchell Santa Fe Institute 1660 Old Pecos Tr

  14. Photovoltaics Life Cycle Analysis

    E-Print Network [OSTI]

    (air, water, solid) M, Q E PV array Photovoltaic modules Balance of System (BOS) (Inverters & Environmental Engineering Department Columbia University and National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory www.clca.columbia.edu www.pv.bnl.gov #12;2 The Life Cycle of PVThe Life Cycle

  15. DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual.

    E-Print Network [OSTI]

    Missouri-Rolla, University of

    1 Appendix A DEPARTMENT OF RESIDENTIAL LIFE Residential Life Staff Manual. Residential Life Program Listing #12;2 MISSOURI S&T RESIDENTIAL LIFE DEPARTMENT Staff Resource Manual 2010--2012 Department of Residential Life Mission: To create educational environments emphasizing learning and development. Service

  16. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01T23:59:59.000Z

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  17. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01T23:59:59.000Z

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  18. Independent Verification and Validation Of SAPHIRE 8 Software Configuration Management Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2009-10-01T23:59:59.000Z

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE configuration management is to assess the activities that results in the process of identifying and defining the baselines associated with the SAPHIRE software product; controlling the changes to baselines and release of baselines throughout the life cycle; recording and reporting the status of baselines and the proposed and actual changes to the baselines; and verifying the correctness and completeness of baselines.. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  19. Verification and validation interim report for portable 1,000 CFM exhauster skids POR-007/Skid E and POR-008/Skid F

    SciTech Connect (OSTI)

    Nelson, O.D.

    1998-07-25T23:59:59.000Z

    This Verification and Validation (V/V) interim report summarizes to date the results of the V/V tasks performed in each of the following life cycle phases: concept, requirements, design, implementation, test, installation and checkout, and operation and maintenance. At the end of the installation and checkout phase, the V/V final report will be issued. This interim report contains or references the following for each phase: Description of V/V tasks performed; Summary of task results; Summary of anomalies and resolution; Assessment of system quality; Recommendations.

  20. Independent Verification and Validation Of SAPHIRE 8 Software Configuration Management Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01T23:59:59.000Z

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE configuration management is to assess the activities that results in the process of identifying and defining the baselines associated with the SAPHIRE software product; controlling the changes to baselines and release of baselines throughout the life cycle; recording and reporting the status of baselines and the proposed and actual changes to the baselines; and verifying the correctness and completeness of baselines.. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  1. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

    SciTech Connect (OSTI)

    Gillen, David S.

    2014-08-07T23:59:59.000Z

    Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in this domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of the data can aid an analyst with arms control and nonproliferation verification activities. Using a dataset from PIERS (PIERS 2014), we will show how container shipment imports and exports can aid an analyst in understanding the shipping patterns between two countries. We will also use T.Rex to examine a collection of research publications from the IAEA International Nuclear Information System (IAEA 2014) to discover collaborations of concern. We hope this paper will encourage the use of visual analytics structured data analytics in the field of nonproliferation and arms control verification. Our paper outlines some of the challenges that exist before broad adoption of these kinds of tools can occur and offers next steps to overcome these challenges.

  2. Development of a test system for verification and validation of nuclear transport simulations

    SciTech Connect (OSTI)

    White, Morgan C [Los Alamos National Laboratory; Triplett, Brian S [GENERAL ELECTRIC; Anghaie, Samim [UNIV OF FL

    2008-01-01T23:59:59.000Z

    Verification and validation of nuclear data is critical to the accuracy of both stochastic and deterministic particle transport codes. In order to effectively test a set of nuclear data, the data must be applied to a wide variety of transport problems. Performing this task in a timely, efficient manner is tedious. The nuclear data team at Los Alamos National laboratory in collaboration with the University of Florida has developed a methodology to automate the process of nuclear data verification and validation (V and V). This automated V and V process can efficiently test a number of data libraries using well defined benchmark experiments, such as those in the International Criticality Safety Benchmark Experiment Project (ICSBEP). The process is implemented through an integrated set of Pyton scripts. Material and geometry data are read from an existing medium or given directly by the user to generate a benchmark experiment template file. The user specifies the choice of benchmark templates, codes, and libraries to form a V and V project. The Python scripts generate input decks for multiple transport codes from the templates, run and monitor individual jobs, and parse the relevant output automatically. The output can then be used to generate reports directly or can be stored into a database for later analysis. This methodology eases the burden on the user by reducing the amount of time and effort required for obtaining and compiling calculation results. The resource savings by using this automated methodology could potentially be an enabling technology for more sophisticated data studies, such as nuclear data uncertainty quantification. Once deployed, this tool will allow the nuclear data community to more thoroughly test data libraries leading to higher fidelity data in the future.

  3. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect (OSTI)

    Richard Metcalf; Robert Bean

    2009-10-01T23:59:59.000Z

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

  4. Specification and Verification of Context-dependent Services

    E-Print Network [OSTI]

    Ibrahim, Naseem; Mohammad, Mubarak; 10.4204/EPTCS.61.2

    2011-01-01T23:59:59.000Z

    Current approaches for the discovery, specification, and provision of services ignore the relationship between the service contract and the conditions in which the service can guarantee its contract. Moreover, they do not use formal methods for specifying services, contracts, and compositions. Without a formal basis it is not possible to justify through formal verification the correctness conditions for service compositions and the satisfaction of contractual obligations in service provisions. We remedy this situation in this paper. We present a formal definition of services with context-dependent contracts. We define a composition theory of services with context-dependent contracts taking into consideration functional, nonfunctional, legal and contextual information. Finally, we present a formal verification approach that transforms the formal specification of service composition into extended timed automata that can be verified using the model checking tool UPPAAL.

  5. Experimental device-independent verification of quantum steering

    E-Print Network [OSTI]

    Sacha Kocsis; Michael J. W. Hall; Adam J. Bennet; Dylan J. Saunders; G. J. Pryde

    2014-08-07T23:59:59.000Z

    Bell nonlocality between distant quantum systems---i.e., joint correlations which violate a Bell inequality---can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell nonlocality requires high detection efficiencies, and is not robust to the typical transmission losses that occur in long distance applications. In contrast, quantum steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. We present device-independent steering protocols that remove this need for trust, even when Bell nonlocality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.

  6. Integrated Safety Management System Phase 1 and 2 Verification for the Environmental Restoration Contractor Volumes 1 and 2

    SciTech Connect (OSTI)

    CARTER, R.P.

    2000-04-04T23:59:59.000Z

    DOE Policy 450.4 mandates that safety be integrated into all aspects of the management and operations of its facilities. The goal of an institutionalized Integrated Safety Management System (ISMS) is to have a single integrated system that includes Environment, Safety, and Health requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and the federal property over the life cycle of the Environmental Restoration (ER) Project. The purpose of this Environmental Restoration Contractor (ERC) ISMS Phase MI Verification was to determine whether ISMS programs and processes were institutionalized within the ER Project, whether these programs and processes were implemented, and whether the system had promoted the development of a safety conscious work culture.

  7. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project

    SciTech Connect (OSTI)

    Dodds, K.; Daley, T.; Freifeld, B.; Urosevic, M.; Kepic, A.; Sharma, S.

    2009-05-01T23:59:59.000Z

    The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.

  8. Modeling and Verification for Timing Satisfaction of Fault-Tolerant Systems with Finiteness

    E-Print Network [OSTI]

    Cheng, Chih-Hong; Esparza, Javier; Knoll, Alois

    2009-01-01T23:59:59.000Z

    The increasing use of model-based tools enables further use of formal verification techniques in the context of distributed real-time systems. To avoid state explosion, it is necessary to construct a verification model that focuses on the aspects under consideration. In this paper, we discuss how we construct a verification model for timing analysis in distributed real-time systems. We (1) give observations concerning restrictions of timed automata to model these systems, (2) formulate mathematical representations how to perform model-to-model transformation to derive verification models from system models, and (3) propose some theoretical criteria how to reduce the model size. The latter is in particular important, as for the verification of complex systems, an efficient model reflecting the properties of the system under consideration is equally important to the verification algorithm itself. Finally, we present an extension of the model-based development tool FTOS, designed to develop fault-tolerant system...

