National Library of Energy BETA

Sample records for technology laboratory install

  1. Solar Technologies Installations Ltd | Open Energy Information

    Open Energy Info (EERE)

    Installations Ltd Jump to: navigation, search Name: Solar Technologies Installations Ltd Place: Hampshire, United Kingdom Zip: S051 OHR Sector: Renewable Energy Product: A UK-based...

  2. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  3. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) cleanup mission at Oak Ridge National Laboratory (ORNL) includes dispositioning facilities, contaminated legacy materials/waste, and contamination sources and remediation of soil under facilities, groundwater, and surface water to support final Records of Decision (RODs). The Integrated Facilities Disposition Project (IFDP) is a roughly $15B project for completion of the EM mission at Oak Ridge, with a project duration of up to 35 years. The IFDP Mission Need Statement - Critical Decision-0 (CD-0) - was approved by DOE in July 2007, and the IFDP Alternative Selection and Cost Range - Critical Decision-1 (CD-1) - was approved in November 2008. The IFDP scope includes reconfiguration of waste collection and treatment systems as needed to complete the IFDP remediation and decontamination and decommissioning (D&D) missions in a safe and cost-effective manner while maintaining compliance with all governing regulations and bodies and preserving the support of continuing operations at ORNL. A step in the CD-1 approval process included an external technical review (ETR) of technical approaches proposed in the CD-1 document related to the facility reconfiguration for the ORNL radioactive waste and liquid low-level waste management systems. The ETR team recommended that the IFDP team consider the use of trenchless technologies for installing pipelines underground in and around contaminated sites as part of the alternatives evaluations required in support of the CD-2 process. The team specifically recommended evaluating trenchless technologies for installing new pipes in existing underground pipelines as an alternative to conventional open trench installation methods. Potential benefits could include reduction in project costs, less costly underground piping, fewer disruptions of ongoing and surface activities, and lower risk for workers. While trenchless technologies have been used extensively in the sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

  4. Helping Ensure High-Quality Installation of Solar Power Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Maximizes Taxpayer's Investment Mercer Island celebrates the 500th Solarize installation in the state of Washington with a ribbon cutting at the Auto-Spa car wash. ...

  5. Evaluation of Trenchless Technologies for Installation of Pipelines...

    Office of Scientific and Technical Information (OSTI)

    Title: Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, ...

  6. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  7. Evaluation of Trenchless Technologies for Installation of Pipelines in

    Office of Scientific and Technical Information (OSTI)

    Radioactive Environments - 10249 (Conference) | SciTech Connect Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 Citation Details In-Document Search Title: Evaluation of Trenchless Technologies for Installation of Pipelines in Radioactive Environments - 10249 No abstract prepared. Authors: Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Sullivan, Nicholas M [1] ; Bugbee, Kathy P [1] + Show Author Affiliations

  8. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage

  9. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. ... technologies for drilling systems associated with onshore oil and natural gas development. ...

  10. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory the ENERGY lab Wellbore Integrity Assurance with NETL's Safe-Cementing Research CONTENTS 04 06 08 10 12 14 A View from the Top Federal Research Capabilities Researchers Projects Contact Us Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. Cement acts as the primary barrier between the wellbore and the environment. An unstable cement can compromise wellbore control, and research indicates that poor cement integrity is a primary factor contributing

  11. Naval Research Laboratory Technology Marketing Summaries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Research Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Naval Research Laboratory (NRL). The...

  12. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Idaho National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Idaho National Laboratory (INL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Idaho National Laboratory 37 Technology Marketing Summaries Category Title and Abstract Laboratories Date Building Energy Efficiency Industrial Technologies Find More

  13. Argonne National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Argonne National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Argonne National Laboratory (ANL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Argonne National Laboratory 69 Technology Marketing Summaries Category Title and Abstract Laboratories Date Advanced Materials Industrial Technologies Find More

  14. National Renewable Energy Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal National Renewable Energy Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Renewable Energy Laboratory (NREL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. National Renewable Energy Laboratory 117 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage Solar

  15. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  16. Lawrence Livermore National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lawrence Livermore National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Lawrence Livermore National Laboratory (LLNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Lawrence Livermore National Laboratory 23 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage

  17. Installations

    U.S. Energy Information Administration (EIA) Indexed Site

    Reporting companies, total number of: 81 Employment, full-time equivalent employees: 9,288 Module and/or cell manufacturing 33 Module or system design 23 Prototype module development 23 Prototype systems development 12 Wholesale distribution 42 Retail distribution 15 Installations 12 Other 8 90-100% 53 50-89% 6 10-49% 3 Less than 10% 19 Crystalline silicon: single-crystal modules 15 Crystalline silicon: cast modules 9 Thin-film: amorphous silicon modules 1 Thin-film: other modules 4

  18. Princeton Plasma Physics Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Princeton Plasma Physics...

  19. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Programs and Capabilities Experimental and Theoretical Programs Electromagnetic Technology at Sandia National Laboratories HEDP & ICF Simulation Codes ALEGRA Spect3D--A...

  20. Sandia Energy - Cybersecurity Technologies Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity Technologies Research Laboratory Home Cyber Permalink Gallery Sandia Builds Android-Based Network to Study Cyber Disruptions Cyber, Cybersecurity Technologies...

  1. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  2. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research for Electric Drive Technologies | Department of Energy Electric Drive Technologies Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Electric Drive Technologies The Vehicle Technologies Office (VTO) works with a variety of U.S. Department of Energy (DOE) National Laboratories to maintain unique user facilities and conduct research and development (R&D) on power electronics, electric motors, and other aspects of electric drive technology. The

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  4. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  5. Evaluation of Aqua-Ammonia Chiller Technologies and Field Site Installation

    SciTech Connect (OSTI)

    Zaltash, Abdolreza

    2007-09-01

    The Naval Facilities Engineering Service Center (NFESC) has sponsored Oak Ridge National Laboratory (ORNL) to review, select, and evaluate advanced, gas-fired, 5-ton, aqua-ammonia, chiller technologies. The selection criteria was that units have COP values of 0.67 or better at Air-conditioning and Refrigeration Institute (ARI) 95 F outdoor rating conditions, an active refrigerant flow control, and a variable-speed condenser fan. These features are expected to allow these units to operate at higher ambient temperatures (up to the maximum operating temperature of 110 F) with minimal degradation in performance. ORNL evaluated three potential manufacturers of advanced, gas-fired, 5-ton, aqua-ammonia chillers-Robur, Ambian, and Cooling Technologies. Unfortunately, Robur did not meet the COP requirements and Cooling Technologies could not deliver a unit to be tested at the U.S. Department of Energy (DOE)-ORNL environmental chamber testing facility for thermally activated heat pumps. This eliminated these two technologies from further consideration, leaving only the Ambian chillers for evaluation. Two Ambian chillers were evaluated at the DOE-ORNL test facility. Overall these chillers operated well over a wide range of ambient conditions with minimal degradation in performance due to several control strategies used such as a variable speed condenser fan, a modulating burner, and active refrigerant flow control. These Ambian pre-commercial units were selected for installation and field testing at three federal facilities. NFESC worked with ORNL to assist with the site selection for installation and evaluation of these chillers. Two sites (ORNL and Naval Surface Warfare Center [NSWC] Corona) had a single chiller unit installed; and at one site (Naval Amphibious Base [NAB] Little Creek), two 5-ton chillers linked together were installed to provide 10 tons of cooling. A chiller link controller developed under this project was evaluated in the field test at Little Creek.

  6. National Laboratories' Energy Technologies and System Solutions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations ... Nuclear Fuel Cycle Defense Waste Management Programs ...

  7. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States...

  8. Nanoscience and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NST Division Addressing grand challenges in nanoscience and nanotechnology More The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility,...

  9. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  10. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  11. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  13. National Energy Technology Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration National Atmospheric Release Advisory Center NARAC Logo NNSA's Atmospheric Release Advisory Capability's (ARAC) role in an emergency begins when hazardous material is released into the atmosphere by a radiological dispersal device, improvised nuclear weapon, or nuclear radiological accident. ARAC is hosted in a facility called the National Atmospheric Release Advisory Center (NARAC), operated by Lawrence Livermore National Laboratory. The NARAC's centralized, worldwide

  14. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect (OSTI)

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  15. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect (OSTI)

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  16. Vehicle Technologies Office: Laboratory Facilities and Collaborative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research for Advanced Combustion Engines | Department of Energy Advanced Combustion Engines Vehicle Technologies Office: Laboratory Facilities and Collaborative Research for Advanced Combustion Engines The Vehicle Technologies Office (VTO) works with a variety of Department of Energy National Laboratories to maintain unique user facilities and conduct research on advanced combustion engines and emission control. VTO collaborates with 10 auto/engine and 5 energy companies, 5 national

  17. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  18. Director Leaving the National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that Carl O. Bauer is retiring from federal service and leaving the National Energy Technology Laboratory effective February 28, 2010, following a distinguished four-year tenure as the laboratory's director, completing an impressive federal civilian and military career.

  19. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Tight Oil Production Trends Technology On the Horizon & Over the Horizon Robert Kleinberg Schlumberger 15 July 2014 Schlumberger is a provider of hydraulic fracturing services that * develops and provides fracture fluid chemicals * designs and executes hydraulic fractures using its own personnel and equipment The opinions expressed here are my own and do not necessarily reflect the views of Schlumberger. Status Technical Improvements Focused on Efficiency & Cost Reduction 

  20. Technology Commercialization Fund Laboratory Call for Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Technology Commercialization Fund Laboratory Call for Proposals Fiscal Year 2016 Office of Technology Transitions Key Dates Laboratory Call Issue Date February 4, 2016 Laboratory POC Registration (See Section V) February 9 at 5:00 p.m. (ET) Informational Webinar February 11 and February 17 at 3:30 p.m. (ET) Submission Deadline for Proposals March 31, 2016 11:00 p.m. (ET) Expected Date for Selection Notifications June 2016 Summary Information Means of Submission Proposals must be submitted by

  1. Advanced Vehicle Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle Technologies Advanced Vehicle Technologies Reducing consumption of petroleum-based fuels and cutting emissions requires a multi-pronged research effort that encompasses analysis, modeling, experimentation and laboratory testing. Backed by unparalleled research facilities, Argonne's talented multidisciplinary team of scientists and engineers are working to solve the large and small challenges associated with developing improved vehicle drivetrain designs, new materials, better fuels and

  2. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  3. State Grid Biomass Fuel and Combustion Technology Laboratory...

    Open Energy Info (EERE)

    Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China...

  4. 2011 Annual Planning Summary for National Energy Technology Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Technology Laboratory (See Fossil Energy). PDF icon 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) More Documents & Publications 2011 ...

  5. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Idaho National Laboratory Testing of Advanced Technology Vehicles Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of ...

  6. Savannah River National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Savannah River National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Savannah River National Laboratory (SRNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Savannah River National Laboratory 27 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial Technologies Startup

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Materials Science and Engineering Designated Technology Deployment Center Materials Science and Engineering Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. The MSE is comprised of several laboratories, each providing unique

  8. Deputy Director, Laboratory Operations & Chief Operating Officer, Nat'l Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL) produces technological solutions to Americas energy challenges. For more than 100 years, the laboratory has developed tools and processes to provide...

  9. Technology transfer in the national laboratories

    SciTech Connect (OSTI)

    Yonas, G.

    1991-08-01

    The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.

  10. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  11. Vehicle Technologies Office: VSI Laboratory Video Text Version

    Broader source: Energy.gov [DOE]

    The Vehicle Systems Integration Laboratory at Oak Ridge National Laboratory provides unique tools for helping researchers understand how vehicle technologies interact under real-world conditions.

  12. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  13. Newly Installed Alaska North Slope Well Will Test Innovative Hydrate Production Technologies

    Broader source: Energy.gov [DOE]

    A fully instrumented well that will test innovative technologies for producing methane gas from hydrate deposits has been safely installed on the North Slope of Alaska. As a result, the "Iġnik Sikumi" (Iñupiaq for "fire in the ice") gas hydrate field trial well will be available for field experiments as early as winter 2011-12.

  14. National Laboratory of Bioethanol Science and Technology CTBE...

    Open Energy Info (EERE)

    of Bioethanol Science and Technology CTBE Jump to: navigation, search Name: National Laboratory of Bioethanol Science and Technology (CTBE) Place: Brazil Product: Sao Paul-based...

  15. 2011 Annual Planning Summary for National Energy Technology Laboratory

    Energy Savers [EERE]

    (NETL) | Department of Energy National Energy Technology Laboratory (NETL) 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the National Energy Technology Laboratory (See Fossil Energy). PDF icon 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) More Documents & Publications 2011 Annual Planning Summary for Fossil Energy

  16. 2013 Annual Planning Summary for the National Energy Technology Laboratory

    Energy Savers [EERE]

    | Department of Energy National Energy Technology Laboratory 2013 Annual Planning Summary for the National Energy Technology Laboratory The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the National Energy Technology Laboratory. The National Energy Technology Laboratory's APS was consolidated within the Office of Fossils Energy APS available here More Documents & Publications 2013 Annual Planning Summary for the New Brunswick

  17. Independent Oversight Review, National Energy Technology Laboratory – May 2014

    Broader source: Energy.gov [DOE]

    Review of the Emergency Management Program Technical Basis and Emergency Preparedness at the National Energy Technology Laboratory

  18. Idaho National Laboratory Description, Chellenges, Technology...

    Office of Environmental Management (EM)

    ... * Encapsulation of corroded fuel cladding, hulls, pins etc. * Immobilization of ... Iodine, ... * DOE-ID currently has a HIP unit installed in the HFEF hot-cell at INL ...

  19. Brookhaven National Laboratory's low cost solar technology

    SciTech Connect (OSTI)

    Wilhelm, W.G.

    1984-09-01

    The problems identified in early study - cost, architectural compatibility, and reliability - were not likely to be solved with conventional practices in the solar industry. BNL then embarked upon an iterative development process towards a solution founded on the methodology which establish a set of key guidelines for the research. With the derivation of cost goals ($5 to $6 per square foot, installed) and performance targets (consistent with conventional technology) it was considered important to use sophisticated industrial product development technologies to achieve the desired results. The normal industrial practice to reduce cost, for example, is to reduce material intensity, strive for simplicity in design and apply as much mass production as possible. This approach revealed the potential of polymer films as a basic construction material for solar collectors. Further refinements to reduce cost were developed, including the perfection of a non-pressurized absorber/heat exchanger and the adaptability of a printable optical selective surface. Additional significant advantages were acquired through application of a monocoque construction technique borrowed from the aircraft industry. The procedures used, including important support from industry to help identify materials and guide fabrication techniques, eventually resulted in construction and successful testing of a thin polymer film solar collector. To achieve the overall objectives of viable solar economics some system concepts have been explored by BNL. Consistent with the cost goals mentioned, it is believed that the low pressure designs pursued will be successful. Designs for the storage tank and distribution system that have been pursued include the use of polymer film lined sheet metal for the storage tanks and plastic pipe.

  20. Push technology at Argonne National Laboratory.

    SciTech Connect (OSTI)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  1. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  2. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  3. Licensable Life Science Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensable Life Science Technologies A selection of biology-based technologies available for licensing PDF icon licensablebiologicaltechnologies...

