Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Technology Transfer - Wind Technology Center Installing ...  

Wind Technology Center Installing a Dynamic Duo August 25, 2009. Generating 20 percent of the nation's electricity from clean wind resources will ...

2

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

NATIONAL ENERGY TECHNOLOGY LABORATORY In 2011, the Office of Fossil Energy evaluated the realized and estimated benefits provided by its programs. Implemented by NETL, these...

3

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

4

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy; Information Technology; Manufacturing ; Materials; National Security; Non-Nuclear ...

5

National Energy Technology Laboratory Technology Marketing ...  

National Energy Technology Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing from the ...

6

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Electrochemical Impedance Spectroscopy. Related Patents: 7088115

7

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Welding Apparatus and Methods for Using Ultrasonic Sensing

8

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Realtime Acoustic Imaging Microscope. Related Patents: 7123364; 6836336

9

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Spray Rolling Metal. Related Patents: 6074194; 5718863

10

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

CRTD-80 CRTD-80 National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator D:\Project Files\EPD\RDS Sequestration Project Review Task\Volume 1\ASME Final Version Nov 28 2005\2005 Carbon Sequestration Project Review Meeting Final 11292005.doc National Energy Technology Laboratory Final Report Carbon Sequestration Project Review Meeting Greater Pittsburgh International Airport Hyatt Hotel September 26-29, 2005 Volume I: Meeting Summary and Recommendations José D. Figueroa NETL Project Manager and Meeting Coordinator

11

Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

Robinson, Sharon M [ORNL; Jubin, Robert Thomas [ORNL; Patton, Bradley D [ORNL; Sullivan, Nicholas M [ORNL; Bugbee, Kathy P [ORNL

2009-09-01T23:59:59.000Z

12

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Standards for the NETL Logo Design Standards for the NETL Logo May 2013 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a strengthened visual identity for the laboratory. To ensure consistency it is critical for every user of the logo, regardless of personal preference, to use it in accordance with the guidelines that follow. The height of the NETL logo is .75 times the length, a 3 by 4 ratio. This relationship is always the same, regardless of

13

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Flow-Through Reactor for the In Situ Assessment of Remediation Technologies in Vadose ...

14

National Energy Technology Laboratory National Energy Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

4U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory Office of Public Affairs Office of Public Affairs...

15

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Integrated Optical Sensor. Related Patents: 5275327. Contact: David R. Anderson

16

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Portable Tire Deflation Device. Related Patents: 7,641,417; 5507588

17

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Forming Aluminum Oxynitride. Related Patents: 7,459,122. Contact: Lisa Nate

18

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security Electric Generator Protection. Related Patents: 7,453,674

19

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Method and Apparatus Configured for Identification of a Material

20

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... National Security; Non-Nuclear Energy; Nuclear Energy; Robotics; Transportation;

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing Modular Friction Stir Welding Tool. Related Patents: 7,357,292

22

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Materials Natural Adhesive Systems. Related Patents: 6987170. Contact: David R. Anderson

23

Brookhaven National Laboratory Technology Marketing ...  

Brookhaven National Laboratory Technology Marketing ... a critical reaction in a number of growing energy generation and utilization ... Energy Analys ...

24

Brookhaven National Laboratory: Technology Commercialization ...  

Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies.

25

Idaho National Engineering Laboratory installation roadmap document. Revision 1  

SciTech Connect

The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

1993-05-30T23:59:59.000Z

26

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 1, 2012 May 1, 2012 CX-008288: Categorical Exclusion Determination Decommissioning of the Appliance Testing and Evaluation Center in Morgantown CX(s) Applied: B3.6 Date: 05/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008287: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9 Date: 05/01/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008286: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9, A11, B3.6 Date: 05/01/2012 Location(s): Tennessee Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008285: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22

27

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, Science and Technology by Battelle Energy alliance.

28

Idaho National Laboratory - Technology Transfer - Technologies ...  

Licensing technologies between Battelle Energy Alliance (BEA), the Management and Operating Contractor at the Idaho National Laboratory (INL) and a business or other ...

29

Idaho National Laboratory - Technology Transfer - Technologies ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

30

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Environmental Microwave Assisted Centrifuge for Viscous Oil Analysis. Related Patents: 7,775,961

31

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... This site will work and look better in a browser that supports web standards, but it is accessible ...

32

Idaho National Laboratory - Technology Transfer - Technologies ...  

Idaho National Laboratory Technologies Available for Licensing ... Manufacturing A Novel Gas Flow Meter. Related Patents: 7,082,826. Contact: David R. Anderson

33

Argonne National Laboratory - Office of Technology Transfer  

argonne national laboratory's office of technology transfer offers licensable technologies developed at the Laboratory and oversees other agreements with research ...

34

Ames Laboratory Technologies Available for Licensing - Energy ...  

Bookmark Ames Laboratory Technologies Available for Licensing - Energy Innovation Portal on Google; Bookmark Ames Laboratory Technologies Available ...

35

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2011 22, 2011 CX-005287: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure Project: Essex Company Resource Recovery Facility CX(s) Applied: B5.1 Date: 02/22/2011 Location(s): Newark, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005283: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005282: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green

36

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008305: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: B5.22 Date: 04/25/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008304: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/25/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008303: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1, B5.23 Date: 04/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008302: Categorical Exclusion Determination Interstate Electrification Improvement

37

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 CX-006051: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06/07/2011 Location(s): Omaha, Nebraska Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 6, 2011 CX-006055: Categorical Exclusion Determination Installation and Abandonment of Monitoring Wells CX(s) Applied: B3.1, B6.1 Date: 06/06/2011 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005949: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region- TerraTek CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory

38

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 CX-005342: Categorical Exclusion Determination Installation of Impalement Protection Over Existing Pointed Air Terminals at National Energy Technology Laboratory CX(s) Applied: B2.5 Date: 03/01/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005341: Categorical Exclusion Determination Solid State Energy Conversion Alliance Coal-Based Systems - FuelCell Energy CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Alberta, Canada Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005340: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 03/01/2011 Location(s): Greene, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy

39

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 CX-009314: Categorical Exclusion Determination Roof Replacement and Fall Arrest System Installation CX(s) Applied: B1.15, B2.5 Date: 08/30/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009313: Categorical Exclusion Determination Advanced Methane Hydrate Reservoir Modeling Using Rock Physics Techniques CX(s) Applied: A1, A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009312: Categorical Exclusion Determination Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional

40

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... Requirements, Security and Privacy, Reference Architecture, and Technology ... Power Line Communication Standards in the Smart Grid David H. Su ...

2013-09-03T23:59:59.000Z

42

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 30 Appendix D...

43

National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Energy Research for Occidental Petroleum Corp and President of Occidental Oil Shale, Inc. * Focus: Clean Coal Technology. * Located: Steamboat Springs, CO 38 Appendix D...

44

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Cover image: NETL researcher Corinne Disenhof examines a basalt thin section under a geoscience laboratory petrographic microscope. NETL is investigating the effects of microbes on basalt during carbon sequestration, and petrography is one of several analysis methods being used. Others include scanning electron microscopy and x-ray diffraction. Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. 2 Contents 2011 Letter from the Director ___________________________ 4 Advanced Power Systems __________________________ 6 Clean Energy ____________________________________ 24 Oil & Natural Gas ________________________________ 40 A Legacy of Benefit: The Return on Federal Research at NETL ______________

45

Sandia National Laboratories Information Technology Solutions ...  

Technology Readiness Level: Sandia estimates this technologys TRL at level 4. Key elements of the technology have been demonstrated in a laboratory environment.

46

Advanced natural gas fuel technologies for military installations. Final report  

SciTech Connect

Energy conservation efforts reduced Department of Defense (DoD) fossil fuel consumption considerably between FYX5 and FY9 I, yet electricity consumption increased. Electricity consumption accounts for only one-third of DoD energy use, but over half of DoD energy costs. In addition, the production of electricity at coal or nuclear plants often creates environmental concerns, while the use of clean-burning natural gas does not; its use can help DoD bases comply with increasingly stringent environmental regulations. Recent developments in natural gas-fired technologies also demonstrate improved efficiency and productivity at lower costs. This report identifies state-of-the-art and emerging natural gas utilization technologies with potential application on DoD installations. This report describes various technologies that have potential residential, commercial, or industrial applications on DoD installations. Applications include heating, cooling, power generation, food preparation, and several industrial processes.

Savoie, M.J.; Freeman, P.M.; Blazek, C.F.; Potts, N.L.

1994-09-01T23:59:59.000Z

47

Pacific Northwest National Laboratory Technologies Available ...  

Pacific Northwest National Laboratory Technologies Available for Licensing Pacific Northwest National Laboratory has a long-standing reputation for ...

48

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31, 2011 March 31, 2011 CX-005483: Categorical Exclusion Determination National Biodiesel Foundation: Biodiesel Terminal Installation Project CX(s) Applied: B5.1 Date: 03/31/2011 Location(s): Port Chester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2011 CX-005482: Categorical Exclusion Determination Portable Raman Gas Composition Monitor CX(s) Applied: B3.6 Date: 03/31/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2011 CX-005481: Categorical Exclusion Determination Grant for State Sponsored Renewable Energy and Energy Efficiency Projects - Montclair State University Solar Farm CX(s) Applied: B5.1 Date: 03/29/2011 Location(s): Montclair, New Jersey

49

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2011 14, 2011 CX-005037: Categorical Exclusion Determination Field Test of Carbon Dioxide-Methane Method for Production of Gas Hydrate CX(s) Applied: B3.7 Date: 01/14/2011 Location(s): North Slope Borough, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2011 CX-004991: Categorical Exclusion Determination Ohio Advanced Transportation Partnership (OATP) - Electric Vehicle Charging Infrastructure Installation CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Hamilton, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 13, 2011 CX-004990: Categorical Exclusion Determination City of Cerritos, Photovoltaic System at the Cerritos Corporate Yard CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Cerritos, California

50

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006458: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 08/08/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 8, 2011 CX-006456: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08/08/2011 Location(s): Weston, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2011 CX-006455: Categorical Exclusion Determination Pennsylvania Energy Development Authority Sustainable Business Recovery - City of Pittsburgh Natural Gas Refuse Trucks CX(s) Applied: A1, B5.1 Date: 08/04/2011 Location(s): Pittsburgh, Pennsylvania

51

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006156: Categorical Exclusion Determination Utility Metering Installation: B3, B14, B36 CX(s) Applied: B1.15, B2.2 Date: 07/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2011 CX-006155: Categorical Exclusion Determination Wisconsin Clean Transportation Program/City of Milwaukee Compressed Natural Gas Infrastructure Project CX(s) Applied: B5.1 Date: 07/13/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006154: Categorical Exclusion Determination Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07/13/2011

52

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-001294: Categorical Exclusion Determination Heavy-Duty Natural Gas Drainage Truck Replacement Program in the South Coast Air Basin CX(s) Applied: A7, A9, A11 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001297: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: A7 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001296: Categorical Exclusion Determination B2,3,5,17,19 and 36 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 03/22/2010 Location(s): Morgantown, West Virginia

53

Smart Lawrence Berkeley National Laboratory Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

From Berkeley Lab to the Marketplace Smart Lawrence Berkeley National Laboratory Technology Transfer with Partner Lawrence Berkeley National Laboratory Technology Transfer at...

54

Fermi National Accelerator Laboratory Technology Marketing ...  

Fermi National Accelerator Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing ...

55

National Renewable Energy Laboratory Technology Marketing ...  

National Renewable Energy Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing ...

56

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

57

Building Technologies Office: National Laboratories Supporting Building  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories National Laboratories Supporting Building America to someone by E-mail Share Building Technologies Office: National Laboratories Supporting Building America on Facebook Tweet about Building Technologies Office: National Laboratories Supporting Building America on Twitter Bookmark Building Technologies Office: National Laboratories Supporting Building America on Google Bookmark Building Technologies Office: National Laboratories Supporting Building America on Delicious Rank Building Technologies Office: National Laboratories Supporting Building America on Digg Find More places to share Building Technologies Office: National Laboratories Supporting Building America on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America

58

Pacific Northwest Laboratory`s Lighting Technology Screening Matrix  

SciTech Connect

Pacific Northwest Laboratory has developed the Lighting Technology Screening Matrix (LTSM), a software tool to evaluate alternative lighting retrofit technologies according to life-cycle cost. The LTSM can be used to evaluate retrofits for most configurations of fluorescent, incandescent, high- and low-pressure sodium, metal halide, mercury vapor, and exit lighting systems for any level of operation, electricity price, discount rate, and utility rebate. This tool was developed, in support of the Federal Relighting Initiative as part of the Department of Energy`s Office of Federal Energy Management Program (DOE/FEMP) to assist federal government facilities in their efforts to comply with the 10 CFR 436 mandated life-cycle costing for energy equipment investments. The LTSM has been used in the course of seven site modernization projects. These projects consisted of determining the cost-effective, energy-efficiency potential at military installations. Each project treated the entire military installation as an integrated system, proposed a large number of potential efficiency projects affecting all end-uses and fuel types, and analyzed the cost-effectiveness of each project. The LTSM was used for the lighting portion of these projects. Lighting was, overall, one of the major areas of potential efficiency improvements, accounting for over 30% of the cost-effective resource. Altogether over $43 million worth of cost-effective efficiency investments were identified, worth an estimated $6 million annually in energy, demand, and operations and maintenance (O&M) savings. This paper describes the LTSM and demonstrates its application in a case study at one of the federal installations analyzed.

Harris, L.R. [USDOE, Washington, DC (United States); Stucky, D.J.; Dirks, J.A.; Schultz, R.W.; Shankle, S.A.; Richman, E.E.; Purcell, C.W. [Pacific Northwest Lab., Richland, WA (United States)

1994-04-01T23:59:59.000Z

59

Idaho National Engineering Laboratory installation roadmap assumptions document. Revision 1  

SciTech Connect

This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL.

Not Available

1993-05-01T23:59:59.000Z

60

Brookhaven National Laboratory Technologies Available for ...  

Brookhaven National Laboratory Technologies Available for Licensing Brookhaven National Laboratory (BNL), located sixty miles east of New York City, is home to seven ...

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Renewable Energy Laboratory Technologies Available for ...  

National Renewable Energy Laboratory Technologies Available for Licensing The National Renewable Energy Laboratory (NREL) has a multitude of energy efficiency and ...

62

National Renewable Energy Laboratory Technology Marketing ...  

National Renewable Energy Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing from the National ...

63

Lawrence Berkeley National Laboratory Technology Marketing ...  

Lawrence Berkeley National Laboratory Technology Marketing ... data for Home Energy Saver and ... analysis, can provide good information about the ...

64

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Geologic Strain Measurement System. Related Patents: 7,284,604

65

Sandia National Laboratories Technologies Available for Licensing ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Sandia National Laboratories Technologies Available for Licensing

66

Sandia National Laboratories: Working with Sandia: Technology ...  

R&D 100 Awards; International Programs; Laboratory Directed Research & Development; Technology Deployment Centers; Working With Sandia. PROCUREMENT; Opportunities;

67

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has developed a new class of tilting micromechanical mechanisms. Description. These mechanisms utilize floating pivot ...

68

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology M ...

69

SLAC National Accelerator Laboratory Technology Marketing ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... SLAC National Accelerator Laboratory Technology Marketing Summaries.

70

Fermi National Accelerator Laboratory Technologies Available ...  

... Energy Innovation Portal on Google; Bookmark Fermi National Accelerator Laboratory Technologies Available for Licensing - Energy Innovation Portal ...

71

Princeton Plasma Physics Laboratory Technology Marketing ...  

... Energy Innovation Portal on Google; Bookmark Princeton Plasma Physics Laboratory Technology Marketing Summaries - Energy Innovation Portal on ...

72

Events in the Physics Laboratory - Optical Technology  

Science Conference Proceedings (OSTI)

Events in the Physics Laboratory - Optical Technology. 2012 NIST Lunar Calibration Workshop. 9th International Temperature Symposium. ...

2010-10-05T23:59:59.000Z

73

NAVAL RESEARCH LABORATORY Information Technology Solutions  

power (CHP) or emergency backup power Small, High Efficiency, Recuperated Ceramic Turboshaft Engine NAVAL RESEARCH LABORATORY TECHNOLOGY T RANSFER ...

74

Technologies - Lawrence Livermore National Laboratory  

home \\ technologies. Technologies: Ready-to-Sign Licenses: Software: Patents: Technologies ... for the Department of Energy's National Nuclear Security Administration

75

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

1981-12-31T23:59:59.000Z

76

Technologies - Lawrence Livermore National Laboratory  

Technology Search. Subscribe to our technology RSS feed. Browse by Industry. Automotive & Transportation; Biotechnology, Medical, & Health ...

77

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology National Energy Technology Laboratory Categorical Exclusion Determinations: National Energy Technology Laboratory Categorical Exclusion Determinations issued by National Energy Technology Laboratory. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2013 CX-010917: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory September 25, 2013 CX-010916: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

78

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge...

79

Available Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Portal Innovation Portal Search for Argonne technologies available for licensing, emerging technologies, patents and patent applications through the U.S. Department of Energy's Innovation Portal. Available Technologies Argonne's Technology Development and Commercialization division helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. Technology Development and Commercialization (TDC) grants licenses for Argonne-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. We are committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Technologies by Subject Area Battery Technology

80

Electric Vehicle Grid Integration for Sustainable Military Installations (Presentation), National Renewable Energy Laboratory (NREL)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration for Electric Vehicle Grid Integration for Sustainable Military Installations NDIA Joint Service Power Expo Mike Simpson Mike.Simpson@NREL.gov 5 May 2011 NREL/PR-5400-51519 NATIONAL RENEWABLE ENERGY LABORATORY Agenda 2 1. NREL Transportation Research 2. Net Zero Energy Installations (NZEI) 3. Fort Carson as a Case Study - Vehicles On-Site - Utility Operations - Vehicle Charge Management 4. Full Fleet Simulation 5. Continuing Work NATIONAL RENEWABLE ENERGY LABORATORY NREL is the only national laboratory solely dedicated to advancing renewable energy and energy efficiency. Our employees are committed to building a cleaner, sustainable world. Photo Credits: NREL 3 NATIONAL RENEWABLE ENERGY LABORATORY What is Electric Vehicle Grid Integration (EVGI)? 4 Cross Cutting Enablers Grid / Renewables

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pacific Northwest National Laboratory Technology Marketing ...  

Here youll find marketing summaries for technologies available for licensing from the Pacific Northwest National Laboratory (PNNL) ... Energy Analysi ...

82

Idaho National Laboratory Technology Marketing Summaries ...  

Here youll find marketing summaries for technologies available for licensing from the Idaho National Laboratory (INL). The ... Energy Analysis

83

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Catalysts for Alcohol Production from CO2 and CO. Related Patents: 7,879,749 ...

84

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Method of Liquefying a Gas. Related Patents: 6997012. Contact: David R. Anderson

85

Fossil Energy - Idaho National Laboratory - Technology Transfer ...  

Idaho National Laboratory Technologies Available for Licensing ... Fossil Energy Liquefaction of Natural Gas. Related Patents: 6581409; 6962061; 6,886,362; ...

86

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has created sensors to identify and assess the pervasive and expensive problem of corrosion in applications ranging ...

87

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia National Laboratories has created a new class of scintillators with novel properties enabling use in a wide range of particle detection ...

88

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ... Enhancements include a new matrix solver for 3D ...

89

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear ... fuel economy and charge ... durability and life-cycle affect the ...

90

Idaho National Laboratory - Technology Transfer - Technologies ...  

The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ... hundred square meters per ... commercial availability of N ...