  9. A comparison of adjoint and data-centric verification techniques.

    SciTech Connect (OSTI)

    Wildey, Timothy Michael; Cyr, Eric Christopher; Shadid, John Nicolas; Pawlowski, Roger Patrick; Smith, Thomas Michael

    2013-03-01T23:59:59.000Z

    This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3

  10. Direct experimental verification of quantum commutation relations for Pauli operators

    E-Print Network [OSTI]

    Xing-Can Yao; Jaromir Fiurasek; He Lu; Wei-Bo Gao; Yu-Ao Chen; Zeng-Bing Chen; Jian-Wei Pan

    2010-02-08T23:59:59.000Z

    We propose and demonstrate scheme for direct experimental testing of quantum commutation relations for Pauli operators. The implemented device is an advanced quantum processor that involves two programmable quantum gates. Depending on a state of two-qubit program register, we can test either commutation or anti-commutation relations. Very good agreement between theory and experiment is observed, indicating high-quality performance of the implemented quantum processor and reliable verification of commutation relations for Pauli operators.

  11. Cleanup Verification Package for the 618-8 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-08-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.

  12. Code Verification of the HIGRAD Computational Fluid Dynamics Solver

    SciTech Connect (OSTI)

    Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

  13. Cleanup Verification Package for the118-F-2 Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron and K. A. Anselm

    2008-02-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance with cleanup criteria for the 118-F-2 Burial Ground. This burial ground, formerly called Solid Waste Burial Ground No. 1, was the original solid waste disposal site for the 100-F Area. Eight trenches contained miscellaneous solid waste from the 105-F Reactor and one trench contained solid waste from the biology facilities.

  14. Cleanup Verification Package for the 618-3 Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel

    2006-09-12T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 618-3 Solid Waste Burial Ground, also referred to as Burial Ground Number 3 and the Dry Waste Burial Ground Number 3. During its period of operation, the 618-3 site was used to dispose of uranium-contaminated construction debris from the 311 Building and construction/demolition debris from remodeling of the 313, 303-J and 303-K Buildings.

  15. Molten carbonate fuel cell technology improvement

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  16. Monitoring and Commissioning Verification Algorithms for CHP Systems

    SciTech Connect (OSTI)

    Brambley, Michael R.; Katipamula, Srinivas; Jiang, Wei

    2008-03-31T23:59:59.000Z

    This document provides the algorithms for CHP system performance monitoring and commissioning verification (CxV). It starts by presenting system-level and component-level performance metrics, followed by descriptions of algorithms for performance monitoring and commissioning verification, using the metric presented earlier. Verification of commissioning is accomplished essentially by comparing actual measured performance to benchmarks for performance provided by the system integrator and/or component manufacturers. The results of these comparisons are then automatically interpreted to provide conclusions regarding whether the CHP system and its components have been properly commissioned and where problems are found, guidance is provided for corrections. A discussion of uncertainty handling is then provided, which is followed by a description of how simulations models can be used to generate data for testing the algorithms. A model is described for simulating a CHP system consisting of a micro-turbine, an exhaust-gas heat recovery unit that produces hot water, a absorption chiller and a cooling tower. The process for using this model for generating data for testing the algorithms for a selected set of faults is described. The next section applies the algorithms developed to CHP laboratory and field data to illustrate their use. The report then concludes with a discussion of the need for laboratory testing of the algorithms on a physical CHP systems and identification of the recommended next steps.

  17. Enrichment Assay Methods Development for the Integrated Cylinder Verification System

    SciTech Connect (OSTI)

    Smith, Leon E.; Misner, Alex C.; Hatchell, Brian K.; Curtis, Michael M.

    2009-10-22T23:59:59.000Z

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are typically performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility's entire product-cylinder inventory. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100 percent product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Integrated Cylinder Verification System (ICVS) could be located at key measurement points to positively identify each cylinder, measure its mass and enrichment, store the collected data in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. The three main objectives of this FY09 project are summarized here and described in more detail in the report: (1) Develop a preliminary design for a prototype NDA system, (2) Refine PNNL's MCNP models of the NDA system, and (3) Procure and test key pulse-processing components. Progress against these tasks to date, and next steps, are discussed.

  18. Verification and validation guidelines for high integrity systems. Volume 1

    SciTech Connect (OSTI)

    Hecht, H.; Hecht, M.; Dinsmore, G.; Hecht, S.; Tang, D. [SoHaR, Inc., Beverly Hills, CA (United States)

    1995-03-01T23:59:59.000Z

    High integrity systems include all protective (safety and mitigation) systems for nuclear power plants, and also systems for which comparable reliability requirements exist in other fields, such as in the process industries, in air traffic control, and in patient monitoring and other medical systems. Verification aims at determining that each stage in the software development completely and correctly implements requirements that were established in a preceding phase, while validation determines that the overall performance of a computer system completely and correctly meets system requirements. Volume I of the report reviews existing classifications for high integrity systems and for the types of errors that may be encountered, and makes recommendations for verification and validation procedures, based on assumptions about the environment in which these procedures will be conducted. The final chapter of Volume I deals with a framework for standards in this field. Volume II contains appendices dealing with specific methodologies for system classification, for dependability evaluation, and for two software tools that can automate otherwise very labor intensive verification and validation activities.

  19. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01T23:59:59.000Z

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  20. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    SciTech Connect (OSTI)

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  1. Every sign of life

    E-Print Network [OSTI]

    Gerasimov, Vadim, 1969-

    2003-01-01T23:59:59.000Z

    Every Sign of Life introduces an approach to and motivational schema for personal health monitoring. It is an exploration of how to make information collected by personal health-monitoring devices fun and engaging, and ...

  2. Life Cycle Inventory of a CMOS Chip

    E-Print Network [OSTI]

    Boyd, Sarah; Dornfeld, David; Krishnan, Nikhil

    2006-01-01T23:59:59.000Z

    are shown. Keywords- Life Cycle Assessment (LCA); Life Cycleindustry, and Life Cycle Assessment (LCA) is emerging as a

  3. Science & Technology Review September 2009

    SciTech Connect (OSTI)

    Bearinger, J P

    2009-07-24T23:59:59.000Z

    This month's issue has the following articles: (1) Remembering the Laboratory's First Director - Commentary by Harold Brown; (2) Herbert F. York (1921-2009): A Life of Firsts, an Ambassador for Peace - The Laboratory's first director, who died on May 19, 2009, used his expertise in science and technology to advance arms control and prevent nuclear war; (3) Searching for Life in Extreme Environments - DNA will help researchers discover new marine species and prepare to search for life on other planets; (4) Energy Goes with the Flow - Lawrence Livermore is one of the few organizations that distills the big picture about energy resources and use into a concise diagram; and (5) The Radiant Side of Sound - An experimental method that converts sound waves into light may lead to new technologies for scientific and industrial applications.

  4. Chemical Plant Energy Efficiency Through Computer Aided Technology 

    E-Print Network [OSTI]

    Grassi, V. G.

    1998-01-01T23:59:59.000Z

    . These models have become highly refined. Extensive model verification with plant operation has been completed at many operating points. The entire plant flowsheet can be simulated on workstation class computers in less than ten 4 ESL-AR-98...-04-02 Proceedings from the Twentieth National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1998 minutes elapsed time. Optimization is used to find minimum cost operating conditions. More recently, wide-area plant computer networks have been...

  5. US and UK release joint report on nuclear arms control verification...

    National Nuclear Security Administration (NNSA)

    release joint report on nuclear arms control verification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  6. INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-05-24T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-02-0

  7. REVISED INDEPENDENT VERIFICATION SURVEY OF A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH BROOKHAVEN NATIONAL LABORATORY

    SciTech Connect (OSTI)

    P.C. Weaver

    2010-02-10T23:59:59.000Z

    REVISED INDEPENDENT VERIFICATION SURVEY OF THE A AND B RADIOACTIVE WASTE TRANSFER LINES TRENCH, BROOKHAVEN NATIONAL LABORATORY 5062-SR-01-1

  8. INDEPENDENT VERIFICATION SURVEY REPORT OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT

    SciTech Connect (OSTI)

    W.C. Adams

    2010-07-21T23:59:59.000Z

    INDEPENDENT VERIFICATION SURVEY REPORT FOR THE OPERABLE UNIT-1 LANDFILL TRENCHES, MIAMISBURG CLOSURE PROJECT, MIAMISBURG, OHIO DCN: 0468-SR-03-0

  9. Test of a Multilayer Dose-Verification Gaseous Detector with Raster Scan Mode Proton Beams

    E-Print Network [OSTI]

    Lee, Kyong Sei; Han, Youngyih; Hong, Byungsik; Kang, Minho; Kim, Sang Yeol; Lee, Seunkyung; Park, Sung Keun

    2015-01-01T23:59:59.000Z

    A multilayer gaseous detector has been developed for the fast dose-verification measurements of raster-scan-mode therapeutic beams in particle therapy.