  4. Permitting Best Practices Make Installing Solar Easier: Technical Assistance (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compliance with the following permit will allow the installation and operation of electric vehicle charging equipment at a residence in the City, State jurisdiction. This permit addresses one of the following situations: Only an additional branch circuit would be added at the residence A hard-wired charging station would be installed at the residence. The attached requirements for wiring the charging station are taken directly out of the 2011 edition of the National Electrical Code (NEC) NFPA

  5. Vehicle Technologies Office: National Laboratories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories Vehicle Technologies Office: National Laboratories Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry. Learn more about the Vehicle Technologies Office research conducted by the laboratories by using these links: Advanced Transportation

  6. Environmental Assessment for the Installation and Operation of Combustion Turbine Generators at Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect (OSTI)

    N /A

    2002-12-12

    NEPA requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the U.S. DOE, NNSA, follows the Council on Environmental Quality regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an environmental assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an environmental impact statement (EIS) or issue a Finding of No Significant Impact (FONSI). At this time, the NNSA must make a decision regarding installing, operating and maintaining two approximately 20 Megawatt (MW) combustion turbine generators (CTGs) within the Technical Area (TA)-3 Co-generation Complex (Building 3-22) at Los Alamos National Laboratory (LANL). LANL is a Federal facility located at Los Alamos, New Mexico, that comprises 43 square miles (111 square kilometers) of buildings, structures, and forested land (Figure 1). LANL is administered by NNSA for the Federal government and managed and operated under contract by the University of California (UC). This EA has been prepared to assess the potential environmental consequences of the Proposed Action--installing and operating two CTGs--and of the No Action Alternative. The objectives of this EA are to (1) describe the underlying purpose and need for DOE action; (2) describe the Proposed Action and identify and describe any reasonable alternatives that satisfy the purpose and need for Agency Action; (3) describe baseline environmental conditions at LANL; (4) analyze the potential indirect, direct, and cumulative effects to the existing environment from implementation of the Proposed Action; and (5) compare the effects of the Proposed Action with the effects of the No Action Alternative and other reasonable alternatives. For the purposes of compliance with NEPA, reasonable alternatives are identified as being those that meet NNSA's purpose and need for action by virtue of timeliness, appropriate technology, and applicability to LANL. The EA process provides NNSA with environmental information that can be used in developing mitigation, if necessary, to minimize or avoid adverse effects to the quality of the human environment and natural ecosystems should NNSA decide to proceed with implementing the Proposed Action at LANL.

  7. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  8. Sandia National Laboratories: Working with Sandia: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and maskworks that are available for licensing. Sandia Science and Technology Park Sandia Science & Technology Park (SS&TP) Located adjacent to SandiaNew Mexico, the Sandia...

  9. Sandia National Laboratories: Working with Sandia: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gain access to Sandia's research facilities, capabilities, and resources. CRF Sandia Science & Technology Park Become part of Albuquerque's science and technology community,...

  10. Sandia National Laboratories: Working with Sandia: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    patents, copyrights, trademarks, and maskworks that are available for licensing. Sandia Science and Technology Park Sandia Science and Technology Park Located adjacent to Sandia...

  11. Anthony Cugini Named Director of DOE's National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Anthony V. Cugini, a senior scientist with a range of research experience and interests over a wide cross section of energy and environmental technologies, has been named director of the U.S. Department of Energy's National Energy Technology Laboratory.

  12. Nanoscience & Technology Organization Chart | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscience & Technology Organization Chart The Nanoscience and Technology (NST) Division at Argonne National Laboratory hosts a user facility, the Center for Nanoscale Materials, in addition to performing programmatic science activities. PDF icon NST Org Chart_March2016.pdf

  13. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force ... are often developed to meet the measurement needs of a wide variety of customers. ...

  14. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are some specific sites on Pulsed Power MAGPIE Pulsed Power Facility, Imperial College NIF Naval Research Laboratory, Plasma Physics Division Reviews of U.S. Fusion Policy UKAEA...

  15. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect (OSTI)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  16. Access to High Technology User Facilities at DOE National Laboratories |

    Energy Savers [EERE]

    Department of Energy Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities. For non-commercial, basic science research,

  17. Laboratory Licenses Hydrogen Sensor Technology - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Licenses Hydrogen Sensor Technology Nuclear Filter Technology Awarded Licenses for Fiber Optic Hydrogen Sensor February 23, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today announced that Nuclear Filter Technology (NucFil) has been awarded licenses to manufacture Fiber Optic Hydrogen Sensors. The licenses, together with a Cooperative Research and Development Agreement (CRADA), allow NucFil to work with scientists and engineers at

  18. Lawrence Berkeley National Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    continuously address global concerns with new discoveries in energy technologies and the environment as well as biotechnology, nanotechnology, imaging and advanced research tools. ...

  19. National Renewable Energy Laboratory Technologies Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Renewable Energy ...

  20. National Energy Technology Laboratory | Open Energy Information

    Open Energy Info (EERE)

    as its scientists, engineers, and analysts advance not only coal- and natural-gas-based power systems, but vehicle technologies, fuel cells, hydrogen turbines, water conservation...

  1. Pacific Northwest National Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Solar Thermal Startup America Find ... approach to converting solar energy, water, and CO2 into small ... power demand for heating hot water to non-peak power ...

  2. Sandia National Laboratories Technology Marketing Summaries ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Industrial Technologies Find More Like This Single Well Injection Withdrawl Tracer Tests ... resulting in little to no leftover methanol, therefore increasing the overall ...

  3. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect (OSTI)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  4. Los Alamos National Laboratory (LANL) and Chevron Energy Technology Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells April 3, 2012 U.S. energy security and domestic oil production are increased through technology that delivers continuous electromagnetic data in oil and gas wells Los Alamos National Laboratory (LANL) and Chevron Energy Technology Company formed the Advanced Energy Solutions Alliance in 2004 to address U.S. energy security and critical technology needs of the oil and gas industry. One of several active projects, LANL and

  5. Fuel Cell Technologies Office Launches National Laboratory Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 - 5:32pm Addthis The U.S. Department of Energy's (DOE's) Fuel Cell ...

  6. SANDIA NATIONAL LABORATORIES From the Chief Technology Officer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology Officer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical staff to contribute to our Nation's future, to our collective ability to address and find solutions to a range of daunting scientific and technological challenges. The results of their work will shape the course of

  7. EM's Laboratory Supports Testing Wireless Technology in Secure

    Energy Savers [EERE]

    Environment | Department of Energy Laboratory Supports Testing Wireless Technology in Secure Environment EM's Laboratory Supports Testing Wireless Technology in Secure Environment January 29, 2014 - 12:00pm Addthis Joe Cordaro of SRNL observes the secure wireless TAM cart. Joe Cordaro of SRNL observes the secure wireless TAM cart. AIKEN, S.C. - Wireless networks have become commonplace in homes, restaurants and retail environments. But up to now, they have not been suitable for secure

  8. Arctic Energy Technology Development Laboratory (Part 3)

    SciTech Connect (OSTI)

    See OSTI ID Number 960443

    2008-12-31

    Various laboratory tests were carried at the R & D facility of BJ Services in Tomball, TX with BJ Services staff to predict and evaluate the performance of the Ceramicrete slurry for its effective use in permafrost cementing operations. Although other standards such as those of the American Standard for Testing Materials (ASTM) and Construction Specification Institute (CSI) exist, all these tests were standardized by the API. A summary of the tests traditionally used in the cement slurry design as well as the API tests reference document are provided in Table 7. All of these tests were performed within the scope of this research to evaluate properties of the Ceramicrete.

  9. Sandia National Laboratories: Electromagnetic Technology at Sandia National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Electromagnetics Facilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Research Electromagnetic Technology at Sandia National Laboratories Lightning Electromagnetics (EM) is the study of the nature and interaction of static and dynamic electric and magnetic fields. Telecommunications, navigational guidance, radar, and power transmission depend on our ability to generate, guide, radiate, receive, and detect electromagnetic

  10. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  12. Water Technology Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Technology Research Wastewater treatment plant Wastewater treatment plant Water is an increasingly valuable natural resource. By identifying typical sources and distribution of microbial communities in waterways, researchers can develop hydrological models that incorporate the microbial data, laying out how water flows from different sources and how rain events affect bacterial diversity and count. For example, by studying how microbes flourish in specific areas, it may be possible to

  13. Vehicle Technologies Office Merit Review 2015: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Idaho National...

  14. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  15. Information Technology Advisory Group (iTAG) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committees Information Technology Advisory Group (iTAG) The Information Technology Advisory Group (iTAG) is a standing Ames Laboratory committee consisting of Ames Lab scientists and IT professionals working together to look at and advise the computing needs for researchers. iTAG Charter The committee consists of: Diane Den Adel (Information Services Representative) Terry Herrman (Engineering Services Group Representative) Linlin Wang (Science and Technology Representative) Cynthia Jenks

  16. Assessment of cogeneration technologies for use at Department of Defense installations. Final report

    SciTech Connect (OSTI)

    Binder, M.J.; Cler, G.L.

    1996-01-01

    Cogeneration is the simultaneous generation of two types of energy, usually electricity and thermal energy, from a single energy source such as natural gas or diesel fuel. Cogeneration systems can be twice (or more) as efficient than conventional energy systems since both the electricity and the available thermal energy produced as a by-product of the electric generation, are used. This study identified cogeneration technologies and equipment capable of meeting Department of Defense (DOD) requirements for generation of electrical and thermal energy and described a wide range of successful cogeneration system configurations potentially applicable to DOD energy plants, including: cogeneration system prime movers, electrical generating equipment, heat recovery equipment, and control systems. State of the art cogeneration components are discussed in detail along with typical applications and analysis tools that are currently available to assist in the evaluation of potential cogeneration projects. A basic analysis was performed for 55 DOD installations to determine the economic benefits of cogeneration to the DOD. The study concludes that, in general, cogeneration systems can be a very cost effective method of providing the military with its energy needs.

  17. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel Platinum/Chromium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Platinum/Chromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small, self-expanding metal mesh tube that saves thousands of lives every year by opening blocked arteries and allowing blood to flow freely again. Jointly developed by NETL and Boston Scientific Corporation, Inc., (BSCI) this novel alloy is the first austenitic stainless steel formulation to be produced for

  18. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter 1994 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory Introducing The Actinide Research Quarterly My first year as Division Director has been a challenging yet rewarding experience. Although the Division has faced many challenges, I am gratified by the "can do" attitude our personnel continually exhibit. The foundation of NMT Division's science and technology excellence is our capabilities of actinide process chemistry, plutonium metallurgy, surface and

  19. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  20. Oak Ridge National Laboratory Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal ORNL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Oak Ridge National Laboratory Technologies Available for

  1. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  2. Savannah River National Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SRNL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Savannah River National Laboratory Technologies

  3. Pacific Northwest National Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal PNNL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Pacific Northwest National Laboratory

  4. National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell Studies

    Broader source: Energy.gov [DOE]

    A compilation of studies examining cathodes for solid oxide fuel cells is available on the Department of Energy’s National Energy Technology Laboratory website. The report, entitled Recent Solid Oxide Fuel Cell Cathode Studies, provides a concise, portfolio-wide synopsis of cathode research conducted under the Office of Fossil Energy’s Solid Oxide Fuel Cells Program.

  5. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  6. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  7. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  8. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  9. Federal Laboratory Consortium Regional Technology-Transfer Awards Salute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation, Commercialization at Sandia Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage

  10. National Laboratories' Energy Technologies and System Solutions Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Laboratories' Energy Technologies and System Solutions Center Director - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  11. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    This interactive workshop, held February 25-26, 2010, in Sacramento, CA, focused on realistic, practical issues with the aim of producing information to help develop policies, technologies, and incentives that will contribute to the success of hydrogen fuel retailers. Organizers of the workshop include IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy), the U.S. Department of Energy, California Fuel Cell Partnership, and National Renewable Energy Laboratory. Visit the

  12. $20 Million Technology Commercialization Fund Laboratory Call for Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Million Technology Commercialization Fund Laboratory Call for Proposals - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

  13. NREL: Technology Deployment - NREL Helps U.S. Virgin Islands Install Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Equipment NREL Helps U.S. Virgin Islands Install Wind Testing Equipment Photo of wind turbines being erected. NREL's analysis and technical expertise is helping the U.S. Virgin Islands find ways to reduce fossil fuel use by 60% through the development of utility-scale wind opportunities. January 10, 2013 With the help of NREL, the U.S. Virgin Islands (USVI) recently marked a major milestone on the way toward its goal of a 60% reduction in fossil fuel use by 2025. In December, NREL

  14. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  15. Environmental assessment for the Processing and Environmental Technology Laboratory (PETL)

    SciTech Connect (OSTI)

    1995-09-01

    The U.S. Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Processing and Environmental Technology Laboratory (PETC) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to integrate, consolidate, and enhance the materials science and materials process research and development (R&D) currently in progress at SNL/NM. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  16. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  17. Grace Bochenek Named New Director of DOE’s National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The Department of Energy announced today that Grace Bochenek has been named the director of the National Energy Technology Laboratory.

  18. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

  19. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  20. Simulation Technology Laboratory Building 970 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  1. PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According to the second annual Market Report on Wind Technologies in Distributed Applications soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at the end of 2013, reflecting nearly 72,000

  2. Sandia National Laboratories: Technology Training and Demonstration Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Training and Demonstration Area Visiting Research Scholars CMC Publications The Center for Global Security and Cooperation (CGSC) Cooperative Monitoring Center Technology Training and Demonstration Area Training and Technology Demonstration Area Sandia's Technology Training and Demonstration Area (TTD) showcases technologies that can be cooperatively applied to a range of monitoring applications across the globe: Nonproliferation Counterterrorism International security (including

  3. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories International, Inc.- January 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Technologies and Laboratories International, Inc. is performing at a level deserving DOE-VPP Star recognition.

  4. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford – Feb 2014

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Advanced Technologies and Laboratories, Inc., Hanford is performing at a level deserving DOE-VPP Star recognition.

  5. Los Alamos National Laboratory (LANL) and Chevron Energy Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wireless technology collects real-time information from oil and gas wells April 3, 2012 ... a wireless technology used to collect real-time temperature and pressure information ...

  6. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    SciTech Connect (OSTI)

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations.

  7. EM's Laboratory Supports Testing Wireless Technology in Secure...

    Energy Savers [EERE]

    EM's Savannah River National Laboratory (SRNL) - which is part of DOE's network of national ... Monitoring (TAM) cart, funded by SRTE's Plant-Directed Research and Development ...

  8. Review and Identification of DOE Laboratory Technologies for Countermine/Unexploded Ordnance Detection

    SciTech Connect (OSTI)

    Smith, C.M.

    2002-04-03

    Several Department of Energy (DOE) laboratories have worked and/or are working on technologies that are applicable to the detection of landmines and/or unexploded ordnance. This report is a compilation of technical summaries for many of these technologies. For additional information on any technology, appropriate points of contact are provided for each technology.

  9. Savannah River Technology Center (SRTC) Designated as a National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

  10. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut

  11. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Forensic Technology Center of Excellence | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forensic Technology Center of Excellence FWP/Project Description: This project is a collaborative effort between the National Forensic Science Technology Center; the National Center for Forensic Science; the National Clearinghouse for Science, Technology, and the Law; Marshall University's Forensic Science Center; and the Midwest Forensics Resource Center. The purpose of the project is to facilitate the adoption of new tools and technologies into practice by criminal justice agencies through

  13. Nanotwinned Materials for Energy Technologies | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotwinned Materials for Energy Technologies Research Personnel Updates Publications Imperfections at Boundaries Key to Understanding Nanostructured Materials Read More...

  14. Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford … Feb 2014

    Office of Environmental Management (EM)

    Technologies and Laboratories International, Inc. Department of Energy Voluntary Protection Program Review Background Advanced Technologies and Laboratories International, Inc. (ATL), is the 222-S Laboratory Analytical Services & Testing contractor for Department of Energy's (DOE) Office of River Protection (ORP) at the Hanford Site. ATL receives, analyzes, archives, and disposes of a variety of samples related to the Hanford Tank Farm cleanup activities, as well as other sampling activities

  15. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

  16. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  17. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  18. Mailing Addresses for National Laboratories and Technology Centers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Livermore, CA 94551-0969 925-294-3000 U.S. Department of Energy Savannah River Ecology Laboratory Building 737-A, Drawer E Aiken, SC 29802 803-725-2472 U.S. Department of Energy ...

  19. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Nuclear Fuels Ceramics Materials Charac- terization Synthesis Metallurgy Actinide Chemistry Separation Spectroscopy Thermochemistry Inorganic Chemistry Actinide Disposition Safeguards Review Articles NDA Measurements Calorimetry Chemical Systems Diagnostics Analytical Chemistry 5 10 15 20 25 30 Spring 1995 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory Chief Scientist's Notes: Going Back to the Basics The Actinide Research o f t h e N u c l e a r M a t e r

  20. Energy and Technology Review, July 1984: state of the Laboratory

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Each year, Director Roger Batzel addresses the LLNL staff on the state of the Laboratory and the achievements of the past year. On May 17, 1984, Dr. Batzel reported on the estimated budget for fiscal year 1985, which includes an 8.5% increase in operating funds, and on recent progress in our major programs. In this issue, we summarize Dr. Batzel's address and present a sampling of Laboratory achievements.