91

Arctic Energy Technology Development Laboratory  

DOE Green Energy (OSTI)

The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

2008-12-31T23:59:59.000Z

92

Vehicle Technologies Office: Federal Laboratory Consortium Excellence in  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Awards to someone by E-mail Share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Facebook Tweet about Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Twitter Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Google Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Delicious Rank Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Digg Find More places to share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on

93

NREL: Technology Transfer - White Earth Nation Installs Turbines: A Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

White Earth Nation Installs Turbines: A Wind Powering America Success Story White Earth Nation Installs Turbines: A Wind Powering America Success Story February 11, 2013 Almost 8 years after taking the initial steps to harness the wind, the White Earth Nation recently completed the installation of two small wind turbines that will help offset energy costs for Minnesota's largest and most populous Native American reservation. Mike Triplett, economic development planner with the White Earth Development Office, believes that the project represents a unique opportunity for tribal entities in the United States. He noted that tribes don't qualify for tax-based incentives. "And as for working with investors, we never found that to be a viable option," Triplett said. "So we've relied heavily on grants." Funded through nearly $1.8 million in congressional appropriations along

94

Technology transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

95

Technologies - Lawrence Livermore National Laboratory  

Technologies Homeland Security & Defense. 7-MeV Neutron Interrogation: Scanner for Detection of Special Nuclear Material in Cargo Shipments; High Air Volume to Low ...

96

Technology Transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

by facilitating development, transfer, and use of federally owned or originated technology to industry for public benefit and to leverage DOE resources through partnering with...

97

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2011 September 9, 2011 CX-006745: Categorical Exclusion Determination Clean Coal Conference CX(s) Applied: A9 Date: 09/09/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006742: Categorical Exclusion Determination National Energy Technology Laboratory Pittsburgh - Replace 25 Kilovolt Air Switch 920 Area CX(s) Applied: B4.6 Date: 09/08/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011

98

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

99

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY  

Office of Legacy Management (LM)

DOE ORDER 5480.14, PHASE I - INSTALLATION ASSESSMENT FOR THE BETTIS ATOMIC POWER LABORATORY Prepared for the U.S. Department of Energy by Westinghouse Electric Corporation West Mifflin, Pennsylvania 15122-0079 i' Vendor Contract Number: DE-ACll-76PN00014 : IAELE OF CONTENTS I. Executive Summary ............................................. 2. Introduction .................................................. a. Background......;.........................................i b. Authority .......................................................... : ; c. Purpose I ........................................................ 3 d Scope..................................................~..! e: Methodology...............................................! ........

100

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technologies - Lawrence Livermore National Laboratory  

Harmonic Air Motor; Two Stage Engine Technology; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

102

National Energy Technology Laboratory | Open Energy Information  

Open Energy Info (EERE)

Technology Laboratory Technology Laboratory (Redirected from NETL) Jump to: navigation, search Logo: National Energy Technology Laboratory (NETL) Name National Energy Technology Laboratory (NETL) Address 3610 Collins Ferry Road Place Morgantown, West Virginia Zip 26507-0880 Number of employees 1001-5000 Coordinates 39.6683175°, -79.9773935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6683175,"lon":-79.9773935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2012 20, 2012 CX-008446: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory June 20, 2012 CX-008445: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): New York Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008450: Categorical Exclusion Determination Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied: B1.23, B1.31 Date: 06/19/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008449: Categorical Exclusion Determination

104

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory September 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

105

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

106

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002242: Categorical Exclusion Determination Micro-X-Ray Diffraction Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05/13/2010 Location(s): Aurora, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2010 CX-002240: Categorical Exclusion Determination Heavy Oil Viscous Pressure-Volume Temperature (PVT) - Houston CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002238: Categorical Exclusion Determination

107

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2011 28, 2011 CX-006119: Categorical Exclusion Determination Autonomous Inspection of Subsea Facilities (Phase II) CX(s) Applied: B3.6 Date: 06/28/2011 Location(s): Port Fourchon, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006127: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) -

108

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008929: Categorical Exclusion Determination Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 23, 2012 CX-008928: Categorical Exclusion Determination High Efficiency Molten-Bed Oxy-Coal Combustion with Low Flue Gas Recirculation CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 22, 2012 CX-008930: Categorical Exclusion Determination Recovery Act: Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: A1 Date: 08/22/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 21, 2012 CX-008931: Categorical Exclusion Determination

109

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010787: Categorical Exclusion Determination Fire Loop Soil Excavation CX(s) Applied: B3.1, B6.1 Date: 08/14/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010786: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.23 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010792: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega

110

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

111

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 27, 2012 April 27, 2012 CX-008292: Categorical Exclusion Determination Waste Heat Integration with Solvent Process for More Efficient Carbon Dioxide Removal from Coal-Fired Flue Gas CX(s) Applied: A11 Date: 04/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008309: Categorical Exclusion Determination Evaluation of Solid Sorbents as a Retrofit Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 04/25/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008307: Categorical Exclusion Determination Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/25/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008306: Categorical Exclusion Determination

112

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 5, 2011 December 5, 2011 CX-007500: Categorical Exclusion Determination Carbon Absorber Retrofit Equipment (CARE) CX(s) Applied: B3.6 Date: 12/05/2011 Location(s): Colorado Offices(s): National Energy Technology Laboratory October 19, 2011 CX-007063: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, A9, B5.1 Date: 10/19/2011 Location(s): Windsor, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 18, 2011 CX-007065: Categorical Exclusion Determination Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 10/18/2011 Location(s): Wilsonville, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory

113

Materials Science & Technology, MST: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations Laboratory Mechanical testing and modeling in MST Sigma Complex Los Alamos National Laboratory's Materials Science and Technology Division provides...

114

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

115

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-006752: Categorical Exclusion Determination Energy Efficiency Vehicles for Sustainable Mobility - Department of Energy Graduate Automotive Technology Education Center of Excellence CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006751: Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for Automotive Technologies CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006748: Categorical Exclusion Determination

116

National Energy Technology Laboratory | Open Energy Information  

Open Energy Info (EERE)

Laboratory Laboratory Jump to: navigation, search Logo: National Energy Technology Laboratory (NETL) Name National Energy Technology Laboratory (NETL) Address 3610 Collins Ferry Road Place Morgantown, West Virginia Zip 26507-0880 Number of employees 1001-5000 Coordinates 39.6683175°, -79.9773935° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6683175,"lon":-79.9773935,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000411: Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12/17/2009 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory December 17, 2009 CX-000410: Categorical Exclusion Determination Deepwater Riserless Intervention System CX(s) Applied: A1, A9 Date: 12/17/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2009 CX-000375: Categorical Exclusion Determination Hydrogen Separation for Clean Coal CX(s) Applied: A9, B3.6 Date: 12/16/2009 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 15, 2009 CX-000464: Categorical Exclusion Determination

118

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 CX-010279: Categorical Exclusion Determination Clemson University's Synchrophasor Education Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): South Carolina Offices(s): National Energy Technology Laboratory May 17, 2013 CX-010278: Categorical Exclusion Determination Collaborative Industry-Academic Synchrophasor Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010282: Categorical Exclusion Determination Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010281: Categorical Exclusion Determination

119

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009271: Categorical Exclusion Determination National Governors Association Energy Project - Phase II CX(s) Applied: A9, A11 Date: 09/10/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory September 10, 2012 CX-009270: Categorical Exclusion Determination Basin-Scale Produced Water Management Tools and Options CX(s) Applied: A9 Date: 09/10/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009290: Categorical Exclusion Determination Interagency Study on the Implementation of Integrated Computational Materials Engineering... CX(s) Applied: A9, A11 Date: 09/07/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009289: Categorical Exclusion Determination

120

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002513: Categorical Exclusion Determination Ohio Advanced Transportation Partnership CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2010 10, 2010 CX-003879: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A7 Date: 09/10/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003878: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/10/2010 Location(s): Melvindale, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003877: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 09/10/2010 Location(s): Des Plaines, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory

122

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 3, 2013 June 3, 2013 CX-010470: Categorical Exclusion Determination Boulder Smart Grid City - Plug-In Electric Hybrid CX(s) Applied: B5.1, B5.16 Date: 06/03/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010468: Categorical Exclusion Determination Evaluation of High Capacity Cells for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010467: Categorical Exclusion Determination Metal Oxide/Nitride Heterostructured Nanowire Arrays for Ultra-Sensitive and Selective Sensors CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory May 31, 2013 CX-010478: Categorical Exclusion Determination

123

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-008473: Categorical Exclusion Determination Effect of Climate Variability & Change in Hurricane Activity in the North Atlantic CX(s) Applied: A9 Date: 06/07/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 7, 2012 CX-008472: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 06/07/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008482: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells CX(s) Applied: A9, A11 Date: 06/04/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008480: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells

124

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2013 April 25, 2013 CX-010181: Categorical Exclusion Determination Building 26 Air Handlers and In-Line Return Fans Replacement CX(s) Applied: B1.3, B1.22, B.1.31 Date: 04/25/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010180: Categorical Exclusion Determination A Universal Combustion Model to Predict Premixed and Non-Premixed Turbulent Flames in Compression CX(s) Applied: A9 Date: 04/25/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010179: Categorical Exclusion Determination Modeling and Experimental Studies of Controllable Cavity Turbulent Jet Ignition CX(s) Applied: B3.6 Date: 04/25/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

125

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 10, 2012 January 10, 2012 CX-007615: Categorical Exclusion Determination Henderson Family Young Mens Christian Association CX(s) Applied: B5.1, B5.2 Date: 01/10/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007614: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: B3.6 Date: 01/10/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007613: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007612: Categorical Exclusion Determination Geological Characterization of the South Georgia Rift Basin for Source

126

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2011 11, 2011 CX-005223: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005222: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Youngsville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005229: Categorical Exclusion Determination Field Testing and Diagnostics of Radial-Jet Well-Stimulation for Enhanced Oil Reserve from Marginal Reserves CX(s) Applied: B3.6 Date: 02/11/2011 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory

127

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

128

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2013 , 2013 CX-010816: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory August 1, 2013 CX-010815: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010826: Categorical Exclusion Determination Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

129

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 20, 2011 CX-007453: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Georgia Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007452: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Stations CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007451: Categorical Exclusion Determination Commuter Services Compressed Natural Gas Station CX(s) Applied: B5.1, B5.22 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007450: Categorical Exclusion Determination

130

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2010 27, 2010 CX-002519: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002518: Categorical Exclusion Determination Gadsden State Community College Green Operations Plan CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Gadsen, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002517: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010

131

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 CX-010824: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010823: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010822: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010821: Categorical Exclusion Determination

132

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008442: Categorical Exclusion Determination Arizona Power Partners - Smart Grid Data Access from an Advanced Meter Reading Network CX(s) Applied: A9, B5.1 Date: 06/25/2012 Location(s): Arizona Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008448: Categorical Exclusion Determination Hurricane Natural Gas Fueling Station CX(s) Applied: B5.1, B5.22 Date: 06/21/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008447: Categorical Exclusion Determination The Shift for Good Community Program (Switch 4 Good) CX(s) Applied: A1, A8, A9, A11 Date: 06/21/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008444: Categorical Exclusion Determination Smart Cementing Materials and Drilling Muds for Real Time Monitoring of

133

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 CX-010900: Categorical Exclusion Determination Pittsburgh Building 84 Gas Line Project CX(s) Applied: B2.5 Date: 06/26/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 26, 2013 CX-010898: Categorical Exclusion Determination Minnesota ethanol-85 (E85) Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 06/26/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory June 25, 2013 CX-010906: Categorical Exclusion Determination Research and Development (R&D) to Prepare and Characterize Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Systems CX(s) Applied: B3.6 Date: 09/25/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory June 20, 2013 CX-010441: Categorical Exclusion Determination

134

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009354: Categorical Exclusion Determination High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair and Operations - Phase II CX(s) Applied: A9, A11, B3.6 Date: 09/20/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009353: Categorical Exclusion Determination The Sustainability Workshop (Energy Regional Innovation Cluster) CX(s) Applied: A9 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009352: Categorical Exclusion Determination Navy Yard Network Operations Center (Energy Regional Innovation Cluster) CX(s) Applied: A1, A9, B2.2 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 19, 2012

135

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2010 5, 2010 CX-004434: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Stonington, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 5, 2010 CX-004400: Categorical Exclusion Determination Repair Brick Support Plates on Connecting Bridges - Building 58 CX(s) Applied: B2.3 Date: 11/05/2010 Location(s): Allegheny City, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory November 5, 2010 CX-004399: Categorical Exclusion Determination Mississippi Energy Efficiency Appliance Rebate Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

136

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2010 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003461: Categorical Exclusion Determination Low-Cost Wet Gas Compressor for Stripper Gas Wells CX(s) Applied: B3.6 Date: 08/23/2010 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003460: Categorical Exclusion Determination

137

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009309: Categorical Exclusion Determination Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode ORR CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 29, 2012 CX-008916: Categorical Exclusion Determination Development of a Scientific Plan for a Hydrate-Focused Marine Drilling, Logging and Coring Program CX(s) Applied: A1, A9 Date: 08/29/2012 Location(s): Washington, DC Offices(s): National Energy Technology Laboratory

138

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003837: Categorical Exclusion Determination Simulation of Shale Gas Reservoirs Incorporating the Correct Physics for Capillarity CX(s) Applied: A9 Date: 09/09/2010 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003836: Categorical Exclusion Determination Large Project Impact Fund Competitive Grants - Colby College CX(s) Applied: B1.15, B1.24, B2.2, B5.1 Date: 09/09/2010 Location(s): Waterville, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 9, 2010 CX-003835: Categorical Exclusion Determination SmartRam Piston Pump CX(s) Applied: B3.6 Date: 09/09/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory

139

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 10, 2013 May 10, 2013 CX-010285: Categorical Exclusion Determination Advancing Low Temperature Combustion and Lean Burning Engines for Light-and Heavy-Duty Vehicles CX(s) Applied: A9, B3.6 Date: 05/10/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 10, 2013 CX-010284: Categorical Exclusion Determination Construction of an Autogas Refueling Network CX(s) Applied: B5.22 Date: 05/10/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 8, 2013 CX-010287: Categorical Exclusion Determination Understanding Nitrous Oxide Selective Catalytic Reduction Mechanism and Activity on Copper/Chabazite Structures throughout the Catalyst Life CX(s) Applied: A9, B3.6 Date: 05/08/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

140

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010799: Categorical Exclusion Determination Building 4 Lead Paint Abatement & Repainting CX(s) Applied: B2.1, B2.5 Date: 08/13/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010800: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory August 12, 2013 CX-010802: Categorical Exclusion Determination

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-007475: Categorical Exclusion Determination North Carolina Fuel Monitoring Initiative CX(s) Applied: B5.1 Date: 12/13/2011 Location(s): North Carolina Offices(s): National Energy Technology Laboratory December 13, 2011 CX-007474: Categorical Exclusion Determination A Geomechanical Analysis of Gas Shale Fracturing and Its Containment CX(s) Applied: B3.6 Date: 12/13/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 12, 2011 CX-007476: Categorical Exclusion Determination CEDF - Renewable Energy Program CX(s) Applied: B5.18 Date: 12/12/2011 Location(s): Vermont Offices(s): National Energy Technology Laboratory December 9, 2011 CX-007487: Categorical Exclusion Determination City of Las Vegas Electric Vehicle Program CX(s) Applied: B5.23

142

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 CX-007948: Categorical Exclusion Determination Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 02/06/2012 Location(s): California, Arizona Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007952: Categorical Exclusion Determination Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007951: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.23 Date: 02/01/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007950: Categorical Exclusion Determination Environmental Protection Agency - 5th International Environmentally

143

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

144

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 CX-006772: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Fenton Township, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006771: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Brighton, New York Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): South Windsor, Connecticut Office(s): Fossil Energy, National Energy Technology Laboratory

145

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 CX-004491: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 11/19/2010 Location(s): Alabama Office(s): Fossil Energy, National Energy Technology Laboratory November 19, 2010 CX-004490: Categorical Exclusion Determination Utah Expansion Compressed Natural Gas Refueling Sites CX(s) Applied: B5.1 Date: 11/19/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2010 CX-004489: Categorical Exclusion Determination Thai Process for Heavy Oil CX(s) Applied: B3.6 Date: 11/19/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

146

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004472: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004471: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Bainbridge, Georgia Office(s): Fossil Energy, National Energy Technology Laboratory

147

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2013 28, 2013 CX-010899: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010897: Categorical Exclusion Determination Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education CX(s) Applied: A9 Date: 06/27/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010896: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 27, 2013

148

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-002648: Categorical Exclusion Determination Surface Force Measurements Between Hydrophobic Surfaces CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Blacksburg, Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002647: Categorical Exclusion Determination Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing Coal CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002646: Categorical Exclusion Determination Polymer Nanocomposites for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

149

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-002250: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002249: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002248: Categorical Exclusion Determination Competitive Renewable Grants Program - Claflin University Solar Thermal CX(s) Applied: A1, B1.5, B5.1 Date: 05/12/2010 Location(s): Orangeburg, South Carolina

150

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 CX-005319: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - City of Raleigh CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005318: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - North Carolina State University CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005317: Categorical Exclusion Determination University of Arkansas for Medical Sciences (UAMS), District Energy Service Modifications CX(s) Applied: A1, B5.1 Date: 02/24/2011

151

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 1, 2010 September 1, 2010 CX-003669: Categorical Exclusion Determination Green Energy Works! Targeted Grants - Ecogy Pennsylvania Systems LLC- Longwood Garden Solar CX(s) Applied: A9, A11, B5.1 Date: 09/01/2010 Location(s): Chester County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 31, 2010 CX-003665: Categorical Exclusion Determination High Performance Buildings Program - Hawthorne Hotel CX(s) Applied: B5.1 Date: 08/31/2010 Location(s): Salem, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 30, 2010 CX-003664: Categorical Exclusion Determination High Performance Sustainable Energy Research Laboratory CX(s) Applied: A11, B5.1 Date: 08/30/2010 Location(s): Lexington, Kentucky

152

DOE - National Energy Technology Laboratory: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory National Energy Technology Laboratory HIGHLIGHTS NETLOGNEWS MULTIMEDIA FOLLOW NETL Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player netlognews NETL's quarterly R&D newsletter highlighting major research updates and accomplishments of the laboratory. Visit the Netlognews page here. Netlognews January 2014 NETL's award winning multimedia team produces high-quality multimedia content in support of NETL's mission. To find out more, click here. RSS RSS Feed RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages.