  10. Finite-State Verification for High Performance Computing George S. Avrunin

    E-Print Network [OSTI]

    Avrunin, George S.

    Finite-State Verification for High Performance Computing George S. Avrunin Department (top500.org) reveals that high performance computing has become practically synonymous with parallel

  11. Formal Verification of the Island Tunnel Controller using Multiway Decision Graphs

    E-Print Network [OSTI]

    Tahar, Sofiène

    experiments on the ITC example including combinational verification, invariant checking and behavioral enumeration. This algorithm verifies whether an invariant holds in all reachable states of an abstract state

  12. The Elusive “Life” of LEDs: How TM-21 Contributes to the Solution

    SciTech Connect (OSTI)

    Richman, Eric E.

    2011-11-18T23:59:59.000Z

    This magazine article discusses the issue of LED 'lifetime' and explains where TM-21 plays as part of the solution to this issue. In August 2011, the Illuminating Engineering Society (IES) published the TM-21 document entitled 'Lumen degradation lifetime estimation method for LED light sources.' TM-21 is the IES-recommended method for projecting lumen degradation of an LED package, array or module based on data collected according to LM-80. The lighting community expects TM-21 to become the standard method for projecting useful LED lighting product life at realistic operating temperature. This article presents the development process behind TM-21, and clarifies how and when to apply the lifetime extrapolation method to arrive at reasonable and useful estimations. Why TM-21 and why now? We are all familiar with the very real but sometimes exaggerated long-life attributes of LED technology. Not the least of these is the potential for very long life that helps make it an attractive design choice. The trick has been and continues to be how to measure or estimate this longevity to provide assurance to users of this technology's reliability (life) compared to other options. We also understand that the overall reliability of a complete LED lighting fixture can be affected by the reliability of individual product components (driver, lens, etc.) and should be accounted for in lifetime estimations. The useful life of standard lighting technologies is defined as the time to filament or cathode failure. For most of these lamps, the time period prior to failure exhibits acceptable levels of light output, as shown with the solid lines in Fig. 1. This makes it easy to determine when to replace the lamp. However, LEDs do not have filament burn-out that conveniently announces the end of life (dashed line in Fig. 1). Further, the rapid development of the technology and the desire to bring products to market in a timely manner does not allow for actual testing verification of the long lives claimed (100,000 or even 35,000 hours). As a result, the industry has come to accept a definition of the end of the useful life of an LED as the point when it no longer provides a specified level of light output. And finally, the life and performance of LED lighting products depends greatly on excess heat retained at the diode. This is why LEDs require testing at multiple temperatures such that when a source is installed in a luminaire, its actual operating temperature can be measured and lumen depreciation of the product can be derived. Therefore, to serve the solid-state lighting industry, the Technical Procedures Committee (TPC) of the IES proceeded to develop appropriate tests for use in rating LED product longevity. The initial need was a measure of the basic lumen degradation of LED source components identified by a module, package, or array of diodes and this came in the form of LM-80. Importantly, LM-80 only specifies how to measure lumen depreciation to a minimum of 6000 hours (but recommends testing to 10,000 hours or longer). LM-80 stops short of using that data to estimate any depreciation after that, which is where TM-21 comes in. The TM-21 working group (WG) as part of the IES TPC was formed to develop the lumen depreciation projection method and spent over three years exploring many options. The WG evaluated various projection options starting with an analysis of various mathematical, engineering-based models to provide effective depreciation fit and a useful projection method. Next, the WG analyzed LED lumen maintenance behavior using over 40 sets of LM-80-08 test data (20 sets with 10,000 hours or more) collected from four major LED manufacturers. The working group also examined the accuracy of proposed projections using various proposed models and LM-80 data that extended up to 15,000 hours.

  13. Safeguards Verification Measurements using Laser Ablation, Absorbance Ratio Spectrometry in Gaseous Centrifuge Enrichment Plants

    SciTech Connect (OSTI)

    Anheier, Norman C.; Cannon, Bret D.; Qiao, Hong (Amy) [Amy; Phillips, Jon R.

    2012-07-01T23:59:59.000Z

    Laser Ablation Absorbance Ratio Spectrometry (LAARS) is a new verification measurement technology under development at the US Department of Energy’s (DOE) Pacific Northwest National Laboratory (PNNL). LAARS uses three lasers to ablate and then measure the relative isotopic abundance of uranium compounds. An ablation laser is tightly focused on uranium-bearing solids producing a small plume containing uranium atoms. Two collinear wavelength-tuned spectrometry lasers transit through the plume and the absorbance of U-235 and U-238 isotopes are measured to determine U-235 enrichment. The measurement has high relative precision and detection limits approaching the femtogram range for uranium. It is independent of chemical form and degree of dilution with nuisance dust and other materials. High speed sample scanning and pinpoint characterization allow measurements on millions of particles/hour to detect and analyze the enrichment of trace uranium in samples. The spectrometer is assembled using commercially available components at comparatively low cost, and features a compact and low power design. Future designs can be engineered for reliable, autonomous deployment within an industrial plant environment. Two specific applications of the spectrometer are under development: 1) automated unattended aerosol sampling and analysis and 2) on-site small sample destructive assay measurement. The two applications propose game-changing technological advances in gaseous centrifuge enrichment plant (GCEP) safeguards verification. The aerosol measurement instrument, LAARS-environmental sampling (ES), collects aerosol particles from the plant environment in a purpose-built rotating drum impactor and then uses LAARS-ES to quickly scan the surface of the impactor to measure the enrichments of the captured particles. The current approach to plant misuse detection involves swipe sampling and offsite analysis. Though this approach is very robust it generally requires several months to obtain results from a given sample collection. The destructive assay instrument, LAARS-destructive assay (DA), uses a simple purpose-built fixture with a sampling planchet to collect adsorbed UF6 gas from a cylinder valve or from a process line tap or pigtail. A portable LAARS-DA instrument scans the microgram quantity of uranium collected on the planchet and the assay of the uranium is measured to ~0.15% relative precision. Currently, destructive assay samples for bias defect measurements are collected in small sample cylinders for offsite mass spectrometry measurement.

  14. Department of Engineering Technology Technology Education

    E-Print Network [OSTI]

    Bieber, Michael

    Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: · Designing

  15. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    SciTech Connect (OSTI)

    Christina B. Behr-Andres

    2001-10-01T23:59:59.000Z

    The objective of the Environmental Technologies Acceptance (ETA) Program at the Energy & Environmental Research Center (EERC) is to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As a result of contract changes approved by National Energy Technology Laboratory (NETL) representatives to incorporate activities previously conducted under another NETL agreement, there are now an additional task and an expansion of activities within the stated scope of work of the ETA program. As shown in Table 1, this cooperative agreement, funded by NETL (No. DE-FC26-00NT40840), consists of four tasks: Technology Selection, Technology Development, Technology Verification, and System Engineering. As currently conceived, ETA will address the needs of as many technologies as appropriate under its current 3-year term. There are currently four technical subtasks: Long-Term Stewardship Initiative at the Mound Plant Site; Photocatalysis of Mercury-Contaminated Water; Subcritical Water Treatment of PCB and Metal-Contaminated Paint Waste; and Vegetative Covers for Low-Level Waste Repositories. This report covers activities during the second six months of the three-year ETA program.

  16. Thermodynamic Origin of Life

    E-Print Network [OSTI]

    Michaelian, K

    2009-01-01T23:59:59.000Z

    Understanding the thermodynamic function of life may shed light on its origin. Out of equilibrium structuring in space and time is contingent on continuous entropy production. Entropy production is a measure of the rate of the natural tendency of Nature to explore all available microstates. The process producing the greatest amount of entropy in the biosphere is the absorption and transformation of sunlight, leading to the transpiration of water by plants and cyanobacteria. Here we hypothesize that life began, and exists today, as a dynamic catalyst for the absorption and transformation of sunlight into heat, which could then be efficiently harvested by the water cycle, hurricanes, and ocean and wind currents. RNA and DNA are the most efficient of all known molecules for absorbing the ultraviolet light that could have penetrated the dense early atmosphere, and are extremely rapid in transforming this light into heat that can be readily absorbed by liquid water. The origin and evolution of life was thus driven...