  1. Sandia National Laboratories: Microsystems Science & Technology Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Microsystems Science & Technology Center Microsystems Science & Technology Center MSTC Extensive scientific and engineering expertise in areas such as material growth and process development for silicon and compounds, device and product design, advanced packaging technologies for 3-D integration, and reliability and failure analysis expertise MSTC Banner Home of the MESA Complex MESA building The MESA Complex integrates the numerous scientific

  2. Sandia National Laboratories: News: Publications: Sandia Technology Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive Annual Report Environmental Reports Fact Sheets Labs Accomplishments Lab News Partnerships Annual Report Research Magazine Archive HPC Annual Reports Search Sandia Publications Strategic Plan News Archive The Sandia Technology was a quarterly research and development magazine published from 1999-2008. Sandia Technology has been replaced by the Sandia Research magazine. Past Sandia Technology issues 2008 » Volume 10, No. 1 (PDF, 4 MB) From your drill to your car The links between water

  3. Smart Grid Technology Interactive Model | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

  4. National Energy Technology Laboratory Publishes Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as quickly as possible. The NETL-managed program is currently developing solid oxide fuel cells for large power plants. The same technology is also likely to find...

  5. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle ...

  6. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researching a multitude of building technologies, including heating, ventilation, and air-conditioning (HVAC) systems; desiccant cooling and dehumidification systems; active solar...

  7. Video: Biofuel technology at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video: Biofuel technology at Argonne Share Topic Energy Energy sources Renewable energy Bioenergy Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Solar energy --Fossil fuels ---Natural Gas

  8. Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report

    SciTech Connect (OSTI)

    Brice, R.; Carton, D.; Rhyne, T.

    1997-06-01

    Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

  9. Technology Solutions Case Study: A Homeowner’s Guide to Window Air Conditioner Installation for Efficiency and Comfort

    SciTech Connect (OSTI)

    C. Booten

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve energy efficiency, cost savings, and comfort for homeowners.

  10. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1995 Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1-2 & 9 Separation of Plutonium from Chloride Salts is Demonstrated by High-Temperature Vacuum Distillation Method 3 Putting "System" into System Approach 4-5 NMT Evaluates Extraction Chroma- tography for Re- moval of Pu and Am from HCI Effluents 6-8 Noninvasive Chemi- cal

  11. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research Fall 1995 Zircon Promises to be A Host Phase for the Immobilization of Excess Weapon Plutonium Quarterly o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n One of the new and daunting challenges in nuclear waste management is the disposition of plutonium recovered from dismantled nuclear weapons. Under the first and second Strategic Arms Reduction Treaties, as well as

  12. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory * A U.S. Department of Energy Laboratory The Actinide Research o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 High-gradient Magnetic Separation (HGMS) Plays an Important Role in Radioactive Waste Remediation 4 Researchers Invent Novel Plutonium- Selective Anion Exchange Resins for Waste Minimization 6 LDRD Funds Seven Research Areas in NMT 7 NMT Researchers Nurture the Year-Old Actinide Research Quarterly 8

  13. Nuclear Materials Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating a Viable Fuel Form for ATW Focus on Students: 6 Students are Vital to the Lab 8 Nuclear Engineer Steven Alferink 10 Social Scientist Andrew Koehler 12 Chemist Susan Oldham 14 Newsmakers a U.S. Department of Energy Laboratory Los Alamos National Laboratory 3rd quarter 2001 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Quarterly continued on page 2 The Actinide Research Researchers are using a technique called power- compensated differential scanning

  14. SANDIA NATIONAL LABORATORIES From the Chief Technology Officer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... I n an era of diminishing energy resources and global climate change, solid-state lighting is a key technology. If LED electrical- to-optical energy conversion efficiency goals of ...

  15. Information Science & Technology Institute Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources Information Resources Many resources are available from AMO to help manufacturers improve energy efficiency. Access our free online publications, databases, program highlights, webcasts, workshop results, and energy analysis. 2014_all_manufacturing_energy_carbon_footprint_Page_1.png Publications Search the AMO Publication and Product Library by technology area, category, or key word. Highlights Read about projects that lead to new technologies, improve existing

  16. Sandia National Laboratories: Working with Sandia: Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Sandia Technology Partnerships Leverage the Resources of Sandia Business, Industry, & Non-Profits Sandia cultivates strong partnerships through joint research and technology transfer opportunities. Partners meeting Government Sandia offers technical resources and cutting-edge facilities to help address the current and emerging needs of federal and local governments. Low water greenhouse Universities Sandia's goal is to establish enduring partnerships with a focused set of

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss021_francfort_2011_o.pdf More Documents & Publications Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities

  18. Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet), Building America Case Study: Technology Solutions for Existing Homes, Building Technologies Office (BTO)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet offers a step-by-step guide to proper installation of window air conditioning units, in order to improve efficiency and comfort for homeowners.

  19. Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographic Information Systems in Support of Wind Energy Activities at NREL Preprint January 2001 * NREL/CP-500-29164 D.M. Heimiller S.R. Haymes To be presented at the 39 th AIAA Aerospace Sciences Meeting Reno, Nevada January 8-11, 2001 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted

  20. Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96

    SciTech Connect (OSTI)

    Barrie, S.L.; Carpenter, G.S.; Crockett, A.B.

    1997-04-01

    The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

  1. DOE Announces Selections from Solid-State Lighting Core Technologies Funding Opportunity Announcement and Laboratory Call

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE) is pleased to announce the selection of sixteen (16) applications in response to the Solid-State...

  2. Energy and technology review, January--February 1995. State of the laboratory

    SciTech Connect (OSTI)

    Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A.

    1995-02-01

    This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

  3. NATIONAL ENERGY TECHNOLOGY LABORATORY HOSTS REMAKE LEARNING LAB DAY FOR LOCAL STUDENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ENERGY TECHNOLOGY LABORATORY HOSTS REMAKE LEARNING LAB DAY FOR LOCAL STUDENTS Pittsburgh, Pa. - The U.S. Department of Energy's National Energy Technology Laboratory (NETL) in collaboration with Remake Learning Days, a program sponsored by Allegheny County's Executive and the Allegheny County Housing Authority, hosted a lab day May 11, 2016, at NETL's South Park, Pa., site. Approximately 54 students from Woodland Hills Jr. / Sr. High Schools participated in NETL's event. They were

  4. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 NMT Studies Fuel Fabrication Methods to Advance Efforts in Plutonium Disposition 4 Neutron Source Recovery Reduces the Nuclear Danger, Responds to National Need 6 Division Director Discusses Plutonium Future 8 NMT Designs and Fabricates Standards for Nuclear Material Assay 10 Advisory Committee Rates NMT as "Outstanding/ Excellent" 11 Recent

  5. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer 1996 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 Researcher Offers a Technical Perspective on Plutonium in the Environment 4 Plutonium Materials Science Supports Science-Based Stockpile Stewardship and Management 6 Division Director Discusses Plutonium Future-part 2 8 Does the Interaction of Plutonium Oxide with Water Pose a Potential Storage Hazard? 10 Recent Publications, Presentations, and

  6. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly NMT's Contributions to the Cassini Saturn Mission Follow Division's Space Exploration Tradition Figure 1: 100-watt plutonium-238 heat source used in the 1970s space missions. The source is about 250 g and about 3 cm in diameter. Some of NMT Division's handiwork will be soaring across the solar system on its way to Saturn in the near future. Many NMT members, primarily in

  7. Nuclear Materials Technology Division/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter 97-98 Los Alamos National Laboratory o f t h e N u c l e a r M a t e r i a l s T e c h n o l o g y D i v i s i o n Quarterly In This Issue 1 The Metallurgy and Processing of Plutonium and Its Alloys Are Topics of Ongoing Research 4 Acoustic Resonance Spectroscopy (ARS) Shows Promise for Measuring Gas Composition and Pressure in Sealed Storage Containers 6 Bacteria in Radioactive Environments Can Affect Waste Storage 9 Although Not Magic, "WAND" Helps Manage Waste LANL

  8. Nuclear Materials Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory The Actinide Research In This Issue 4 Pit Manufacturing Project Presents Many Challenges 6 Can Los Alamos Meet Its Future Nuclear Challenges? 9 Detecting and Predicting Plutonium Aging are Crucial to Stockpile Stewardship 12 Pit Disassembly and Conversion Address a 'Clear and Present Danger' 14 Publications and Invited Talks Newsmakers 15 Energy Secretary Spencer Abraham Addresses Employees 1st quarter 2001 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e

  9. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  10. Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards

    Broader source: Energy.gov [DOE]

    Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil (Oak Ridge National Laboratory). Oak Ridge National Laboratory's Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil...

  11. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  12. Sandia National Laboratories: Pulsed-Power Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pulsed Power Pulsed-Power Science and Technology Advanced Pulsed Power Concepts SNL Remains One of the World's Premier Pulsed-Power Research and Applications Center Advanced Pulsed Power Concepts Planetary Research High Energy Density Physics Planetary Research Astrophysics SNL experiments may force revision of astrophysical models of the universe Astrophysics Inertial Confinement Fusion Innovative concepts could lead to "break-even" fusion in the

  13. Hopper Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a host of other scientific endeavors. 00.JPG Delivery 1.JPG Unloading 3.JPG Earthquake protection 4.JPG Installing cabinets 6.JPG Half way there 8.JPG Inspection and...

  14. Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities | Department of Energy Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 - 5:32pm Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) announces the launch of the National Laboratory Tech-to-Market activities taking place at the 2014 Fuel Cell Seminar and Energy Exposition (FCS&EE) on November 11 in Los Angeles, California. In an

  15. Ames Laboratory creates innovative materials, technologies and energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global challenges. our Core Values ExcEllEncE: We are recognized for world-class research, nurturing excellence in science, education and people. PEoPlE: Our people are the core of our success. SafEty: We demonstrate that safety and world-class research go hand in hand. InSPIratIon: We inspire future generations by exciting them about science.

  16. Advanced Safeguards Technology Demonstration at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Orton, Christopher R.; Schwantes, Jon M.; Bryan, Samuel A.; Levitskaia, Tatiana G.; Duckworth, Douglas C.; Douglas, Matthew; Farmer, O. T.; Fraga, Carlos G.; Lehn, Scott A.; Liezers, Martin; Peper, Shane M.; Christensen, Richard

    2008-10-01

    The IAEA has established international safeguards standards for fissionable materials at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted over a specified time frame. It is, therefore, necessary to confirm proper operational performance to verify facilities operate under adequate safeguard-declared conditions. This verification can be achieved by employing monitoring equipment. Online real time monitoring of the flowsheet radiochemical streams provides a unique capability to rapidly identify deviations from normal operating conditions. Flowsheet monitoring technologies being developed at PNNL include three integrated systems: Multi-Isotope Process (MIP) Monitor, spectroscopy-based monitor (UV-vis-NIR and Raman spectrometers), and Electrochemically Modulated Separations (EMS). The MIP Monitor is designed to identify off-normal conditions in process streams using gamma spectroscopy and pattern recognition software. The spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals. EMS provides an on-line means for pre-separating and pre-concentrating elements of interest out of complex matrices prior to detection. PNNL is preparing to test these multi-parametric technologies using different samples of dissolved spent fuel and aqueous and organic phases of the PUREX and UREX flowsheets. We will report our on-going efforts with specific focus given to quantifying sensitivity of the MIP Monitor and UV-Vis and Raman spectrometers to detect minor changes in major process variables.

  17. Iowa Start-up Taps Ames Laboratory Technology in Challenge | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Taps Ames Laboratory Technology in Challenge Iowa Start-up Taps Ames Laboratory Technology in Challenge August 10, 2011 - 2:21pm Addthis Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT Using gas atomization

  18. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  19. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  20. Advanced Safeguards Technology Demonstration at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Arrigo, Leah M.; Bryan, Samuel A.; Christensen, Richard; Douglas, Matthew; Duckworth, Douglas C.; Fraga, Carlos G.; Levitskaia, Tatiana G.; Liezers, Martin; Orton, Christopher R.; Peper, Shane M.; Schwantes, Jon M.

    2010-05-21

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted over a specified time frame. Currently, methods to verify that the facilities are operating under adequate safeguard-declared conditions require time consuming sampling and expensive, destructive analysis. The time delay between sampling and subsequent analysis provides a potential opportunity to divert the material out of the appropriate chemical stream. One way to avoid this problem is to use process monitoring equipment that is capable of on-line and in near-real time monitoring of the flowsheet radiochemical streams to rapidly identify deviations from normal operating conditions. Three integrated systems for flowsheet monitoring are currently being developed at PNNL including: 1) Multi-Isotope Process Monitor (MIP), 2) a spectroscopy-based monitor utilizing UV-Vis-NIR (Ultra Violet-Visible-Near Infrared) and Raman spectrometers, and 3) Electrochemically Modulated Separations (EMS). MIP uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals. EMS provides an on-line means for pre-separating and preconcentrating elements of interest out of complex matrices prior to detection via non-destructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. PNNL previously reported some of its initial modeling work as proof of principle. Here we will provide a general overview of the technologies and the ongoing demonstrations that utilize actual spent fuel.

  1. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies

    SciTech Connect (OSTI)

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  2. EERE Technology Commercialization Portal: Connecting Energy Industry and Market Leaders with Laboratory Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    A flyer briefly describing the EERE Technology Commercialization Portal along with an example of one of its marketing summaries.

  3. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  4. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  5. DOE 1.5 Installation Time Lapse Video (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 1.5 Installation Time Lapse Video (Text Version) DOE 1.5 Installation Time Lapse Video (Text Version) Below is the text version for the DOE 1.5 Installation Time Lapse Video. The National Renewable Energy Laboratory installs a 1.5-MW wind turbine for the U.S. Department of Energy at its National Wind Technology Center located just south of Boulder, Colorado. The construction site is a grassy field that overlooks the eastern plains of Colorado. Two blue construction cranes work together to

  6. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  7. Award Fee Determination Scorecard Contractor: Advanced Technologies and Laboratories (ATL) International Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Technologies and Laboratories (ATL) International Inc. Contract: Laboratory Analytical Services and Testing Contract Contract Number: DE-AC27-10RV15051 Award Fee Period: January 1, 2015 to November 21, 2015 Basis of Evaluation: January 1, 2015 to November 21, 2015 Award Fee, Performance Evaluation and Measurement Plan Award Fee Available (PBI and SEA): $789,765.60 Award Fee Earned (PBI and SEA): $781,078.18 (98.9%) Award Fee Area Adjectival Ratings for each Performance Based Incentives

  8. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  9. Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

    2003-08-01

    This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

  10. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  11. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  12. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  13. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. For more information, visit: water.energy.gov DOE/EE-1166 * January 2015 WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys: A Knowledge Management System Tethys is a knowledge management system that gathers, organizes, and provides access to information pertaining to the potential environmental effects of MHK. Tethys enables access to hundreds

  14. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    400-64420 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies 227 th ECS Meeting, Chicago, Illinois Marc Melaina, Genevieve Saur, Todd Ramsden, Joshua Eichman May 28, 2015 2 Presentation Overview: Four Metrics Analysis projects focus on low-carbon and economic transportation and stationary fuel cell applications

  15. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  16. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  17. Detailed workplan for innovative technology demonstrations to support existing treatment operations at the Installation Logistics Center, DSERTS Site FTLE-33, Fort Lewis, Washington

    SciTech Connect (OSTI)

    Liikala, T.L.

    1998-07-01

    This workplan is an assemblage of documents for use by Pacific Northwest National Laboratory (PNNL) to direct and control project activities at Fort Lewis, Washington. Fort Lewis is a FORSCOM installation, whose Logistics Center (DSERTS Site FTLE-33) was placed on the National priorities List (NPL) in December 1989, as a result of trichloroethene (TCE) contamination in groundwater beneath the site. Site background information and brief descriptions of the Fort Lewis project and the main supporting documents, which will be used to direct and control the project activities, are provided. These are followed by a summary of the Work Breakdown Structure (WBS) elements, a general project schedule, a list of major deliverables, and a budget synopsis. Test plans for specific elements (Bench-Scale Testing) will be developed separately as those elements are initiated. If additional activities not specifically addressed in the Project Management Plan (Attachment 1) are added to the work scope, addendums to this workplan will be prepared to cover those activities.