153

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

154

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2010 June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002795: Categorical Exclusion Determination Market Transformation and Technology Deployment - Renewable Energy Projects CX(s) Applied: B5.1 Date: 06/25/2010 Location(s): Perkinston, Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002794: Categorical Exclusion Determination Advanced Implementation of A123's Community Energy Storage (CES) System for Grid Support CX(s) Applied: B4.6, B5.1 Date: 06/25/2010 Location(s): Detroit, Michigan

155

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2011 18, 2011 CX-005626: Categorical Exclusion Determination North Carolina Green Business Fund ? Kyma Technologies CX(s) Applied: A1, B1.4, B1.5, B5.1 Date: 04/18/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 18, 2011 CX-005625: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 04/18/2011 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 15, 2011 CX-005629: Categorical Exclusion Determination North Carolina Green Business Fund ? Storms Farms CX(s) Applied: A1, B1.15, B4.11, B5.1 Date: 04/15/2011

156

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2011 29, 2011 CX-005666: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 04/29/2011 Location(s): Marrow, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005663: Categorical Exclusion Determination Vortex Tube Project Decommissioning Project CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Morgantown, West Virginia

157

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006451: Categorical Exclusion Determination Research and Development of an Advanced Low Temperature Heat Recovery Absorption Chiller CX(s) Applied: B3.6 Date: 08/03/2011 Location(s): Park Forest, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006448: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Knightdale, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006446: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Morrow, Georgia

158

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-001453: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): Fort Worth, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001452: Categorical Exclusion Determination Development of Advanced Reservoir Characterization Techniques Date: 03/31/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 30, 2010 CX-001462: Categorical Exclusion Determination High Performance Buildings - United Teen Equality Center CX(s) Applied: B1.15, B1.24, B2.5, A9, A11, B5.1 Date: 03/30/2010 Location(s): Lowell, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy

159

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-003817: Categorical Exclusion Determination Appliance Technology Evaluation Center (ATEC)- Modification CX(s) Applied: B3.6 Date: 09/14/2010 Location(s): Morgantown, West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003816: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Rancho Dominguez, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003815: Categorical Exclusion Determination Hardin County General Hospital Energy Efficiency Upgrades CX(s) Applied: B1.3, B2.2, B2.5, B5.1 Date: 09/14/2010 Location(s): Rosiclare, Illinois

160

National Energy Technology Laboratory Accomplishments FY 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

from the Director from the Director It is my pleasure to present the National Energy Technology Laboratory's (NETL's) Accomplishments Report for fiscal year 2002. As the fossil energy research laboratory for the U.S. Department of Energy, NETL conducts and implements a strong portfolio of science and technology projects, encompassing a broad range of energy and environmental topics. This report emphasizes the results of our activities-not our activities themselves. We believe it demonstrates that we have wisely used taxpayer funds to achieve meaningful program results that benefit the public. Improved and innovative energy technologies are key to ensuring that the Nation has clean, affordable, and reliable energy supplies. Through its onsite research programs and its contracted activities, NETL is developing these new

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Energy Technology Laboratory Accomplishments FY 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments FY 2004 NETL Accomplishments FY 2004 2 MESSAGE FROM THE DIRECTOR It is my pleasure to present the National Energy Technology Laboratory's (NETL's) Accomplishments Report for fiscal year 2004. The report responds to the Government Performance and Results Act of 1993 by describing how NETL has spent taxpayer funds. It emphasizes the results of NETL's activities-not the activities themselves. It demonstrates that NETL has upheld the trust of the American taxpayer and has wisely used taxpayer funds to achieve meaningful results that benefit the country. This laboratory has been evolving for nearly 100 years. What was once a small experimental laboratory near downtown Pittsburgh, is now a major research laboratory with facilities in four states-Alaska, Oklahoma, Pennsylvania, and

162

Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL's High Temperature ORNL's High Temperature Materials Laboratory Assists NASCAR Teams to someone by E-mail Share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Facebook Tweet about Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Twitter Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Google Bookmark Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Delicious Rank Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on Digg Find More places to share Vehicle Technologies Office: ORNL's High Temperature Materials Laboratory Assists NASCAR Teams on AddThis.com...

163

Building Technologies Office: Better Buildings Alliance Laboratory Fume  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Buildings Better Buildings Alliance Laboratory Fume Hood Specification to someone by E-mail Share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Facebook Tweet about Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Twitter Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Google Bookmark Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Delicious Rank Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on Digg Find More places to share Building Technologies Office: Better Buildings Alliance Laboratory Fume Hood Specification on AddThis.com...

164

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Z-Machine Time-exposure photograph of electrical flashover arcs produced over the surface of the water in the accelerator tank as a byproduct of Z operation. These flashovers are much like strokes of lightning Related links Electromagnetic Technology at Sandia National Laboratories Pulsed Power Technology Published Papers Inertial Fusion Energy C. L. Olson, "Inertial Fusion Energy with Pulsed Power," 2000 Codes: ALEGRA K. C. Cochrane, "Aluminum Equation of State Validation and Verification for the ALEGRA HEDP Simulation Code," 2006 T. Trucano, "ALEGRA-HEDP Validation Strategy," 2005 C. Garasi , "Multi-dimensional high energy density physics modeling and simulation of wire array z-pinch physics," 2003 Equation of State (EOS)

165

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

362: Categorical Exclusion Determination 362: Categorical Exclusion Determination Heavy-Duty Liquified Natural Gas Drayage Truck Project CX(s) Applied: A9 Date: 12/11/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000363: Categorical Exclusion Determination United Parcel Service (UPS) Ontario-Las Vegas Liquified Natural Gas Corridor CX(s) Applied: A9 Date: 12/11/2009 Location(s): Diamond Bar, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Socorro, New Mexico

166

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000336: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Durham, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000335: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Asheville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000334: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

167

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2010 January 27, 2010 CX-000997: Categorical Exclusion Determination Biodiesel Infrastructure Project (PrairieFire) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Monona, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000998: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Blair, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000999: Categorical Exclusion Determination Biodiesel In-line Blending Project (Innovation) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy

168

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-003449: Categorical Exclusion Determination Energy Efficiency through Clean Combined Heat and Power (CHP) CX(s) Applied: A9, A11, B1.24, B2.2, B5.1 Date: 08/16/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003448: Categorical Exclusion Determination Curriculum for Commissioning Energy Efficient Buildings CX(s) Applied: A1, A11 Date: 08/16/2010 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14

169

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000369: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Rockaway, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Albany, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000367: Categorical Exclusion Determination Long Island Regional Energy Collaborative CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Bay Shore, New York

170

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-003327: Categorical Exclusion Determination Geological and Geotechnical Site Investigations for the Design of a Carbon Dioxide Rich Flue Gas Direct Injection CX(s) Applied: A8, A9, B3.1, B3.6 Date: 07/29/2010 Location(s): Fairbanks, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory July 29, 2010 CX-003326: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Evansville, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003325: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Benton Harbor, Michigan

171

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2010 January 18, 2010 CX-000707: Categorical Exclusion Determination Florida - Clean Fuel LLC (Shovel Ready Grant project) State Energy Program CX(s) Applied: B1.24, B1.31, B2.2, B2.5, B5.1 Date: 01/18/2010 Location(s): Lakeland, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000731: Categorical Exclusion Determination Building 4 Equipment Decommissioning CX(s) Applied: B3.6 Date: 01/18/2010 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory January 15, 2010 CX-000704: Categorical Exclusion Determination Electric Drive Semiconductor Manufacturing Center - Advanced Battery Program CX(s) Applied: B1.24, B1.31 Date: 01/15/2010 Location(s): Youngwood, Pennsylvania

172

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 21, 2011 January 21, 2011 CX-005058: Categorical Exclusion Determination Improving Reservoir Contact for Increased Production and Recovery of Gas Shale Reservoirs CX(s) Applied: B3.6 Date: 01/21/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005057: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance CX(s) Applied: A9, B3.1 Date: 01/20/2011 Location(s): Eau Claire, Wisconsin Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005056: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of

173

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-003795: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Rancho Cucamonga, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003793: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Bastrop, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003790: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Taylor, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

174

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2010 12, 2010 CX-000782: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 02/12/2010 Location(s): Camden, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 12, 2010 CX-000781: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A7 Date: 02/12/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2010 CX-000775: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama (Drill)

175

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003928: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003927: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets in Target Area (Kitsap County) CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003926: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1

176

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

177

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

178

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006915: Categorical Exclusion Determination Compressed Natural Gas/Infrastructure Development CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Ogden, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006914: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006912: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 09/28/2011 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy September 28, 2011 CX-006967: Categorical Exclusion Determination

179

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001674: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Veolia) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Veolia, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001672: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Miami) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001670: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1

180

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2010 20, 2010 CX-003720: Categorical Exclusion Determination Recovery Act - Los Angeles Department of Water and Power Smart Grid Regional Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.4, B5.1 Date: 09/20/2010 Location(s): Los Angeles County, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 20, 2010 CX-003727: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1 Date: 09/20/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 20, 2010 CX-003726: Categorical Exclusion Determination Phipps Conservatory and Botanical Gardens Waste-to-Energy Project

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008493: Categorical Exclusion Determination Liquid Carbon Dioxide Slurry for Feeding Low Rank Coal (LRC) Gasifiers CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas, Oklahoma Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008492: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008491: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: B3.6 Date: 07/23/2012

182

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2009 20, 2009 CX-000438: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000437: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000373: Categorical Exclusion Determination Measurements of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and

183

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-001813: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Milford) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Milford, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001819: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Pontiac) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001817: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Warren) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Warren, Michigan

184

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-002341: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bloomfield CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bloomfield, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002340: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bridgeport CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bridgeport, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002338: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Hartford CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Hartford, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

185

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2010 24, 2010 CX-001214: Categorical Exclusion Determination Kilby Correctional Facility Boiler Replacement CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Mount Meigs, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001213: Categorical Exclusion Determination Decatur Work Release 10 Kilowatt Photovoltaic Array CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Decatur, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001206: Categorical Exclusion Determination Tehachapi Wind Energy Storage CX(s) Applied: A9, B1.13, B3.6, B4.4, B4.6, B5.1 Date: 03/24/2010 Location(s): Kern County, California Office(s): Electricity Delivery and Energy Reliability, National Energy

186

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-001158: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins CX(s) Applied: A9 Date: 03/11/2010 Location(s): Bloomington, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory March 11, 2010 CX-001153: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010 Location(s): Wilmington, Delaware Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 11, 2010 CX-001152: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Niskayuna) CX(s) Applied: B3.6

187

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 CX-001506: Categorical Exclusion Determination State Energy Program - Renewable Energy Grants CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Conley, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001510: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Valdosta, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001504: Categorical Exclusion Determination Ocean Wind Energy Analysis CX(s) Applied: B3.1, A9, A11 Date: 04/01/2010 Location(s): Chapel Hill, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

188

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-000743: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 01/22/2010 Location(s): Tuscaloosa, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 21, 2010 CX-000708: Categorical Exclusion Determination Utah All Inclusive Statewide Alternative Fuels Transportation and Education Outreach Project CX(s) Applied: B5.1 Date: 01/21/2010 Location(s): Murray, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000705: Categorical Exclusion Determination Florida - Sunshine State Buildings Parking Lot Canopies - State Energy Program CX(s) Applied: B1.15, B1.24, B2.1, B5.1

189

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 19, 2010 May 19, 2010 CX-002418: Categorical Exclusion Determination Energy Retrofits for State Correctional Facilities - Mobile Work Release/Work Center Facility Boiler CX(s) Applied: B1.24, B1.31, B2.2, A9, B5.1 Date: 05/19/2010 Location(s): Pritchard, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 19, 2010 CX-002289: Categorical Exclusion Determination Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal Recovery CX(s) Applied: B3.6 Date: 05/19/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory May 19, 2010 CX-002290: Categorical Exclusion Determination Recovery - Advanced Underground Compressed Air Energy Storage (CAES) CX(s) Applied: A1, A9 Date: 05/19/2010

190

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

421: Categorical Exclusion Determination 421: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000420: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000419: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide

191

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-005817: Categorical Exclusion Determination Economic Development Program CX(s) Applied: A1, A9, A11, B2.2, B5.1 Date: 05/13/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11, B3.1 Date: 05/11/2011 Location(s): Millersville, Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005820: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service I CX(s) Applied: A9 Date: 05/11/2011 Location(s): Millersville, Maryland

192

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002486: Categorical Exclusion Determination Flow Battery Solution for Smart Grid Renewable Energy Applications CX(s) Applied: B3.6, B4.6, A1, B4.11 Date: 06/03/2010 Location(s): Sunnyvale, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 2, 2010 CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15, B1.24, B1.31, A9, B5.1 Date: 06/02/2010 Location(s): Franklin County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 2, 2010 CX-002505: Categorical Exclusion Determination Energy Efficiency Program for Municipalities, Schools, Hospitals, Public Colleges

193

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001022: Categorical Exclusion Determination Development of an Autogas Network (Lithia Springs) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Lithia Springs, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-000957: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 03/01/2010 Location(s): Trenton, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-001038: Categorical Exclusion Determination Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1, A7, B5.1 Date: 03/01/2010 Location(s): Idaho Office(s): Energy Efficiency and Renewable Energy, National Energy

194

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004665: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: A9, A11 Date: 12/08/2010 Location(s): Columbia, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 8, 2010 CX-004664: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Tucson, Arizona Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 7, 2010 CX-004687: Categorical Exclusion Determination Centralized Cryptographic Key Management (CKMS) CX(s) Applied: A1, A9, A11, B1.2 Date: 12/07/2010 Location(s): Oak Ridge, Tennessee

195

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003054: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A9, B2.2, B5.1 Date: 07/19/2010 Location(s): Westchester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003052: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for General Electric Work in

196

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-002907: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 07/06/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 1, 2010 CX-002833: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: B3.6, B4.4, A1, A9, A11, B1.7, B5.1 Date: 07/01/2010 Location(s): Salem, Oregon Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 1, 2010 CX-002835: Categorical Exclusion Determination Pennsylvania Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project CX(s) Applied: A9, A11, B5.1 Date: 07/01/2010

197

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006042: Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06/08/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2011 CX-006050: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B3.6, B5.1 Date: 06/07/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California

198

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010 0, 2010 CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06/10/2010 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #191 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #426 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

199

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002510: Categorical Exclusion Determination Rhode Island Non-Utility Scale Renewable Energy Loan, Grants Initiative CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002515: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002522: Categorical Exclusion Determination Danada Solar Energy and Lighting Project CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy

200

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-004689: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004688: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004755: Categorical Exclusion Determination State Energy Program: Program Support/Administration CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 27, 2010 December 27, 2010 CX-004778: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Point Comfort, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004777: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004776: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6

202

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004106: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9 Date: 09/30/2010 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004105: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004100: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Boulder, Colorado

203

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-001313: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001312: Categorical Exclusion Determination State Facilities Retrofit Program: Commissioning/Re-Commissioning and Metering Projects CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001315: Categorical Exclusion Determination Propane Truck Deployment CX(s) Applied: A1, A7, A9, B5.1 Date: 03/18/2010 Location(s): San Antonio, Texas

204

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2011 19, 2011 CX-005634: Categorical Exclusion Determination Characterization of Hydrocarbon Samples and/or Qualitative/Quantitative Analysis of Hydrocarbon Mixtures CX(s) Applied: B3.6 Date: 04/19/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory April 19, 2011 CX-005633: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct Medium Voltage Connection CX(s) Applied: A1, A11, B3.6, B4.4, B5.1 Date: 04/19/2011 Location(s): San Jose, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 19, 2011 CX-005632: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct

205

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006170: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities Date: 07/13/2011 Location(s): Huntington Woods, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006169: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006168: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Wayne, Michigan

206

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-000995: Categorical Exclusion Determination Craftmaster Manufacturing Inc. Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Towanda, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 8, 2010 CX-000996: Categorical Exclusion Determination Divine Providence Hospital-Susquehanna Health Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 7, 2010 CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s) Applied: A7, A11

207

Successful Application of Oak Ridge SMARTSHELF Item Monitoring and CAVIS Weight Sensor Technologies Installed at Kurchatov Institute  

SciTech Connect

The U.S./Russian Material Protection, Control, and Accounting (MPC&A) program has been active since 1994. In 1997, Oak Ridge National Laboratory (ORNL)1, in cooperation, and through contract, with the Russian Research Centre-Kurchatov Institute (KI), under the MPC&A program, installed the jointly developed Oak Ridge National Laboratory (ORNL) and Y-12 National Security Complex (Y-12)2 SmartShelf and Continuous Automated Vault Inventory (CAVIS) technologies for providing constant unattended monitoring of stored nuclear material(s) of interest. SmartShelf is an item monitoring system, and the CAVIS weight sensor technology is a weight monitoring system for stored nuclear materials. Benefits derived from use of these two technologies are a reduction of inventory frequency, a reduction of operational cost, and minimization of worker exposure to nuclear materials during routine physical inventories. SmartShelf and CAVIS are still in service at KI and have proven how beneficial these reliable and long-life technologies can be for MC&A application in any nuclear facility. This paper will address the technologies and their application at KI, including the current operational status and potential applications, as well as address the derived benefits of these technologies in terms of system reliability, inventory assurance, worker safety, and cost efficiency.

Randolph, John David [ORNL] [ORNL; Pickett, Chris A [ORNL] [ORNL; Singh, Surinder Paul [ORNL] [ORNL; Bell, Zane W [ORNL] [ORNL

2007-01-01T23:59:59.000Z

208

Utility Investment in Optical Voltage and Current Measurement Technology: Five Installation Case Studies  

Science Conference Proceedings (OSTI)

In late 1999, EPRI polled utility members asking them what optical sensor projects EPRI should work on in 2000 and 2001. One recommendation was to develop a series of case studies on utility experiences. This report documents five installation case studies involving optical voltage and current measurement technology.

2001-12-11T23:59:59.000Z

209

PowerView monitoring system for instant power consumption in tritium separation technological installations  

Science Conference Proceedings (OSTI)

The paper shows the development of some integrated systems for monitoring and control of instant power consumption in normal and abnormal operation mode of tritium separation technological installations, with the view of reducing energy losses, supports ... Keywords: monitoring systems, power consumption

Carmen Maria Moraru; Ciprian Ciprian Bucur; Iulia Stefan; Ovidiu Balteanu

2011-07-01T23:59:59.000Z

210

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

Science Conference Proceedings (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

211

USDOE Technology Transfer, Map of DOE National Laboratories  

SEARCH DOE TECHNOLOGY TRANSFER INFORMATION. Map of DOE National Laboratories Careers & Internships; Contact Us; Email Updates; Popular Topics . ...

212

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

213

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 16, 2009 November 16, 2009 CX-000409: Categorical Exclusion Determination Wireless Subsea Communications System CX(s) Applied: B3.6 Date: 11/16/2009 Location(s): Boston, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory November 16, 2009 CX-000308: Categorical Exclusion Determination Connecticut Revision 2 - Retrofit 9 State Buildings CX(s) Applied: A9, A11, B1.3, B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/16/2009 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 16, 2009 CX-000435: Categorical Exclusion Determination Novel Oxygen Carriers for Coal-fueled Chemical Looping Combustion CX(s) Applied: A9, A11 Date: 11/16/2009 Location(s): Bowling Green, Kentucky

214

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 4, 2009 CX-000332: Categorical Exclusion Determination Kentucky Revision 2 - Industrial Facility Retrofit Showcase CX(s) Applied: B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/04/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/03/2009 Location(s): Lexington, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 2, 2009 CX-000330: Categorical Exclusion Determination West Virginia Revision 1 - Energy Efficiency in State Buildings:

215

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2009 6, 2009 CX-000305: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Deaf CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000304: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Blind CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

216

Licensable Life Science Technologies | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensable Life Science Technologies A selection of biology-based technologies available for licensing licensablebiologicaltechnologies...

217

Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOElEA- 430 DOElEA- 430 LA-UR-02-6482 Nationat Nudea- Security Administration Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico December II,2002 Department of Energy National Nuclear Security Administration Los Alamos Site Office Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at LANL DOE LASO December 11, 2002 iii Contents ACRONYMS AND TERMS.......................................................................................................V EXECUTIVE SUMMARY ....................................................................................................... IX 1.0 PURPOSE AND NEED ........................................................................................................1

218

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 5, 2011 October 5, 2011 CX-007114: Categorical Exclusion Determination Compressed Natural Gas (CNG)/Infrastructure Development (Station Upgrade) CX(s) Applied: B5.1 Date: 10/05/2011 Location(s): West Jordan, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 5, 2011 CX-007112: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin - 3-Dimension Seismic Survey CX(s) Applied: A9, A11, B3.1 Date: 10/05/2011 Location(s): Colleton County, South Carolina Office(s): Fossil Energy October 5, 2011 CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1 Date: 10/05/2011 Location(s): Platte County, Missouri

219

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006926: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 28, 2011 CX-006921: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006919: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): University Park, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Savannah River

220

Push technology at Argonne National Laboratory.  

SciTech Connect

Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

Noel, R. E.; Woell, Y. N.

1999-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Naval Research Laboratory Technologies Available for Licensing ...  