  17. AG-906 (08/11) Texas A&M AgriLife

    E-Print Network [OSTI]

    this exception: Cost prohibitive Underlying EIR technology platform not accessible Adequate skilled resourcesAG-906 (08/11) Texas A&M AgriLife Administrative Services ­ Information Technology Electronic application Electronic Document (PDF, MS Word, PPT, etc.) Multimedia or video content Information technology

  18. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  19. A Flexible simulation and verification framework for next generation hybrid pixel readout chips in High Energy Physics

    E-Print Network [OSTI]

    Marconi, Sara

    A Flexible simulation and verification framework for next generation hybrid pixel readout chips in High Energy Physics

  20. Life-cycle assessment (LCA) methodology applied to energetic materials

    SciTech Connect (OSTI)

    Reardon, P.T.

    1995-03-01T23:59:59.000Z

    The objective of the Clean Agile Manufacturing of Propellants, Explosives, and pyrotechnics (CAMPEP) program is to develop and demonstrate the feasibility of using modeling, alternate materials and processing technology to reduce PEO life-cycle pollution by up to 90%. Traditional analyses of factory pollution treat the manufacturing facility as the singular pollution source. The life cycle of a product really begins with raw material acquisition and includes all activities through ultimate disposal. The life cycle thus includes other facilities besides the principal manufacturing facility. The pollution generated during the product life cycle is then integrated over the total product lifetime, or represents a ``cradle to grave`` accounting philosophy. This paper addresses a methodology for producing a life-cycle inventory assessment.

  1. Thermal and Mechanical Design Aspects of the LIFE Engine

    SciTech Connect (OSTI)

    Abbott, R P; Gerhard, M A; Latkowski, J F; Kramer, K J; Morris, K R; Peterson, P F; Seifried, J E

    2008-10-25T23:59:59.000Z

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and fission reactions into electricity. The design and integration of these components must satisfy a challenging set of requirements driven by nuclear, thermal, geometric, structural, and materials considerations. This paper details a self-consistent configuration for the LIFE engine along with the methods and technologies selected to meet these stringent requirements. Included is discussion of plant layout, coolant flow dynamics, fuel temperatures, expected structural stresses, power cycle efficiencies, and first wall survival threats. Further research and to understand and resolve outstanding issues is also outlined.

  2. DEVELOPMENT OF A PORTAL MONITOR FOR UF6 CYLINDER VERIFICATION

    SciTech Connect (OSTI)

    Smith, Leon E.; Curtis, Michael M.; Shaver, Mark W.; Benz, Jacob M.; Misner, Alex C.; Mace, Emily K.; Jordan, David V.; Noss, Daniel; Ford, Herbert

    2009-10-06T23:59:59.000Z

    International Atomic Energy Agency (IAEA) inspectors currently perform periodic inspections at uranium enrichment plants to verify UF6 cylinder enrichment declarations. Measurements are performed with handheld high-resolution sensors on a sampling of cylinders taken to be representative of the facility’s operations. As additional enrichment plans come online to support the expansion of nuclear power, reducing person-days of inspection will take on greater importance. Pacific Northwest National Laboratory (PNNL) is developing a concept to automate the verification of enrichment plant cylinders to enable 100% product-cylinder verification and potentially, mass-balance calculations on the facility as a whole (by also measuring feed and tails cylinders). The Automated Cylinder Enrichment Verification System (ACEVS) would be located at key measurement points and will positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until IAEA inspector arrival. Given the potential for reduced inspector presence, the operational and manpower-reduction benefits of the portal concept are clear. However, it is necessary to assess whether the cylinder portal concept can meet, or potentially improve upon, today’s U-235 enrichment assay performance. PNNL’s ACEVS concept utilizes sensors that could be operated in an unattended mode: moderated He-3 neutron detectors and large NaI(Tl) scintillators for gamma-ray spectroscopy. The medium-resolution NaI(Tl) scintillators are a sacrifice in energy resolution but do provide high collection efficiency for signatures above 1 MeV. The He-3/NaI sensor combination allows the exploitation of additional, more-penetrating signatures than those currently utilized: Neutrons produced from F-19(?,n) reactions (spawned primarily from U-234 alpha emission) and high-energy gamma rays (extending up to 10 MeV) induced by neutrons interacting in the steel cylinder. These signatures are indirect measures of U-235 that require a relatively stable U-234/U-235 ratio in the product material in order to be useful. The hypothesis of this work is that the U-234/U-235 ratio is sufficiently constant, for the specific facility where the automated system is installed, to rely on neutron and high-energy gamma-ray signatures for indirect measurement of U-235. Further, these highly penetrating signatures can be combined with a modified form of NaI-based 185-keV enrichment measurements to meet target uncertainties for the verification of product cylinders, with the additional benefits of full-volume assay of the cylinder and 100% product-cylinder verification (as opposed to today’s sampling-based approach). This paper focuses on the enrichment measurement aspects of the ACEVS concept: neutron and high-energy gamma-ray signatures, the radiation sensors designed to collect those signatures, and proof-of-principle cylinder measurements and analysis. Preliminary analysis indicates that an automated cylinder verification approach has the potential to meet target uncertainty values for 30B products cylinders (5%), assuming ore-based enrichment feed and a facility-specific calibration. Also described is the additional work needed to more definitively assess the concept’s viability, particularly through a better understanding of the U-234/U-235 ratio variability in modern enrichment plants.

  3. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  4. Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network-on-Chip

    E-Print Network [OSTI]

    Joseph Fourier Grenoble-I, Université

    Formal Verification of CHP Specifications with CADP, Illustration on an Asynchronous Network of the Presentation · Introduction · Translation from CHP to LOTOS · CADP toolbox overview · Verification of ANOC Context & Objective process calculus CHP Petri nets process calculus LOTOS (CEA/Leti) translation

  5. Department of Computer Science & Engineering Scheduling Design and Verification for Open Soft Real-time Systems

    E-Print Network [OSTI]

    Smart, William

    Soft Real-time Systems Authors: Robert Glaubius, Terry Tidwell,William D. Smart, and Christopher Gill and verification approach for open soft real-time systems, that can use different decision models, e.g., a Markov of scheduling policies for open soft real-time systems. #12;Scheduling Design and Verification for Open Soft

  6. Guidelines for Participation in the ETV ESTE Verification Test of Lead Paint Test Kits

    E-Print Network [OSTI]

    Guidelines for Participation in the ETV ESTE Verification Test of Lead Paint Test Kits Revised 09/24/2009 The following guidelines have been set to establish the eligibility of individual test kits for participation in the ETV ESTE verification test of lead paint test kits. Test kits must conform to the following guidelines

  7. Using Sparse Representation for Fish Recognition and Verification in Real World Observation

    E-Print Network [OSTI]

    Chen, Chaur-Chin

    Using Sparse Representation for Fish Recognition and Verification in Real World Observation Yi, Hsinchu, Taiwan Abstract - The purpose of this paper is to present an innovated fish recognition and verification method suited for the real world automatic underwater fish observation. Based on the fish

  8. Property Verification for Access Control Models via Model Checking1 Vincent C. Hu1

    E-Print Network [OSTI]

    Young, R. Michael

    Property Verification for Access Control Models via Model Checking1 Vincent C. Hu1 , D. Richard. In this paper, we propose a new general approach for property verification for access control models via model checking. The approach defines a standardized structure for access control models, providing for both

  9. Comparisonbased File Server Verification YuenLin Tan # , Terrence Wong, John D. Strunk, Gregory R. Ganger

    E-Print Network [OSTI]

    Comparison­based File Server Verification Yuen­Lin Tan # , Terrence Wong, John D. Strunk, Gregory R. Ganger Carnegie Mellon University Abstract Comparison­based server verification involves testing a server by comparing its responses to those of a refer­ ence server. An intermediary, called a ``server Tee,'' in

  10. Coverage Metrics for Verification of Concurrent SystemC Designs Using Mutation Testing

    E-Print Network [OSTI]

    Sen, Alper

    Coverage Metrics for Verification of Concurrent SystemC Designs Using Mutation Testing Alper Sen Department of Computer Engineering Bogazici University Istanbul, Turkey Email: alper.sen@boun.edu.tr Magdy S is not adequate for a concurrent program. A major problem with design verification of concurrent systems