  18. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    SciTech Connect (OSTI)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  19. NREL GHP [Geothermal Heat Pump] Showcase: GHP Installation and Intensive in situ and Performance Monitoring at NREL's Solar Radiation and Research Laboratory; Preprint

    SciTech Connect (OSTI)

    Anderson, E. R.

    2010-07-01

    This document provides an overview of the geothermal heat pump (GHP) showcase at NREL and how it will help the SRRL site move forward with the goal of being a model of sustainability within the NREL campus, providing an effective demonstration of GHP systems and needed space conditioning for laboratory expansion.

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  1. Install Removable Insulation on Valves and Fittings

    Broader source: Energy.gov [DOE]

    This tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving steam systems using low-cost, proven practices and technologies.

  2. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    SciTech Connect (OSTI)

    Helt, J.E.

    1993-09-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals.

  3. A Statement from U.S. Secretary of Energy Ernest Moniz on New Leadership at the National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz today issued a statement on the naming of Dr. Grace M. Bochenek as the new director of the National Energy Technology Laboratory (NETL).

  4. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  5. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  6. Construction and installation summary for fiscal year 1992 of the hydraulic head monitoring stations at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Dreier, R.B.; Switek, J.; Couzens, B.A.

    1992-12-01

    During FY 1992, as part of the Hydraulic Head Monitoring Station (HHMS) Project, three multiport wells (HHMS 12, 13, and 14) were constructed along or near the boundaries of Waste Area Grouping (WAG) 2 at Haw Ridge water gap. The purpose of this report is to document well construction and multiport component installation activities. The hydraulic head monitoring stations (HHMS) are well clusters and single multiport wells that provide data required for evaluation of the transition between shallow and deep groundwater systems and of the nature of these systems. This information is used for required characterization of the hydrologic framework as dictated by state and federal regulatory agencies. Groundwater contaminants may move laterally across WAG boundaries or offsite; they may also move in a vertical direction. Because the HHMS Project was designed to address otential contamination problems, the project provides a means for defining the bounds of the uppermost aquifer; identifying potential pathways for offsite contamination for shallow; intermediate, and deep groundwater flow; and evaluating the capacity for contaminant transport in intermediate and deep groundwater flow systems.

  7. Construction and installation summary for fiscal year 1992 of the hydraulic head monitoring stations at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Dreier, R.B.; Switek, J.; Couzens, B.A.

    1992-12-01

    During FY 1992, as part of the Hydraulic Head Monitoring Station (HHMS) Project, three multiport wells (HHMS 12, 13, and 14) were constructed along or near the boundaries of Waste Area Grouping (WAG) 2 at Haw Ridge water gap. The purpose of this report is to document well construction and multiport component installation activities. The hydraulic head monitoring stations (HHMS) are well clusters and single multiport wells that provide data required for evaluation of the transition between shallow and deep groundwater systems and of the nature of these systems. This information is used for required characterization of the hydrologic framework as dictated by state and federal regulatory agencies. Groundwater contaminants may move laterally across WAG boundaries or offsite; they may also move in a vertical direction. Because the HHMS Project was designed to address otential contamination problems, the project provides a means for defining the bounds of the uppermost aquifer; identifying potential pathways for offsite contamination for shallow; intermediate, and deep groundwater flow; and evaluating the capacity for contaminant transport in intermediate and deep groundwater flow systems.

  8. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    SciTech Connect (OSTI)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  9. Sandia Energy - Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Installation InstallationTara Camacho-Lopez2015-03-20T19:23:2...

  10. Gamesa Installs 2-MW Wind Turbine at NWTC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gamesa Installs 2-MW Wind Turbine at NWTC Gamesa Installs 2-MW Wind Turbine at NWTC December 19, 2011 - 3:12pm Addthis This is an excerpt from the Fourth Quarter 2011 edition of the Wind Program R&D Newsletter. In October, the Department of Energy (DOE) National Renewable Laboratory (NREL) worked with Gamesa Wind US to complete the installation of Gamesa's G97-2 MW Class IIIA turbine at NREL's National Wind Technology Center. The turbine will be the fourth multimegawatt wind turbine to be

  11. Workplace Charging Installation Costs

    Broader source: Energy.gov [DOE]

    Installation costs and services vary considerably, so employers are encouraged to obtain a number of quotes before moving forward with any installation. An initial site investigation should include:

  12. Building America Technology Solutions for New and Existing Homes: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet) | Department of Energy A Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet) Building America Technology Solutions for New and Existing Homes: A Homeowner's Guide to Window Air Conditioner Installation for Efficiency and Comfort (Fact Sheet) This step-by-step guide developed by the National Renewable Energy Laboratory describes proper installation of

  13. Lawrence Uvermore Laboratory THE TECHNOLOGY OF HIRROR MACHINES - LLL FACILITIES FOR

    Office of Scientific and Technical Information (OSTI)

    PREPRINT UCRL- 79605 (%NtLr7//jpj?- - <f Lawrence Uvermore Laboratory THE TECHNOLOGY OF HIRROR MACHINES - LLL FACILITIES FOR MAGNETIC MIRROR FUSION EXPERIMENTS Thomas H. Batzer September 1 5 , 1977 T h i s paper was prepared f o r s u b m i t t a l t o t h e Seventh Symposium on Engineering Problems o f Fusion Research, Nuclear and Plasma S c i e n c e S o c i e t y of IEEE, K n o x v i l l e , T e n n e s s e e , October 2 5 - 2 8 , 1977. This Is a preprint of a paper intended for

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  15. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  16. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  17. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Rich, Bethany M

    2012-04-02

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  18. Description of the Sandia National Laboratories science, technology & engineering metrics process.

    SciTech Connect (OSTI)

    Jordan, Gretchen B.; Watkins, Randall D.; Trucano, Timothy Guy; Burns, Alan Richard; Oelschlaeger, Peter

    2010-04-01

    There has been a concerted effort since 2007 to establish a dashboard of metrics for the Science, Technology, and Engineering (ST&E) work at Sandia National Laboratories. These metrics are to provide a self assessment mechanism for the ST&E Strategic Management Unit (SMU) to complement external expert review and advice and various internal self assessment processes. The data and analysis will help ST&E Managers plan, implement, and track strategies and work in order to support the critical success factors of nurturing core science and enabling laboratory missions. The purpose of this SAND report is to provide a guide for those who want to understand the ST&E SMU metrics process. This report provides an overview of why the ST&E SMU wants a dashboard of metrics, some background on metrics for ST&E programs from existing literature and past Sandia metrics efforts, a summary of work completed to date, specifics on the portfolio of metrics that have been chosen and the implementation process that has been followed, and plans for the coming year to improve the ST&E SMU metrics process.

  19. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  20. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)

    SciTech Connect (OSTI)

    Van Geet, O.

    2010-04-01

    As a Laboratories for the 21st Century (Labs21) partner, NREL set aggressive goals for energy savings, daylighting, and achieving a LEED Gold rating (through the U.S. Green Building Council's Leadership in Energy and Environmental Design program) for its S&TF building.

  1. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  2. National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New test facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) will open a new dynamometer test facility. Funded by a grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA), the new facility will offer wind industry engineers a unique opportunity to conduct a wide range of tests on the

  3. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  4. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  5. LANL installs additional protective measures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab completes additional protections LANL installs additional protective measures Work crews completed additional flood and erosion-control measures this week to reduce the environmental effects of any flash floods following the Las Conchas Fire. July 20, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  6. HTAR Configuration and Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a

  7. LANL installs high-performance computer system | National Nuclear...

    National Nuclear Security Administration (NNSA)

    computer system Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. Wolf will help...

  8. First Magnet Girder Installed in NSLS-II Storage Ring

    ScienceCinema (OSTI)

    Frank Lincoln

    2013-07-19

    Supervisor Frank Lincoln explains how the first magnet girder is installed in the storage ring of Brookhaven National Laboratory's National Synchrotron Light Source II (NSLS-II).

  9. Broad Overview of Energy Efficiency and Renewable Energy Opportunities for Department of Defense Installations

    SciTech Connect (OSTI)

    Anderson, E.; Antkowiak, M.; Butt, R.; Davis, J.; Dean, J.; Hillesheim, M.; Hotchkiss, E.; Hunsberger, R.; Kandt, A.; Lund, J.; Massey, K.; Robichaud, R.; Stafford, B.; Visser, C.

    2011-08-01

    The Strategic Environmental Research and Developmental Program (SERDP)/Environmental Security Technology Certification Program (ESTCP) is the Department of Defense?s (DOD) environmental science and technology program focusing on issues related to environment and energy for the military services. The SERDP/ESTCP Office requested that the National Renewable Energy Laboratory (NREL) provide technical assistance with strategic planning by evaluating the potential for several types of renewable energy technologies at DOD installations. NREL was tasked to provide technical expertise and strategic advice for the feasibility of geothermal resources, waste-to-energy technology, photovoltaics (PV), wind, microgrids, and building system technologies on military installations. This technical report is the deliverable for these tasks.

  10. Install an Automatic Blowdown Control System

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  11. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  12. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization. Letter report made publicly available December 1992

    SciTech Connect (OSTI)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation`s public works infrastructure. The product is a relational database that we refer to as a ``prototype catalogue of technologies.`` The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

  13. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  14. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  15. Transportation technology R&D-Steve Ciatti | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation technology R&D-Steve Ciatti Share Description Argonne researcher Steve Ciatti talks about emerging technologies in transportation, as well as the current technology being developed at the lab and placed on the market. Topic Energy Energy efficiency Vehicles Alternative fuels Diesel Powertrain research

  16. Installation and Acceptance Stage

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-05-21

    This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

  17. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  18. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  19. Assessing the Energy Impact of Connected and Automated Vehicle (CAV) Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing the Energy Impact of Connected and Automated Vehicle (CAV) Technologies SAE 2016 Government/Industry Meeting January 21, 2016 Jeff Gonder, Yuche Chen, Mike Lammert, Eric Wood Transportation and Hydrogen Systems Center (THSC) National Renewable Energy Laboratory (NREL) NREL/PR-5400-65743 2 Outline * Overall energy impact assessment * Example feature-level impacts * Real-world/off-cycle benefit calculation * On-going work by DOE and its national labs 3 "Bookending" CAV Energy

  20. NREL's ReFUEL Laboratory: Center for Transportation Technologies and Systems (CTTS) Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  1. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  2. Natural Energy Laboratory of Hawaii Authority (NELHA): Hawaii Ocean Science & Technology Park; Kailua-Kona, Hawaii

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Olson, K.; Andreas, A.

    2012-11-01

    A partnership with the Natural Energy Laboratory of Hawaii Authority and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  3. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  4. Cold Crucible Induction Melter Technology: Results of Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Gombert, Dirk; Richardson, John Grant

    2001-09-01

    This report provides a review of cold crucible induction melter (CCIM) technology and presents summaries of alternatives and design issues associated with major system components. The objective in this report is to provide background systems level information relating to development and application of cold crucible induction-heated melter technology for radiological waste processing. Included is a detailed description of the bench-top melter system at the V. G. Khlopin Radium Institute currently being used for characterization testing

  5. SUCCESSFUL MODELS FOR COMMERCIALIZATION OF LABORATORY TECHNOLOGY AND SOME HARD LEARNED LESSONS

    SciTech Connect (OSTI)

    D. SMITH

    2000-06-01

    Successful relationships with industry that benefit both corporate partners and the research institution require a constant balancing of interests. Researchers must balance developing technology in a manner that can be used by industry, publishing and publicizing developments so that industry recognizes the advances and the institution while protecting the technology with patents or other appropriate vehicles to preserve the commercial value. Research institutions must adopt a set of business practices that allow industry to access technology efficiently while protecting the legitimate institutional interests. Professional responsive business staff who are familiar with common industry practice, have contacts in appropriate industries and companies, and know how to publicize technology developments ensure efficient access to technology developed by the institution. The same business staff must understand the institutional and research goals in order to protect the proprietary interests of the institution. The business staff must provide benefit to the institution by receiving fair value for the technology and research developed by the institution and by ensuring that agreements are executed with only qualified companies.

  6. HSI Configuration and Installation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instructions below. In certain environments (e.g., if your installation is on a machine which has more than one network interface or has a high bandwidth network connection...

  7. HVAC Installed Performance

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

  8. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2015-10-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy

  9. ARM Installs Aircraft Detection Radar System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Installs Aircraft Detection Radar System For improved safety in and around the ARM SGP CART site, the ARM Program recently purchased and installed an aircraft detection radar system at the central facility near Lamont, Oklahoma. The new system will enhance safety measures already in place at the central facility. The SGP CART site, especially the central facility, houses several instruments employing laser technology. These instruments are designed to be eye-safe and are not a hazard to

  10. NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory Office of Research and Development 2 NETL-RUA Disclaimer This document was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  11. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  12. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Los Alamos National Laboratory Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research September 2, 2014 New insights to changing the atomic structure of metals The Wolf computer system modernizes

  13. Cyclotron Road: Creating a Home for Top Clean Energy Technology Entrepreneurs within our National Laboratories

    Broader source: Energy.gov [DOE]

    The best young scientists and researchers in the U.S. have a new pathway to advance innovative research and development projects that could accelerate America’s clean energy future. It’s a new tech-to-market program called Cyclotron Road where top entrepreneurial researchers can develop cutting-edge clean energy technologies at the Energy Department’s Berkeley Lab.

  14. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  15. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains- Clemson University, North Charleston, South Carolina Vahan Gevorgian September 17, 2014 NREL's Controllable Grid Interface for Testing Renewable Energy Technologies NREL/PR-5D00-62998 2 First Workshop-June 2003 Workshop report: http://www.nrel.gov/docs/fy14osti/60246.pdf Workshop website: http://www.nrel.gov/electricity/transmission/grid_simulator_workshop.html Image from

  16. Annual Technology Baseline (Presentation and Supporting Data Set), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Notes pages provide additional detail and are essential for interpreting information on slides. Excel spreadsheet accompanies this documentation and contains all input data and calculations illustrated on subsequent pages. All monetary values presented in 2013 U.S. dollars. 1 2 Preface This presentation is one of several products resulting from an initial effort to provide a consistent set of technology cost and performance data and to define a conceptual and consistent scenario framework that

  17. Certification for Small Wind Turbine Installers: What's the Hang Up?; Preprint

    SciTech Connect (OSTI)

    Oteri, F.; Sinclair, K.

    2012-03-01

    Several programs have been implemented to support the advancement of a professional, mature small wind industry and to ensure that this industry moves forward in a sustainable direction. The development of a standard for small wind turbine systems and the creation of the Small Wind Certification Council support small wind technology that is reliable and safe. Consumers and incentive programs will ultimately rely on certification to differentiate among systems sold in the U.S. market. Certification of small wind installers is yet another component deemed necessary for this industry to expand. The National Renewable Energy Laboratory, under the guidance and funding support of the U.S. Department of Energy, supported the development of small wind system installer certification provided via the North American Board of Certified Energy Practitioners. However, the small wind community is not supportive of the installer certification. There are currently only nine certified installers in the U.S. pool. This paper provides an overview of the installer certification program and why more small wind turbine installers are not pursuing this certification.

  18. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  19. The Future of Technology Is Hiding on the Ocean Floor | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Technology Is Hiding on the Ocean Floor Gizmodo editor Maddie Stone writes about the potential for mining rare earths from manganese nodules located on the deep sea floor. In the story, Stone talks with Critical Materials Director Alex King about the need and uses for rare earths. The story includes the improbable recruitment of billionaire industrialist and recluse Howard Hughes by the CIA to build a ship to supposedly harvest these nodules. In fact, that was just a cover story to

  20. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUEL CELL FUEL CELL FUEL CELL Fourth Edition November 1998 Fuel Cell Handbook Fuel Cell Handbook Fourth Edition November 1998 DOE/FETC-99/1076 by J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett Parsons Corporation Reading, PA 19607 Under Contract No. DE-AC21-94MC31166 for U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Fuel Cell Handbook, Fourth Edition Contents Disclaimer List of

  1. Applied Studies and Technology (AS&T) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable

  2. Importance of energy efficiency in the design of the Process and Environmental Technology Laboratory (PETL) at Sandia National Laboratories, New Mexico (NM)

    SciTech Connect (OSTI)

    Wrons, R.