Energy Innovation Portal Technologies. ... Solar Thermal; Startup America; ... equipment, systems and ocean, atmospheric, and space sciences and related technologies.

222

Available Technologies - Lawrence Berkeley National Laboratory  

Renewable Energy; Environmental Technologies. Monitoring and Imaging; ... the JBEI technology requires less energy and offers greater capability for ...

223

Sandia National Laboratories : Licensing/Technology ...  

Atom/Ion Traps (magnetometry, magnetoencephalography (MEG), quantum computing) Technology Summaries: Patents/Applications: Software: 21 Technology ...

224

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network (OSTI)

a living laboratory for research on integrated energy-saving technologies that will lead to the development infrastructure. The development and technology transfer team include Parans Paranthaman, Tolga Aytug, Amit Goyal1Oak Ridge National Laboratory Science & Technology Highlights Published by Oak Ridge National

225

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Idaho National Laboratory Technologies Available for Licensing ... Non-Nuclear Energy Nanoantenna Electromagnetic Collectors. Related Patents: 7,792,644; 8,071,931; ...

226

National Energy Technology Laboratory Publishes Solid Oxide Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications News Release Release Date: July 23, 2013 National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies SOFC Solid oxide fuel cells are among the...

227

National Energy Technology Laboratory Publishes Solid Oxide Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies National Energy...

228

The Office of Fossil Energy's National Energy Technology Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

such as the President's Clear Skies Act. DOE-NETL NOx Control Program The Office of Fossil Energy's National Energy Technology Laboratory (NETL) is teaming with industry and...

229

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon State Grid Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name State Grid...

230

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ... The Idaho National Laboratory is operated for the U.S. Department of Energy's Office of Nuclear Energy, ...

231

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

232

2011 Annual Planning Summary for National Energy Technology Laboratory (NETL)  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the National Energy Technology Laboratory (See Fossil Energy).

233

Technology & Market Discovery - Lawrence Livermore National Laboratory  

Technology & Market Discovery. The commercialization of many technologies developed at LLNL require the market expertise and funding capabilty of the entrepreneurial ...

234

Savannah River National Laboratory Technologies Available for ...  

... and Energy Security by delivering world-class innovative performance in national defense and homeland security technologies, alternative energy technology and ...

235

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; Licensing Overview; Ready-to-Sign Licenses; DOE SBIR TTI; Government Use Notices; News; Contact Us; Technology Summary

236

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Hybrid polymer-nanocrystal optical coatings are a platform technology in the field of multilayered films, and are seen in a variety of consumer ...

237

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Sandia researchers have developed a technology that could potentially turn agricultural waste, weeds, and other plant products that are typically ...

238

Sandia National Laboratories : Licensing/Technology Transfer ...  

... ID US Patent# 7,514,004 Development Stage Prototype - Sandia estimates this technologys TRL at approximately a level 6/7.

239

Sandia National Laboratories: Working with Sandia: Technology ...  

Technology partnerships allow community members to leverage Sandia's resources. Sandia has transferred technology to external partners for more than three decades ...

240

Sandia National Laboratories Information Technology Solutions ...  

Technology Readiness Level: Sandia estimates this technology at a TRL 6. A market deliverable has been dem-onstrated in relevant environments and is ...

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center...

242

Available Technologies - Lawrence Berkeley National Laboratory  

APPLICATIONS OF TECHNOLOGY: Removing arsenic from. drinking water ; mining discharge; power plant boiler blowdown streams; ADVANTAGES:

243

Princeton Plasma Physics Laboratory Technologies Available for ...  

The DOE Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, ...

244

Pulsed Power Technology at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

are some specific sites on Pulsed Power MAGPIE Pulsed Power Facility, Imperial College NIF Naval Research Laboratory, Plasma Physics Division Reviews of U.S. Fusion Policy UKAEA...

245

Available Technologies - Lawrence Berkeley National Laboratory  

APPLICATIONS OF TECHNOLOGY: Analysis of: geothermal reservoirs; nuclear waste storage sites; gas hydrate-bearing formations; geologic carbon sequestration ...

246

Sandia National Laboratories Information Technology Solutions  

Information Technology Solutions ... applications and market spaces. ... ration, for the United States Department of Energys

247

Idaho National Laboratory Technologies Available for Licensing ...  

Integration of Nuclear Energy with Bio and Fossil Energy Systems, Renewable Energy Technologies; Alternative Energy Sources and Transportation Fuels;

248

Savannah River National Laboratory Technology Marketing ...  

Energy Analysis; Energy ... criteria to calculate key fate and transport result output data. ... tank cleaning technologies currently on the market, ...

249

Available Technologies - Lawrence Berkeley National Laboratory  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. ... and gravity modeling engines developed at Berkeley Lab and elsewhere. ...

250

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; Licensing Overview; ... National Defense and Security; Molecular Spectroscopy; Imaging Array; Medical Imaging; Remote ...

251

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary The Theoretical Overlay Photographic Heliostat Alignment Technique (TOPHAT) is a unique method which helps to accurately and effectively ...

252

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Current methods of producing titanium dioxide nanoparticles require costly surfactants and/or high temperature and pressure processing.

253

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed an advanced electrical wiring diagnostic system capable of detecting insulation defects in complex wiring systems.

254

Sandia National Laboratories : Licensing/Technology Transfer ...  

... SD# 7652 Development Stage Prototype - TECHNOLOGY READINESS LEVEL: 6 A PROTOTYPE HAS BEEN DEVELOPED AND TESTED Availability Available Published ...

255

Sandia National Laboratories : Licensing/Technology Transfer  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us; Licensing and Technology Transfer. IP Home; Search ...

256

Sandia National Laboratories: Working with Sandia: Technology ...  

Search Sandia Publications ... Non-federal entities may enter into a variety of technology partnerships agreements with Sandia.

257

Access to High Technology User Facilities at DOE National Laboratories |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to High Technology User Facilities at DOE National Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities. For non-commercial, basic science research, researchers may seek to use the Non-proprietary User Agreement. Under this type of agreement, the user pays its own costs of the research with the DOE laboratory, may access specialized laboratory equipment and collaborate with laboratory scientists. The non-proprietary user and the National Laboratory retain

258

The Software Technology Center at Lawrence Livermore National Laboratory: Software engineering technology transfer in a scientific R&D laboratory  

SciTech Connect

Software engineering technology transfer for productivity and quality improvement can be difficult to initiate and sustain in a non-profit research laboratory where the concepts of profit and loss do not exist. In this experience report, the author discusses the approach taken to establish and maintain a software engineering technology transfer organization at a large R&D laboratory.

Zucconi, L.

1993-12-01T23:59:59.000Z

259

Sandia National Laboratories Information Technology Solutions ...  

Information Technology Solutions BENEFITS ... of Energys National Nuclear Security Administration under contact DE-AC04-94AL85000. SAND #2010-5245P . Author:

260

Sandia National Laboratories Information Technology Solutions ...  

Information Technology Solutions BENEFITS ... United States Department of Energys National Nuclear Security Administration under contact DE-AC04-94AL85000.

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Savannah River National Laboratory Technology Marketing Summaries ...  

The device offers features unavailable in tank cleaning technologies currently on the market, ... as the incident light energy is ... information provided includes ...

262

Available Technologies - Lawrence Berkeley National Laboratory  

Biosensor technology for medical, chemical and biological sensing; ADVANTAGES: Co-factors are stable in air and water; Co-factors are ...

263

Sandia National Laboratories: Working with Sandia: Technology ...  

R&D 100 Awards; International ... partnerships through joint research and technology ... results of a jointly conducted research and development p ...

264

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology ID SD#11655.1 Development Stage Development Availability Available Published 11/07/2011 Last Updated 01/23/2013 ... News release RSS feed ...

265

Sandia National Laboratories : Licensing/Technology Transfer ...  

IP Home; Search/Browse Technology Portfolios; ... The gas leak detection devices use an infrared light source to spectroscopically probe the gas and a video camera to ...

266

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary There is a need for improved active infrared optical elements such as modulators. Extraordinary optical transmission (EOT) through subwavelength ...

267

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary In the past, traditional encryption engines utilized a mode of encryption that was vulnerable to certain attacks and not capable of running at full ...

268

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Sandia has developed a cheap, efficient, and accurate method of measuring the irradiance from solar reflections using a digital camera.

269

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed an energy monitoring device that measures energy from liquid flow systems (e.g., solar systems) using a simple technique that ...

270

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary. Self guided projectiles such as bullets that can be fired from small caliber weapons (around .50 caliber or less) are desirable due to the ...

271

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Single junction solar cells have limited efficiency and fail to extract maximum energy from photons outside of a specific spectral region.

272

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary Sandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes (LEDs) into the warm ...

273

Sandia National Laboratories : Licensing/Technology ...  

Technology Summary A large question preventing optimal natural gas production from "hydrofracked" shales is how far proppants, injected to keep shale ...

274

Sandia National Laboratories Technology Marketing Summaries ...  

Rapid Solar Mirror Characterization with Fringe Reflection Techniques This technology is an automated system in which the reflection of a mirror, ...

275

Argonne National Laboratory - Office of Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

at Argonne on or before November 15, 2013. Download the commercialization plan worksheet Tech Transfer Information for Employees Technology Corner Recent News Report an invention...

276

Sandia National Laboratories : Licensing/Technology Transfer ...  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us The Sandia Cooler IP Home; Search/Browse Technology ...

277

Permitting Best Practices Make Installing Solar Easier: Technical Assistance (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL staff NREL staff can help states and local jurisdictions assess permitting processes, standardization approaches across a region, and permit fee options. t e c h n i c a l a s s i s ta n c e Permitting Best Practices Make Installing Solar Easier Common-Sense Improvements Address Top-Three Permitting Issues The U.S. solar industry has reached a turning point. While photovoltaic (PV) hardware costs exhibit rapid decline, non-hardware balance of system (BOS) costs such as permitting and inspection have remained relatively constant. The United States comprises more than 18,000 local jurisdictions whose permitting requirements and fees vary widely. The lack of permitting standardization across jurisdictions and inefficient permitting processes create challenges

278

Sandia National Laboratories: Research: Facilities: Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

process contact the user liaison. User liaison James Aubert jhaubert@sandia.gov Sandia National Laboratories P.O. Box 5800 MS-0886 Albuquerque, New Mexico 87185-0886 phone:...

279

Argonne National Laboratory Technology Marketing Summaries ...  

This method may provide a means to affordably and efficiently produce biofuels that will reduce U.S. reliance on fossil fuels. Argonne National Laboratory; 02/11/2013:

280

Install the E-print Network toolbar -- Energy, science, and technology for  

Office of Scientific and Technical Information (OSTI)

Browser Toolbar The E-print Network offers a browser toolbar for easy access to e-print searches and discipline pages. EPN browser toolbar Two installation options are available for the EPN browser toolbar: Internet Explorer - Download and install the toolbar using the Softomate ActiveX Web installer Please select "Install ActiveX Control" when prompted by your browser. Install toolbar for Internet Explorer Can't see the toolbar after installing? Note: Browser security settings at some organizations may prevent installation or use of the toolbar in Internet Explorer. Try installing the toolbar in the FireFox browser, using the button below. Minimum System Requirements: Windows XP/Vista Internet Explorer 6 or Firefox 2 FireFox - Install toolbar for FireFox

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory Publishes Solid Oxide Fuel National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies July 23, 2013 - 1:07pm Addthis National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies What does this project do? For more information on DOE's efforts to make solid oxide fuel cells an efficient and economically compelling option, please visit: The NETL Solid Oxide Fuel Cells Program Webpage Solid oxide fuel cells are among the cleanest, most efficient power-generating technologies now being developed. They provide excellent electrical efficiencies and are capable of operating on a wide variety of fuels, from coal and natural gas to landfill waste and hydrogen. And with continued advancements, solid oxide fuel cells can provide clean

282

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

283

Mailing Addresses for National Laboratories and Technology Centers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mailing Addresses for National Laboratories and Mailing Addresses for National Laboratories and Technology Centers Mailing Addresses for National Laboratories and Technology Centers Name Telephone Number U.S. Department of Energy Albany Research Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory #311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S. Department of Energy Argonne National Laboratory (East) 9700 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Argonne National Laboratory (West) P.O. Box 2528 Idaho Fall, ID 83403-2528 208-533-7341 U.S. Department of Energy Bettis Atomic Power Laboratory, Bechtel Bettis, Inc. 814 Pittsburgh McKeesport Boulevard West Mifflin, PA 15122-0079 412-476-5000 U.S. Department of Energy

284

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

285

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology ID US Patent 7,425,297/ SD# 7721.1 Development Stage Development Availability Available Published 09/29/2011 Last Updated 01/31/2013 ... News release RSS ...

286

Sandia National Laboratories : Licensing/Technology Transfer ...  

7662.1: 7,785,391 08/31/2010 Issued: Technology ID ... Published 07/29/2013 Last Updated 10/14/2013 ... News release RSS feed ...

287

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology is needed to release the cellular contents in a ... Suitable for processing volumes ranging from 1-1000 ... Published 09/28/2011 Last Updated 09/26/2013

288

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

289

Reservoir technology research at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

The research being carried out at LBL as part of DOE/GTD's Reservoir Technology Program includes field, theoretical and modeling activities. The purpose is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters, (2) detect and characterize reservoir fractures and boundaries, and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of this work is to advance the state-of-the-art for characterizing geothermal reservoirs and evaluating their productive capacity and longevity under commercial exploitation. LBL's FY1986 accomplishments, FY1987 progress to date, and possible future activities under DOE's Reservoir Technology Program are discussed.

Lippmann, M.J.

1987-04-01T23:59:59.000Z

290

National Energy Technology Laboratory Captures Three Sustainability Awards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Laboratory Captures Three Sustainability National Energy Technology Laboratory Captures Three Sustainability Awards National Energy Technology Laboratory Captures Three Sustainability Awards September 27, 2012 - 1:00pm Addthis Washington, DC - When the U.S. Department of Energy (DOE) called on employees to meet sustainability goals by initiating environmental, energy, and economic improvements, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) answered the call--and captured three Departmental Sustainability Awards for its efforts. The DOE Sustainability Awards program, now in its second year, "recognizes the achievements of DOE employees whose leadership and cost-reducing initiatives have saved taxpayer money by reducing the Department's use of energy, water, and paper while improving the energy efficiency of Federal

291

Elizondo 'marries' Laboratory technologies to U.S. industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Elizondo 'marries' Laboratory technologies to U.S. industry Stephen P Wampler, LLNL, (925) 423-3107, wampler1@llnl.gov High Resolution Image Catherine Elizondo is a...

292

Sandia National Laboratories: Research: Facilities: Technology Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Laboratory Ion Beam Laboratory Sandia's Ion Beam Analysis (IBA) program is recognized as one of the best in the world. It has the ability to examine a wide spectrum of materials, from semiconductors to metals and ceramics. Some of the accomplishments of the program include: Invented several new ion beam analysis techniques for the quantitative analysis of light elements (H through F), and heavy elements (C through Pu). Enhanced nuclear microprobe-based Single Event Upset (SEU) imaging system to supply submicron images of charge generation and collection in CMOS ICs. This new application of SEU-imaging is important for understanding and decreasing upset susceptibility. Capabilities and Resources The IBA is available to perform the following quantitative/standardless

293

Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network (OSTI)

Steel Treatment Process Excels in Industrial Trials The low-temperature colossal supersaturation (LTCSS that the technology will save the steel industry alone $300 million per year. The company will continue to work with ORNL in 2007 to optimize applications for the petrochemical, aluminum, and steel industries. Next year

294

HyTech - The Hydrogen Technology Laboratory at Savannah River  

DOE Green Energy (OSTI)

SRS recently announced the formation of the Hydrogen Technology Laboratory (HyTech) to work with industry and government in developing technologies based on the site`s four decades of experience with tritium and other forms of H. HyTech will continue to sustain the site`s ongoing role in H technology applications for defense programs. In addition, the laboratory will work with the chemical, transportation, power, medical, and other industries to develop and test related technologies. HyTech, which is located in the Savannah River Technology Center, will make use of its facilities and staff, as well as the infrastructure within the site`s Tritium Facilities. More than 80 SRS scientists, engineers, and technical professionals with backgrounds in chemistry, engineering, materials science, metallurgy, physics, and computer science will work with the laboratory. This paper describes some of HyTech`s current initiatives in the area of H storage, transportation, and energy applications.

Motyka, T.; Knight, J.R.; Heung, L.K.; Lee, M.W.

1995-12-31T23:59:59.000Z

295

Arctic Energy Technology Development Laboratory (Part 3)  

SciTech Connect

Various laboratory tests were carried at the R & D facility of BJ Services in Tomball, TX with BJ Services staff to predict and evaluate the performance of the Ceramicrete slurry for its effective use in permafrost cementing operations. Although other standards such as those of the American Standard for Testing Materials (ASTM) and Construction Specification Institute (CSI) exist, all these tests were standardized by the API. A summary of the tests traditionally used in the cement slurry design as well as the API tests reference document are provided in Table 7. All of these tests were performed within the scope of this research to evaluate properties of the Ceramicrete.

See OSTI ID Number 960443

2008-12-31T23:59:59.000Z

296

Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part C, Waste Management  

SciTech Connect

This report documents site remediation at ORNL, including ORNL site characterization technologies, waste management and robotics and automation of the laboratory for waste processing and analysis.

1993-09-01T23:59:59.000Z

297

Assessment of cogeneration technologies for use at Department of Defense installations. Final report  

Science Conference Proceedings (OSTI)

Cogeneration is the simultaneous generation of two types of energy, usually electricity and thermal energy, from a single energy source such as natural gas or diesel fuel. Cogeneration systems can be twice (or more) as efficient than conventional energy systems since both the electricity and the available thermal energy produced as a by-product of the electric generation, are used. This study identified cogeneration technologies and equipment capable of meeting Department of Defense (DOD) requirements for generation of electrical and thermal energy and described a wide range of successful cogeneration system configurations potentially applicable to DOD energy plants, including: cogeneration system prime movers, electrical generating equipment, heat recovery equipment, and control systems. State of the art cogeneration components are discussed in detail along with typical applications and analysis tools that are currently available to assist in the evaluation of potential cogeneration projects. A basic analysis was performed for 55 DOD installations to determine the economic benefits of cogeneration to the DOD. The study concludes that, in general, cogeneration systems can be a very cost effective method of providing the military with its energy needs.

Binder, M.J.; Cler, G.L.

1996-01-01T23:59:59.000Z

298

Federal Laboratory Consortium Excellence in Technology Transfer Award |  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Award About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Presidential Early Career Awards for Scientists and Engineers (PECASE) The Enrico Fermi Award The Ernest Orlando Lawrence Award DOE Nobel Laureates Federal Laboratory Consortium Excellence in Technology Transfer Award R&D 100 Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Honors & Awards Federal Laboratory Consortium Excellence in Technology Transfer Award Print Text Size: A A A RSS Feeds FeedbackShare Page Estimates are that fully half the growth in the American economy in the

299

NREL: Technology Deployment - NREL Helps U.S. Virgin Islands Install Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Helps U.S. Virgin Islands Install Wind Testing Equipment NREL Helps U.S. Virgin Islands Install Wind Testing Equipment Photo of wind turbines being erected. NREL's analysis and technical expertise is helping the U.S. Virgin Islands find ways to reduce fossil fuel use by 60% through the development of utility-scale wind opportunities. January 10, 2013 With the help of NREL, the U.S. Virgin Islands (USVI) recently marked a major milestone on the way toward its goal of a 60% reduction in fossil fuel use by 2025. In December, NREL experts assisted with the installation of wind anemometer towers and sonic detection and ranging (SODAR) equipment on the islands of St. Thomas and St. Croix to collect data that will be used for the development of a utility-scale wind project in the territory. The installation represents how the USVI is moving forward with NREL's

300

Los Alamos National Laboratory (LANL) and Chevron Energy Technology Company  

NLE Websites -- All DOE Office Websites (Extended Search)

Wireless technology collects real-time Wireless technology collects real-time information from oil and gas wells April 3, 2012 U.S. energy security and domestic oil production are increased through technology that delivers continuous electromagnetic data in oil and gas wells Los Alamos National Laboratory (LANL) and Chevron Energy Technology Company formed the Advanced Energy Solutions Alliance in 2004 to address U.S. energy security and critical technology needs of the oil and gas industry. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil - 2 - and gas and drilling operations for new wells. In 2010, Chevron commercialized

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

InterTechnology Corporation report of solar energy systems installation costs for selected commercial buildings  

DOE Green Energy (OSTI)

The results of a study in which the primary objective was to determine actual costs associated with the installation of solar collector and thermal energy storage subsystems in specific non-residential building applications are presented. A secondary objective of the study was to assemble details of existing solar collector and storage subsystem installations, including caveats concerning cost estimating, logistics and installation practices. The study began with the development of an exhaustive listing and compilation of basic data and contacts for non-residential applications of solar heating and cooling of buildings. Both existing projects and those under construction were surveyed. Survey summary sheets for each project encountered are provided as a separate appendix. Subsequently, the rationale used to select the projects studied in-depth is presented. The results of each of the detailed studies are then provided along with survey summary sheets for each of the projects studied. Installation cost data are summarized and the significance of the differences and similarities between the reported projects is discussed. After evaluating the data obtained from the detailed studies, methods for reducing installation labor costs are postulated based on the experience of the study. Some of the methods include modularization of collectors, preplumbing and preinsulating, and collector placement procedures. Methods of cost reduction and a summary discussion of prominent problems encountered in the projects are considered.(WHK)

None

1976-12-01T23:59:59.000Z

302

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network (OSTI)

, distributed energy resource interfaces, flexible ac transmission systems, and high-voltage dc systems. Already- tion into energy-related careers. Activities include an annual student meeting in Washington, D.C1Oak Ridge National Laboratory Science & Technology Highlights Published by ORNL's Energy

303

Anthony V. Cugini Director, National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anthony V. Cugini Anthony V. Cugini Director, National Energy Technology Laboratory U. S. Department of Energy Before the Subcommittee on Energy and Environment Committee on Science, Space, and Technology U.S. House of Representatives November 30, 2012 Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy's National Energy Technology Laboratory continues to play in the safe and responsible development of the Nation's unconventional oil and natural gas resources. As you know, since 2008, U.S. oil and natural gas production has increased each year. In 2011, U.S. crude oil production reached its highest level in nearly a decade. Natural gas production

304

Laboratory Technology Research: Abstracts of FY 1996 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

NONE

1996-12-31T23:59:59.000Z

305

Laboratory technology research - abstracts of FY 1997 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

NONE

1997-11-01T23:59:59.000Z

306

Lessons for the future: experiences with the installation and use of today's domestic sensors and technologies  

Science Conference Proceedings (OSTI)

Domestic environments are receiving increasing attention as sites of deployment for pervasive technologies, as evidenced by the growing number of studies of homes and maturing technologies in prototype aware/smart homes. The challenge now is to move ...

Mark Stringer; Geraldine Fitzpatrick; Eric Harris

2006-05-01T23:59:59.000Z

307

U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release Shelley Martin, 304-285-0228 April 16, 2010 The National Energy Technology Laboratory has announced that Stephen E. Zitney and Terry Jordan will receive the 2010 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award. Their award is for work on the Virtual Engineering - Process Simulator Interface (VE-PSI) and will be presented at a ceremony on Thursday, April 29, 2010 at the FLC National Meeting in Albuquerque, New Mexico. VE-PSI is new, innovative software technology that provides engineers with a tool to design and optimize energy plants within a virtual engineering environment. Engineering data from process simulation, computational fluid dynamics, and computer-aided design can be seamlessly integrated and easily analyzed within an immersive,

308

Pacific Northwest Laboratory's Lighting Technology Screening Matrix: Let there be energy-efficient light  

Science Conference Proceedings (OSTI)

Pacific Northwest Laboratory has developed the Lighting Technology Screen Matrix (LTSM), a software tool to evaluate alternative lighting retrofit technologies according to life-cycle cost. The LTSM can be used to evaluate retrofits for most configurations of fluorescent, incandescent, high-intensity discharge, and exit lighting systems for any level of operation, electricity price, discount rate, and utility rebate. The tool was developed in support of the Federal Relighting Initiative as part of the US Department of Energy's Office of Federal Energy Management Program (DOE/FEMP) to assist federal government facilities in their efforts to comply with federal energy regulations. This article describes the LTSM and demonstrates its application in case studies at federal installations.

Stucky, D.; Shankle, S.; Schultz, R.; Richman, E.; Dirks, J. (Pacific Northwest Lab., Richland, WA (United States))

1994-01-01T23:59:59.000Z

309

Renewable energy technology development at Sandia National Laboratories  

DOE Green Energy (OSTI)

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earths present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

Klimas, P.C.

1994-03-01T23:59:59.000Z

310

The annual news magazine of the Microsystems Technology Laboratories FALL 2010 microsystems technology laboratories  

E-Print Network (OSTI)

, such as graphene, and materials and processes for solar energy and solid state lighting, in addition to the core engineered viruses; long-lasting high-efficiency light bulbs; windows that can double as solar energy technology for concentrating solar energy systems using coated glass. Baldo said Obama was curious and asked

Culpepper, Martin L.

311

United States National Energy Technology Laboratory's (NETL) Smart Grid  

Open Energy Info (EERE)

National Energy Technology Laboratory's (NETL) Smart Grid National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Focus Area: Crosscutting Topics: System & Application Design Website: www.netl.doe.gov/smartgrid/refshelf.html# Equivalent URI: cleanenergysolutions.org/content/united-states-national-energy-technol Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Resource Integration Planning,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

312

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

Wei-Ping Pan; Yan Cao; John Smith

2007-03-31T23:59:59.000Z

313

Laboratory technology research: Abstracts of FY 1998 projects  

Science Conference Proceedings (OSTI)

The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

NONE

1998-11-01T23:59:59.000Z

314

Sandia National Laboratories: Working with Sandia: Technology Partnerships:  

NLE Websites -- All DOE Office Websites (Extended Search)

Business, Industry, & Non-Profits Business, Industry, & Non-Profits Business, Industry, & Non-Profits Small Business Innovative Research (SBIR) & Small Business Technology Transfer (STTR) Universities Government Working with Sandia Business, Industry, & Non-Profits GM Storage Sandia uses a variety of agreements to develop partnerships with industry, state and local governments, and universities. The partner's goals, plus funding sources for the agreement, and Sandia's strategic business objectives, determine the most appropriate partnering mechanism. Sandia's Partnership Opportunities Brochure (PDF) describes the agreement types available for Sandia and industry use. The Laboratories also may enter into nondisclosure agreements and memorandum of understanding when appropriate.

315

U.S. Department of Energy National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory and Spectroscopy Society of Pittsburgh Triple "E" Seminar  Provide an overview on the importance of energy in our daily lives and on the maintenance of industrial growth and economic well being of a nation.  Enhance the understanding of the relationship among the production and consumption of energy, environmental effects, and the economy of our regions/country.  Broaden the knowledge of classroom teachers, thus strengthening the math/ science curriculum of our schools.  Foster energy awareness in our youngsters and develop their interest in the fields of science and technology.  Use the resources available, within the Department of Energy, to assist the local, regional, and national

316

Excerpts of Energy Secretary Ernest Monizs Remarks at National Energy Technology Laboratory in Morgantown  

Energy.gov (U.S. Department of Energy (DOE))

On Monday, July 29, 2013, Secretary Moniz will visit the National Energy Technology Laboratory (NETL) in Morgantown, W. Va.

317

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

318

Pulsed power -- Research and technology at Sandia National Laboratories  

SciTech Connect

Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

1981-12-31T23:59:59.000Z

319

U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Shelley Martin, 304-285-0228 August 17, 2010 Shelley Martin, 304-285-0228 August 17, 2010 The National Energy Technology Laboratory (NETL) has selected Susan Malie as an attorney in the Office of Chief Counsel, assisting with general legal issues. Previously, she worked as Deputy General Counsel for the Governor's Office of General Counsel, Commonwealth of Pennsylvania. Malie grew up in Pittsburgh, Pa. and earned her J.D. from Duquesne University School of Law (Pittsburgh). She lives in Pittsburgh. NETL is one of the U.S. Department of Energy's national laboratories. NETL - "the ENERGY lab" - focuses on America's economic prosperity, which requires secure, reliable energy supplies at sustainable prices. Three overarching issues characterize the energy situation in the United States. They are energy

320

Process Improvement at Army Installations  

E-Print Network (OSTI)

Compliance with environmental law is becoming significantly expensive. In the past for convenience of management, compliance and pollution prevention were considered independently from production. Environmental law was introduced to optimize production methods to reduce pollution. Energy conservation opportunities (ECOs) that enhance pollution prevention have been compiled through research at many installations, including United States Army Construction Engineering Research Laboratories (USACERL). Executive Orders require the Army to reduce the use of energy and related environmental impacts by promoting renewable energy technologies. These new energy and environmental directives usually exceed the performance capabilities of DODs currently installed industrial technologies. The majority of DOD industrial activities utilize 40 year-old technologies and facilities. The objective of this project was to conduct a Level II process optimization audit on a munitions manufacturing operation at an Army base to optimize capacity, and energy and environmental performance. This paper reports the outcome and offers insights into process optimization.

Northrup, J.; Smith, E. D.; Lin, M.; Baird, J.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

322

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

DOE Green Energy (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

323

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

324

Instrumentation and monitoring of a full-scale shaft seal installed at atomic energy of canada limited's underground research laboratory.  

E-Print Network (OSTI)

??Atomic Energy of Canada Limiteds Underground Research Laboratory was built to allow study of concepts for the long-term disposal of Canadas used nuclear fuel in (more)

Holowick, Blake

2010-01-01T23:59:59.000Z

325

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

326

Simulation Technology Laboratory Building 970 hazards assessment document  

SciTech Connect

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Wood, C.L.; Starr, M.D.

1994-11-01T23:59:59.000Z

327

Idaho National Laboratory Description, Chellenges, Technology, Issues, and Needs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i f th Hi i f th Hi h L l W t (HLW) P Overview of the High Level Waste (HLW) Program at the Id h N ti l L b t (INL) Sit Idaho National Laboratory (INL) Site Description Challenges Technology Issues and Needs Description, Challenges, Technology, Issues, and Needs 1 April 1, 2008 INL Site HLW is in Dry Storage in the Form of Calcine 8 9M ll f li id HLW t d t 4400 bi t f * 8-9M gallons of liquid HLW were converted to 4400 cubic meters of granular solid (calcine) through a fluidized bed calcination process - 7 to 1 volume reduction achieved * Average particle size is 0.4 cm * Bulk density is about 1 5 to 1 8 g/cc * Bulk density is about 1.5 to 1.8 g/cc - Contains roughly 44 metric tons heavy metal * Calcine is stored in 43 bins in 6 concrete-shielded binsets with one spare p - 7 th set of bins - intended for calcined SBW

328

Partnerships and Technology Transfer - Oak Ridge National Laboratory  

Sponsored Research Overview. The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC.

329

The intelligence oversight inspection of the Special Technologies Laboratory  

SciTech Connect

Executive Order (EO) 12863, {open_quotes}President`s Foreign Intelligence Advisory Board,{close_quotes} dated September 13, 1993, requires Inspectors General of the Intelligence Community to submit reports to the Intelligence Oversight Board, on at least a quarterly basis, on intelligence activities that the Inspectors General have reason to believe may have been unlawful or contrary to Executive order or Presidential directive. Within the Department of Energy (DOE) office of Inspector General, responsibility for oversight of DOE`s intelligence activities, pursuant to EO 12863, has been assigned to the Deputy Inspector General for Inspections. To carry out this responsibility, the Office of Inspections performs reviews to determine if intelligence activities within DOE are in compliance with restrictions set forth in selected intelligence-related laws, Executive orders, and DOE orders, guidelines or implementing procedures. Accordingly, the purpose of this inspection was to determine if intelligence activities conducted by the Special Technologies Laboratory (STL) were in compliance with such restrictions. Our primary objectives were to: (1) evaluate STL intelligence personnel`s knowledge of these restrictions, and (2) review procedures implemented by STL to identify, investigate, and report questionable intelligence activities and/or abuses to higher officials.

NONE

1995-10-13T23:59:59.000Z

330

U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown...  

NLE Websites -- All DOE Office Websites (Extended Search)

dependent stability of SOFC activated by nano-sized cathode electrocatalyst U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Shiwoo Lee, Nicholas...

331

Secretary Moniz Dedicates New Supercomputer at the National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Today, Secretary Moniz dedicated a new supercomputerone of the worlds fastest and most energy efficientat the National Energy Technology Laboratory (NETL)

332

Accessing DOE Laboratory Technologies: Legal Mechanisms and Issues  

Federal Non-nuclear Energy Act Atomic Energy Act Stevenson-Wydler Technology Innovation Act of 1980 ... Secretarial Policy Statement on Lab Technology

333

Ronald A. Sorri v. L&M Technologies, Inc. & Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sorri v. L&M Technologies, Inc. & Sandia National Laboratories Sorri v. L&M Technologies, Inc. & Sandia National Laboratories file:///C|/Documents%20and%20Settings/blackard/Desktop/WHISTLE/ds0001.htm[11/29/2012 1:43:36 PM] RONALD A. SORRI, Complainant v. L&M TECHNOLOGIES INC. AND SANDIA NATIONAL LABORATORIES, Respondents. OHA Case No. LWA-0001 FINAL DECISION AND ORDER On December 16, 1993, the Office of Hearings and Appeals issued the Initial Agency Decision in Sorri v. Sandia National Laboratories and L&M Technologies Inc., a complaint of reprisal under Part 708, title 10, Code of Federal Regulations, "DOE Contractor Employee Protection Program" (Part 708). By agreement dated June 7, 1994, the Complainant, Sandia National Laboratories, and L&M Technologies Inc. have agreed, through their counsels, to the dismissal of L&M Technologies Inc. as a party to this proceeding.

334

Newly Installed Alaska North Slope Well Will Test Innovative Hydrate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Newly Installed Alaska North Slope Well Will Test Innovative Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies May 17, 2011 - 1:00pm Addthis Washington, DC - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone

335

Oak Ridge National Laboratory Technologies Available for Licensing ...  

Oak Ridge National Laboratory finds solutions to some of the world's most critical challenges in science ... that results in ... R&D capabilities allow us ...

336

Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven  

E-Print Network (OSTI)

Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven TRP exam 9 jan;Faculty of Technology Heat Engineering Laboratory course 424508 E Ron Zevenhoven TRP exam 9 jan 2008 2/(m.K), determine numerically, using the grid shown in the Figure: a. the temperatures at the points 1, 2, 3, 4, 5

Zevenhoven, Ron

337

Performance of Installed Cooking Exhaust Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Performance of Installed Cooking Exhaust Devices Performance of Installed Cooking Exhaust Devices Brett C. Singer, William W. Delp, Michael G. Apte, Philip N. Price Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California, 94720 November 2011 Direct funding for this research was provided by the California Energy Commission through Contracts 500-05-026 and 500-08-061. Institutional support is provided to LBNL by the U.S. Department of Energy, Office of Science under Contract DE-AC02-05CH11231. LBNL-5265E-r1(3) Singer et al., Performance of Installed Cooking Exhaust Devices LBNL-5265E-r1(3) Performance of Installed Cooking Exhaust Devices Brett C. Singer 1

338

Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado  

SciTech Connect

This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

Not Available

2007-03-01T23:59:59.000Z

339

Non-Nuclear Energy - Idaho National Laboratory - Technology ...  

Fossil Energy; Information Technology; Manufacturing ; Materials; ... Non-Nuclear Energy Method of Producing Hydrogen. Related Patents: 7153489; 7,665,328; 7078012.

340

Argonne TDC: About Technology Transfer at Argonne National Laboratory  

Cost-shared R&D with an industrial ... Performing results-orientated outreach to technology stakeholders to ... U.S. Department of Energy Office of Science ...

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia National Laboratories : Licensing/Technology Transfer News  

Search; About Sandia; Mission Areas; Newsroom; Careers; Doing Business; Education; Contact Us; News. IP Home; Search/Browse Technology Portfolios; Licensing Overview ...

342

NREL: Research Facilities - Laboratories and Facilities by Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

We can research and test a variety of concentrating solar power technologies, such as parabolic troughs, and their system components, which include receivers, collectors, and...

343

Los Alamos National Laboratory (LANL) and Chevron Energy Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

time information from oil and gas wells April 3, 2012 U.S. energy security and domestic oil production are increased through technology that delivers continuous electromagnetic...

344

Smart Grid Technology Interactive Model | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

345

Mailing Addresses for National Laboratories and Technology Centers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory 311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S....

346

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

Not Available

2013-06-01T23:59:59.000Z

347

Los Alamos National Laboratory: science and technology update  

SciTech Connect

The update will focus on issues that occurred during the first quarter of FY 2011. These include the Senate Confirmation of the New Start Treaty, the pay freeze for the next two years, impact of the Continuing Resolution for FY 2011 , and the planned retirement of the Laboratory Director. The Laboratory plans to reinvest the 'savings' from the pay freeze in LDRD, sustainability, and infrastructure. The large holdbacks in funds during the Continuing Resolution are causing stop work on many projects and uncertainty in the path forward for MaRIE.

Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

2011-01-24T23:59:59.000Z

348

Los Alamos National Laboratory: science and technology update  

SciTech Connect

The update will focus on issues that occurred during the first quarter of FY 2011. These include the Senate Confirmation of the New Start Treaty, the pay freeze for the next two years, impact of the Continuing Resolution for FY 2011 , and the planned retirement of the Laboratory Director. The Laboratory plans to reinvest the 'savings' from the pay freeze in LDRD, sustainability, and infrastructure. The large holdbacks in funds during the Continuing Resolution are causing stop work on many projects and uncertainty in the path forward for MaRIE.

Wallace, Terry C [Los Alamos National Laboratory; Mercer - Smith, Janet A [Los Alamos National Laboratory

2011-01-24T23:59:59.000Z

349

Heat Pump Water Heater Technology Assessment Based on Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

translated to an annual energy savings of 56%, and the COP of a HPWH with an external condenser design was 1.8 or 44% annual energy savings (Morrison 2003). The technology was...

350

Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

1997-04-01T23:59:59.000Z

351

The Technology Information Environment with Industry (TIE-In): A mechanism for accessing laboratory solutions  

SciTech Connect

The Technology Information Environment with Industry (TIE-In) is a system that helps users obtain laboratory-developed technical solutions without requiring that they duplicate the technical resources (in people, hardware and software) at the national laboratories. TIE-In is based on providing users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users obtain technical solutions without requiring that the user have specialized technical and computer expertise. As a designated DOE Technology Deployment Center/User Facility, industry users can access a broad range of laboratory-developed technologies on a cost-recovery basis. TIE-In will also be used to share laboratory resources with partners in US industry that help the DOE meet future manufacturing needs for the stewardship of our nation`s nuclear weapons stockpile.

Ang, J.A.; Machin, G.D.; Marek, E.L.