  11. A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo

    E-Print Network [OSTI]

    A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated in nuclear power plant's reactor protection systems. The software verification framework uses two different

  12. An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration

    E-Print Network [OSTI]

    Hilley, George

    An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

  13. Formal Verification Integration Approach for Faiez Zalila, Xavier Cregut, and Marc Pantel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    critical systems. In this context, model validation and verification (V&V) activities are key features) for the verification of safety critical embedded systems has produced very good results and raised the inter- est the benefits of these power- ful methods. More precisely, we propose a language to formally express system

  14. Query Based UML Modeling Validation and Verification of the System Model and

    E-Print Network [OSTI]

    Austin, Mark

    1 Query Based UML Modeling Validation and Verification of the System Model and Behavior. UML/SysML was designed to provide simple but powerful constructs for modeling a wide range of systems for a Hydraulic Crane Denny Mathew ENPM 643 System Validation and Verification Instructor: Dr. Mark Austin Fall

  15. A Formal Verification Methodology for Checking Data Integrity Yasushi Umezawa, Takeshi Shimizu

    E-Print Network [OSTI]

    Boyer, Edmond

    and complexity of system on chip (SoC) designs. Powerful formal verification methods have been playing, model checking for complex designs may be beyond the power of available tools and computing resourceA Formal Verification Methodology for Checking Data Integrity Yasushi Umezawa, Takeshi Shimizu

  16. A Brief Account of Runtime Verification Martin Leucker and Christian Schallhart

    E-Print Network [OSTI]

    Leucker, Martin

    to well-known verification techniques like model checking and testing is provided, and applications-skid system must speed with exactly the right velocity to stabi- lize the car. Moreover, for a power plant;verification is particularly challenging as the overall behavior of such systems depends heavily

  17. Lifecycle Verification of the NASA Ames K9 Rover Executive Dimitra Giannakopoulou1, 3

    E-Print Network [OSTI]

    Pasareanu, Corina

    , it shows that when verification proceeds hand-in-hand with software development throughout the lifecycle phases of software development, i.e. at design and implementation phases of the software lifecycle. · Use-hand with later phases of software development. Figure 1. Compositional verification throughout the software

  18. Commissioning and Verification Procedures for the Automated Roller Shade System at

    E-Print Network [OSTI]

    Commissioning and Verification Procedures for the Automated Roller Shade System at The New York for verification testing of a newly installed automated roller shade system. The automated roller shade system has-available system works prior to building occupancy. A high dynamic range luminance measurement tool, developed

  19. Automatic Conversion Software for the Safety Verification of Goal-based Control Programs

    E-Print Network [OSTI]

    Murray, Richard M.

    , an automatic software algorithm for converting goal network control programs into linear hybrid systemsAutomatic Conversion Software for the Safety Verification of Goal-based Control Programs Julia M. B. Braman and Richard M. Murray Abstract-- Fault tolerance and safety verification of control systems

  20. Automatic Conversion Software for the Safety Verification of Goal-Based Control Programs

    E-Print Network [OSTI]

    Murray, Richard M.

    Automatic Conversion Software for the Safety Verification of Goal-Based Control Programs Julia M. B tolerance and safety verification of control systems are essential for the success of autonomous robotic systems. A control architecture called Mission Data System (MDS), developed at the Jet Propulsion

  1. Assessing Quality of Policy Properties in Verification of Access Control Policies

    E-Print Network [OSTI]

    Young, R. Michael

    Assessing Quality of Policy Properties in Verification of Access Control Policies Evan Martin Tao, which are often manually specified. Policy verification is an important tech- nique for high assurance and hardware resources, especially for distributed systems. It controls which principals such as users

  2. And-Invert-Graphs (AIGs) for Equivalence Verification, SAT Modulo Theory (SMT) Solvers, and the Motivation

    E-Print Network [OSTI]

    Kalla, Priyank

    And-Invert-Graphs (AIGs) for Equivalence Verification, SAT Modulo Theory (SMT) Solvers-learning Key idea: identify internal structural equivalences P. Kalla (Univ. of Utah) AIGs, SMT, Algebra of transformations Verification = reverse these transformations? Kind of... P. Kalla (Univ. of Utah) AIGs, SMT

  3. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  4. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  5. A Runtime Verification Framework for Control System Simulation

    SciTech Connect (OSTI)

    Ciraci, Selim; Fuller, Jason C.; Daily, Jeffrey A.; Makhmalbaf, Atefe; Callahan, Charles D.

    2014-08-02T23:59:59.000Z

    n a standard workflow for the validation of a control system, the control system is implemented as an extension to a simulator. Such simulators are complex software systems, and engineers may unknowingly violate constraints a simulator places on extensions. As such, errors may be introduced in the implementation of either the control system or the simulator leading to invalid simulation results. This paper presents a novel runtime verification approach for verifying control system implementations within simulators. The major contribution of the approach is the two-tier specification process. In the first tier, engineers model constraints using a domain-specific language tailored to modeling a controller’s response to changes in its input. The language is high-level and effectively hides the implementation details of the simulator, allowing engineers to specify design-level constraints independent of low-level simulator interfaces. In the second tier, simulator developers provide mapping rules for mapping design-level constraints to the implementation of the simulator. Using the rules, an automated tool transforms the design-level specifications into simulator-specific runtime verification specifications and generates monitoring code which is injected into the implementation of the simulator. During simulation, these monitors observe the input and output variables of the control system and report changes to the verifier. The verifier checks whether these changes follow the constraints of the control system. We describe application of this approach to the verification of the constraints of an HVAC control system implemented with the power grid simulator GridLAB-D.

  6. Employment Verification Form The University of Florida Human Resource Services uses The Work Number to provide employment

    E-Print Network [OSTI]

    Mazzotti, Frank

    Rev. 2/14 Employment Verification Form The University of Florida Human Resource Services uses The Work Number to provide employment verifications for current and former employees who terminated-800-367-5690 to obtain employment verification. For more information regarding The Work Number, or UF employment

  7. FINAL REPORT –INDEPENDENT VERIFICATION SURVEY SUMMARY AND RESULTS FOR THE ARGONNE NATIONAL LABORATORY BUILDING 330 PROJECT FOOTPRINT, ARGONNE, ILLINOIS

    SciTech Connect (OSTI)

    ERIKA N. BAILEY

    2012-02-29T23:59:59.000Z

    ORISE conducted onsite verification activities of the Building 330 project footprint during the period of June 6 through June 7, 2011. The verification activities included technical reviews of project documents, visual inspections, radiation surface scans, and sampling and analysis. The draft verification report was issued in July 2011 with findings and recommendations. The contractor performed additional evaluations and remediation.

  8. Digital data storage systems, computers, and data verification methods

    DOE Patents [OSTI]

    Groeneveld, Bennett J.; Austad, Wayne E.; Walsh, Stuart C.; Herring, Catherine A.

    2005-12-27T23:59:59.000Z

    Digital data storage systems, computers, and data verification methods are provided. According to a first aspect of the invention, a computer includes an interface adapted to couple with a dynamic database; and processing circuitry configured to provide a first hash from digital data stored within a portion of the dynamic database at an initial moment in time, to provide a second hash from digital data stored within the portion of the dynamic database at a subsequent moment in time, and to compare the first hash and the second hash.

  9. Cleanup Verification Package for the 116-K-2 Effluent Trench

    SciTech Connect (OSTI)

    J. M. Capron

    2006-04-04T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 116-K-2 effluent trench, also referred to as the 116-K-2 mile-long trench and the 116-K-2 site. During its period of operation, the 116-K-2 site was used to dispose of cooling water effluent from the 105-KE and 105-KW Reactors by percolation into the soil. This site also received mixed liquid wastes from the 105-KW and 105-KE fuel storage basins, reactor floor drains, and miscellaneous decontamination activities.

  10. Cleanup Verification Package for the 118-F-1 Burial Ground

    SciTech Connect (OSTI)

    E. J. Farris and H. M. Sulloway

    2008-01-10T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.

  11. An Integrated Design and Verification Methodology for Reconfigurable Multimedia Systems

    E-Print Network [OSTI]

    Borgatti, M; Rossi, U; Lambert, J -L; Moussa, I; Fummi, F; Pravadelli, G

    2011-01-01T23:59:59.000Z

    Recently a lot of multimedia applications are emerging on portable appliances. They require both the flexibility of upgradeable devices (traditionally software based) and a powerful computing engine (typically hardware). In this context, programmable HW and dynamic reconfiguration allow novel approaches to the migration of algorithms from SW to HW. Thus, in the frame of the Symbad project, we propose an industrial design flow for reconfigurable SoC's. The goal of Symbad consists of developing a system level design platform for hardware and software SoC systems including formal and semi-formal verification techniques.