    1998-06-01

    As part of the design of the Process and Environmental Technology Laboratory (PETL) in FY97, an energy conservation report (ECR) was completed. The original energy baseline for the building, established in Title 1 design, was 595,000 BTU/sq. ft./yr, site energy use. Following the input of several reviewers and the incorporation of the various recommendations into the Title 2 design, the projected energy consumption was reduced to 341,000 BTU/sq. ft./yr. Of this reduction, it is estimated that about 150,000 BTU/sq. ft./yr resulted from inclusion of more energy efficient options into the design. The remaining reductions resulted from better accounting of energy consumption between Title 1 ECR and the final ECR. The energy efficient features selected by the outcome of the ECR were: (1) Energy Recovery system, with evaporative cooling assist, for the Exhaust/Make-up Air System; (2) Chilled Water Thermal Storage system; (3) Premium efficiency motors for large, year-round applications; (4) Variable frequency drives for all air handling fan motors; (4) Premium efficiency multiple boiler system; and (5) Lighting control system. The annual energy cost savings due to these measures will be about $165,000. The estimated annual energy savings are two million kWhrs electric, and 168,000 therms natural gas, the total of which is equivalent to 23,000 million BTUs per year. Put into the perspective of a typical office/light lab at SNL/NM, the annual energy savings is equal the consumption of a 125,000 square foot building. The reduced air emissions are approximately 2,500 tons annually.

  3. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  4. 2014 Wind Technologies Market Report Highlights

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report Highlights August 2015 Prepared for the U.S. Department of Energy Wind and Water Power Technologies Office Prepared by Lawrence Berkeley National Laboratory Berkeley, California 2014 WIND TECHNOLOGIES MARKET REPORT HIGHLIGHTS 2 Introduction The United States remains a top installer of wind energy capacity. Wind power additions rebounded in 2014, with 4,854 megawatts (MW) of new capacity added in the United States representing $8.3 billion in new investments. In

  5. SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS

    SciTech Connect (OSTI)

    Farfan, E.; Foley, T.

    2010-02-11

    Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

  6. Final Report to the National Energy Technology Laboratory on FY09-FY13 Cooperative Research with the Consortium for Electric Reliability Technology Solutions

    SciTech Connect (OSTI)

    Vittal, Vijay

    2015-11-04

    The Consortium for Electric Reliability Technology Solutions (CERTS) was formed in 1999 in response to a call from U.S. Congress to restart a federal transmission reliability R&D program to address concerns about the reliability of the U.S. electric power grid. CERTS is a partnership between industry, universities, national laboratories, and government agencies. It researches, develops, and disseminates new methods, tools, and technologies to protect and enhance the reliability of the U.S. electric power system and the efficiency of competitive electricity markets. It is funded by the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE). This report provides an overview of PSERC and CERTS, of the overall objectives and scope of the research, a summary of the major research accomplishments, highlights of the work done under the various elements of the NETL cooperative agreement, and brief reports written by the PSERC researchers on their accomplishments, including research results, publications, and software tools.

  7. Tracking the Sun VIII: The Installed Price of Residential and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Residential Photovoltaic Systems in the United States | Department of Energy Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic Systems in the United States Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)'s Tracking the Sun report series is dedicated to summarizing trends in the installed price of

  8. Final row of solar panels installed at Livermore | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Blog Final row of solar panels installed at Livermore Monday, January 11, 2016 - 1:14pm NNSA Blog The last row of panels at the Whitethorn Solar Facility project site at Lawrence Livermore National Laboratory in California was installed last week. When complete, the 3.3 MW fixed-tilt solar photovoltaic facility will represent the largest DOE/NNSA purchase of solar energy from an onsite facility. Electrical installation will continue for several more weeks, then

  9. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  10. High-performance computer system installed at Los Alamos National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory High-performance computer system installed at Lab High-performance computer system installed at Los Alamos National Laboratory New high-performance computer system, called Wolf, will be used for unclassified research. June 17, 2014 The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. The Wolf computer system modernizes mid-tier resources for Los Alamos scientists. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "This machine

  11. NETL Shares Computing Speed, Efficiency to Tackle Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers | Department of Energy NETL Shares Computing Speed, Efficiency to Tackle Energy Technology Barriers NETL Shares Computing Speed, Efficiency to Tackle Energy Technology Barriers March 29, 2012 - 1:00pm Addthis Washington, DC - One of the world's fastest supercomputers will be installed at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) this summer to help develop solutions to carbon capture, utilization and storage (CCUS) technology barriers. NETL's new

  12. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  13. EERE Success Story-Helping Ensure High-Quality Installation of Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Technologies | Department of Energy Helping Ensure High-Quality Installation of Solar Power Technologies EERE Success Story-Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis Lorain County Community College Instructors install PV modules on training roof labs during the Midwest Renewable Energy Association’s Train-the-Trainer PV Instructor Institute course. Lorain County Community College Instructors install PV modules on training

  14. Heating equipment installation system

    DOE Patents [OSTI]

    Meuschke, Robert E.; Pomaibo, Paul P.

    1991-01-01

    A method for installing a heater unit assembly (52, 54) in a reactor pressure vessel (2) for performance of an annealing treatment on the vessel (2), the vessel (2) having a vertical axis, being open at the top, being provided at the top with a flange (6) having a horizontal surface, and being provided internally, at a location below the flange (6), with orientation elements (8) which are asymmetrical with respect to the vertical axis, by the steps of: providing an orientation fixture (10) having an upwardly extending guide member (18) and orientation elements (14, 16) and installing the orientation fixture (10) in the vessel (2) so that the orientation elements (14,16) of the orientation fixture (10) mate with the orientation elements (8) of the pressure vessel (2) in order to establish a defined position of the orientation fixture (10) in the pressure vessel (2), and so that the guide member (18) projects above the pressure vessel (2) flange (6); placing a seal ring (30) in a defined position on the pressure vessel (2) flange (6) with the aid of the guide member (18); mounting at least one vertical, upwardly extending guide stud (40) upon the seal ring (30); withdrawing the orientation fixture (10) from the pressure vessel (2); and moving the heater unit assembly (52,54) vertically downwardly into the pressure vessel (2) while guiding the heater unit assembly (52,54) along a path with the aid of the guide stud (40).

  15. Sandia Energy - Installation Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Installation Energy Security Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Resilient Electric Infrastructures Military...

  16. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feature NETL-Albany's Rich Metals Research History Showcased by Local Museum The Albany Regional Museum in Oregon now features an exhibit on how specialty metals research at NETL...

  17. Install and Automatic Blowdown Control System - Steam Tip Sheet #23

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on installing automatic blowdown controls provide how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Energy Department Completes Cool Roof Installation on DC Headquarters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today a video with Secretary Chu that shows the installation of the roof and explains some of the benefits that come with this important technology. The video is available ...

  19. Factors Affecting PMU Installation Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... throughout the industry, resulting in widespread cost and project efficiency benefits. ... support staff on all of the above. Traveling to and from the installation sites, ...

  20. Safety Culture in Nuclear Installations

    Broader source: Energy.gov [DOE]

    IAEA-TECDOC-1329 Safety Culture in Nuclear Installations, Guidance for use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002.

  1. Enhanced Control Installations.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    correctness. Title: Individual Permit, High Priority Sites, Examples of Enhanced Control Installations, Poster, Individual Permit for Storm Water, NPDES Permit No. NM0030759...

  2. CHP Installed Capacity Optimizer Software

    Energy Science and Technology Software Center (OSTI)

    2004-11-30

    The CHP Installed Capacity Optimizer is a Microsoft Excel spreadsheet application that determines the most economic amount of capacity of distributed generation and thermal utilization equipment (e.g., absorption chillers) to install for any user-defined set of load and cost data. Installing the optimum amount of capacity is critical to the life-cycle economic viability of a distributed generation/cooling heat and power (CHP) application. Using advanced optimization algorithms, the software accesses the loads, utility tariffs, equipment costs,more » etc., and provides to the user the most economic amount of system capacity to install.« less

  3. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  4. NREL and Army Validate Energy Savings for Net Zero Energy Installations -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL NREL and Army Validate Energy Savings for Net Zero Energy Installations Net Zero Energy Installations could save millions a year in energy costs October 27, 2014 The U.S. Army (Army) has partnered with the Energy Department's National Renewable Energy Laboratory (NREL) to increase energy security through improved energy efficiency and optimized renewable energy strategies at nine installations in the Army's portfolio. If all nine of the Army Net Zero Energy Installation

  5. NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE).

  6. Laboratory Experiments on the Effects of Blade Strike from Hydrokinetic Energy Technologies on Larval and Juvenile Freshwater Fishes

    SciTech Connect (OSTI)

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2012-03-01

    There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HK projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.

  7. Benchmarking of Competitive Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory * National Renewable Energy Laboratory * ORNL Team Members - Steve Campbell, Chester Coomer - Andy Wereszczak, Materials Science and Technology Division Partners ...

  8. Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013

    Broader source: Energy.gov [DOE]

    During the reporting period (2009-13), DOE has developed a sharpened focus on technology transfer activities, with a broader definition and commitment to continuously improving the Department’s...

  9. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on installing turbulators on firetube boilers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  10. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers - Steam Tip Sheet #25

    SciTech Connect (OSTI)

    None

    2006-01-01

    This revised AMO tip sheet on installing turbulators on firetube boilers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  11. Consider Installing Turbulators on Two- and Three-Pass Firetube Boilers - Steam Tip Sheet #25

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing turbulators on firetube boilers provides how-to advice for improving the system using low-cost, proven practices and technologies.

  12. Laboratory Directed Research & Development (LDRD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Directed Research & Development National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  13. Net Zero Energy Installations (Presentation)

    SciTech Connect (OSTI)

    Booth, S.

    2012-05-01

    A net zero energy installation (NZEI) is one that produces as much energy from on-site renewable sources as it consumes. NZEI assessment provides a systematic approach to energy projects.

  14. Quadrennial Energy Review: Second Installment

    Broader source: Energy.gov [DOE]

    On April 21, 2015, the Quadrennial Energy Review (QER) Task Force released its first installment of the Quadrennial Energy Review report entitled, “Energy Transmission, Storage, and Distribution...

  15. Microhydro System Design and Installation

    Broader source: Energy.gov [DOE]

    This 1-1/2 day workshop will cover the basics of small scale hydro power with a field trip to local microhydro installation. Participants will learn about: site assessment techniques including the...

  16. Solar Installation Labor Market Analysis

    SciTech Connect (OSTI)

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  17. Magnet Girder Assembly and Installation

    ScienceCinema (OSTI)

    None

    2013-07-17

    It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

  18. New Eddy Correlation Systems Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 New Eddy Correlation Systems Installed New and improved eddy correlation (ECOR) systems are being installed at the SGP CART site. ECOR instrument mentor Mikhail Pekour assembled the systems from commercially available components and added custom computer programming to operate them. The new systems will add measurements of carbon dioxide flux to the usual ECOR measurements, which include fluxes of water vapor, heat, and momentum. Pekour selected modular components that Technical Contact: James

  19. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  20. National Laboratory Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these laboratories. Laboratory Name Idaho National Laboratory Greg Mines, Lead Manager Lawrence Berkeley National Laboratory Mack Kennedy, Lead Scientist Lawrence Livermore National Laboratory Jeff Roberts, Lead Scientist National Renewable Energy Laboratory Tom

  1. Sequential Linker Installation: Precise Placement of Functional Groups in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multivariate Metal-Organic Frameworks | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Sequential Linker Installation: Precise Placement of Functional Groups in Multivariate Metal-Organic Frameworks Previous Next List Yuan, Shuai; Lu, Weigang; Chen, Ying-Pin; Zhang, Qiang; Liu, Tian-Fu; Feng, Dawei; Wang, Xuan; Qin, Junsheng; Zhou, Hong-Cai, J. Am. Chem. Soc., 137, 3177-3180 (2015) DOI: 10.1021/ja512762r sequential linker installation Abstract: A unique

  2. Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

  3. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  4. Lawrence Berkeley National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    The solar power system installed at Lawrence Livermore National Laboratory (LLNL) is now ... Solar power purchase for DOE laboratories WASHINGTON D.C. -- The U.S. Department of ...

  5. Extra-Territorial Siting of Nuclear Installations

    SciTech Connect (OSTI)

    Shea, Thomas E.; Morris, Frederic A.

    2009-10-07

    Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/political frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.

  6. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  7. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  8. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  9. Projects | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Tool Mark Characterization Development of an AccuTOF-DART Database for Use by Forensic Laboratories Forensic Technology Center of Excellence MFRC Training Development &...

  10. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  11. Analysis of Bright Harvest Remote Analysis for Residential Solar Installations

    SciTech Connect (OSTI)

    Nangle, John; Simon, Joseph

    2015-06-17

    Bright Harvest provides remote shading analysis and design products for residential PV system installers. The National Renewable Energy Laboratory (NREL) through the NREL Commercialization Assistance Program, completed comparative assessments between on-site measurements and remotely calculated values to validate the accuracy of Bright Harvest’s remote shading and power generation.

  12. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  13. NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biopower and Waste-to-Energy Solutions Photo of a group of people in hard hats looking at biomass feedstock. NREL's biopower and waste-to-energy (WTE) expertise helps federal agencies, industry, communities, and military installations on projects that identify and implement biopower and WTE technologies and strategies that best meet their needs. NREL's biopower and WTE capabilities are among the ways that the laboratory advances implementation of market-ready technologies. Expertise and

  14. Monitoring SERC Technologies - Solar Hot Water | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Water Monitoring SERC Technologies - Solar Hot Water On October 27, 2011, Eliza Hotchkiss, an analyst at the National Renewable Energy Laboratory, presented a Webinar about Solar Hot Water systems and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: Database for State Incentives for Renewables and Efficiency NREL Solar Technology Analysis Models and Tools SunShot

  15. Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps Monitoring SERC Technologies -Geothermal/Ground Source Heat Pumps On Nov. 3, 2011, Dave Peterson, a Project Leader at the National Renewable Energy Laboratory, presented a Webinar about Geothermal/Ground Source Heat Pumps and how to properly monitor their installation. View the webinar presentation or read the transcript. More Information Some resources and tools mentioned in the presentation include: U.S.

  16. MAK Technologies | Open Energy Information

    Open Energy Info (EERE)

    MAK Technologies Jump to: navigation, search Name: MAK Technologies Place: Lebanon, New Jersey Zip: 8833 Sector: Solar Product: Designs and installs solar electric and solar...

  17. Quadrennial Energy Review: First Installment

    Broader source: Energy.gov [DOE]

    On April 21, 2015, the Quadrennial Energy Review (QER) Task Force released its first installment of the Quadrennial Energy Review report entitled, “Energy Transmission, Storage, and Distribution Infrastructure”. The first installment of the QER examines how to modernize our nation’s energy infrastructure to promote economic competitiveness, energy security and environmental responsibility, and is focused on energy transmission, storage, and distribution (TS&D), the networks of pipelines, wires, storage, waterways, railroads, and other facilities that form the backbone of our energy system. The QER seeks to identify vulnerabilities in the system and proposes major policy recommendations and investments to replace, expand, and modernize infrastructure where appropriate.

  18. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in...

  19. Optimizing Installation, Operation, and Maintenance at Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in the United States Optimizing Installation, Operation, and Maintenance at Offshore Wind Projects in ...

  20. Solar, Wind, Hydropower: Home Renewable Energy Installations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado ...

  1. Structural considerations for solar installers : an approach...

    Office of Scientific and Technical Information (OSTI)

    The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed ...

  2. Photovoltaic Systems Evaluation Laboratory (PSEL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National Solar ...

  3. Sandia Energy - Advanced Materials Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Battery Abuse Testing Laboratory Cylindrical Boiling Facility Distributed Energy Technology Lab Microsystems and Engineering Sciences Applications National...

  4. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Ramsey, James L., Jr.; Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  5. Aasgard subsea installation on schedule

    SciTech Connect (OSTI)

    Perdue, J.M.

    1998-09-01

    Statoil`s Aasgard A FPSO vessel is set to sail away from the Aker Stord yard on November 22, 1998, and construction of the Aasgard B semisubmersible gas platform has begun at the Daewoo yard in Korea. While Aasgard A and Aasgard B are receiving a lot of attention on land, the Aasgard subsea installation is quietly being readied for the big day.

  6. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  7. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  8. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  9. Infiniband cables installed | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infiniband cables installed Download original image « Back to galleryItem 8

  10. Oklahoma Tribe to Install Solar Roof

    Broader source: Energy.gov [DOE]

    An Indian tribe in Anadarko, Oklahoma is installing solar panel roofs on two tribal government buildings.

  11. Engineering report for simulated riser installation

    SciTech Connect (OSTI)

    Brevick, C.H., Westinghouse Hanford

    1996-05-09

    The simulated riser installation field tests demonstrated that new access ports (risers) can be installed safely, quickly, and economically in the concrete domes of existing underground single- shell waste storage tanks by utilizing proven rotary drilling equipment and vacuum excavation techniques. The new riser installation will seal against water intrusion, provide as table riser anchored to the tank dome, and be installed in accordance with ALARA principles. The information contained in the report will apply to actual riser installation activity in the future.

  12. LED system performance in a trial installation - one year later: Yuma border patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, Andrea M.; Davis, Robert G.

    2015-04-01

    The Yuma Sector Border Patrol Area is a high temperature and high solar radiation environment, providing an opportunity for the U.S. Department of Energy (DOE) to study thermal effects on outdoor light-emitting diode (LED) luminaires outside of the testing laboratory. Six LED luminaires were installed on three poles on the U.S.- Mexico border in February 2014 as part of a trial installation, which was detailed in a prior GATEWAY report.1 The initial trial installation was intended as a short - term test of six luminaires installed on three poles before proceeding with the complete installation of over 400 luminaires. Unexpected delays in the full installation have prevented the detailed evaluations initially planned, but the six installed LED luminaires continue to be monitored, and over the past year illuminance measurements were recorded initially in February 2014 and again in September 2014 at about 2500 hours of operation and in March 2015 at about 5000 hours of operation.

  13. Generic TriBITS PRoject, Build, Test, and Install Quick Reference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test, and Install Quick Reference Guide Ross Bartlett Oak Ridge National Laboratory CASL-U-2014-0075-000-a CASL-U-2014-0075-000-a Generic TriBITS PRoject, Build, Test, and ...

  14. 01-07-1998 - New Product Chemically Eliminates Asbestos in Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fireproofing | The Ames Laboratory 8 - New Product Chemically Eliminates Asbestos in Installed Fireproofing Document Number: NA Effective Date: 01/1998 File (public): PDF icon 01-07-1998_green_alert.pdf Lessons Learned Type: Green

  15. ITP Industrial Distributed Energy: Database of U.S. CHP Installations...

    Office of Environmental Management (EM)

    Database of U.S. CHP Installations Incorporating Prepared for: UT-Battelle, Oak Ridge National Laboratory sheet 1 of 5 Thermal Energy Storage (TES) andor Turbine Inlet Cooling ...

  16. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  17. SeaStar: Subsea cluster manifold system design and installation

    SciTech Connect (OSTI)

    Mason, P.G.T.; Upchurch, J.L.

    1996-12-31

    The SeaStar Cluster Manifold system was engineered as a low cost alternative to larger and more expensive completion template designs. Utilizing field-proven equipment and installation techniques, it was the first of its kind to be installed in the Gulf of Mexico. The Cluster Manifold system allows the connection of flowlines from adjacent satellite wells and numerous infield flowlines consisting of export, service, and methanol lines. With new technological advances, and a variety of flowline connection systems on the market today, deep water completions are being used with increasing frequency. Subsea operations are becoming more routine and installation times are being reduced. The SeaStar system was successfully installed in Garden Banks Block 70/71 in the Gulf of Mexico during the first quarter of 1995. Currently two 4 x 2-in. 10,000 psi lay-away trees are installed and connected to the manifold. Production is being processed at a Marathon platform in Vermilion Block 386B approximately 13.5 miles away from the subsea installation.

  18. Renewable Energy Opportunities at the Kanto Installations, Japan

    SciTech Connect (OSTI)

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-09-24

    This document provides an overview of renewable resource development potential at the U.S. Army installations in the Kanto region in Japan, which includes Camp Zama, Yokohama North Dock, Sagamihara Family Housing Area (SFHA), Sagami General Depot, and Akasaka Press Center. This effort focuses on grid-connected generation of electricity from renewable energy sources and also on ground source heat pumps for heating and cooling buildings. The effort was funded by the Huntsville Army Corps of Engineers, and includes the development of a methodology for renewable resource assessment at Army installations located on foreign soil. The methodology is documented in Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations. The site visit to the Kanto installations took place on April 5 and 6, 2010. At the current time, there are some renewable technologies that show economic potential. Because of siting restrictions and the small size of these installations, development of most renewable energy technologies will likely be limited to Camp Zama. Project feasibility is based on installation-specific resource availability and energy costs and projections based on accepted life-cycle cost methods. Development of any renewable energy project will be challenging, as it will require investigation into existing contractual obligations, new contracts that could be developed, the legality of certain partnerships, and available financing avenues, which involves the U.S. Forces Japan (USFJ), the Government of Japan (GOJ), and a number of other parties on both sides. The Army will not be able to implement a project without involvement and approval from the other services and multiple levels of Japanese government. However, implementation of renewable energy projects could be an attractive method for GOJ to reduce greenhouse gas emissions and lower annual utility payments to USFJ. This report recommends projects to pursue and offers approaches to use. The most promising opportunities include waste-to-energy and ground source heat pumps. Solar photovoltaics (PV) may also prove successful. Other resources were found to be insufficient on the Kanto installations.

  19. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  20. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  1. Automated solar collector installation design

    DOE Patents [OSTI]

    Wayne, Gary; Frumkin, Alexander; Zaydman, Michael; Lehman, Scott; Brenner, Jules

    2014-08-26

    Embodiments may include systems and methods to create and edit a representation of a worksite, to create various data objects, to classify such objects as various types of pre-defined "features" with attendant properties and layout constraints. As part of or in addition to classification, an embodiment may include systems and methods to create, associate, and edit intrinsic and extrinsic properties to these objects. A design engine may apply of design rules to the features described above to generate one or more solar collectors installation design alternatives, including generation of on-screen and/or paper representations of the physical layout or arrangement of the one or more design alternatives.

  2. Ames Lab 101: Technology Transfer

    ScienceCinema (OSTI)

    Covey, Debra

    2012-08-29

    Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

  3. Renewable Energy Assessment Methodology for Japanese OCONUS Army Installations

    SciTech Connect (OSTI)

    Solana, Amy E.; Horner, Jacob A.; Russo, Bryan J.; Gorrissen, Willy J.; Kora, Angela R.; Weimar, Mark R.; Hand, James R.; Orrell, Alice C.; Williamson, Jennifer L.

    2010-08-30

    Since 2005, Pacific Northwest National Laboratory (PNNL) has been asked by Installation Management Command (IMCOM) to conduct strategic assessments at selected US Army installations of the potential use of renewable energy resources, including solar, wind, geothermal, biomass, waste, and ground source heat pumps (GSHPs). IMCOM has the same economic, security, and legal drivers to develop alternative, renewable energy resources overseas as it has for installations located in the US. The approach for continental US (CONUS) studies has been to use known, US-based renewable resource characterizations and information sources coupled with local, site-specific sources and interviews. However, the extent to which this sort of data might be available for outside the continental US (OCONUS) sites was unknown. An assessment at Camp Zama, Japan was completed as a trial to test the applicability of the CONUS methodology at OCONUS installations. It was found that, with some help from Camp Zama personnel in translating and locating a few Japanese sources, there was relatively little difficulty in finding sources that should provide a solid basis for conducting an assessment of comparable depth to those conducted for US installations. Project implementation will likely be more of a challenge, but the feasibility analysis will be able to use the same basic steps, with some adjusted inputs, as PNNLs established renewable resource assessment methodology.

  4. COMPREHENSIVE DIAGNOSTIC AND IMPROVEMENT TOOLS FOR HVAC-SYSTEM INSTALLATIONS IN LIGHT COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Abram Conant; Mark Modera; Joe Pira; John Proctor; Mike Gebbie

    2004-10-31

    Proctor Engineering Group, Ltd. (PEG) and Carrier-Aeroseal LLP performed an investigation of opportunities for improving air conditioning and heating system performance in existing light commercial buildings. Comprehensive diagnostic and improvement tools were created to address equipment performance parameters (including airflow, refrigerant charge, and economizer operation), duct-system performance (including duct leakage, zonal flows and thermal-energy delivery), and combustion appliance safety within these buildings. This investigation, sponsored by the National Energy Technology Laboratory, a division of the U.S. Department of Energy, involved collaboration between PEG and Aeroseal in order to refine three technologies previously developed for the residential market: (1) an aerosol-based duct sealing technology that allows the ducts to be sealed remotely (i.e., without removing the ceiling tiles), (2) a computer-driven diagnostic and improvement-tracking tool for residential duct installations, and (3) an integrated diagnosis verification and customer satisfaction system utilizing a combined computer/human expert system for HVAC performance. Prior to this work the aerosol-sealing technology was virtually untested in the light commercial sector--mostly because the savings potential and practicality of this or any other type of duct sealing had not been documented. Based upon the field experiences of PEG and Aeroseal, the overall product was tailored to suit the skill sets of typical HVAC-contractor personnel.

  5. Review of CHP Technologies, October 1999

    Broader source: Energy.gov [DOE]

    This report describes the leading CHP technologies, their efficiency, size, cost to install and maintain, fuels and emission characteristics.

  6. Cray to Install Cascade System at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System at NERSC Cray to Install Cascade System at NERSC June 27, 2012 by Richard Gerber Cray will install a next-generation supercomputer code-named "Cascade" and a...

  7. File:Install.pdf | Open Energy Information

    Open Energy Info (EERE)

    Install.pdf Jump to: navigation, search File File history File usage File:Install.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Full resolution...

  8. Worker Safety and Health Enforcement Letter issued to Los Alamos National Security, LLC, related to Worker Beryllium Exposure during Machining at the Los Alamos National Laboratorys Beryllium Technology Facility, May 29, 2013 (WEL-2013-01)

    Energy Savers [EERE]

    29, 2013 Dr. Charles F. McMillan, President Los Alamos National Security, LLC Los Alamos National Laboratory Mailstop A 100, Drop Point 03140071S Bikini Atoll Road, TA-3 Los Alamos, New Mexico 87454 WEL-2013-01 Dear Dr. McMillan: The Office of Health, Safety and Security's Office of Enforcement and Oversight evaluated the circumstances surrounding a work evolution performed at Los Alamos National Laboratory (LANL) Technical Area 3, Building 141, Beryllium Technology Facility (BTF), on July 11,

  9. EERE Success Story-Plug and Play: Purchase, Install, and Connect

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Power in Hours | Department of Energy Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours EERE Success Story-Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours March 16, 2015 - 5:58pm Addthis Fraunhofer CSE demonstrates Plug and Play PV System installation and commissioning in just 75 minutes at the Massachusetts Clean Energy Center’s Wind Technology Testing Center. Photo Credit: Fraunhofer CSE Fraunhofer CSE

  10. WINDExchange: U.S. Installed Wind Capacity

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of June 30, 2015, 67,870 megawatts have been installed. Alaska, 62 megawatts; Hawaii,

  11. NREL Job Task Analysis: Retrofit Installer Technician

    Broader source: Energy.gov [DOE]

    A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

  12. Carpe Diem: Install Insulated Roman Shades

    Broader source: Energy.gov [DOE]

    As I mentioned in yesterday's blog, I had insulated window quilts installed on most of my home's windows.

  13. Los Alamos National Laboratory - Chromium | Department of Energy

    Office of Environmental Management (EM)

    Laboratory - Chromium January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report InstallationName, State: Los Alamos National...

  14. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect (OSTI)

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  15. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as part of its spinout MG Fuels' integrated biomass-to-biofuel conversion process. ... site, leveraging an ultra-high-efficiency ceramic engine being developed by CogniTek. ...

  16. National Energy Technology Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal ... NETL supports DOE's mission to advance the national, economic, and energy security of the ...

  17. Laboratory Directed Research and Development - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2C, Laboratory Directed Research and Development by Russell Ames Functional areas: Energy Research & Technology To establish Department of Energy (DOE) requirements for laboratory...

  18. Sandia National Laboratories: Doing Business with Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on photovoltaics, concentrating solar power, systems integration, technology to ... Princeton Plasma Physics Laboratory at Princeton, New Jersey Sandia National Laboratories at ...

  19. Heather M. Connaway | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory. Previous work experience includes graduate student research at the Massachusetts Institute of Technology, and internships with Argonne National Laboratory, Oak...

  20. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Tool 4 References 4.1 References Overview "Oak Ridge National Laboratory (ORNL) is a science and technology laboratory managed for the United States Department of Energy by...

  1. Preliminary assessment report for Fort Jacob F. Wolters, Installation 48555, Mineral Wells, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard (TXARNG) property near Mineral Wells, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Wolters property, the requirement of the Department of Defense Installation Restoration Program.

  2. Preliminary assessment report for Fort Custer Training Center, Installation 26035, Augusta, Michigan. Installation Restoration Program

    SciTech Connect (OSTI)

    Flaim, S.; Krokosz, M.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Michigan Army National Guard property near Augusta, Michigan. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort Custer Training Center, phase I of the Department of Defense Installation Restoration Program. The environmentally significant operations associated with the property are (1) storage of hazardous materials and hazardous waste, (2) storage and dispensing of fuel, (3) washing of vehicles and equipment, and (4) weapons training ranges that may have accumulated lead.

  3. Preliminary assessment report for Camp Swift Military Reservation, Installation 48070, Bastrop County, Texas. Installation Restoration Program

    SciTech Connect (OSTI)

    Dennis, C.B.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Texas Army National Guard property in Bastrop County, Texas. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Camp Swift property, the requirement of the Department of Defense Installation Restoration Program (IRP). The review of both historical and current practices at the property indicated that the activities at Camp Swift include no operations considered to have an adverse impact to the environment. The recommendation, therefore, is that no further IRP action is necessary at this property.

  4. Preliminary assessment report for Waiawa Gulch, Installation 15080, Pearl City, Oahu, Hawaii. Installation Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Hawaii Army National Guard (HIARNG) property near Pearl City, Oahu, Hawaii. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Waiawa Gulch property, phase I of the Department of Defense Installation Restoration Program (IRP).

  5. Field installation proves coiled tubing ESP completions successful

    SciTech Connect (OSTI)

    Tovar, J.J.; Head, P.; Jordan, R.

    1995-06-01

    Coiled tubing (CT) technology has contributed new and innovative solutions for wells using electrical submersible pumps (ESP). A CT-ESP deployment system was developed as part of a joint industry project to take advantage of this new technology. Ten oil and service companies and the EEC, under the Thermie program, participated in its development. Two main areas were identified to introduce these innovations. The first was deployment and well control. This area has a great impact on the safety and operational aspects of installing and servicing ESPs. The second is cost. As ESPs are considered for new field developments and recompletion of old fields, installation and workover costs play a major role in the selection of completion alternatives. One of the main limitations of ESPs in the past has been the economics of installation and uncertainty about pump life. With focus in these two major areas, a system was successfully produced that offers considerable advantages over existing technologies. The reduction in rig time and equipment cost makes this alternative very attractive for areas where technical and economic obstacles such as live well deployment and high operating cost limit the use of ESP technology. Two field tests have been carried successfully during the development of this system.

  6. Industrial Solar Technology Corp | Open Energy Information

    Open Energy Info (EERE)

    Solar Technology Corp Jump to: navigation, search Name: Industrial Solar Technology Corp Place: Golden, Colorado Zip: CO 80403-1 Product: IST designs, manufactures, installs and...

  7. Austrian Enviro Technologies | Open Energy Information

    Open Energy Info (EERE)

    A-2372 Product: Austria and Spain-based PV system installer and manufacturer of gasification technology. References: Austrian Enviro Technologies1 This article is a stub. You...

  8. Nanophotonics at Sandia National Laboratories.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert

    2008-10-01

    Sandia National Laboratories is leveraging the extensive CMOS, MEMS, compound semiconductor, and nanotechnology fabrication and test resources at Sandia National Laboratories to explore new science and technology in photonic crystals, plasmonics, metamaterials, and silicon photonics.

  9. Ames Laboratory to lead new consortium to advance refrigeration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to lead new consortium to advance refrigeration technology Ames Laboratory will ... friendly and energy-efficient refrigeration technologies, sponsored by DOE's ...

  10. NETL Researcher Honored with 2013 Federal Laboratory Consortium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    King of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development for his...

  11. Smart Grid Technology Gives Small Business New Light | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Gives Small Business New Light Smart Grid Technology Gives Small Business New Light September 21, 2011 - 3:58pm Addthis Smart grid technology installations provided not ...

  12. Enhanced Control Installations.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    680 Approved for public release; distribution is unlimited. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this

  13. Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008

    SciTech Connect (OSTI)

    Barbose, Galen L; Wiser, Ryan; Peterman, Carla; Darghouth, Naim

    2009-10-05

    Installations of solar photovoltaic (PV) systems have been growing at a rapid pace in recent years. In 2008, 5,948 MW of PV was installed globally, up from 2,826 MW in 2007, and was dominated by grid-connected applications. The United States was the world's third largest PV market in terms of annual capacity additions in 2008, behind Spain and Germany; 335 MW of PV was added in the U.S. in 2008, 293 MW of which came in the form of grid-connected installations. Despite the significant year-on-year growth, however, the share of global and U.S. electricity supply met with PV remains small, and annual PV additions are currently modest in the context of the overall electric system. The market for PV in the U.S. is driven by national, state, and local government incentives, including up-front cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and Federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy, and by the positive attributes of PV - modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the location of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. To address this need, Lawrence Berkeley National Laboratory initiated a report series focused on describing trends in the installed cost of grid-connected PV systems in the U.S. The present report, the second in the series, describes installed cost trends from 1998 through 2008. The analysis is based on project-level cost data from more than 52,000 residential and non-residential PV systems in the U.S., all of which are installed at end-use customer facilities (herein referred to as 'customer-sited' systems). The combined capacity of systems in the data sample totals 566 MW, equal to 71% of all grid-connected PV capacity installed in the U.S. through 2008, representing the most comprehensive source of installed PV cost data for the U.S.9 The report also briefly compares recent PV installed costs in the U.S. to those in Germany and Japan. Finally, it should be noted that the analysis presented here focuses on descriptive trends in the underlying data, and is primarily summarized in tabular and graphical form; later analysis may explore some of these trends with more-sophisticated statistical techniques. The report begins with a summary of the data collection methodology and resultant dataset (Section 2). The primary findings of the analysis are presented in Section 3, which describes trends in installed costs prior to receipt of any financial incentives: over time and by system size, component, state, customer segment (residential vs. commercial vs. public-sector vs. non-profit), application (new construction vs. retrofit), and technology type (building-integrated vs. rack-mounted, crystalline silicon vs. thin-film, and tracking vs. rack-mounted). Section 4 presents additional findings related to trends in PV incentive levels over time and among states (focusing specifically on state and utility incentive programs as well as state and Federal tax credits), and trends in the net installed cost paid by system owners after receipt of such incentives. Brief conclusions are offered in the final section.

  14. Tracking the Sun III; The Installed Cost of Photovoltaics in the United States from 1998-2009

    SciTech Connect (OSTI)

    Barbose, Galen; Darghouth, Naim; Wiser, Ryan

    2010-12-13

    Installations of solar photovoltaic (PV) systems have been growing at a rapid pace in recent years. In 2009, approximately 7,500 megawatts (MW) of PV were installed globally, up from approximately 6,000 MW in 2008, consisting primarily of grid-connected applications. With 335 MW of grid-connected PV capacity added in 2009, the United States was the world's fourth largest PV market in 2009, behind Germany, Italy, and Japan. The market for PV in the United States is driven by national, state, and local government incentives, including up-front cash rebates, production-based incentives, requirements that electricity suppliers purchase a certain amount of solar energy, and federal and state tax benefits. These programs are, in part, motivated by the popular appeal of solar energy, and by the positive attributes of PV - modest environmental impacts, avoidance of fuel price risks, coincidence with peak electrical demand, and the possible deployment of PV at the point of use. Given the relatively high cost of PV, however, a key goal of these policies is to encourage cost reductions over time. Therefore, as policy incentives have become more significant and as PV deployment has accelerated, so too has the desire to track the installed cost of PV systems over time, by system characteristics, by system location, and by component. Despite the significant year-on-year growth, however, the share of global and U.S. electricity supply met with PV remains small, and annual PV additions are currently modest in the context of the overall electric system. To address this need, Lawrence Berkeley National Laboratory initiated a report series focused on describing trends in the installed cost of grid-connected PV systems in the United States. The present report, the third in the series, describes installed cost trends from 1998 through 2009, and provides preliminary cost data for systems installed in 2010. The analysis is based on project-level cost data from approximately 78,000 residential and non-residential PV systems in the U.S., all of which are installed at end-use customer facilities (herein referred to as 'customer-sited' systems). The combined capacity of systems in the data sample totals 874 MW, equal to 70% of all grid-connected PV capacity installed in the United States through 2009 and representing one of the most comprehensive sources of installed PV cost data for the U.S. The report also briefly compares recent PV installed costs in the United States to those in Germany and Japan. Finally, it should be noted that the analysis presented here focuses on descriptive trends in the underlying data, serving primarily to summarize the data in tabular and graphical form; later analysis may explore some of these trends with more-sophisticated statistical techniques. The report begins with a summary of the data collection methodology and resultant dataset (Section 2). The primary findings of the analysis are presented in Section 3, which describes trends in installed costs prior to receipt of any financial incentives: over time and by system size, component, state, system ownership type (customer-owned vs. third party-owned), host customer segment (residential vs. commercial vs. public-sector vs. non-profit), application (new construction vs. retrofit), and technology type (building-integrated vs. rack-mounted, crystalline silicon vs. thin-film, and tracking vs. fixed-axis). Section 4 presents additional findings related to trends in PV incentive levels over time and among states (focusing specifically on state and utility incentive programs as well as state and federal tax credits), and trends in the net installed cost paid by system owners after receipt of such incentives. Brief conclusions are offered in the final section, and several appendices provide additional details on the analysis methodology and additional tabular summaries of the data.

  15. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Install Removable Insulation on Valves and Fittings - Steam Tip Sheet #17

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing removable insulation on valves and fittings provides how-to advice for improving the system using low-cost, proven practices and technologies.

  17. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators - Steam Tip Sheet #22

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on installing high-pressure boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  18. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way. Together, Los Alamos National Laboratory (LANL) and EMC, are enhancing, designing, building, testing and deploying new cutting-edge technologies in an effort to meet some of...

  19. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect (OSTI)

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  20. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  1. Key Steps | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the continuing scientific and technological success of the Laboratory. It is our intention that your tenure at Argonne be as productive and rewarding as possible. Your goals...

  2. NATIONAL RENEWABLE ENERGY LABORATORY Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NATIONAL RENEWABLE ENERGY LABORATORY Outline 3 * Water scarcity and resources in the US * Desalination technologies * "GDsalt" decision support tool * Project status and ...

  3. Science Undergraduate Laboratory Internships (SULI)

    Broader source: Energy.gov [DOE]

    The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM) careers by providing research...

  4. FORGE is an EGS laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FORGE is an EGS laboratory where the subsurface scientific community can test and improve new technologies and techniques for creating and sustaining next-generation geothermal ...

  5. Licensing Oppurtunities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oppurtunities The Ames Laboratory's Contract allows for Privately Funded Technology Transfer (PFTT). PFTT is a Contractor activity, which allows ISU to perform patenting and...

  6. Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Technology Facility Vehicle Technologies Office Merit Review 2014: Carbon Fiber Technology Facility Presentation given by Oak Ridge National Laboratory at 2014 DOE ...

  7. Annual Report on Technology Transfer and Related Technology Partnering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities FY 2009-2013 Annual Report on Technology ...

  8. Los Alamos National Laboratory A National Science Laboratory (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Los Alamos National Laboratory A National Science Laboratory Citation Details In-Document Search Title: Los Alamos National Laboratory A National Science Laboratory Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national

  9. JSA Technology | Open Energy Information

    Open Energy Info (EERE)

    JSA Technology specializes in the design, execution, and installation of turnkey photovoltaic solar plants for use by individuals, professionals, and public authorities....

  10. Community Wind Handbook/Find an Installer | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Find an Installer Homeowners, ranchers, and small businesses can install wind...

  11. DOE National Laboratory Releases Annual Accomplishments Report

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory has released its annual accomplishments report, highlighting breakthroughs in research and technology development to address the nation's energy, economic, and environmental challenges.

  12. National Laboratory Impacts and Developments

    Broader source: Energy.gov [DOE]

    The Technology-to-Market program supports U.S. Department of Energy (DOE) initiatives that make access to laboratory-developed technologies and capabilities easier and increase partnerships with the clean energy private sector.

  13. ADA Requirements for Workplace Charging Installation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    individuals with disabilities. This Guidance provides best practices, special design guidelines and requirements for installing plug-in electric vehicle charging stations in ...

  14. Better Buildings Neighborhood Program Data Installed Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Neighborhood Program Data Installed Measures Building project data for 75,110 single-family homes upgraded between July 1, 2010, and September 30, 2013, are ...

  15. Quadrennial Energy Review Second Installment Electricity: Generation...

    Energy Savers [EERE]

    Quadrennial Energy Review Second Installment Electricity: Generation to End-Use ... Ernest Moniz, United States Secretary of Energy As United States Secretary of Energy, Dr. ...

  16. Hawaii Well Construction & Pump Installation Standards Webpage...

    Open Energy Info (EERE)

    Standards Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Well Construction & Pump Installation Standards Webpage Abstract This webpage...

  17. Hawaii Well Construction & Pump Installation Standards | Open...

    Open Energy Info (EERE)

    Handbook Abstract This document provides an overview of the well construction and pump installation standards in Hawaii. Author State of Hawaii Commission on Water Resource...

  18. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  19. Science Undergraduate Laboratory Internships (SULI) Homepage...

    Office of Science (SC) Website

    The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM) careers by ...

  20. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements Agreements We have transferred technology to the commercial sector for more than three decades, and make it possible for partners to access our world-class science, people, and infrastructure. Sandia National Laboratories has a robust technology transfer mission that is facilitated by several types of agreements. In compliance with the various statutory and administrative requirements, Sandia provides its expertise, technology and capabilities for benefit of the United States economy

  1. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  2. Facility Energy Decision System (FEDS) Assessment Report for US Army Garrison, Japan - Honshu Installations

    SciTech Connect (OSTI)

    Kora, Angela R.; Brown, Daryl R.; Dixon, Douglas R.

    2010-03-09

    This report documents an assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Installation Management Command (IMCOM) Pacific Region Office (PARO). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at five U.S. Army Garrison-Japan (USAG-J) installations in the Honshu area, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings.

  3. WPN 93-5: Recommended Installation Standards for Mobile Homes

    Broader source: Energy.gov [DOE]

    To provide technical assistance to the states on recommended installation techniques for weatherization materials installed on mobile homes.

  4. Whole Algae Hydrothermal Liquefaction Technology Pathway Biddy...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAL-DERIVED BIOFUEL; HYDROCARBON FUEL; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy MICROALGAE;...

  5. Technology Development and Commercialization at Argonne | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Technology Development and Commercialization at Argonne Share Topic Operations Technology transfer

  6. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  7. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  8. Voluntary Protection Program Onsite Review, Advanced Technologies...

    Office of Environmental Management (EM)

    Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014 Voluntary Protection Program Onsite Review, Advanced Technologies and Laboratories, Inc., Hanford - Feb 2014...

  9. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  10. Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Science & Technology This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run

  11. Ombuds Program | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds Program The Ames Laboratory's Tech Transfer Ombuds Program is for anyone participating in the Ames Laboratory's complex collaborative R&D environment who may experience uncertainties or questions they describe as business concerns, problems or project-related ambiguities. Section 11 of the Technology Transfer Commercialization Act of 2000, Public Law 106-404 directs each USDOE National Laboratory to appoint a Tech Transfer Ombuds in order to: a) make the technology transfer process

  12. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  13. Perovskite solar technology shows quick energy returns | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Perovskite solar technology shows quick energy returns By Payal Marathe * July 17, 2015 Tweet EmailPrint Solar panels are an investment-not only in terms of money, but also energy. It takes energy to mine, process and purify raw materials, and then to manufacture and install the final product. Silicon-based panels, which dominate the market for solar power, usually need about two years to return this energy investment. But for technology made with perovskites-a class of materials

  14. Structural considerations for solar installers : an approach for small, simplified solar installations or retrofits.

    SciTech Connect (OSTI)

    Richards, Elizabeth H.; Schindel, Kay; Bosiljevac, Tom; Dwyer, Stephen F.; Lindau, William; Harper, Alan

    2011-12-01

    Structural Considerations for Solar Installers provides a comprehensive outline of structural considerations associated with simplified solar installations and recommends a set of best practices installers can follow when assessing such considerations. Information in the manual comes from engineering and solar experts as well as case studies. The objectives of the manual are to ensure safety and structural durability for rooftop solar installations and to potentially accelerate the permitting process by identifying and remedying structural issues prior to installation. The purpose of this document is to provide tools and guidelines for installers to help ensure that residential photovoltaic (PV) power systems are properly specified and installed with respect to the continuing structural integrity of the building.

  15. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  16. North Shore Gas- Single Family Direct Install

    Broader source: Energy.gov [DOE]

    Owners of single-family homes, condos, townhomes and two-flats may be eligible for a free installation of new programmable thermostats, pipe insulation, showerheads, Compact Fluorescent Bulbs (CFLs...

  17. Draft Environmental Assessment: Sand Point Wind Installation...

    Energy Savers [EERE]

    ... Runway 31 departures climb via 314 bearing from the Borland (HBT) NDBDME to 1,800 feet ... installation and testing of the wind turbines when they are under normal operation. ...

  18. Structural Code Considerations for Solar Rooftop Installations.

    SciTech Connect (OSTI)

    Dwyer, Stephen F.; Dwyer, Brian P.; Sanchez, Alfred

    2014-12-01

    Residential rooftop solar panel installations are limited in part by the high cost of structural related code requirements for field installation. Permitting solar installations is difficult because there is a belief among residential permitting authorities that typical residential rooftops may be structurally inadequate to support the additional load associated with a photovoltaic (PV) solar installation. Typical engineering methods utilized to calculate stresses on a roof structure involve simplifying assumptions that render a complex non-linear structure to a basic determinate beam. This method of analysis neglects the composite action of the entire roof structure, yielding a conservative analysis based on a rafter or top chord of a truss. Consequently, the analysis can result in an overly conservative structural analysis. A literature review was conducted to gain a better understanding of the conservative nature of the regulations and codes governing residential construction and the associated structural system calculations.

  19. Help Your Employer Install Electric Vehicle Charging

    Broader source: Energy.gov [DOE]

    Educate your employer about the benefits of installing plug-in electric vehicle (PEV) workplace charging. Use the resources below and the Plug-in Electric Vehicle (PEV) Handbook for Workplace...

  20. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  1. Laboratories and Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  2. Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory

    Office of Environmental Management (EM)

    NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 DOE/NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 ii CONTENTS ACRONYMS.............................................................................................................................................. vii 1. INTRODUCTION AND

  3. Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results

    SciTech Connect (OSTI)

    Petrie, T.W.; Childs, P.W.

    1997-02-01

    The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

  4. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  5. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Each year, Argonne National Laboratory and many of its world-class scientists and engineers are recognized for their outstanding talents and the innovative technologies they develop with their research teams and in association with industry partners. Argonne researchers have received or been recognized by: R&D 100 Awards: Each year, R&D Magazine recognizes the 100 most technologically significant new products of the last year. The competition has two purposes: to recognize

  6. Property:Technology Nameplate Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Modular Installation in a Grid Form Dozens of MW + MHK TechnologiesFloating anchored OTEC plant + The first technology demonstration ocean model is expected to be able to...

  7. Power Electronics and Balance of System Hardware Technologies

    Broader source: Energy.gov [DOE]

    DOE is targeting solar technology improvements related to power electronics and balance of system (BOS) hardware technologies to reduce the installed cost of solar photovoltaic (PV) electricity and...

  8. Shanghai Huiyang New Energy Technology Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Solar Product: China-based technology company to install turnkey solutions for solar and LED lighting systems. References: Shanghai Huiyang New Energy Technology Co Ltd1 This...

  9. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  10. International School of Innovative Technology for Cleaning the Environment, Ettore Majorana Centre for Scientific Culture: Erice, Sicily, Italy

    SciTech Connect (OSTI)

    Ragaini, R.C.

    1994-06-01

    The International School of Innovative Technology for Cleaning the Environment was founded at the Ettore Majorana Centre for Scientific Culture (EMCSC), the seat of the World Laboratory Mediterranean Branch, in 1989. The School primarily organizes and hosts training courses and advanced study courses addressing state-of-the-art technologies to clean the environment, minimize waste generation, prevent pollution, and identify strategies to choose environmentally resilient sites and processes for new industrial installations. The School also participates in facilitating multi-national research projects for developing countries under the auspices of the World Laboratory and other sponsoring agencies.

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  12. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007 - 2012; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hand, Maureen

    2015-06-15

    This presentation provides a summary of IEA Wind Task 26 report on Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007-2012

  13. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  14. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  15. Foldtrack Installation in C-110 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installation in C-110 Foldtrack Installation in C-110 Addthis Description Crews successfully installed a new and improved version of the Foldtrack into tank C-110, a single-shell tank with about 17,200 gallons of waste remaining

  16. SunShot Initiative Installs Solar Energy System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SunShot Initiative Installs Solar Energy System SunShot Initiative Installs Solar Energy System Addthis 1 of 10 SunShot Initiative team members install a solar energy system on a ...

  17. Fluid assisted installation of electrical cable accessories

    DOE Patents [OSTI]

    Mayer, Robert W.; Silva, Frank A.

    1977-01-01

    An electrical cable accessory includes a generally tubular member of elastomeric material which is to be installed by placement over a cylindrical surface to grip the cylindrical surface, when in appropriate assembled relation therewith, with a predetermined gripping force established by dilation of the tubular member, the installation being facilitated by introducing fluid under pressure, through means provided in the tubular member, between the tubular member and the cylindrical surface, and simultaneously impeding the escape of the fluid under pressure from between the tubular member and the cylindrical surface by means adjacent one of the ends of the tubular member to cause dilation of the tubular member and establish a fluid layer between the tubular member and the cylindrical surface, thereby reducing the gripping force during installation.

  18. High Impact Technology Catalyst | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst High Impact Technology Catalyst High Impact Technology Catalyst Lead Performers: -- Argonne National Laboratory (ANL) - Lemont, IL -- Lawrence Berkeley National Laboratory (LBNL) - Berkeley, CA -- National Renewable Energy Laboratory (NREL) - Golden, CO -- Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN -- Pacific Northwest National Laboratory (PNNL) - Richland, WA Project Term: Ongoing Program Funding Type: Direct Lab Funding Program Webpage: High Impact Technology Catalyst

  19. LOS ALAMOS, New Mexico, July 11, 2011- Los Alamos National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    erosion control work July 11, 2011 Waste removed from canyon bottom LOS ALAMOS, New Mexico, July 11, 2011- Los Alamos National Laboratory work crews over the weekend installed...

  20. Sandia National Laboratories' Readiness in Technical Base and Facilities Program

    Energy Savers [EERE]

    Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories | July 2009 Aerial View Sandia National Laboratories | July 2009 Aerial View Sandia National Laboratories' (SNL) primary mission is to provide scientific and technology support to national security programs. SNL focuses on developing technologies to sustain, modernize, and protect the nuclear arsenal; prevent the spread of weapons of mass destruction; defend against terrorism; protect the national

  1. Alternative Fuels Data Center: Installing New E85 Equipment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data

  2. Development of a coiled tubing cable installation system

    SciTech Connect (OSTI)

    Newman, K.R.; Haver, N.A.; Stone, L.R.

    1995-12-31

    A system has been developed which installs and de-installs an electric wireline cable in coiled tubing (CT) while the CT is still on the reel. This cable installation system reduces the cost of a cable installation significantly compared with previous installation methods. This paper discusses the need for such a system, the theory used to develop this system, the various concepts considered, the system that was developed and test installation cases.

  3. Floodplain Assessment for Installation of a Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility Floodplain Assessment ...

  4. DOE-DOD Emergency Backup Power Fuel Cell Installations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-DOD Emergency Backup Power Fuel Cell Installations DOE-DOD Emergency Backup Power Fuel Cell Installations Ths fact sheet describes a collaboration between the departments of ...

  5. Study Guide for Photovoltaic System Installers and Sample Examination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Study Guide for Photovoltaic System Installers and Sample Examination Questions Study Guide for Photovoltaic System Installers and Sample Examination ...

  6. Energy Secretary Chu Announces Five Million Smart Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Five Million Smart Meters Installed Nationwide as Part of Grid Modernization Effort Energy Secretary Chu Announces Five Million Smart Meters Installed Nationwide as Part of Grid ...

  7. Five Million Smart Meters Installed Nationwide is Just the Beginning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress Five Million Smart Meters Installed Nationwide is Just the Beginning of Smart Grid Progress ...

  8. Secretary Chu Announces Two Million Smart Grid Meters Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million Smart Grid Meters Installed Nationwide Secretary Chu Announces Two Million Smart Grid Meters Installed Nationwide August 31, 2010 - 12:00am Addthis Columbus, OH - At an ...

  9. Utah Underground Storage Tank Installation Permit | Open Energy...

    Open Energy Info (EERE)

    Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type Application...

  10. U.S. Installation, Operation, and Performance Standards for Microturbi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Installation, Operation, and Performance Standards for Microturbine Generator Sets, August 2000 U.S. Installation, Operation, and Performance Standards for Microturbine Generator ...

  11. Building America Expert Meeting: Achieving the Best Installed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieving the Best Installed Performance from High-Efficiency Residential Gas Furnaces Building America Expert Meeting: Achieving the Best Installed Performance from High-Efficiency ...

  12. Property:Installed Capacity (MW) | Open Energy Information

    Open Energy Info (EERE)

    Installed Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:Insta...

  13. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct ...

  14. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  15. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork You are ...

  16. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork Germicidal ...

  17. Defining the Effectiveness of UV Lamps Installed in Circulating...

    Office of Scientific and Technical Information (OSTI)

    Installed in Circulating Air Ductwork Citation Details In-Document Search Title: Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork Ultraviolet; UV; ...

  18. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  19. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  20. Technology Application R&D

    Broader source: Energy.gov [DOE]

    Technology application R&D projects monitor SSL technology advances and provide laboratory and field evaluations of emerging products. Impartial, trusted analysis from DOE identifies and...

  1. Jinzhou Boyang PV Technology | Open Energy Information

    Open Energy Info (EERE)

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  2. Photon Power Technologies PPT | Open Energy Information

    Open Energy Info (EERE)

    PPT Jump to: navigation, search Name: Photon Power Technologies (PPT) Place: Ecully, France Product: French PV system installer for residential and commercial systems. Coordinates:...

  3. Renewable Technologies Inc RTI | Open Energy Information

    Open Energy Info (EERE)

    search Name: Renewable Technologies Inc (RTI) Place: California Zip: 95685 Product: Photovoltaic systems design, engineering and installation firm, with several registered...

  4. Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd |...

    Open Energy Info (EERE)

    Sector: Solar Product: Mainly engages in the research, production, sale, installing, maintenance of solar technology and integration of energy-saving engineering. Coordinates:...

  5. WIND AND WATER POWER TECHNOLOGIES OFFICE

    Broader source: Energy.gov (indexed) [DOE]

    available annual report summarizing key trends in the U.S. wind power market, with a ... 3 Report Contents * Installation trends * Industry trends * Technology trends * ...

  6. Advanced Solar Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment. References: Advanced Solar Technologies Inc1 This...

  7. Workplace Charging Challenge Partner: Argonne National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Workplace Charging Challenge Partner: Argonne National Laboratory Joined the Challenge: June 2014 Headquarters: Argonne, IL Charging Location: Argonne, IL Domestic Employees: 3,400 Argonne National Laboratory is a multidisciplinary science and engineering research center where researchers work to address vital national challenges in clean energy, environment, technology and

  8. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  9. Matching National Laboratory Needs with Energy Efficient Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Needs with Energy Efficient Fuel Cells Matching National Laboratory Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy ...

  10. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 14 15 Technology Transfer 2011-2012 Progress Report Technology Transfer 2011-2012 Progress Report In 2011, The National Institutes of Health awarded a five-year Models of Infectious Disease Agent Study (MIDAS) grant to a team of researchers from Los Alamos National Laboratory (LANL) and Tulane University. This team, lead by principal investigator Sara Del Valle, connects social media and epidemiological research in an attempt to predict people's social behavior and

  11. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon-Capture Technologies | Department of Energy NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies April 2, 2014 - 9:31am Addthis NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies Check out NETL's latest video on CCSI. In 2011, the Office of Fossil Energy's National Energy Technology Laboratory (NETL)

  12. Transforming PV Installations Toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV insTallaTions Toward disPaTchable, schedulable energy soluTions MIChAEl MIllS-PrICE, SEGIS-AC ProGrAM MAnAGEr, AE SolAr EnErGy A B C N SATCON518kw1 B2+2 Cap Bank ...

  13. Electron circuits: semiconductor laser multiple use installation

    SciTech Connect (OSTI)

    Zhou, F.; Fan, J.; Weng, D.

    1983-04-01

    A light source for a multiple use installation using a same matter junction or different matter junction GaAlAs/GaAs semiconductor laser, which has the advantages of high interference resistance, long transmission distance (tens to hundreds of meters), good security, and low power consumption in addition, the controller of the light source has multiple usages of alarming, switching and counting is presented. The multiple use installation can be used in control of breaking warps and counting on roving waste machines, warping machines and silk weaving machines in the textile industry long distance speed measurement, alarming and counting in machinery, electricity and chemical industries and alarming and control of water levels in reservoirs, rivers and water towers, as well as blockade alarming and control of important divisions. This multiple use installation is composed of two parts a laser emitter and a receiving device. The former component is used to produce the laser after the receiver receives the laser, the installation completes operations of alarming, switching and counting.

  14. Breakthroughs from the Ames Laboratory | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breakthroughs from the Ames Laboratory Image The Ames Laboratory has been changing and improving the lives of Americans for more than 60 years. As the Breakthroughs fact sheet attests, Ames Lab scientific discoveries have led to new technologies that have impacted our lives in many ways

  15. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  16. Multijunction Photovoltaic Technologies for High-Performance Concentrators

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-01-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  17. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect (OSTI)

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  18. Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2006-05-01

    Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

  19. Monte Carlo Simulation Tool Installation and Operation Guide

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.

    2013-09-02

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.

  20. WIST Brochure | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIST Brochure Argonne's Women in Science and Technology (WIST) program was created in 1990 to recruit, retain, and promote women in an effort to diversify and strengthen the Laboratory's scientific workforce. The program aims to promote the success of women in scientific and technical positions at Argonne, and outside as well. Through WIST, the Laboratory strives to encourage and develop the full potential of women in science and technology. PDF icon WIST_Brochure

  1. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Technology Development and Commercialization (TDC) is a division of the U.S. Department of Energy's (DOE's) Argonne National Laboratory, a leading scientific and engineering center that conducts energy, environmental, national security, and technology research and development. TDC forges productive R&D partnerships and collaborations with government agencies and private-sector companies, including small businesses. It is the gateway into the laboratory for organizations that want to

  2. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  3. Ceilings and Attics: Install Insulation and Provide Ventilation

    SciTech Connect (OSTI)

    2000-02-01

    This document provides guidelines for installing insulation and managing ventilation through your attic.

  4. Sandia Science & Technology Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories. More Info Liquid Common SS&TP welcomes Liquid Common Liquid Common is a digital marketing company now located in the Park. More Info Sandia Science & Technology...

  5. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for - 2 - Science, Technology, and Engineering (PADSTE). Bishop has been acting...

  6. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  7. PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.

    SciTech Connect (OSTI)

    MCDONALD, R.J.

    2001-04-30

    BNL is proud to acknowledge all of our 2001 sponsors, with their help and support this has correctly become an oilheat industry conference. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole and to celebrate the beginning of the National Oilheat Research Alliance. This meeting is the fourteenth oil heat industry technology conference to be held since 1984 and the first under a new name, NORA, the National Oilheat research Alliance, and the very first in the new century. The conference is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program. The Oilheat Research Program at BNL is under the newly assigned program management at the Office of Power Technology within the US DOE. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation. Seventeen technical presentations will be made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Europe, including: (1) High-flow Fan Atomization Burner (HFAB) Development and Field Trials; (2) Field Test of the Flame Quality Monitor; (3) NORA/DOE/ BNL Oilheat Five-Year Research Plan; (4) US Department of Energy's Building Cooling Heating and Power for Buildings Program; (5) NORA Education Committee Report; (6) Marketing Oil Heat in Europe: A study in contrasts; (7) Diagnosing Burner Problems with Recorded Data ''The solution to any problem is obvious.. . once it is found''; (8) Variable Firing Rate Oil Burner Using Pulse Fuel Flow Control; (9) Oil-Fired Hydronic Heating Appliances with Reduced Electric Power Consumption and Battery Backup; (10) Peep Into The Nozzle Using Computational Fluid Dynamics; (11) Results of a Parametric Investigation of Spray Characteristics Using a HFAB Type Atomizer; (12) Progression and Improvements in the Design of Blue-flame Oil Burners; (13) Biodiesel as a Heating Oil Blend Stock; (14) Lab Tests of Biodiesel Blends in Residential Heating Equipment; (15) Alternative Fuel Oils and the Effect of Selected Properties in Combustion; (16) New York State Premium Low-Sulfur Heating Fuel Marketplace Demonstration; and (17)The Need for a New Fuel Oil Stability Specification.

  8. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Office of Scientific and Technical Information (OSTI)

    MICROALGAE; ALGAL BIOMASS; HYDROCARBON BIOFUELS; BIOMASS TECHNOLOGIES OFFICE; NATIONAL RENEWABLE ENERGY LABORATORY; PACIFIC NORTHWEST NATIONAL LABORATORY; Bioenergy BIOMASS...

  9. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. ...

  10. Work with Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratories is to promote the economic interests of the United States by facilitating development, transfer, and use of federally owned or originated technology to industry for...

  11. Driving the Future | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driving the Future At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help...

  12. Sandia National Laboratories: News: Publications: Lab Accomplishments...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories to advance their technologies. iBeam is developing new LED products for the lighting, display and wearable electronics industries. (Photo by Sandra Valdez) ...

  13. What We are Building | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What We are Building The Ames Laboratory Research involves Integrating Materials Technology, Engineering, Education, and Research (i-MaTTER). We bring value for the nation,...

  14. Sandia National Laboratories: Partnership Opportunities at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, and Applications Center for Hydrogen (REACH). CTRL-Alt-Secure Join the Cybersecurity Technologies Research Laboratory (CTRL). ASPIRE to create cleaner power Join...

  15. Argonne National Laboratory and Mississippi State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Media Contacts Ben Schiltz ...

  16. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  17. Enforcement Letter, Lawrence Livermore National Laboratory -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Letter, Lawrence Livermore National Laboratory - November 5, 1999 Enforcement Letter, EG&G Mound Applied Technologies - August 22, 1996 Enforcement Letter, Brookhaven ...

  18. Argonne National Laboratory US | Open Energy Information

    Open Energy Info (EERE)

    Argonne National Laboratory (US) Place: Argonne, Illinois Zip: 60439 Sector: Hydro, Hydrogen Product: Conducts a broad range of scientific and technological research. One of its...

  19. Simulation, Modeling & Decision Science | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Laboratory focuses on integration of information technologies and cognition into the engineering process to support decision making for and the realization of...

  20. Technology transfer 1994

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.