1994-12-31T23:59:59.000Z

352

Los Alamos National Laboratory technologies capture prestigious R&D 100  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL technologies capture R&D 100 awards LANL technologies capture R&D 100 awards Los Alamos National Laboratory technologies capture prestigious R&D 100 awards Winning Laboratory projects are the 3-D Tracking Microscope and Laser-Weave technology. July 3, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact

353

Design principles for the development of space technology maturation laboratories aboard the International Space Station  

E-Print Network (OSTI)

This thesis formulates seven design principles for the development of laboratories which utilize the International Space Station (ISS) to demonstrate the maturation of space technologies. The principles are derived from ...

Saenz Otero, Alvar, 1975-

2005-01-01T23:59:59.000Z

354

Use an EETD laboratory to test my energy-efficient technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

laboratory to test my energy-efficient technology? And how do I find out more about the User Testbed Facility? NOTICE Due to the current lapse of federal funding, Berkeley Lab...

355

Energy and technology review, January--February 1995. State of the laboratory  

DOE Green Energy (OSTI)

This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

1995-02-01T23:59:59.000Z

356

Pacific Northwest Laboratory environmental technologies available for deployment  

SciTech Connect

The Department of Energy created the Office of Environmental Management (EM) to conduct a 30-year plus, multi-billion dollar program to manage the wastes and cleanup the legacy from over fifty years of nuclear material production. Across the DOE System there are thousands of sites containing millions of metric tons of buried wastes and contaminated soils and groundwater. Additionally, there are nearly 400,000 m{sup 3} of highly radioactive wastes in underground storage tanks, over 1,400 different mixed-waste streams, and thousands of contaminated surplus facilities, some exceeding 200,000 m{sup 2} in size. Costs to remediate all these problems have been estimated to be as much as several hundred billion dollars. The tremendous technical challenges with some of the problems and the high costs of using existing technologies has led the Department to create the Office of Technology Development (TD) to lead an aggressive, integrated national program to develop and deploy the needed advanced, cost-effective technologies. This program is developing technologies for all major cleanup steps: assessment, characterization, retrieval, treatment, final stabilization, and disposal. Work is focused on the Department`s five major problem areas: High-Level Waste Tank Remediation; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; Contaminated Soils and Buried Wastes Facility Transitioning, Decommissioning, and Final Disposal.

Slate, S.C.

1994-07-01T23:59:59.000Z

357

Iowa Start-up Taps Ames Laboratory Technology in Challenge | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taps Ames Laboratory Technology in Challenge Taps Ames Laboratory Technology in Challenge Iowa Start-up Taps Ames Laboratory Technology in Challenge August 10, 2011 - 2:21pm Addthis Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT

358

Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory  

SciTech Connect

This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

Michael F. Simpson

2012-03-01T23:59:59.000Z

359

Reservoir technology research at the Idaho National Engineering Laboratory  

DOE Green Energy (OSTI)

The Idaho National Engineering Laboratory (INEL) has been conducting geothermal reservoir research and testing sponsored by the US Department of Energy (DOE) since 1983. The INEL research program is primarily aimed at the development of reservoir engineering techniques for fractured geothermal reservoirs. Numerical methods have been developed which allow the simulation of fluid flow and heat transfer in complex fractured reservoirs. Sensitivity studies have illustrated the importance of incorporating the influence of fractures in reservoir simulations. Related efforts include fracture characterization, geochemical reaction kinetics and field testing.

Stiger, S.G.; Renner, J.L.

1987-01-01T23:59:59.000Z

360

Energy technologies at Sandia National Laboratories: Past, Present, Future  

DOE Green Energy (OSTI)

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

362

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

363

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part C, Waste Management  

Science Conference Proceedings (OSTI)

This report documents activities at ORNL including waste management and remedial action at the site; also waste processing and disposal; robotics and automation of the laboratory; and regulatory compliance

Not Available

1993-09-01T23:59:59.000Z

364

Idaho National Engineering Laboratory waste area groups 1--7 and 10 Technology Logic Diagram. Volume 1  

SciTech Connect

The Technology Logic Diagram was developed to provide technical alternatives for environmental restoration projects at the Idaho National Engineering Laboratory. The diagram (three volumes) documents suggested solutions to the characterization, retrieval, and treatment phases of cleanup activities at contaminated sites within 8 of the laboratory`s 10 waste area groups. Contaminated sites at the laboratory`s Naval Reactor Facility and Argonne National Laboratory-West are not included in this diagram.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

365

Military installations  

Science Conference Proceedings (OSTI)

This report has reviewed the use of U.S. coal at DOD installations in West Germany. DOD reported that between April 1, 1988, and December 31, 1988, it had between 306,000 and 419,000 tons of U.S. coal stored in Germany. About two-thirds of that was anthracite coal. GAO visited six coal-handling locations that accounted for 72 to 79 percent of the total U.S. coal between April and December 1988. This report could not verify the official inventory records at five locations - two Air Force and three Army - for several reasons, including a lack of required physical inventories of coal for recent years. DOD's coal consumption data for fiscal year 1988 appeared to be accurate since it matched the data reported on source documents maintained at the installations and their commands. According to reported DOD coal inventory and consumption data, as of September 30, 1988, DOD had enough anthracite coal on hand to satisfy projected demands through at least fiscal year 1993, given that no additional heating plant conversions other than those already approved occur and no additional shipments of coal occur. DOD said that as of September 30, 1988, it facilities in Germany had enough anthracite coal on hand to last a minimum of five years.

Not Available

1990-03-01T23:59:59.000Z

366

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

NLE Websites -- All DOE Office Websites (Extended Search)

EstablishmEnt EstablishmEnt of an EnvironmEntal Control tEChnology laboratory with a CirCulating fluidizEd-bEd Combustion systEm Description In response to President Bush's Clear Skies Initiative in 2002-a legislative proposal to control the emissions of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and mercury (Hg) from power plants-the National Energy Technology Laboratory (NETL) organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified four high- priority research needs for controlling emissions from fossil-fueled power plants: multipollutant control, improved sorbents and catalysts, mercury monitoring and capture, and an improved understanding of the underlying combustion chemistry.

367

Bristol Tennessee Essential Services (BTES) / Tennessee Valley Authority (TVA) Smart Water Heater Project - Technology Description a nd Installation Lessons Learned  

Science Conference Proceedings (OSTI)

As the smart grid evolves through advances in technology, the benefits of deploying and leveraging "smart" systems are becoming more and more significant relative to the costs. EPRI's Smart Grid Demonstration project is conducting research focused on integration of distributed energy resources to help advance widespread deployment of these systems. This report provides a technical description of the hardware, software, and communication infrastructure in one such system. Specifically, it documents an ong...

2009-09-21T23:59:59.000Z

368

Pinch Technology/Process Optimization: Volume 4: Case Study--Abbott Laboratories, Inc.  

Science Conference Proceedings (OSTI)

A study at a pharmaceuticals manufacturing facility operated by Abbott Laboratories identified specific projects to reduce thermal energy requirements by 30% in the three buildings examined. The study, using advanced process analysis techniques known as `pinch technology,` found cost-effective applications for process heat recovery, heat pumping, refrigeration system improvements, process modification, and adjustable-speed drives.

1998-01-21T23:59:59.000Z

369

ORNL Building Technologies Research & Integration Center (BTRIC) New Laboratory Facilities per  

E-Print Network (OSTI)

/or distributed energy or CHP systems, customer-side-of-meter plug-in hybrid electric vehicle (PHEV) or EV docking,000 ft2 high bay laboratory building will include four major sections: The Advanced Construction, and evaluation of advanced construction technologies. The facility addresses both em

Oak Ridge National Laboratory

370

2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office.

371

Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Federal Energy Management Program United States Environmental Protection Agency L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : C a s e S t u d i e s Patrick Corkery/PIX14916 Case Study Index Laboratory Type ❑ Wet lab ❑ Dry lab ❑ Clean room Construction Type ❑ New ❑ Retrofit Type of Operation ❑ Research/development ❑ Manufacturing ❑ Teaching ❑ Chemistry ❑ Biology ❑ Electronics Service Option ❑ Suspended ceiling ❑ Utility service corridor ❑ Interstitial space Featured Technologies ❑ Fume hoods ❑ Controls ❑ Mechanical systems ❑ Electrical loads ❑ Water conservation ❑ Renewables ❑ Sustainable design/ planning ❑ On-site generation ❑ Daylighting ❑ Building commissioning Other Topics ❑ Diversity factor ❑ Carbon trading ❑ Selling concepts to

372

Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Renewable Energy Efficiency and Renewable Energy Federal Energy Management Program United States Environmental Protection Agency L a b o r a t o r i e s f o r t h e 2 1 s t C e n t u r y : C a s e S t u d i e s Patrick Corkery/PIX14916 Case Study Index Laboratory Type ❑ Wet lab ❑ Dry lab ❑ Clean room Construction Type ❑ New ❑ Retrofit Type of Operation ❑ Research/development ❑ Manufacturing ❑ Teaching ❑ Chemistry ❑ Biology ❑ Electronics Service Option ❑ Suspended ceiling ❑ Utility service corridor ❑ Interstitial space Featured Technologies ❑ Fume hoods ❑ Controls ❑ Mechanical systems ❑ Electrical loads ❑ Water conservation ❑ Renewables ❑ Sustainable design/ planning ❑ On-site generation ❑ Daylighting ❑ Building commissioning Other Topics ❑ Diversity factor

373

Curating performance installations  

Science Conference Proceedings (OSTI)

In this paper we will examine the use of the digital screen display as a primary form of accessing information within the museum context. We will argue that this mode of dissemination, achieved primarily through a Graphic User Interface (GUI) though ... Keywords: GUI, becoming, being, content, dissemination, exhibition, experience, form, information, installation, interactivity, interpretation, materiality, museum, nothing, objecthood, performance, performative, re-enactment, screen, technology, trajectory

Daniel Felstead; Kate Bailey

2011-07-01T23:59:59.000Z

374

Solar Installation Labor Market Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Labor Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence Technical Report NREL/TP-6A20-49339 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Solar Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence

375

Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)  

NLE Websites -- All DOE Office Websites (Extended Search)

V V E R S I T Y O F C A L I F O R N I A BERKELEY * DAVIS * IRVINE * LOS ANGELES * MERCED * RIVERSIDE * SAN DIEGO * SAN FRANCISCO SANTA BARBARA * SANTA CRUZ OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site: www.ucop.edu/ott/ Tel: (510) 587-6000 Fax: (510) 587-6090 January 23, 2009 Submitted electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Attn: Technology Transfer Questions Subject: Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)

376

The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems  

DOE Green Energy (OSTI)

The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R&D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry.

NONE

1995-06-01T23:59:59.000Z

377

Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint  

SciTech Connect

This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

2012-02-01T23:59:59.000Z

378

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

Wei-Ping Pan; Yan Cao; John Smith

2008-05-31T23:59:59.000Z

379

Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)  

Science Conference Proceedings (OSTI)

A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

Not Available

1988-10-01T23:59:59.000Z

380

On the integration of technology readiness levels at Sandia National Laboratories.  

Science Conference Proceedings (OSTI)

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Impact of Recent Constraints on Intellectual Freedom on Science and Technology at Lawrence Livermore National Laboratory  

SciTech Connect

The Lawrence Livermore National Laboratory (LLNL) was created in 1952 to meet the nation's need for an expanded nuclear weapons research and development (R&D) capability. LLNL quickly grew to become a full-fledged nuclear weapons design laboratory with a broad range of technical capabilities similar to those of our sister laboratory--Los Alamos--with which we shared mission responsibilities. By its very nature, nuclear weapons R&D requires some of the most advanced science and technology (S&T). Accordingly, there is an obvious need for careful attention to ensure that appropriate security measures exist to deal with the sensitive aspects of nuclear weapons development. The trade-off between advancing S&T at the Laboratory and the need for security is a complex issue that has always been with us, As Edward Teller noted in a recent commentary in a May, 1999 editorial in the New York Times: ''The reaction of President Harry Truman to the leaking of information is well known. He imposed no additional measures for security. Instead, we have clear knowledge that the disclosures by (Klaus) Fuchs caused Truman to call for accelerated work on all aspects of nuclear weapons. The right prescription for safety is not reaction to dangers that are arising, but rather action leading to more knowledge and, one hopes, toward positive interaction between nations.'' To explore the issue of intellectual freedom at a national security laboratory such as LLNL, one must understand the type of activities we pursue and how our research portfolio has evolved since the Laboratory was established. Our mission affects the workforce skills, capabilities, and security measures that the Laboratory requires. The national security needs of the US have evolved, along with the S&T community in which the Laboratory resides and to which it contributes. These factors give rise to a greater need for the Laboratory to interact with universities, industry, and other national laboratories. Intellectual freedom at the Laboratory and constraints on it can be understood only within the context of our mission, our necessary interactions with other entities; and our need for an exceptional multidisciplinary workforce.

Wadsworth, J

2000-11-12T23:59:59.000Z

382

NREL GHP [Geothermal Heat Pump] Showcase: GHP Installation and Intensive in situ and Performance Monitoring at NREL's Solar Radiation and Research Laboratory; Preprint  

Science Conference Proceedings (OSTI)

This document provides an overview of the geothermal heat pump (GHP) showcase at NREL and how it will help the SRRL site move forward with the goal of being a model of sustainability within the NREL campus, providing an effective demonstration of GHP systems and needed space conditioning for laboratory expansion.

Anderson, E. R.

2010-07-01T23:59:59.000Z

383

Laboratory and field testing of an aerosol-based duct-sealing technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory and field testing of an aerosol-based duct-sealing technology Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Title Laboratory and field testing of an aerosol-based duct-sealing technology for large commercial buildings. Publication Type Journal Article LBNL Report Number LBNL-44220 Year of Publication 2002 Authors Carrié, François Rémi, Ronnen M. Levinson, Tengfang T. Xu, Darryl J. Dickerhoff, William J. Fisk, Jennifer A. McWilliams, Mark P. Modera, and Duo Wang Journal ASHRAE Transactions Start Page Chapter Date Published January 2002 Abstract Laboratory and field experiments were performed to evaluate the feasibility of sealing leaks in commercial duct systems with an aerosol sealant. The method involves blowing an aerosol through the duct system to seal the leaks from the inside, the principle being that the aerosol particles deposit in the cracks as they try to escape under pressure. It was shown that the seals created with the current sealant material can withstand pressures far in excess of what is found in commercial-building duct systems. We also performed two field experiments in two large-commercial buildings. The ASHRAE leakage classes of the systems were reduced from 653 down to 103, and from 40 down to 3. Methods and devices specifically devised for this application proved to be very efficient at (a) increasing the sealing rate and (b) attaining state-of-the-art duct leakage classes. Additional research is needed to improve the aerosol injection and delivery processes.

384

Engineering Design and Automation in the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory.  

DOE Green Energy (OSTI)

This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and process the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.

Wantuck, P. J. (Paul J.); Hollen, R. M. (Robert M.)

2002-01-01T23:59:59.000Z

385

Remote Technology for Facility Deactivation and Decommissioning at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The facilities at the Oak Ridge National Laboratory (ORNL) that will undergo deactivation and decommissioning (D and D) over the next several years include highly contaminated hot cell facilities, reactor facilities, process facilities, and a variety of other buildings. The D and D effort will require physical, chemical, and radiological characterization as well as decontamination, material sorting, size reduction, dismantlement, and waste removal and packaging. D and D planning for ORNL facilities includes recognizing that a significant number of the facilities contain hazards that prevent the use of safe manual D and D techniques. These hazards include seriously deteriorated structural integrity as well as very high dose rates (some in the hundreds of R/hr). The hazards also include high levels of fixed and removable radioactive contamination on facility surfaces and in equipment as well as chemically hazardous materials. Thus, manned entry may be highly restricted. In these situations, remotely operated technologies will be required to complete the necessary D and D activities, minimize dose and protect workers. To prepare to use remote technologies, it is first necessary to understand the tasks typically required to complete D and D of these facilities as well as the availability, applicability, and sustainability of previously deployed remote technologies. Technologies of specific interest included remote inspection, characterization, decontamination, and dismantlement. The Applied Research Center (ARC) at Florida International University (FIU), in partnership with NuVision Engineering (NVE, formerly AEA Technology), assessed the requirements for remotely operated technologies to support D and D at ORNL. FIU-ARC and NVE then identified existing technologies that can meet the expected requirements and performed a gap analysis between the D and D needs and currently available technologies. (authors)

Shoffner, P.A.; Lagos, L.E.; Varona, J. [Applied Research Center, Florida International University, Miami, FL (United States); Faldowski, J.A.; Vesco, D. [NuVision Engineering, Inc., Road, Mooresville, NC (United States)

2008-07-01T23:59:59.000Z

386

Non-Traditional In Situ Vitrification - A Technology Demonstration at Los Alamos National Laboratory  

SciTech Connect

The Department of Energy (DOE) Subsurface Contamination Focus Area (SCFA) sponsored a technology demonstration of non-traditional in situ vitrification (NTISV) at Los Alamos National Laboratory (LANL). The project team for this demonstration included MSE Technology Applications, Inc., Geosafe Corporation, and LANL. The technology demonstration involved the performance of two large-scale test melts. The first, referred to as the ''cold'' test, was performed on a simulated absorption bed that contained surrogate contaminants. The cold test was conducted in April 1999. The second demonstration, referred to as the ''hot'' test, took place at LANL's Material Disposal Area (MDA) V in April 2000. The hot test was conducted on a portion of an absorption bed that received radionuclide and metal-contaminated wastewater from a laundry facility and a research laboratory from the mid-1940s to the early 1960s. This paper presents the results of drilling and sampling following the hot test at LANL's MDA V. The objectives of the sample collection were to characterize the vitrified mass and the effects of the hot test on the surrounding bedrock. Glass samples were analyzed for total radionuclide and metal content by standard EPA methods, and leachable radionuclide and metal content using Toxicity Characteristic Leaching Procedure (TCLP) and Product Consistency Test (PCT) methods.

Coel-Roback, B.; Springer, M.; Lowery, P.; Thompson, L.; Huddleston, G.

2003-02-25T23:59:59.000Z

387

A Homeowners Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeowners in the United States spend Homeowners in the United States spend one out of every eight dollars of utility costs on cooling their living space. Window air conditioners (A/Cs) are an inexpensive alternative to central systems, and are sold in greater numbers each year than all other residential cooling systems. They are purchased to cool a specific room and are easy for anyone to install. In contrast to these benefits, window A/Cs come at a cost-they operate less efficiently (using more energy to do the same cooling) than most other residential A/C systems. Researchers at the National Renewable Energy Laboratory (NREL) studied window A/Cs on behalf of the U.S.

388

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

Science Conference Proceedings (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

389

Accelerating technology transfer from federal laboratories to the private sector by industrial R and D collaborations - A new business model  

Science Conference Proceedings (OSTI)

Many important products and technologies were developed in federal laboratories and were driven initially by national needs and for federal applications. For example, the clean room technology that enhanced the growth of the semiconductor industry was developed at Sandia National Laboratories (SNL) decades ago. Similarly, advances in micro-electro-mechanical-systems (MEMS)--an important set of process technologies vital for product miniaturization--are occurring at SNL. Each of the more than 500 federal laboratories in the US, are sources of R and D that contributes to America's economic vitality, productivity growth and, technological innovation. However, only a fraction of the science and technology available at the federal laboratories is being utilized by industry. Also, federal laboratories have not been applying all the business development processes necessary to work effectively with industry in technology commercialization. This paper addresses important factors that federal laboratories, federal agencies, and industry must address to translate these under utilized technologies into profitable products in the industrial sector.

LOMBANA,CESAR A.; ROMIG JR.,ALTON D.; LINTON,JONATHAN D.; MARTINEZ,J. LEONARD

2000-04-13T23:59:59.000Z

390

Report on the Intelligence Oversight Inspection of the Special Technologies Laboratory, INS-9601  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF INSPECTOR GENERAL REPORT ON THE INTELLIGENCE OVERSIGHT INSPECTION OF THE SPECIAL TECHNOLOGIES LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternmative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov U.S. Department of Energy Human Resources and Administration

391

FW Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. From: Malozemoff, Alex [AMalozemoff@amsc.com] Sent: Tuesday, January 27, 2009 4:09 PM To: GC-62 Cc: Ballard, Thomas B.; McGahn, Daniel Subject: FW: Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories > Response to Fed Register 73, no. 229, Nov. 26, 2008 Notices > > DOE Questions Concerning Technology Transfer Practices at DOE > Laboratories > > Answer by > > Dr. Alexis P. Malozemoff > Executive V. P. and Chief Technical Officer > American Superconductor > 64 Jackson Rd., Devens MA 01434 USA > ph: 978-842-3331 > cell: 508-243-9693 > amalozemoff@amsc.com > > 1. American Superconductor (AMSC), a leader in alternative energy

392

JOB TITLE: Postdoctoral researcher DEPARTMENT, AGENCY: Department of Energy, National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

JOB TITLE: Postdoctoral researcher JOB TITLE: Postdoctoral researcher DEPARTMENT, AGENCY: Department of Energy, National Energy Technology Laboratory SALARY RANGE: Depends on level of experience OPEN PERIOD: April - August, 2013 LEVEL: Post-graduate POSITION INFORMATION: Temporary Appointment: 1 year with potential for extension; Full-Time (40 hours per week); Starting as soon as possible. DUTY LOCATION: Albany, OR WHO MAY BE CONSIDERED: United States Citizens & Foreign Nationals with appropriate approval JOB SUMMARY: NETL's Office of Research and Development Computational Science Division conducts research to develop tools to enhance our understanding and enable more rapid and efficient scale-up and design of energy technologies Interest and expertise is solicited in the field of simulation science research, development and

393

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

DOE Green Energy (OSTI)

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

394

Technology Performance Exchange  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Performance Exchange Technology Performance Exchange TDM - Jason Koman (BTO) TDM - Dave Catarious (FEMP) William Livingood National Renewable Energy Laboratory William.Livingood@nrel.gov 303-384-7490 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem: Perceived fiscal risk associated with the installation of unfamiliar technologies impedes adoption rates for cost-effective, energy-saving products. Impact of Project: Enable end users to quickly and

395

Physical and chemical sensor technologies developed at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

The increasing emphasis on envirorunental issues, waste reduction, and improved efficiency for industrial processes has mandated the development of new chemical and physical sensors for field or in-plant use. The Lawrence Livermore National Laboratory (LLNL) has developed a number of technologies for sensing physical and chemical properties. Table 1 gives some examples of several sensors. that have been developed recently for environmental, industrial, commercial or government applications. Physical sensors of pressure, temperature, acceleration, acoustic vibration spectra, and ionizing radiation have been developed. Sensors developed at LLNL for chemical species include inorganic solvents, heavy metal ions`, and gaseous atoms and compounds. Primary sensing technologies we have employed have been based on optical fibers, semiconductor optical or radiation detectors, electrochemical activity, micromachined electromechanical (MEMs) structures, or chemical separation technologies. The complexities of these sensor systems range from single detectors to more advanced micro-instruments on-a-chip. For many of the sensors we have developed the necessary intelligent electronic support systems for both local and remote sensing applications. Each of these sensor technologies are briefly described in the remaining sections of this paper.

Balch, J.W.; Ciarlo, D.; Folta, J.; Glass, R.; Hagans, K.; Milanovich, F.; Sheem, S.

1993-08-10T23:59:59.000Z

396

Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan  

SciTech Connect

This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled ``Technology Applications Development Process for the State of Michigan`` undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

Mueller, C.J.

1991-11-01T23:59:59.000Z

397

Argonne National Laboratory study of the transfer of federal computational technology to manufacturing industry in the State of Michigan  

SciTech Connect

This report describes a pilot study to develop, initiate the implementation, and document a process to identify computational technology capabilities resident within Argonne National Laboratory to small and medium-sized businesses in the State of Michigan. It is a derivative of a program entitled Technology Applications Development Process for the State of Michigan'' undertaken by the Industrial Technology Institute and MERRA under funding from the National Institute of Standards and Technology. The overall objective of the latter program is to develop procedures which can facilitate the discovery and commercialization of new technologies for the benefit of small and medium-size manufacturing firms. Federal laboratories such as Argonne, along with universities, have been identified by the Industrial Technology Institute as key sources of technology which can be profitably commercialized by the target firms. The scope of this study limited the investigation of technology areas for technology transfer to that of computational science and engineering featuring high performance computing. This area was chosen as the broad technological capability within Argonne to investigate for technology transfer to Michigan firms for several reasons. First, and most importantly, as a multidisciplinary laboratory, Argonne has the full range of scientific and engineering skills needed to utilize leading-edge computing capabilities in many areas of manufacturing.

Mueller, C.J.

1991-11-01T23:59:59.000Z

398

Evaluation of a Mobile Hot Cell Technology for Processing Idaho National Laboratory Remote-Handled Wastes  

SciTech Connect

The Idaho National Laboratory (INL) currently does not have the necessary capabilities to process all remote-handled wastes resulting from the Laboratorys nuclear-related missions. Over the years, various U.S. Department of Energy (DOE)-sponsored programs undertaken at the INL have produced radioactive wastes and other materials that are categorized as remote-handled (contact radiological dose rate > 200 mR/hr). These materials include Spent Nuclear Fuel (SNF), transuranic (TRU) waste, waste requiring geological disposal, low-level waste (LLW), mixed waste (both radioactive and hazardous per the Resource Conservation and Recovery Act [RCRA]), and activated and/or radioactively-contaminated reactor components. The waste consists primarily of uranium, plutonium, other TRU isotopes, and shorter-lived isotopes such as cesium and cobalt with radiological dose rates up to 20,000 R/hr. The hazardous constituents in the waste consist primarily of reactive metals (i.e., sodium and sodium-potassium alloy [NaK]), which are reactive and ignitable per RCRA, making the waste difficult to handle and treat. A smaller portion of the waste is contaminated with other hazardous components (i.e., RCRA toxicity characteristic metals). Several analyses of alternatives to provide the required remote-handling and treatment capability to manage INLs remote-handled waste have been conducted over the years and have included various options ranging from modification of existing hot cells to construction of new hot cells. Previous analyses have identified a mobile processing unit as an alternative for providing the required remote-handled waste processing capability; however, it was summarily dismissed as being a potentially viable alternative based on limitations of a specific design considered. In 2008 INL solicited expressions of interest from Vendors who could provide existing, demonstrated technology that could be applied to the retrieval, sorting, treatment (as required), and repackaging of INL remote-handled wastes. Based on review of the responses and the potential viability of a mobile hot cell technology, INL subsequently conducted a technology evaluation, including proof-of-process validation, to assess the feasibility of utilizing such a technology for processing INLs remote-handled wastes to meet established regulatory milestones. The technology evaluation focused on specific application of a mobile hot cell technology to the conditions to be encountered at the INL and addressed details of previous technology deployment, required modifications to accommodate INLs remote-handled waste, ability to meet DOE safety requirements, requirements for fabrication/construction/decontamination and dismantling, and risks and uncertainties associated with application of the technology to INLs remote-handled waste. The large capital costs associated with establishing a fixed asset to process INLs remote-handled waste, the relatively small total volume of waste to be processed when compared to other waste streams through the complex, and competing mission-related needs has made it extremely difficult to secure the necessary support to advance the project. Because of this constraint, alternative contract structures were also explored as part of the technology evaluation wherein the impact of a large capital investment could be lessened.

B.J. Orchard; L.A. Harvego; R.P. Miklos; F. Yapuncich; L. Care

2009-03-01T23:59:59.000Z

399

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Report Environmental Report For Calendar Year 2002 U . S . D e p a r t m e n t o f E n e r g y * O f f i c e o f F o s s i l E n e r g y N a t i o n a l E n e r g y T e c h n o l o g y L a b o r a t o r y DOE/NETL-2004/1201 2 DOE/NETL-2004/1201 The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002 October 2003 U.S. Department of Energy National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Tulsa, Oklahoma Fairbanks, Alaska NETL Customer Service Line: (800) 553-7681 NETL Homepage: www.netl.doe.gov 3 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or

400

NIST Net installation instructions  

Science Conference Proceedings (OSTI)

... Xaw3d, and neXtaw; Build and install the nistnet module, API library, and user interface make make install; Try things out ...

2013-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PETSc: Documentation: Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Home Download Features Documentation Manual pages and Users Manual Citing PETSc Tutorials Installation AMS Changes Bug Reporting Code Management FAQ License Linear...

402

Recent Advances in Solid Oxide Fuel Cell Technology at Pacific Northwest National Laboratory  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) is collaborating with government agencies, industries, and academic institutions to develop the technology and knowledge base for SOFC power generation systems capable of near term applications in small distributed generation, mobile auxiliary power and man portable units as well as long term applications in large centralized SOFC/turbine hybrid and reversible power plants operating on coal. R&D activities at PNNL include materials development, analysis of cell and stack performance degradation processes, cell/stack/system modeling and design optimization, and liquid and gaseous hydrocarbon fuel processing. Our technical activities address a wide range of challenges, such as long-term performance stability, cell/stack structural reliability, and low cost fabrication processes. Recent materials work has focused on the development of improved electrode materials and understanding of electrode poisoning processes in the presence of gas phase Cr, interconnect materials and electronically conductive corrosion-tolerant coatings capable of blocking Cr diffusion, and glass seal materials with improved structural properties. Modeling activities have emphasized improving the understanding of cell/stack degradation/failure mechanisms to assist development of larger active area cells and associated thermal management issues. Fuel processing activities include evaluation and optimization of on-cell reforming and related thermal management strategies in smaller and larger foot print stacks, and development of fuel desulphurization technology. In addition to performing R&D in a number of SOFC-related areas, PNNL is a co-leader (along with the National Energy Technology Laboratory (NETL)) of the U.S. Department of Energys Solid-State Energy Conversion Alliance (SECA) initiative. This paper will summarize the status of current R&D activities at PNNL.

Stevenson, Jeffry W.; Chick, Lawrence A.; Khaleel, Mohammad A.; King, David L.; Pederson, Larry R.; McVay, Gary L.; Singh, Prabhakar

2006-08-19T23:59:59.000Z

403

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

404

Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory  

SciTech Connect

The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

Rich, Bethany M [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

405

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002  

SciTech Connect

This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

National Energy Technology Laboratory

2003-10-30T23:59:59.000Z

406

Environmental Assessment for the Oak Ridge Science and Technology Project at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81(E)/020508 81(E)/020508 FINDING OF NO SIGNIFICANT IMPACT OAK RIDGE SCIENCE AND TECHNOLOGY PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U. S. Department of Energy ACTION: Finding of No Significant Impact. SUMMARY: The U. S. Department of Energy (DOE) has completed an Environmental Assessment (EA) (DOE/EA-1575) for the Oak Ridge Science and Technology Project (ORSTP) at the Oak Ridge National Laboratory (ORNL). The proposed action would advance technology transfer and other missions at ORNL by supporting technology commercialization, creating new companies, and stimulating technology-based recruitment. Funding for the ORSTP would primarily be from private, other federal, and state sources. As a part of the ORSTP, DOE would also establish the Oak Ridge Science and

407

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

DOE Green Energy (OSTI)

This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan, Kunlei Liu; John T. Riley

2004-07-30T23:59:59.000Z

408

The Office of Fossil Energy's National Energy Technology Laboratory \(NETL\) is teaming with industry and acadamia through ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-National Energy Technology Laboratory's NOx Energy-National Energy Technology Laboratory's NOx Control Program for Coal-Fired Power Plants Bruce W. Lani and Thomas J. Feeley, III U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 (412) 386-5819 Fax: (412) 386-5917 Email: lani@netl.doe.gov ABSTRACT The environmental performance of the United States' fleet of coal-fired boilers has steadily improved over the last three decades in response to concerns on the potential impact of emissions on the environment. Emissions of sulfur dioxide (SO 2 ), nitrogen oxide (NOx), particulate matter (PM) have been significantly reduced during this period while coal use has almost doubled. However, further restrictions on emissions from power plants have been proposed in response to issues such as mercury, acid rain,

409

Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)  

SciTech Connect

This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

2013-06-01T23:59:59.000Z

410

Non-Intrusive Load Monitoring (NILM)Technologies for End-Use Load Disaggregation: Laboratory Evaluation I  

Science Conference Proceedings (OSTI)

This report presents the results of a laboratory evaluation to assess the cost versus accuracy performance of residential non-intrusive load monitoring (NILM) technology. NILM is an evolving technology that can be deployed for utility and customer applications, such as end-use load disaggregation, energy audits, real-time customer information and appliance or load diagnostics. Commercial NILM products for utility and customer applications continue to emerge, although most products available today ...

2013-05-22T23:59:59.000Z

411

SC: Install units produced by the high performance RTU challenge | The  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Solutions Teams » Space Conditioning » Install units Technology Solutions Teams » Space Conditioning » Install units produced by the High Performance Rooftop Unit Challenge that meet the high performance rooftop unit specification Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Install units produced by the High Performance Rooftop Unit Challenge that meet the high performance rooftop unit specification In January 2011, the U.S. Department of Energy (DOE) joined industry partners in the Better Buildings Alliance to release a design specification for 10-ton capacity commercial air conditioners, also known as rooftop units (RTUs).

412

Pacific Northwest Laboratory report on controlled thermonuclear reactor technology, January 1975 - September 1975  

SciTech Connect

The PNL staff has been studying fusion technology in areas such as economics, fusion-fission hybrid concepts, materials, neutronics, environment and safety. These studies have been scoped to make efficient use of ERDA resources, and to complement and support efforts at other laboratories. The effect the plasma and associated radiation and emission will have upon the surfaces of the first wall are being studied. Neutron sputtering experiments were made on niobium and gold and the results were evaluated for absolute neutron yields. Molybdenum and vanadium were studied for effects of ion bombardment under various conditions of helium injection. Graphite cloth is being irradiated for examination of radiation effects because it is suggested for use in several CTR concepts as a shield between the plasma and the first wall. Helium effects are being studied to characterize degradation of structural metal properties. Work is progressing on absolute measurement of the electrical resistivity of insulators and the demonstration of the feasibility of producing insulating coatings by sputter deposition. (auth)

1975-10-01T23:59:59.000Z

413

Environmental Assessment for the Oak Ridge Science and Technology Project at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81(E)/020508 81(E)/020508 DOE/EA-1575 Environmental Assessment for the Oak Ridge Science and Technology Project at the Oak Ridge National Laboratory, Oak Ridge, Tennessee February 2008 U. S. Department of Energy Oak Ridge Office 06-281(E)/020508 iii CONTENTS FIGURES.....................................................................................................................................................iv TABLES ......................................................................................................................................................iv ACRONYMS................................................................................................................................................ v 1. INTRODUCTION

414

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

415

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network (OSTI)

Bioenergy and emerging biomass conversion technologies Hanne ?stergård, Risø National Laboratory in the Agricultural Outlook from OECD-FAO, these predictions may be misleading and biomass may increase more rapidly Biomass and waste Hydro Nuclear Gas Oil Coal Fig 1 Total primary energy supply3 · The transport sector

416

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

417

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

Science Conference Proceedings (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

418

Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations  

DOE Green Energy (OSTI)

The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks.

Anderson, E.; Antkowiak, M.; Butt, R.; Davis, J.; Dean, J.; Hillesheim, M.; Hotchkiss, E.; Hunsberger, R.; Kandt, A.; Lund, J.; Massey, K.; Robichaud, R.; Stafford, B.; Visser, C.

2011-08-01T23:59:59.000Z

419

Install an Automatic Blowdown Control System  

SciTech Connect

This revised ITP steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

420

Install Removable Insulation on Valves and Fittings  

Science Conference Proceedings (OSTI)

This revised ITP tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Survey of Gas Decontamination Problems at Installations of the Atomic Energy Commission  

SciTech Connect

A survey has been made of gas decontamination problems at the various installations of the Atomic Energy Commission and the results are reported. Installations visited include: The Hanford Engineer Works, Brookhaven National Laboratory, Argonne National Laboratory, Los Alamos Scientific Laboratory, Iowa State College Institute for Nuclear Research, Knolls Laboratory, and installations at Oak Ridge.

Lyon, A.M.

1948-06-03T23:59:59.000Z

422

Tracking the Sun III The Installed Cost of Photovoltaics  

E-Print Network (OSTI)

Contents The Installed Cost of Photovoltaics in the U.S. from 1998-2009 Environmental Energy Technologies .................................................................... 10 4. PV Incentive and Net Installed Cost Trends ....................................... 27 5 Appendix A: Data Cleaning, Coding, and Standardization ....................... 36 Appendix B: Detailed

423

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

424

Reflectivity software installation  

Science Conference Proceedings (OSTI)

... First download and unpack the reflectometry source tree. You may need to build and install Tcl/Tk, BLT, TkTable, BWidget and TkCon. ...

425

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2  

Science Conference Proceedings (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

426

NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

examines current U.S. manufacturing and supply examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE). National Renewable Energy Laboratory (NREL) researchers conducted a study for the U.S. Department of Energy to assess the state of the nation's manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. The findings helped determine the

427

An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory  

SciTech Connect

Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

1989-12-01T23:59:59.000Z

428

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001  

Science Conference Proceedings (OSTI)

No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

National Energy Technology Laboratory

2002-10-01T23:59:59.000Z

429

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

DOE Green Energy (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

430

CATEGORICAL EXCLUSION FOR INSTALLING A PHOTOVOLTAIC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-PNSO-0657 -PNSO-0657 CATEGORICAL EXCLUSION FOR INSTALLING A PHOTOVOLTAIC POWER GENERATION ARRAY AND ELECTRIC CAR CHARGING STATIONS, ENVIRONMENTAL MOLECULAR SCIENCES LABORATORY, PACIFIC NORTHWEST SITE OFFICE, RICHLAND, WASHINGTON Proposed Action The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to install a photovoltaic power generation array and electric car charging stations. Location of Action The proposed action would occur in a landscaped infiltration swale located immediately

431

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources (Redirected from Photovoltaic Design Resources at Sandia National Laboratories) Jump to: navigation, search Tool Summary Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations,

432

Laboratory {open_quotes}proof of principle{close_quotes} investigation for the acoustically enhanced remediation technology  

SciTech Connect

This document describes a three phase program of Weiss Associates which investigates the systematics of using acoustic excitation fields (AEFs) to enhance the in-situ remediation of contaminated soil and ground water under both saturated and unsaturated conditions. The focus in this particular paper is a laboratory proof of principle investigation. The field deployment and engineering viability of acoustically enhanced remediation technology is also examined.

Iovenitti, J.L.; Spencer, J.W.; Hill, D.G. [and others

1995-12-01T23:59:59.000Z

433

Industry-Laboratory Partnerships A Review of the Sandia Science and Technology Park Initiative  

Science Conference Proceedings (OSTI)

The ''Sandia'' report summarizes a conference held to review the Sandia Science and Technology Park, its rationale and plans, and to identify potential operational and policy issues.

Wessner, C. W. (Editor)

1999-01-01T23:59:59.000Z

434

Tritium Technology Development in EEC Laboratories Contributions to Design Goals for NET  

Science Conference Proceedings (OSTI)

National Fusion Tritium Program / Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988)

P. Dinner; M. Chazalon; H. Dworschak; L. Maineri; A. Bruggeman; D. Leger; J. Darvas; H.D. Rohrig; R.D. Penzhorn

435

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Installed Performance HVAC Installed Performance ESI, Tim Hanes Context * The building envelope has historically been the focus in residential homes. * The largest consumer of energy in residential homes is typically the HVAC system. * Testing the performance of the HVAC system has not been pursued to its full potential. Technical Approach * Currently very little performance testing is being done to the HVAC system. * The only way to know if a HVAC system is operating correctly is to measure the Btu/h. * This should be done at the equipment and at the the system. Recommended Guidance * Training of HVAC technicians, installers, and salespeople is a must. * If only the technician is trained than implementing the change will not happen. * Public awareness of proper installation and its

436

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

437

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3  

Science Conference Proceedings (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

438

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

Science Conference Proceedings (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

439

LBNL-5800E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating  

NLE Websites -- All DOE Office Websites (Extended Search)

00E 00E Thermal Performance Impacts of Center-of- Glass Deflections in Installed Insulating Glazing Units R.G. Hart Lawrence Berkeley National Laboratory C.W. Goudey Lawrence Berkeley National Laboratory D.K. Arasteh Lawrence Berkeley National Laboratory D.C. Curcija Lawrence Berkeley National Laboratory Windows and Envelope Materials Group Building Technology and Urban Systems Department Environmental Energy Technologies Division June 2012 To be published in Energy and Buildings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of

440

Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development  

SciTech Connect

This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

Gombert, Dirk; Richardson, John Grant

2001-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Scientific and Technical Videos at the National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL addresses the challenges put forth by the National Energy Policy: 1) Enhance America's energy security; 2)Improve the environmental acceptability of energy production and use; 3) Increase the competitiveness and reliability of U.S. energy systems; 4) Ensure a robust U.S. energy future. NETL is unique among DOE national laboratories in both its mission and its approach to achieving that mission. First, the Laboratory is federally owned and operated, a departure from the contractor-operated model that is the norm within the DOE laboratory system. Second, NETL devotes the majority of its funding to R&D partnerships with industry, university, and other government entities, work that is augmented by onsite research in the areas of computational and basic sciences, energy system dynamics, geological and environmental systems, and materials science [Copied from NETL's mission page at http://www.netl.doe.gov/about/mission.html]. NETL makes a collection of its videos available on YouTube, but there is also a group of lab-produced videos on the NewsRoom page of the laboratory. Videos on zero emissions power plants, on carbon sequestration, on gasification, on fuel cells, microbes in soils, and more illustrate the range of research and expertise demonstrated at NETL.

442

Evaluation of Emerging Line Inspection Technologies: Results of 2012 Outdoor Laboratory Tests  

Science Conference Proceedings (OSTI)

This report describes outdoor laboratory testing performed in 2012 to evaluate different approaches to establish conductor temperature during a helicopter-based Lidar field survey of an existing overhead transmission line. Establishing conductor temperature during Lidar surveys is necessary to assemble a line model to determine line sags, and thus clearances, under full rating and specified environmental conditions. ...

2013-09-26T23:59:59.000Z

443

Final Site-Wide Environmental Assessment of National Renewable Energy Laboratory's National Wind Technology Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 31, 2002 May 31, 2002 DOE/EA 1378 FINDING OF NO SIGNIFICAflJT IMPACT For the NATIONAL WIND TECHNOLOGY CENTER Site Operations and Short-Term and Long-Term Improvement Programs Golden, Colorado AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The Department of Energy (DOE) conducted a Site-Wide Environmental Assessment (EA) of the National Wind Technology Center (NWTC) to evaluate potential impacts of site operations and short-term and long-term improvement programs. DOE's Office of Energy Efficiency and Renewable Energy (EERE) leads the national research effort to develop clean, competitive, and reliable renewable energy and power delivery technologies for the 21st century. The mission of EERE's Wind Energy Program is to help the

444

Sandia National Laboratory Photovoltaic Design Resources | Open Energy  

Open Energy Info (EERE)

Sandia National Laboratory Photovoltaic Design Resources Sandia National Laboratory Photovoltaic Design Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Design Resources at Sandia National Laboratories Agency/Company /Organization: Sandia National Laboratories Sector: Energy Focus Area: Renewable Energy, Solar Topics: Pathways analysis Website: www.sandia.gov/ References: Sandia's Photovoltaic Research and Development Program [1] Sandia National Laboratories' Photovoltaic Research and Development program works with industry and academia to accelerate development and acceptance of technologies for photovoltaic energy systems. The program has published a series of handbooks and booklets that describe design guidelines for stand-alone photovoltaic system installations, photovoltaic water pumping systems, and evaluating photvoltaic applications

445

National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

New test facility will be used to accelerate the New test facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) will open a new dynamometer test facility. Funded by a grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA), the new facility will offer wind industry engineers a unique opportunity to conduct a wide range of tests on the mechanical and electrical power producing systems of a wind turbine including generators, gearboxes, power converters, bearings, brakes, lubrication, cooling, and control systems. Dynamometers enable industry and testing agencies to verify the performance and reliability

446

www.postersession.com Autonomous Underwater Vehicles of the Underwater Technology Laboratory  

E-Print Network (OSTI)

printed by www.postersession.com Autonomous Underwater Vehicles of the Underwater Technology at depths to 6000 meters. The system will comprise of four key components: 1) an autonomous underwater vehicle (AUV), 2) an underwater refueling and information exchange station, 3) an oceanographic mooring

Wood, Stephen L.

447

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

SciTech Connect

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

448

Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint  

DOE Green Energy (OSTI)

Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

Oteri, F.; Sinclair, K.

2012-03-01T23:59:59.000Z

449

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. As of April 2011, the database contained 254 CCS projects worldwide. The 254 projects include 65 capture, 61 storage, and 128 for capture and storage in more than 27 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 20 are actively capturing and injecting CO2. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.[copied from http://www.netl.doe.gov/technologies/carbon_seq/global/database/index.html

450

Technical assessment of Engineering`s Manufacturing Technology Thrust Area at Lawrence Livermore National Laboratory  

SciTech Connect

This document investigates the connection between the Manufacturing Technology Thrust Area and its market and concludes that the connection should include the programs internal to LLNL and customers outside of LLNL. The thrust area`s existing mission is reviewed and while it remains relevant to the future, it is too broad for the assigned resources. The scope of the thrust area`s mission is therefore narrowed to more specifically address precision in manufacturing. The course to pursue the new focus is plotted, and the projects for FY95 are briefly discussed.

Blaedel, K.L.

1995-07-27T23:59:59.000Z

451

Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)  

Science Conference Proceedings (OSTI)

As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

Wrons, R.

1998-06-01T23:59:59.000Z

452

International School on LiDAR Technology Laboratory Manual for LiDAR Data Processing  

E-Print Network (OSTI)

impart hands-on-training on working with LiDAR data. A duration of 12 hours has been assigned for data processing, which is spread over four days during the school. The laboratoryisplannedtobeconductedattheComputerCentreofIITKanpurwhereeach participant would be able to learn on his/her own. The LiDAR data processing exercises have been designed around the TerraSolid software (Terrascan, Terramatch, Terramodeller and Terraphoto). This manual consists of detailed instructions for LiDAR data processing. The instructions have been divided into four parts. The first part deals with importing raw LiDAR data and trajectory within Terrascan, creation of projects and different kinds of visualizations. In the second part, LiDAR data are corrected for the inherent errors using the overlap analysis. The corrected data are passed into the classification process which is covered in the third part of the manual. The use of routines and macros is shown to classify LiDAR data into ground points, low points, below surface points, building points etc. At this stage anorthophotograph is also employed to help in the classification process. Finally, the fourth part of laboratory manual shows how to generate vector models for

Bapna Ravish; Ghosh Suddhasheel; Biswas Susham; Y Surya Aditya

2008-01-01T23:59:59.000Z

453

Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base  

DOE Green Energy (OSTI)

The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

Kaba, R.L.; Petrie, T.W.

1999-03-16T23:59:59.000Z

454

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

455

SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS  

SciTech Connect

Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

Farfan, E.; Foley, T.

2010-02-11T23:59:59.000Z

456

Tracking the Sun IV: An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Tracking Tracking the Sun IV Tracking the Sun IV An Historical Summary of the Installed Cost of Photovoltaics in the United States from 1998 to 2010 Photovoltaics in the United States from 1998 to 2010 Galen Barbose, Naïm Darghouth, Ryan Wiser, and Joachim Seel g y Lawrence Berkeley National Laboratory - Report Summary - p y September 2011 Environmental Energy Technologies Division * Energy Analysis Department Thanks to the U.S. DOE's Solar Energy Technologies Program and the Clean Energy States Alliance for supporting this work Project Overview Objective: Using project-level data, evaluate trends in the installed cost of grid-connected PV systems throughout the United States: g y g * Changes in total system installed cost and component-level costs over time * Variation in total installed cost by system size

457

NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Review Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory Office of Research and Development 2 NETL-RUA Disclaimer This document was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views

458

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

energy technology. 2011 Wind Technologies Market Report Appendix: Sources of Data Presented in this Report Installation Trends

Bolinger, Mark

2013-01-01T23:59:59.000Z

459

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

energy technology. 2010 Wind Technologies Market Report Appendix: Sources of Data Presented in this Report Installation Trends

Wiser, Ryan

2012-01-01T23:59:59.000Z

460

Low pressure turbine installation  

SciTech Connect

Low-pressure turbine installation is described comprising a casing, at least two groups of turbine stages mounted in said casing, each turbine stage having blades so arranged that a flow of steam passes through the respective turbine stages in contraflow manner, partition means in said casing for separating the opposed final stages of said turbine stages from each other, and steam exhausting means opened in the side walls of said casing in a direction substantially perpendicular to the axis of said turbine, said steam exhausting means being connected to condensers.

Iizuka, N.; Hisano, K.; Ninomiya, S.; Otawara, Y.

1976-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

462

Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)  

Science Conference Proceedings (OSTI)

The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

Eipeldauer, Mary D [ORNL; Shelander Jr, Bruce R [ORNL

2012-01-01T23:59:59.000Z

463

Technologies  

Current Weather. Protocol Office. Where to stay. Tri-Valley Visitors Bureau. ... Drum Ring Tools: Removal/Installation Set; Portable Hydrogen Peroxide Vapor Generator;

464

NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Researcher Honored with 2013 Federal Laboratory Award Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training, research, and development. NETL and its training partners are using the system to deliver realistic, cost-effective, and low-risk workforce training to the energy industries. Virtual reality-based training

465

Windows Installation Notes for EXPGUI  

Science Conference Proceedings (OSTI)

... These notes describe how GSAS & EXPGUI are installed using separate distribution files for GSAS, EXPGUI and Tcl/Tk. ...

466

NETL: News Release - Newly Installed Alaska North Slope Well Will Test  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2011 18, 2011 Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies Project Goals Include Injecting and Storing CO2 While Producing Methane Gas from Hydrate Washington, D.C. - A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12. The well, the result of a partnership between ConocoPhillips and the Office of Fossil Energy's (FE) National Energy Technology Laboratory, will test a technology that involves injecting carbon dioxide (CO2) into sandstone reservoirs containing methane hydrate. Laboratory studies indicate that the CO2 molecules will replace the methane molecules within the solid hydrate lattice, resulting in the simultaneous sequestration of CO2 in a solid hydrate structure and production of methane gas.

467

First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Collaborative National Conference - June 10, 2013 - Attendees Technologies Collaborative National Conference - June 10, 2013 - Attendees First Name Last Name Title Company Email David Alman Director-Material Performance Division National Energy Technology Laboratory david.alman@netl.doe.gov Tim Avampato Program Manager Eaton timjavampato@eaton.com Sharon Beermann-Curtin Program Officer Office of Naval Research sharon.beermanncurti@navy.mil Seth Blumsack Associate Professor Pennsylvania State University sab51@psu.edu Phil Bolin Chief Engineer Power Systems Group Mitsubishi Electric Power Products, Inc. phil.bolin@meppi.com Dushan Boroyevich Professor. Co-Director Virginia Tech - CPES mhawthor@vt.edu Steve Bossart Senior Analyst National Energy Technology Laboratory steven.bossart@netl.doe.gov Gary Bowers Commercial-Industrial Director S&C Electric Company gary.bowers@sandc.com

468

The U.S. Department of Energy's Brookhaven National Laboratory P.O. Box 5000, Upton NY 11973 631 344-2345 www.bnl.gov Office of Technology Commercialization  

E-Print Network (OSTI)

Laboratory See the complete catalog of Brookhaven technologies available for licensing: www.bnl.gov/techtransfer Radiation Laboratory Brookhaven Facilities Available to Industry www.bnl.gov/techtransfer #12;

Ohta, Shigemi

469

National Renewable Energy Laboratory  

National Renewable Energy Laboratory Technology Transfer Marine Corps Taps NREL to Help Replace Aging Steam Plant with Efficient Biomass Cogeneration

470

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

471

NATIONAL ENERGY TECHNOLOGY LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 NETL Accomplishments 2 Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Our Mission 3 2010 NETL Accomplishments 86 66 54 52 28 8 6 4 CONTENTS NETL Mission Message from the Director NETL Powers the Future of Energy Advanced Power Systems 10 Gasification 14 Fuel Cells 16 SECA Reaches 2010 Program Goal 18 Turbines 22 Turbine Program Develops Prototypes for Reducing Emissions 24 Materials Clean Energy 30 Carbon Capture 34 Carbon Storage 36 Perfluorocarbon Tracers Go with the Flow 38 Carbon Sequestration Partnerships 44 Demand-Side Efficiency 48 Air, Water, Land A Century of Science Reliable Supply 56 Energy Infrastructure 60 Methane Hydrates 62 Natural Gas and Oil Production

472

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... ITL LITE"; and a concept of having a standard for data transmission concerning object identification, such as cartridges, bullets, tire tracks, shoe ...

2012-11-19T23:59:59.000Z

473

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... their own experiments and conduct appropriate analyses. ... Murakami, Koji Zettsu, and Ram D. Sriram ... Cell Image Segmentation Data Analysis By Jin ...

2013-11-25T23:59:59.000Z

474

Information Technology Laboratory Homepage  

Science Conference Proceedings (OSTI)

... ITL SURF ProgramComments received in Response to Internet Policy Task Force Cybersecurity Green PaperNIST Special Publication 500 Series ...

2013-09-03T23:59:59.000Z

475

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... Software Reference Library and is distributed as NIST Special Database 28. ... the award for his role as senior advisor to the CIO Council, providing ...

2013-05-02T23:59:59.000Z

476

Information Technology Laboratory Newsletter  

Science Conference Proceedings (OSTI)

... systems seems to be a resounding yes. As Federal CIO Steven VanRoekel ... ITL presented a proposal to establish a database for the analysis of ...

2013-03-28T23:59:59.000Z

477

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Meteorological Organization and the International Atomic Energy Agency ... the engine or is stored in batteries. ... are now or have been on the market. ...

2011-03-29T23:59:59.000Z

478

Finding of No Significant Impact for the Environmental Assessment for the Proposed Consolidation and Expansion of Idaho National Laboratory Reseach and Development at a Science and Technology Campus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR THE ENVIRONMENTAL FOR THE ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED CONSOLIDATION AND EXPANSION OF IDAHO NATIONAL LABORATORY RESEARCH AND DEVELOPMENT AT A SCIENCE AND TECHNOLOGY CAMPUS Agency: U.S. Department of Energy (DOE) Action: Finding of No Significant Impact (FONSI) Summary: DOE prepared an Environmental Assessment (EA) for the Proposed Consolidation and Expansion of the Idaho National Laboratory Research and Development at a Science and Technology Campus (STC) (DOEIEA-1555). The proposed action consists of consolidating and expanding existing laboratory and business capabilities and operations within a single geographic area, or central campus. The proposed action would accommodate anticipated program growth while allowing for the consolidation of various activities located in the Idaho

479

HTAR Client Configuration and Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Configuration and Installation Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a machine which has more than one network interface, you may want to change some of these default settings. To help with this, an interactive Configure script is provided. To use it do $ ./Configure prior to installing. Configure will provide a description of the options

480

Guidelines for solar energy installations  

SciTech Connect

Guidelines for solar energy installations are presented. The guideline is published in code form so that it can be used directly as the text of an ordinance to regulate the installation of solar systems. An index contains cross references to sections of existing model codes that are applicable to solar installations. Wind energy systems, passive solar space conditioning systems, photovoltaic systems, and systems involving mechanical compression of refrigerants are not included.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology laboratory install" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507  

NLE Websites -- All DOE Office Websites (Extended Search)

SOFC Anode Interaction with Trace Coal Syngas Species SOFC Anode Interaction with Trace Coal Syngas Species U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Gregory Hackett, Kirk Gerdes, Randall Gemmen Phone: (304)285-5279, Gregory.Hackett@NETL.DOE.GOV Utilization of coal as a fuel source for highly efficient integrated gasification fuel cell (IGFC) power generation facilities is technologically and environmentally attractive. IGFC plants are expected to offer the highest efficiency coal gasification processes, even when carbon capture and storage systems are included in the design. One element of IGFC research at the National Energy Technology Laboratory is the investigation of syngas cleanup processes for these integrated systems. Of particular interest are the effects of trace elements naturally contained in

482

ASHRAE Installs New Officers, Directors DENVER ASHRAE has installed  

E-Print Network (OSTI)

ASHRAE Installs New Officers, Directors DENVER ­ ASHRAE has installed new officers and directors for 2013-14 at its Annual Meeting held here June 22-26. The ASHRAE Presidential Address is viewable on You is William P. "Bill" Bahnfleth, Ph.D., P.E., Fellow ASHRAE, ASME Fellow, a professor of Architectural

Maroncelli, Mark

483

Installation and Commissioning Automated Demand Response Systems  

Science Conference Proceedings (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

484

Integrated dynamic landscape analysis and modeling system (IDLAMS) : installation manual.  

SciTech Connect

The Integrated Dynamic Landscape Analysis and Modeling System (IDLAMS) is a prototype, integrated land management technology developed through a joint effort between Argonne National Laboratory (ANL) and the US Army Corps of Engineers Construction Engineering Research Laboratories (USACERL). Dr. Ronald C. Sundell, Ms. Pamela J. Sydelko, and Ms. Kimberly A. Majerus were the principal investigators (PIs) for this project. Dr. Zhian Li was the primary software developer. Dr. Jeffrey M. Keisler, Mr. Christopher M. Klaus, and Mr. Michael C. Vogt developed the decision analysis component of this project. It was developed with funding support from the Strategic Environmental Research and Development Program (SERDP), a land/environmental stewardship research program with participation from the US Department of Defense (DoD), the US Department of Energy (DOE), and the US Environmental Protection Agency (EPA). IDLAMS predicts land conditions (e.g., vegetation, wildlife habitats, and erosion status) by simulating changes in military land ecosystems for given training intensities and land management practices. It can be used by military land managers to help predict the future ecological condition for a given land use based on land management scenarios of various levels of training intensity. It also can be used as a tool to help land managers compare different land management practices and further determine a set of land management activities and prescriptions that best suit the needs of a specific military installation.

Li, Z.; Majerus, K. A.; Sundell, R. C.; Sydelko, P. J.; Vogt, M. C.

1999-02-24T23:59:59.000Z

485

Task analysis for solar installers  

SciTech Connect

The process focused on the sequential identification and field validation of the tasks actually performed. This method provides an accurate picture of what happens on the roof. Forty-six solar firms were identified as the population; 29 (63%) participated in the validation project. We identified 8 duty areas and 46 tasks. The overall response rate for the occupational task list is 100% except for tasks under the duty of constructing solar collectors. Only eight of the twenty-nine respondents (28%) indicated that solar installers fabricate collectors. This shows that solar installers do not manufacture collectors and only perform tasks directly related to installation. Additional findings from our study indicate that instructional materials designed for solar installers need to be standardized and made task-specific. The tasks identified in this research should form the foundation for a competency-based curriculum for solar water heater installers.

Harrison, J.; LaHart, D.

1982-01-01T23:59:59.000Z