  12. ICDF Complex Waste Profile and Verification Sample Guidance

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-10-01T23:59:59.000Z

    This guidance document will assist waste generators who characterize waste streams destined for disposal at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) Complex. The purpose of this document is to develop a conservative but appropriate way to (1) characterize waste for entry into the ICDF; (2) ensure compliance with the waste acceptance criteria; and (3) facilitate disposal at the ICDF landfill or evaporation pond. In addition, this document will establish the waste verification process used by ICDF personnel to ensure that untreated waste meets applicable ICDF acceptance limits

  13. Reactor physics verification of the MCNP6 unstructured mesh capability

    SciTech Connect (OSTI)

    Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)

    2013-07-01T23:59:59.000Z

    The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)

  14. Transforming PLC Programs into Formal Models for Verification Purposes

    E-Print Network [OSTI]

    Darvas, D; Blanco, E

    2013-01-01T23:59:59.000Z

    Most of CERN’s industrial installations rely on PLC-based (Programmable Logic Controller) control systems developed using the UNICOS framework. This framework contains common, reusable program modules and their correctness is a high priority. Testing is already applied to find errors, but this method has limitations. In this work an approach is proposed to transform automatically PLC programs into formal models, with the goal of applying formal verification to ensure their correctness. We target model checking which is a precise, mathematical-based method to check formalized requirements automatically against the system.

  15. Verification as a Foundation for Validation of a Nuclear Fuel Performance Code

    SciTech Connect (OSTI)

    J. D. Hales; S. R. Novascone; B. W. Spencer; R. L. Williamson; G. Pastore; D. M. Perez

    2014-09-01T23:59:59.000Z

    Complex multiphysics simulations such as nuclear fuel performance analysis are composed of many submodels used to describe specific phenomena. These phenomena include, as examples, the relationship between stress and strain, heat transfer across a gas gap, and mechanical contact. These submodels work in concert to simulate real-world events, like the behavior of a fuel rod in a reactor. If a simulation tool is able to represent real-world behavior, the tool is said to be validated. While much emphasis is rightly placed on validation, model verification may be undervalued. Verification involves showing that a model performs as intended, that it computes results consistent with its mathematical description. This paper explains the differences between verification and validation and shows how validation should be preceded by verification. Specific verification problems, including several specific to nuclear fuel analysis, are given. Validation results are also presented.

  16. Continuous Verification of Large Embedded Software using SMT-Based Bounded Model Checking

    E-Print Network [OSTI]

    Cordeiro, Lucas; Marques-Silva, Joao

    2009-01-01T23:59:59.000Z

    The complexity of software in embedded systems has increased significantly over the last years so that software verification now plays an important role in ensuring the overall product quality. In this context, SAT-based bounded model checking has been successfully applied to discover subtle errors, but for larger applications, it often suffers from the state space explosion problem. This paper describes a new approach called continuous verification to detect design errors as quickly as possible by looking at the Software Configuration Management (SCM) system and by combining dynamic and static verification to reduce the state space to be explored. We also give a set of encodings that provide accurate support for program verification and use different background theories in order to improve scalability and precision in a completely automatic way. A case study from the telecommunications domain shows that the proposed approach improves the error-detection capability and reduces the overall verification time by...

  17. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  18. Life Sciences Shared Resources

    E-Print Network [OSTI]

    Myers, Lawrence C.

    Life Sciences Shared Resources Cancer.Dartmouth.eduMarch 2012 201202-19201202-19 #12;SHARED RESOURCES MANAGEMENT MANAGEMENT TEAM: Mark Israel, MD Director, Norris Cotton Cancer Center Bob Gerlach, MPA Associate Director, Norris Cotton Cancer Center CraigTomlinson, PhD Associate Director for Shared Resources

  19. Life cycle assessment

    SciTech Connect (OSTI)

    Curran, M.A. [Environmental Protection Agency, Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    Life-Cycle Assessment (LCA) is a technical, data-based and holistic approach to define and subsequently reduce the environmental burdens associated with a product, process, or activity by identifying and quantifying energy and material usage and waste discharges, assessing the impact of those wastes on the environment, and evaluating and implementing opportunities to effect environmental improvements. The assessment includes the entire life-cycle of the product, process or activity encompassing extraction and processing of raw materials, manufacturing, transportation and distribution, use/reuse, recycling and final disposal. LCA is a useful tool for evaluating the environmental consequences of a product, process, or activity, however, current applications of LCA have not been performed in consistent or easily understood ways. This inconsistency has caused increased criticism of LCA. The EPA recognized the need to develop an LCA framework which could be used to provide consistent use across the board. Also, additional research is needed to enhance the understanding about the steps in the performance of an LCA and its appropriate usage. This paper will present the research activities of the EPA leading toward the development of an acceptable method for conducting LCA`s. This research has resulted in the development of two guidance manuals. The first manual is intended to be a practical guide to conducting and interpreting the life-cycle inventory. A nine-step approach to performing a comprehensive inventory is presented along with the general issues to be addressed. The second manual addresses life-cycle design.

  20. Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)

    SciTech Connect (OSTI)

    Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.; Davidson, J.R.; Egidi, P.V.; Coleman, R.L.

    1998-05-01T23:59:59.000Z

    The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness of remedial action. The IV contractor`s task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project.

  1. Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung Chul Kim and Vasilis Fthenakis

    E-Print Network [OSTI]

    and health impacts of nano-technologies triggered a recent surge of life cycle assessment (LCA) studies in parallel with the progress of nanotechnologies by employing life-cycle assessment (LCA) that is widely1 Life Cycle Energy and Climate Change Implication of Nanotechnologies: A Critical Review Hyung

  2. Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification \\Lambda

    E-Print Network [OSTI]

    Bryant, Randal E.

    . Bryant Carnegie Mellon University Pittsburgh, PA 15213 Randy.Bryant@cs.cmu.edu http://www.cs.cmu/~bryant

  3. U.S. EPA Environmental Technology Verification (ETV) Program Materials Management and Remediation (MMR) Center

    E-Print Network [OSTI]

    ). (Ken Feathers) · Use or dispose of byproducts from biofuels, such as acrylic glycerin. (Dan Powell) · Translate municipal solid waste streams into biofuels or energy sources. A plasma process was mentioned

  4. technology offer Vienna University of Technology | Research and Transfer Support | Claudia Doubek

    E-Print Network [OSTI]

    Szmolyan, Peter

    technology offer Vienna University of Technology | Research and Transfer Support | Claudia Doubek. Researchers focused on low building costs, easy assembly and long service life. Investment costs as well as control and maintenance costs are extremely reduced in relation to state of the art expansion joints. Long

  5. Measurement and verification for solar water heating performance contracts

    SciTech Connect (OSTI)

    Walker, A.; Azerbegi, R.J.

    1999-07-01T23:59:59.000Z

    Solar water heating is a hardware intensive and therefore capital intensive, energy conservation measure. Energy Savings Performance Contracting (ESPC) offers a solution to the financing barrier by using third-party funds to install a system, and then paying the financier back out of the energy cost savings over the term of the contract. Measurement and Verification (M and V) of system performance is key to this kind of contract, and for Federal government ESPC projects, measurement and verification of energy cost savings is required by statute. The design of an M and V program has very important implications for customers and project developers alike. This paper presents detailed discussion of solar water heating M and V options developed for the US Department of Energy Federal Energy Management Program (FEMP), but with general application for all solar water heating performance contracting arrangements, public and private. The options described in the paper are: stipulation with inspection; metering; utility bill analysis; and renormalized computer models. In addition to contrasting the cost, benefits and appropriate application of each option, this paper discusses issues common to all options, such as the statistical design of M and V programs. The paper concludes with recommended options based on the size and type of project, the cost of the M and V program, and the allocation of risk between the contracting parties.

  6. TRU waste certification and TRUPACT-2 payload verification

    SciTech Connect (OSTI)

    Hunter, E.K. (USDOE Albuquerque Operations Office, Carlsbad, NM (USA). Waste Isolation Pilot Plant Project Office); Johnson, J.E. (Westinghouse Electric Corp., Carlsbad, NM (USA). Waste Isolation Div.)

    1990-01-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig.

  7. An evaluation of the management system verification pilot at Hanford

    SciTech Connect (OSTI)

    BRIGGS, C.R.

    1998-11-12T23:59:59.000Z

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview.

  8. An ideal sealed source life-cycle

    SciTech Connect (OSTI)

    Tompkins, Joseph Andrew [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    In the last 40 years, barriers to compliant and timely disposition of radioactive sealed sources have become apparent. The story starts with the explosive growth of nuclear gauging technologies in the 1960s. Dozens of companies in the US manufactured sources and many more created nuclear solutions to industrial gauging problems. Today they do not yet know how many Cat 1, 2, or 3 sources there are in the US. There are, at minimum, tens of thousands of sources, perhaps hundreds of thousands of sources. Affordable transportation solutions to consolidate all of these sources and disposition pathways for these sources do not exist. The root problem seems to be a lack of necessary regulatory framework that has allowed all of these problems to accumulate with no national plan for solving the problem. In the 1960s, Pu-238 displaced Pu-239 for most neutron and alpha source applications. In the 1970s, the availability of inexpensive Am-241 resulted in a proliferation of low energy gamma sources used in nuclear gauging, well logging, pacemakers, and X-ray fluorescence applications for example. In the 1980s, rapid expansion of worldwide petroleum exploration resulted in the expansion of Am-241 sources into international locations. Improvements of technology and regulation resulted in a change in isotopic distribution as Am-241 made Pu-239 and Pu-238 obsolete. Many early nuclear gauge technologies have been made obsolete as they were replaced by non-nuclear technoogies. With uncertainties in source end of life disposition and increased requirements for sealed source security, nuclear gauging technology is the last choice for modern process engineering gauging solutions. Over the same period, much was learned about licensing LLW disposition facilities as evident by the closure of early disposition facilities like Maxey Flats. The current difficulties in sealed source disposition start with adoption of the NLLW policy act of 1985, which created the state LLW compact system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  9. Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the Nuclear Materials Identification System (NMIS)

    SciTech Connect (OSTI)

    Grogan, Brandon R [ORNL; Mihalczo, John T [ORNL

    2009-01-01T23:59:59.000Z

    The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new nuclear power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater desalination. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be utilized in these situations. The Nuclear Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.

  10. Guidelines for the verification and validation of expert system software and conventional software: Project summary. Volume 1

    SciTech Connect (OSTI)

    Mirsky, S.M.; Hayes, J.E.; Miller, L.A. [Science Applications International Corp., McLean, VA (United States)

    1995-03-01T23:59:59.000Z

    This eight-volume report presents guidelines for performing verification and validation (V&V) on Artificial Intelligence (Al) systems with nuclear applications. The guidelines have much broader application than just expert systems; they are also applicable to object-oriented programming systems, rule-based systems, frame-based systems, model-based systems, neural nets, genetic algorithms, and conventional software systems. This is because many of the components of AI systems are implemented in conventional procedural programming languages, so there is no real distinction. The report examines the state of the art in verifying and validating expert systems. V&V methods traditionally applied to conventional software systems are evaluated for their applicability to expert systems. One hundred fifty-three conventional techniques are identified and evaluated. These methods are found to be useful for at least some of the components of expert systems, frame-based systems, and object-oriented systems. A taxonomy of 52 defect types and their delectability by the 153 methods is presented. With specific regard to expert systems, conventional V&V methods were found to apply well to all the components of the expert system with the exception of the knowledge base. The knowledge base requires extension of the existing methods. Several innovative static verification and validation methods for expert systems have been identified and are described here, including a method for checking the knowledge base {open_quotes}semantics{close_quotes} and a method for generating validation scenarios. Evaluation of some of these methods was performed both analytically and experimentally. A V&V methodology for expert systems is presented based on three factors: (1) a system`s judged need for V&V (based in turn on its complexity and degree of required integrity); (2) the life-cycle phase; and (3) the system component being tested.

  11. Evolution of Life on Earth EVOLUTION OF LIFE ON EARTH

    E-Print Network [OSTI]

    Shirley, Yancy

    Evolution of Life on Earth #12;EVOLUTION OF LIFE ON EARTH #12;Earth ~4.5 billion years ago A bad day .... #12;Old (Archean) Rocks #12;4.4 Billion year old Zircon Earth was temperate and had water 4.4 billion years ago! #12;#12;EVOLUTION OF LIFE ON EARTH #12;Making Organic Molecules : Miller & Urey Famous

  12. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect (OSTI)

    Shaw, H; Blink, J A

    2008-12-12T23:59:59.000Z

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of the repository design. (4) A simple, but arguably conservative, estimate for the dose from a repository containing 63,000 MT of spent LIFE fuel would have similar performance to the currently planned Yucca Mountain Repository. This indicates that a properly designed 'LIFE Repository' would almost certainly meet the proposed Nuclear Regulatory Commission standards for dose to individuals, even though the waste in such a repository would have produced 20-30 times more generated electricity than the reference case for Yucca Mountain. The societal risk/benefit ratio for a LIFE repository would therefore be significantly better than for currently planned repositories for LWR fuel.

  13. Object technology: A white paper

    SciTech Connect (OSTI)

    Jordan, S.R.; Arrowood, L.F.; Cain, W.D.; Stephens, W.M.; Vickers, B.D.

    1992-05-11T23:59:59.000Z

    Object-Oriented Technology (OOT), although not a new paradigm, has recently been prominently featured in the trade press and even general business publications. Indeed, the promises of object technology are alluring: the ability to handle complex design and engineering information through the full manufacturing production life cycle or to manipulate multimedia information, and the ability to improve programmer productivity in creating and maintaining high quality software. Groups at a number of the DOE facilities have been exploring the use of object technology for engineering, business, and other applications. In this white paper, the technology is explored thoroughly and compared with previous means of developing software and storing databases of information. Several specific projects within the DOE Complex are described, and the state of the commercial marketplace is indicated.

  14. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  15. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  16. USING PERFLUOROCARBON TRACERS FOR VERIFICATION OF CAP AND COVER SYSTEMS PERFORMANCE.

    SciTech Connect (OSTI)

    HEISER,J.; SULLIVAN,T.

    2001-11-01T23:59:59.000Z

    The Department of Energy (DOE) Environmental Management (EM) office has committed itself to an accelerated cleanup of its national facilities. The goal is to have much of the DOE legacy waste sites remediated by 2006. This includes closure of several sites (e.g., Rocky Flats and Fernald). With the increased focus on accelerated cleanup, there has been considerable concern about long-term stewardship issues in general, and verification and long-term monitoring (LTM) of caps and covers, in particular. Cap and cover systems (covers) are vital remedial options that will be extensively used in meeting these 2006 cleanup goals. Every buried waste site within the DOE complex will require some form of cover system. These covers are expected to last from 100 to 1000 years or more. The stakeholders can be expected to focus on system durability and sustained performance. DOE EM has set up a national committee of experts to develop a long-term capping (LTC) guidance document. Covers are subject to subsidence, erosion, desiccation, animal intrusion, plant root infiltration, etc., all of which will affect the overall performance of the cover. Very little is available in terms of long-term monitoring other than downstream groundwater or surface water monitoring. By its very nature, this can only indicate that failure of the cover system has already occurred and contaminants have been transported away from the site. This is unacceptable. Methods that indicate early cover failure (prior to contaminant release) or predict approaching cover failure are needed. The LTC committee has identified predictive monitoring technologies as a high priority need for DOE, both for new covers as well as existing covers. The same committee identified a Brookhaven National Laboratory (BNL) technology as one approach that may be capable of meeting the requirements for LTM. The Environmental Research and Technology Division (ERTD) at BNL developed a novel methodology for verifying and monitoring subsurface barriers (1,2). The technology uses perfluorocarbon tracers (PFTs) to determine flaws (e.g., holes or cracks) and high permeability areas in subsurface barriers. Gaseous tracers are injected on one side of the barrier and searched for on the opposite side of the barrier. The sampling grid, concentration, and time of arrival of the tracer(s) on the opposite side are used to determine the size and location of flaws and relative permeability of the barrier. In addition, there are multiple tracers available, which allows different tracers to be injected in different quadrants of the barrier. This yields additional information on transport phenomena of the barrier.

  17. COLLEGE OF AGRICULTURE AND LIFE SCIENCES BACHELOR OF SCIENCE

    E-Print Network [OSTI]

    Virginia Tech

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES BACHELOR OF SCIENCE FOOD SCIENCE AND TECHNOLOGY CHECKLIST/Core/Area 6) 1(3) AAEC 100S. 1006 Economics of Food & Fiber 3or ECON 2005, 2006 Principles of Economics BIOL Organic Chemistry ) 3 CHEM 2545, 2546 Organic Chemistry Lab FST 3304 Unit Operations :> FST 4405, 4406

  18. REMANENT CREEP LIFE PREDICTION IN LOW-ALLOY FERRITIC STEEL

    E-Print Network [OSTI]

    Cambridge, University of

    REMANENT CREEP LIFE PREDICTION IN LOW-ALLOY FERRITIC STEEL POWER PLANT COMPONENTS By Peter "Tilson in the Depart- ment, and especially in the Phase Transformations Group, in particular to Dr Jer-Ren Yang and Dr is expressed to Dr David Gooch of the National Power Technology and Environment Centre (NPTEC) for the interest

  19. Comparative Life-Cycle Air Emissions of Coal, Domestic Natural

    E-Print Network [OSTI]

    Jaramillo, Paulina

    come domestically from the production of synthetic natural gas (SNG) via coal gasification- methanation gasification technologies that use coal to produce SNG. This National Gasification Strategy callsComparative Life-Cycle Air Emissions of Coal, Domestic Natural Gas, LNG, and SNG for Electricity

  20. Product Life Cycle, and Market Entry and Exit Decisions Under Uncertainty

    E-Print Network [OSTI]

    Chi, Tailan; Liu, John

    2001-01-01T23:59:59.000Z

    A key characteristic of the product life cycle (PLC) is the depletion of the product’s market potential due to technological obsolescence. Based on this concept, we develop a stochastic model for evaluating market entry and exit decisions during...

  1. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

  2. Self-esteem and life satisfaction of aged individuals with and without access to computer training 

    E-Print Network [OSTI]

    Brown, Cindy Ann

    2005-02-17T23:59:59.000Z

    Research indicates that today?s aging population may obtain various benefits from using computer technology. These benefits include increased self-esteem, decreased depression, increased life satisfaction, and decreased loneliness; however, few...

  3. To Collaborative LIfe Sciences Building

    E-Print Network [OSTI]

    To Collaborative LIfe Sciences Building To Professional Development Center Collaborative Life Sciences Building SW MEADE SW PORTER SW M OODY I-5 To Main Campus To South Waterfront I-405 Collaborative Life Sciences Building 0650 SW Meade St. Academic & Student Recreation Center (ASRC) C8 Art Building

  4. QUALITY of LIFE 2009 Report

    E-Print Network [OSTI]

    QUALITY of LIFE in Hawai`i 2009 Report Center on the Family University of Hawai`i Department of Business, Economic Development & Tourism #12;2 QUALITY OF LIFE IN HAWAI`I The QOL framework organizations. For more detail, see the full report: Quality of Life in Hawai`i, 2009 Report: Framework

  5. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  6. Independent Verification Final Summary Report for the David Witherspoon, Inc. 1630 Site Knoxville, Tennessee

    SciTech Connect (OSTI)

    P.C. Weaver

    2009-04-29T23:59:59.000Z

    The primary objective of the independent verification was to determine if BJC performed the appropriate actions to meet the specified “hot spot” cleanup criteria of 500 picocuries per gram (pCi/g) uranium-238 (U-238) in surface soil. Specific tasks performed by the independent verification team (IVT) to satisfy this objective included: 1) performing radiological walkover surveys, and 2) collecting soil samples for independent analyses. The independent verification (IV) efforts were designed to evaluate radioactive contaminants (specifically U-238) in the exposed surfaces below one foot of the original site grade, given that the top one foot layer of soil on the site was removed in its entirety.

  7. Letter Report - Verification Survey of Final Grids at the David Witherspoon, Inc. 1630 Site Knoxville, Tennessee

    SciTech Connect (OSTI)

    P.C. Weaver

    2009-02-17T23:59:59.000Z

    Conduct verification surveys of grids at the DWI 1630 Site in Knoxville, Tennessee. The independent verification team (IVT) from ORISE, conducted verification activities in whole and partial grids, as completed by BJC. ORISE site activities included gamma surface scans and soil sampling within 33 grids; G11 through G14; H11 through H15; X14, X15, X19, and X21; J13 through J15 and J17 through J21; K7 through K9 and K13 through K15; L13 through L15; and M14 through M16

  8. First-order finite satisfiability vs tree automata in safety verification

    E-Print Network [OSTI]

    Lisitsa, Alexei

    2011-01-01T23:59:59.000Z

    In this paper we deal with verification of safety properties of term-rewriting systems. The verification problem is translated to a purely logical problem of finding a finite countermodel for a first-order formula, which further resolved by a generic finite model finding procedure. A finite countermodel produced during successful verification provides with a concise description of the system invariant sufficient to demonstrate a specific safety property. We show the relative completeness of this approach with respect to the tree automata completion technique. On a set of examples taken from the literature we demonstrate the efficiency of finite model finding approach as well as its explanatory power.

  9. INDEPENDENT VERIFICATION OF THE BUILDING 3550 SLAB AT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-05-08T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE) has completed the independent verification survey of the Building 3550 Slab. The results of this effort are provided. The objective of this verification survey is to provide independent review and field assessment of remediation actions conducted by Safety and Ecology Corporation (SEC) to document that the final radiological condition of the slab meets the release guidelines. Verification survey activities on the Building 3550 Slab that included scans, measurements, and the collection of smears. Scans for alpha, alpha plus beta, and gamma activity identified several areas that were investigated.

  10. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01T23:59:59.000Z

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  11. Systems integration and analysis of advanced life support technologies

    E-Print Network [OSTI]

    Nworie, Grace A.

    2009-06-02T23:59:59.000Z

    exiting the drying oven Qp,sp Energy required for heating sweetpotato Msp Mass of sweetpotato working material entering the oven Psp Power required for heating sweetpotato Cp,air Specific heat capacity of air ?air Density of air Mair Mass...-milling process??????????...........?...103 Fig. B.5. Mass balance for the milling process????????????...........?. 103 Fig. B.6. Mass balance for the packaging process??????????????... 104 Fig. B.7. Mass balance for the first clean up process...

  12. Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    -cycle modeling for light-duty vehicles GREET CCLUB CCLUB: Carbon Calculator for Land Use Change from Biofuels, and black carbon (in a new release) CO2e of the three (with their global warming potentials) Criteria

  13. Technology Transfer Success Stories, Life and Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc. provides for non-destructive removal and decontamination of radionuclides from concrete and other surfaces. Motion to energy power generation system Motion to Energy...

  14. life science technologies www.sciencemag.org/products 707

    E-Print Network [OSTI]

    Hardy, Jeanne

    for these Upcoming Articles Genomics 2 -- September 19 Lab on a Chip/Microfluids -- November 7 Cell Signaling of terms surrounding their work. "Structural Genomics," they say, is restricted mostly to the United States of structural proteomics efforts, take a look at the Protein Structure Initiative (PSI) Structural Genomics

  15. Los Alamos, New Mexico, January 7, 2010-Life Technologies Corporation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytometer, a first-of-its-kind cytometer system that uses acoustic waves to precisely control the movement of cells during analysis. Flow cytometry allows scientists to...

  16. Social Support and New Communication Technologies During a Life Stressor

    E-Print Network [OSTI]

    Attig, Heather

    2013-12-31T23:59:59.000Z

    Social support, whether emotional, informational, or tangible (Goldsmith, 2004) is an innate need and is important to our well-being and our personal relationships. While face-to-face communication has been considered the ...

  17. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketing | Department of EnergyLiekovii ACRONYMSof

  18. Vehicle Technologies Office - AVTA: All Electric USPS Long Life Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidation of& Systems

  19. Woman Credits JLab Technology With Saving Her Life | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of2Energy Wisconsin

  20. Chip in a lab: Microfluidics for next generation life science Aaron M. Streets1,2

    E-Print Network [OSTI]

    Huang, Yanyi

    Chip in a lab: Microfluidics for next generation life science research Aaron M. Streets1 January 2013; published online 31 January 2013) Microfluidic circuits are characterized by fluidic measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory