Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Improvement Pathway to Cost-effective Vehicle Electrification: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

454 454 February 2010 Technology Improvement Pathways to Cost-Effective Vehicle Electrification Preprint A. Brooker, M. Thornton, and J. Rugh National Renewable Energy Laboratory To be presented at SAE 2010 World Congress Detroit, Michigan April 13-15, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

2

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

DOE Green Energy (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

3

Climate Vision: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Cement Chemical Manufacturing Electric Power Forest Products Iron and Steel Mining Oil and Gas Technology Pathways The DOE's Industries of the Future process helps entire...

4

Technology Deployment Matrix Improvements - Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory September 15, 2011 2 | Interagency Technology Deployment Working Group eere.energy.gov Technology Deployment Matrix Improvement Efforts 1. Develop criteria for...

5

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

6

Climate VISION: Private Sector Initiatives: Aluminum: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways U.S. aluminum producers recognize that reducing greenhouse gas emissions and improving energy efficiency offers a competitive edge in world markets. In 1996, the U.S. industry entered into partnership with DOE's Industrial Technologies Program (ITP) to work toward shared goals. Since then, the Aluminum Industry of the Future partnership has been feeding the technology pipeline so that U.S. producers will have the technologies they need to achieve their long-term economic, energy and environmental goals. The Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to

7

Whole Algae Hydrothermal Liquefaction Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Biddy, M.; Davis, R.; Jones, S.

2013-03-01T23:59:59.000Z

8

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

9

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

2013-03-31T23:59:59.000Z

10

Emerging Grid Reliability Improvement Technologies  

Science Conference Proceedings (OSTI)

The initial phase of a planned comprehensive Eastern Interconnection (EI) segmentation study is complete. As part of the preparations for completion of the EI study, and to carry out a similar effort for the Western Interconnection (WI), it was necessary to first investigate the potential of other technologies to compete with segmentation. This report discusses emerging grid reliability improvement technologies, providing a perspective on the pros and cons of segmentation, the grid shock absorber concept...

2007-10-29T23:59:59.000Z

11

Available Technologies: Improved Saccharification of Grasses by ...  

Researchers at the Joint BioEnergy Institute (JBEI) have identified a technology to manipulate the xylan pathway and reduce xylan content in selected bioenergy grasses.

12

Available Technologies: Controlling Metabolic Pathways Using ...  

Biofuels and biofuel precursors; Secondary metabolite ... the transcription factors are inserted at strategic spots to control target metabolic pathways of yeast ...

13

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Building Technologies Office: Improving the Energy Efficiency of Commercial Buildings to someone by E-mail Share Building Technologies Office:...

14

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

15

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

2013-03-01T23:59:59.000Z

16

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

17

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

2013-03-01T23:59:59.000Z

18

Available Technologies: Novel Biosynthetic Pathway for Production ...  

See More Biofuels Technologies. Contact Us. Receive Customized Tech Alerts. Tech Transfer Site Map. Last updated: 02/03/2012.

19

Climate VISION: Private Sector Initiatives: Mining: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to support R&D critical to the industry's vision of the future. Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader. The Mining Industry of the Future Vision (PDF 122 KB) The industry's unified Vision document outlines broad goals for the future. As part of the mining vision process, industry develops technology roadmaps to identify critical pathways for the R&D needed to reach their goals. These roadmaps aid both industry and government in making decisions to

20

Available Technologies: Improved Xylan Extraction  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

DOE Green Energy (OSTI)

This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

22

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

Science Conference Proceedings (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

23

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

Science Conference Proceedings (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

24

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

2013-03-31T23:59:59.000Z

25

Technology Pathway Partnership Final Scientific Report  

DOE Green Energy (OSTI)

This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

Hall, John C. Dr.; Godby, Larry A.

2012-04-26T23:59:59.000Z

26

Technology Pathway Partnership Final Scientific Report  

Science Conference Proceedings (OSTI)

This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

Hall, John C. Dr.; Godby, Larry A.

2012-04-26T23:59:59.000Z

27

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

28

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

29

Improving OLED technology for displays  

E-Print Network (OSTI)

Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2008-01-01T23:59:59.000Z

30

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

31

Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

Bull, Diana L; Ochs, Margaret Ellen

2013-09-01T23:59:59.000Z

32

Climate VISION: Private Sector Initiatives: Cement: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways The DOE's Industries of the Future process helps entire industries articulate their long-term goals and publish them in a unified vision for the future. To achieve that vision, industry leaders jointly define detailed R&D agendas known as roadmaps. ITP relies on roadmap-defined priorities to target cost-shared solicitations and guide development of a balanced R&D portfolio that yields useful results in the near, mid, and long term. Industry Vision & Roadmaps Two documents address the cement industry's challenges and priorities: Vision 2030, which outlines broad goals for the future, and Roadmap 2030, which established the industry's R&D priorities. ITP and the Strategic Development Council, a council of the American Concrete Institute's

33

Pathway engineering to improve ethanol production by thermophilic bacteria  

DOE Green Energy (OSTI)

Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

Lynd, L.R.

1998-12-31T23:59:59.000Z

34

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Biodiesel and Improving Biodiesel and Other Fuels' Quality to someone by E-mail Share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Facebook Tweet about Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Twitter Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Google Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Delicious Rank Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Digg Find More places to share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines

35

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE)  

E-Print Network (OSTI)

IMproved Assessment of the Greenhouse gas balance of bioeNErgy pathways (IMAGINE) Evaluation. Abstract The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy

36

Alternative Fuels Data Center: Improved Energy Technology Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Improved Energy Improved Energy Technology Loans to someone by E-mail Share Alternative Fuels Data Center: Improved Energy Technology Loans on Facebook Tweet about Alternative Fuels Data Center: Improved Energy Technology Loans on Twitter Bookmark Alternative Fuels Data Center: Improved Energy Technology Loans on Google Bookmark Alternative Fuels Data Center: Improved Energy Technology Loans on Delicious Rank Alternative Fuels Data Center: Improved Energy Technology Loans on Digg Find More places to share Alternative Fuels Data Center: Improved Energy Technology Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Improved Energy Technology Loans The U.S. Department of Energy (DOE) provides loan guarantees through the

37

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OFFICE Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office September 2013 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Office Notice This report is being disseminated by the Department of Energy. As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001(Public Law 106-554) and information quality guidelines issued by the Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

38

Molten carbonate fuel cell technology improvement  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

39

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating...

40

Ion Funnel and Related Technology for Improved Sensitivity ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Ion Funnel and Related Technology for Improved Sensitivity in Mass ...

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Production Roadmap: Technology Pathways to the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

technology without additional DOE resources. This technology may be applicable to LNG with minimal additional development. Barriers discussed herein remain for industry to...

42

Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production  

DOE Green Energy (OSTI)

Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

Kevin L Kenney

2011-09-01T23:59:59.000Z

43

Technology Improvement Pathways to Cost-Effective Vehicle Electrification: Preprint  

DOE Green Energy (OSTI)

This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective.

Brooker, A.; Thornton, M.; Rugh, J.

2010-02-01T23:59:59.000Z

44

Hydrogen Production Roadmap: Technology Pathways to the Future, January 2009  

Fuel Cell Technologies Publication and Product Library (EERE)

Roadmap to identify key challenges and priority R&D needs associated with various hydrogen fuel production technologies.

45

Available Technologies: Improved Crops with Increased Galactan ...  

APPLICATIONS OF TECHNOLOGY: Feedstocks for biofuel production; Paper production; ADVANTAGES: Resulting feedstocks yield soluble sugars with a high hexose content

46

Available Technologies: Improvements to High Power Impulse ...  

APPLICATIONS OF TECHNOLOGY: Semiconductors, superconductors; Flat panel displays for computers, cell phones, PDAs ; Tools and automotive parts

47

Available Technologies: Improving Long Term Storage of ...  

Researchers at the Joint BioEnergy Institute (JBEI) have developed technology to reduce the hydrocarbon double bonds in isoprenoid-based biofuels, bonds that make ...

48

Solid Oxide Fuel Cell Technologies: Improved Electrode ...  

They are highly fuel-efficient and almost non-polluting, making them an attractive alternative for energy generation. ... Energy Innovation Portal Technologies.

49

Contemporary aviation weather sensing technology to improve safety...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contemporary aviation weather sensing technology to improve safety and reduce delays and its possible application to air quality monitoring Speaker(s): James E. Evans Date:...

50

NETL: News Release - Natural Gas Compression Technology Improves...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Innovative Compressor Design Can Extend Productive Life of Stripper Wells,...

51

NETL: News Release -DOE-Funded Technology Improves Directional...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy-funded technology has demonstrated the capability to dramatically reduce costs and improve safety and efficiency in drilling America's oil and natural gas wells....

52

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network (OSTI)

and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

53

Innovation pathways in technology intensive government organizations : insights from NASA  

E-Print Network (OSTI)

Despite a rich legacy of impressive technological accomplishments (e.g., project Apollo, the Hubble Space Telescope) in recent years, the ability of government space agencies to deliver on their promises has increasingly ...

Szajnfarber, Zoe

2011-01-01T23:59:59.000Z

54

Building Technologies Office: System Performance Improvements  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvements, were presented in the following sessions: Air Sealing Ventilation (Day 1) Space Conditioning Distribution Foundation Insulation High-R Enclosures Ventilation (Day...

55

Available Technologies: Improving the Efficiency of Nanoscale ...  

Alex Zettl, Jeffrey Grossman, and colleagues at Berkeley Lab have developed several approaches for improving the conversion efficiency of nanoscale photovoltaic devices.

56

Improved Gas Sampling Device - Available Technologies - PNNL  

Summary. This is an improved device for gas sampling and analysis in which the design of the device includes features for maximizing the surface area ...

57

Climate VISION: PrivateSector Initiatives: Oil and Gas: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways The oil and gas industry is a very diverse and complex sector of the energy economy. It ranges from exploration to production, processing, transportation, and distribution. All of these segments are elements of the natural gas industry and the oil industry but are different for oil than for natural gas. An example of a technology pathway for the oil refining industry is the Petroleum Refining Vision and Roadmap, which was developed through a joint effort of government and industry. Other technology roadmaps of relevance to Climate VISION participants either are being developed or will be developed in the future. The oil refining example is provided initially. Others will be added as they become available. Petroleum refining is one of nine energy-intensive industries that is

58

Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in  

NLE Websites -- All DOE Office Websites (Extended Search)

3: August 19, 3: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings to someone by E-mail Share Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Facebook Tweet about Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Twitter Bookmark Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Google Bookmark Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Delicious Rank Vehicle Technologies Office: Fact #793: August 19, 2013

59

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

60

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Technology Pathways Toward Nuclear Energy in a Sustainable Energy System: Interim Report  

Science Conference Proceedings (OSTI)

This study investigates the potential role of nuclear power and advanced nuclear reactor and fuel system technologies in the context of the global energy system and climate change. It extends the capabilities of an integrated assessment model, and it explores long-term scenarios in which nuclear technology evolves and advances along various pathways, with and without constraints on carbon emissions. Work focuses on how the choice of nuclear fuel cycle, the cost of nuclear technologies, and the presence o...

2005-05-24T23:59:59.000Z

62

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

63

Improving Life through Science and Technology.  

E-Print Network (OSTI)

and wastewater algae technologies, Dr. Roger Ruan, Professor, BBE, University of Minnesota 11:45 am Lunch break, lunch will be provided 1:00 pm Catalytic biofuel production, Dr. Ben Yan, Lab Manager, Sartec Corporation 1:40 pm Wastewater algae screening, acclimation, and culture. Dr. Joe Zhou, Research Associate

64

Office of Technology Transfer TES MICROBOLOMETER IMPROVED  

E-Print Network (OSTI)

in key areas for UW TechTransfer. UW researchers, faculty and staff reported 335 innovations, which TechTransfer programs like the Technology Gap Innovation Fund and LaunchPad continue to demonstrate and dedication of an exceptional team assembled at UW TechTransfer. This past year we have added staff in key

Kemner, Ken

65

Improved screen-bowl centrifuge recovery using polymer injection technology  

Science Conference Proceedings (OSTI)

The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

2006-08-15T23:59:59.000Z

66

Three Argonne projects win DOE funding to improve vehicle technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Three Argonne projects win DOE funding to improve vehicle technologies By Louise Lerner * September 12, 2013 Tweet EmailPrint The U.S. Department of Energy's (DOE) Argonne National...

67

Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules  

E-Print Network (OSTI)

RESEARCH ARTICLE Open Access Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules Andrew E Teschendorff1,8*, Sergio Gomez2, Alex Arenas2,3,4, Dorraya El-Ashry5, Marcus... that consistency and trends in mRNA expres- sion levels of interacting proteins may be used to infer pathway activity [6-8]. In this work we refer to both the perturbation signatures and molecular interaction mod- els as model signatures. These same studies...

Teschendorff, Andrew E; Gomez, Sergio; Arenas, Alex; El-Ashry, Dorraya; Schmidt, Marcus; Gehrmann, Mathias; Caldas, Carlos

2010-11-04T23:59:59.000Z

68

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

69

New Technologies Improve WIPP Fleet Safety | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Improve WIPP Fleet Safety Technologies Improve WIPP Fleet Safety New Technologies Improve WIPP Fleet Safety September 1, 2012 - 12:00pm Addthis Randy Anderson, a CAST Specialty Transportation Inc. driver, demonstrates the new hand-held Zonar system used to perform truck and trailer inspections at a September WIPP transportation exhibit in Carlsbad. Randy Anderson, a CAST Specialty Transportation Inc. driver, demonstrates the new hand-held Zonar system used to perform truck and trailer inspections at a September WIPP transportation exhibit in Carlsbad. CARLSBAD, N.M. - Recently, Waste Isolation Pilot Plant (WIPP) carriers, Visionary Solutions LLC and CAST Specialty Transportation Inc., equipped their trucks with new safety systems to further improve the WIPP transportation system.

70

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

71

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program August 2010 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ...............................................................................................................................................................................v 1.0 Introduction ............................................................................................................................................................... 1-1 1.1 Organization of the FCT Program ..................................................................................................................

72

Benchmarking and Performance Improvement at Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

The Rocky Flats Environmental Technology Site (RFETS) has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., LLC, Golden, CO (United States)], Doyle, D. [USDOE Rocky Flats Office, Golden, CO (United States)], Featherman, W.D. [Project Performance Corp., Sterline, VA (United States)

1997-12-31T23:59:59.000Z

73

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

74

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

SciTech Connect

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

75

Technological cost%3CU%2B2010%3Ereduction pathways for axial%3CU%2B2010%3Eflow turbines in the marine hydrokinetic environment.  

Science Conference Proceedings (OSTI)

This report considers and prioritizes potential technical costreduction pathways for axialflow turbines designed for tidal, river, and ocean current resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were utilized to understand current cost drivers and develop a list of potential costreduction pathways: a literature review of technical work related to axialflow turbines, the U.S. Department of Energy Reference Model effort, and informal webinars and other targeted interactions with industry developers. Data from these various information sources were aggregated and prioritized with respect to potential impact on the lifetime levelized cost of energy. The four most promising costreduction pathways include structural design optimization; improved deployment, maintenance, and recovery; system simplicity and reliability; and array optimization.

Laird, Daniel L.; Johnson, Erick L.; Ochs, Margaret Ellen; Boren, Blake [Oregon State University, Corvallis, OR

2013-05-01T23:59:59.000Z

76

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

77

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

78

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

SciTech Connect

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

Weakley, Steven A.; Brown, Scott A.

2011-09-29T23:59:59.000Z

79

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

DOE Green Energy (OSTI)

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

Weakley, Steven A.

2012-09-28T23:59:59.000Z

80

Technology Development to Improve Radiation Shielding for Material Inspections  

Science Conference Proceedings (OSTI)

Improvements in shielding are necessary to reduce radiation exposure to workers in the nuclear power industry, especially as new inspection and maintenance work tests the industry's ability to further reduce individual and collective radiation doses. To date, new shielding technologies for the nuclear industry have been limited. However, interest in developing new shielding devices has been increasing in other industry sectors such as space exploration and medicine. This report presents a thorough review...

2008-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Innovative Technology Improves Upgrading Process for Unconventional Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

83

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

84

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

85

Molten carbonate fuel cell technology improvement. [25 kW  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract AC21-87MC23270 during the period March 1, through May 30, 1990. The overall objective of this program is to define a competitive CG/MCFC power plant and the associated technology development requirements and to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, has reduced cell creep and electrolyte management consistent with 40,000 hour projected life, reduces existing cell cost, and is adaptable to a range of power plant applications. The 8-ft{sup 2} 20-cell, 25-kW stack assembly and installation in the test facility were completed. Testing of the stack was started and 896 hours of test time were reached. Manifold seal development focused on a seal to reduce electrolyte transport and test rigs were initiated for shunt current and seal leakage evaluation. Development on sheet metal parts was initiated with focus on improved aluminization for separator plate corrosion protection and nickel clad stainless steel for the anode current collector. Development of porous parts was initiated with focus on an alternative binder for the electrodes. Design of a laboratory scale continuous debinding oven was completed. Development of an improved material blend for the matrix was also initiated. 19 figs., 2 tabs.

Not Available

1990-09-01T23:59:59.000Z

86

An analysis of cost improvement in chemical process technologies  

DOE Green Energy (OSTI)

Cost improvement -- sometimes called the learning curve or progress curve -- plays a crucial role in the competitiveness of the US chemical industry. More rapid cost improvement for a product results in expanding market share and larger profits. Expectations of rapid cost improvement motivate companies to invest heavily in the development and introduction of new chemical products and processes, even if production from the first pioneer facility is economically marginal. The slope of the learning curve can also indicate whether government support of new chemical processes such as synthetic fuels can be expected to have large social benefits or to simply represent a net loss to the public treasury. Despite the importance of the slope of the learning curve in the chemical process industries (CPI), little analytical investigation has been made into the factors that accelerate or retard cost improvement. This study develops such a model for the CPI. Using information from ten in-depth case studies and a database consisting of year-by-year market histories of 44 chemical products, including organic chemicals, inorganic chemicals, synthetic fibers, and primary metals, the analysis explores the relationships among the rate of learning and characteristics of the technologies, the nature of markets, and management approaches. 78 refs., 8 figs., 15 tabs.

Merrow, E.W.

1989-05-01T23:59:59.000Z

87

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Efficiency and Clean Energy Technologies, 2000. ScenariosProgram, 2007. Energy Technology Solutions: Public-PrivatePrice Environmental Energy Technologies Division March 2008

Price, Lynn

2008-01-01T23:59:59.000Z

88

The Role of Technology in Improving Student Learning of Statistics  

E-Print Network (OSTI)

statistics education. Technology Innovations in StatisticsMathematics education and technology (pp. 68-100). Berlin:Press. Cardenas, K. (1998). Technology in todays classroom:

Chance, Beth; Ben-Zvi, Dani; Garfield, Joan; Medina, Elsa

2007-01-01T23:59:59.000Z

89

Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers  

SciTech Connect

Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

P. A. Pinson

1998-07-01T23:59:59.000Z

90

Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies  

E-Print Network (OSTI)

We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory (QFT). QFT properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in QFT including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

Mehdi Ahmadi; David Edward Bruschi; Nicolai Friis; Carlos Sabn; Gerardo Adesso; Ivette Fuentes

2013-07-26T23:59:59.000Z

91

Molten carbonate fuel cell technology improvement. Final report  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

92

SURFACTANT SPRAY: A NOVEL TECHNOLOGY TO IMPROVE FLOTATION DEINKING PERFORMANCE  

SciTech Connect

Based on the fundamental understanding of ink removal and fiber loss mechanism in flotation deinking process, we developed this innovative technology using surfactant spray to improve the ink removal efficiency, reduce the water and fiber loss, reduce the chemical consumption and carry over in the flotation deinking. The innovative flotation deinking process uses a spray to deliver the frothing agent during flotation deinking to control several key process variables. The spray can control the foam stability and structure and modify the fluid dynamics to reduce the fibers entrapped in the froth layer. The froth formed at the top part of the flotation column will act as a physical filter to prevent the penetration of frothing agent into the pulp suspension to eliminate fiber contamination and unfavorable deinking surface chemistry modification due to surfactant adsorption on the fiber surface. Because of the filter effect, frothing agents will be better utilized. Under the sponsorships of the US Dept. of Energy (DOE) and the member companies of the Institute of Paper Science and Technology, we studied the chem-mechanical mechanism of surfactant spray for flotation deinking using different furnishes, chemicals, and flotation devices in the past four years. In the final year of the project, we successfully conducted mill trials at Abitibi-Consolidated, Inc., Snowflake paper recycling operation of 100% mixture of ONP/OMG. Results from laboratory, pilot-plant and mill trials indicated that surfactant spray technology can significantly reduce fiber loss in flotation deinking. It can be concluded that paper industry can profit greatly when this technology is commercialized in flotation deinking mills.

Yulin Deng; Junyong Zhu

2004-01-31T23:59:59.000Z

93

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

94

NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY  

NLE Websites -- All DOE Office Websites (Extended Search)

NEXT GENERATION SURFACTANTS NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY FINAL REPORT June 1, 2010 - May 31, 2012 Laura L Wesson, Prapas Lohateeraparp, Jeffrey H. Harwell, and Bor-Jier Shiau October 2012 DE-FE0003537 University of Oklahoma Norman, OK 73019-0430 ii DISCLAIMER This report is prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

95

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

Ravi Prasad

2001-10-01T23:59:59.000Z

96

Improving mine safety technology and training: establishing US global leadership  

Science Conference Proceedings (OSTI)

In 2006, the USA's record of mine safety was interrupted by fatalities that rocked the industry and caused the National Mining Association and its members to recommit to returning the US underground coal mining industry to a global mine safety leadership role. This report details a comprehensive approach to increase the odds of survival for miners in emergency situations and to create a culture of prevention of accidents. Among its 75 recommendations are a need to improve communications, mine rescue training, and escape and protection of miners. Section headings of the report are: Introduction; Review of mine emergency situations in the past 25 years: identifying and addressing the issues and complexities; Risk-based design and management; Communications technology; Escape and protection strategies; Emergency response and mine rescue procedures; Training for preparedness; Summary of recommendations; and Conclusions. 37 refs., 3 figs., 5 apps.

NONE

2006-12-15T23:59:59.000Z

97

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

98

Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways  

SciTech Connect

The Intergovernmental Panel on Climate Changes (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

Dooley, James J.; Calvin, Katherine V.

2011-04-18T23:59:59.000Z

99

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

100

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and CostWorrell, E. , 2003. Energy Efficiency Improvement and Cost

Price, Lynn

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: E&P Technologies - Improved Recovery - Stripper Well Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploration & Production Technologies Improved Recovery - Stripper Well Technology image of a well linking to Stripper Well Consortium “Stripper well" is a term used to describe wells that produce natural gas or oil at very low rates—less than 10 barrels per day of oil or less than 60 thousand cubic feet per day of gas. Despite their small output, stripper oil and gas wells make a significant contribution to the Nation’s energy supply—and they are the lifeblood of thousands of small, independent oil and gas operating companies. About 80 percent of the roughly 500,000 producing oil wells in the United States are classified as stripper wells. Despite their small volumes, they add up. The >400,000 stripper oil wells in the United States produce, in aggregate, nearly 1 million barrels per day of oil, which represents almost 19% of domestic oil production.

102

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

103

Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price  

SciTech Connect

The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

Burdis, Mark; Sbar, Neil

2012-06-30T23:59:59.000Z

104

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

105

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

implementation of cost-effective energy efficiency measuresW. , 2007. Energy Efficiency Improvement and Cost SavingE. , 2003. Energy Efficiency Improvement and Cost Saving

Price, Lynn

2008-01-01T23:59:59.000Z

106

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and Costimplementation of energy-efficiency and greenhouse gas

Price, Lynn

2008-01-01T23:59:59.000Z

107

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

Science Conference Proceedings (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

108

Next Generation Surfactants for Improved Chemical Flooding Technology  

Science Conference Proceedings (OSTI)

The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

2012-05-31T23:59:59.000Z

109

Improving Pouring Technology of Large Steel Castings by Using ...  

Science Conference Proceedings (OSTI)

Numerical Modeling of Centrifugally Cast HSS Rolls Numerical Simulation of Electro-magnetic Turbulent Inhibitor Technology in a Tundish Optimizing the...

110

New technology can improve electric power system efficiency and ...  

U.S. Energy Information Administration (EIA)

The term "smart grid" covers a range of devices and systems that leverage recent advances in digital technology and communications to ... Developing methods for ...

111

Strategies and Technologies for Improving Air Quality Around Ports  

E-Print Network (OSTI)

Energy, May 2010. 44. Solazyme. www.solazyme.com/technology.fuel was produced to Navy specifications by Solazyme, Inc.Solazyme uses standard industrial fermentation equipment and

Khan, Mohammad Yusuf

2013-01-01T23:59:59.000Z

112

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

113

Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology  

DOE Green Energy (OSTI)

Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

Price, H.; Kearney, D.

1999-01-31T23:59:59.000Z

114

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

Ravi Prasad

2004-03-31T23:59:59.000Z

115

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Preferred OTM architectures have been identified through stress analysis; and The 01 reactor was operated at target flux and target purity for 1000 hours.

Ravi Prasad

2003-04-30T23:59:59.000Z

116

Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

117

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 7, reactor cost analysis was performed to determine whether OTM technology when integrated with IGCC provides a commercially attractive process. In task 9, discussions with DOE regarding restructuring the program continued. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: IGCC process analysis and economics.

John Sirman

2005-01-01T23:59:59.000Z

118

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-05-01T23:59:59.000Z

119

NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)  

DOE Green Energy (OSTI)

NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

Not Available

2012-01-01T23:59:59.000Z

120

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

The objectives of the second year of the program are to define a material composition and composite architecture that enable the oxygen flux and stability targets to be obtained in high-pressure flux tests. Composite technology will be developed to enable the production of high-quality, defect free membranes of a thickness that allows the oxygen flux target to be obtained. The fabrication technology will be scaled up to produce three feet composite tubes with the desired leak rate. A laboratory scale, multi-tube pilot reactor will be designed and constructed to produce oxygen. In the third quarter of the second year of the program, work has focused on materials optimization, composite and manufacturing development and oxygen flux testing at high pressures. This work has led to several major achievements, summarized by the following statements: Oxygen has been produced under conditions similar to IGCC operation using composite OTM elements at a flux greater than the 2001 target. Under conditions with a greater driving force the commercial target flux has been met. Methods to significantly increase the oxygen flux without compromise to its mechanical integrity have been identified. Composite OTM elements have demonstrated stable operation at {Delta}P > 250 psi Design of the pilot plant is complete and construction will begin next quarter.

Ravi Prasad

2001-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology I, II, and III: Criteria for Understanding and Improving the Practice of Instructional Technology.  

E-Print Network (OSTI)

??In an earlier era of instructional technology, researchers proposed a set of criteria to help practitioners understand what assumptions about their work could help them (more)

McDonald, Jason K 1975-

2006-01-01T23:59:59.000Z

122

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter April to June 2002. In task 1 improvements to the membrane material have shown increased flux, stability and strength. In task 2, composite development has demonstrated the ability to cycle membranes. In task 3, scale-up issues associated with manufacturing large elements have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity after 10 thermal and pressure cycles. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-08-01T23:59:59.000Z

123

Program on Technology Innovation: An Evaluation of Surface Stress Improvement Technologies for PWSCC Mitigation of Alloy 600 Nuclear Components  

Science Conference Proceedings (OSTI)

This report documents the progress for 2005 on a new project to evaluate surface stress improvement methods to mitigate the initiation of PWSCC in Alloy 600 nuclear plant components. The first potential application for these various surface stress improvement technologies for SCC mitigation in PWR Alloy 600 components was identified as the bottom mounted nozzle (BMN). Mitigation will be demonstrated by creating both sufficient compressive surface stress and depth of the compressive stress on the ID and O...

2006-03-31T23:59:59.000Z

124

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2000. In task 1 careful modification of the processing conditions of the OTM has improved the properties of the final element. In addition, finite element modeling has been used to predict the mechanical behavior of OTM tubes and to identify strategies for improving OTM robustness. In task 2, composite elements of PSO1d have been prepared and tested for over 800 hours without degradation in oxygen flux. Alternative materials for composite OTM and architectures have been examined with success. In task 3, modification of fabrication routes has resulted in a substantial increase in the yield of PSO1d composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor has begun.

Ravi Prasad

2001-01-01T23:59:59.000Z

125

Photo of the Week: Improving Power Plant Technology... in 3-D | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improving Power Plant Technology... in 3-D Improving Power Plant Technology... in 3-D Photo of the Week: Improving Power Plant Technology... in 3-D June 6, 2013 - 12:58pm Addthis This week, Secretary Ernest Moniz experienced the 3-D visualizations at the Consortium for the Advanced Simulation of Light Water Reactors (CASL), one of the Department's Energy Innovation Hubs. The facility, located at Oak Ridge National Laboratory, develops computer models that simulate nuclear power plant operations. The researchers at CASL are developing technology that could accelerate upgrades at existing nuclear plants while improving the plants' reliability and safety. Check out more photos from Secretary Moniz's visit to CASL. | Photo courtesy of Oak Ridge National Laboratory.

126

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

127

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

128

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2001. In task 1 careful modification of the composition and processing conditions of the OTM has enabled manufacture of high quality OTM elements. In addition, finite element modeling has been used to identify a suitable composition and geometry for successful pilot plant operation. In task 2, composite elements of materials with improved mechanical properties have been developed. In task 3, development of preferred fabrication methods has resulted in production of pilot plant scale composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor is ongoing.

Ravi Prasad

2001-04-01T23:59:59.000Z

129

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2001. In task 1 optimization of the substrate material has yielded substantial improvements to membrane life. In task 2, composite development has enabled 50% of the target flux under Type 1B process conditions. In task 3, manufacturing development has demonstrated that 36 inch long tubes can be produced. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 500 hours of the target flux. In task 5 construction of the multi-tube OTM reactor is completed and initial startup testing was carried out.

Ravi Prasad

2002-02-01T23:59:59.000Z

130

New technology trends for improved IGCC system performance  

SciTech Connect

The application of gas turbine technology to IGCC systems requires careful consideration of the degree and type of integration used during the system design phase. Although gas turbines provide the primary output and efficiency gains for IGCC systems, as compared with conventional coal-fired power generation systems, they are commercially available only in specific size ranges. Therefore, it is up to the IGCC system designer to optimize the IGCC power plant within the required output, efficiency, and site conditions by selecting the system configuration carefully, particularly for air separation unit (ASU) integration incorporated with oxygen blown gasification systems. An IGCC system, based on a generic, entrained flow, oxygen blown gasification system and a GE STAG 109FA combined cycle has been evaluated with varying degrees of ASU integration, two fuel equivalent heating values and two gas turbine firing temperatures to provide net plant output and efficiency results. The data presented illustrate the system flexibility afforded by variation of ASU integration and the potential performance gains available through the continued use of gas turbine advances. Emphasis is placed on system design choices that favor either low initial investment cost or low operating cost for a given IGCC system output.

Anand, A.K.; Cook, C.S.; Corman, J.C. [GE Power Generation, Schenectady, NY (United States); Smith, A.R. [Air Products and Chemicals, Inc., Allentown, PA (United States)

1996-10-01T23:59:59.000Z

131

NETL: News Release - New Seismic Technology Improves Pre-Drill Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

June 12, 2007 June 12, 2007 New Seismic Technology Improves Pre-Drill Diagnostics for Deep Oil and Gas Reservoirs WASHINGTON, DC - New technology developed through a cost-shared project managed by the Office of Fossil Energy's National Energy Technology Laboratory is improving industry's ability to identify commercially viable deep oil and gas targets prior to drilling. Applications of this groundbreaking technology will help to accelerate future development of deep oil and gas resources in the United States. As the oil and gas industry turns its attention toward deeper targets, particularly in the Gulf of Mexico, the tremendous costs involved require advanced technologies for pre-drill evaluation of a deep prospect's location, size, and hydrocarbon charge. Rock Solid Images, of Houston, Texas, answered the call with their much-needed pre-drill seismic imaging technology. The patented new technology improves pre-drill oil and gas detection in the reservoir and reduces the risks associated with drilling deep wells. With a significant portion of the Nation's oil and natural gas resource trapped in deep reservoirs, the new seismic technology represents a much-needed improvement that should bring more deep oil and gas to market.

132

Improving quality assurance in education with web-based services by data mining and mobile technologies  

Science Conference Proceedings (OSTI)

The main focus of this paper is to use web-based services, data mining techniques and mobile technologies to improve Quality Assurance (QA) in education. This paper presents rather sophisticated web-based tools and services dedicated to the QA in education. ... Keywords: data mining, mobile technologies, quality assurance, web services, web-based application

Arben Hajra; Derya Birant; Alp Kut

2008-09-01T23:59:59.000Z

133

Maximizing Residential Energy Savings: Net Zero Energy House (ZEH) Technology Pathways  

SciTech Connect

To meet current U.S. Department of Energy zero-energy home performance goals, new technologies and solutions must increase whole-house efficiency savings by an additional 40% relative to those provided by best available components and systems.

Anderson, R.; Roberts, D.

2008-11-01T23:59:59.000Z

134

Improving mine safety technology and training in the U.S. recommendations of the Mine Safety Technology and Training Commission  

Science Conference Proceedings (OSTI)

The key issues studied focused on underground coal mining and included (1) prevention of explosions in sealed areas, (2) better emergency preparedness and response, (3) improvement of miners' ability to escape, (4) better protection of miners before and after a fire or explosion, (5) improved provision of oxygen, and (6) development and implementation of more robust post-incident communication. The U.S. Congress passed the Mine Improvement and New Emergency Response Act of 2006, which mandated new laws to address the issues. Concurrent with investigations and congressional deliberations, the National Mining Association formed the independent Mine Safety Technology and Training Commission to study the state-of-the-art relative to technology and training that could address the vulnerabilities exposed by the mine disasters. As discussed, the report outlined persistent vulnerabilities linked with significant hazards in underground coal mines, and made recommendations to provide a path for addressing them. Overall the commission report made 75 recommendations in the areas of risk-based design and management, communications technology, emergency response and mine rescue procedures, training for preparedness, and escape and protection strategies. In its deliberations, the commission importantly noted that mine safety in the U.S. needs to follow a new paradigm for ensuring mine safety and developing a culture of prevention that supports safe production at the business core. In the commission's viewpoint, the bottom line in protecting coal miners is not only adopting a culture of prevention but also systematically pursuing mitigation of significant risks. 4 refs., 2 figs.

Grayson, R. Larry [Pennsylvania State University, University Park, PA (United States). Department of Energy & Mineral Engineering

2008-09-15T23:59:59.000Z

135

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

136

Prospects for improvement in geothermal well technology and their expected benefits  

DOE Green Energy (OSTI)

Performance restrictions on current geothermal drilling technology and their impact on drilling costs are reviewed, with the impact on electric power costs. Sensitivities of drilling costs to changes in drilling performance are analyzed. A programmatic goal for improving drilling performance is offered. The likely cost savings to the nation if the goal is attained are estimated though the use of a geothermal well drilling scenario for the 1978 to 1990 period, which was derived from DOE's geothermal power on-line scenario. The present worth of the expectd savings stream (benefit) is offered as a point of departure for justifying programmatic costs for improving drilling technology.

Not Available

1978-06-01T23:59:59.000Z

137

New Technologies and Methods to Improve Computational Speed and Robustness of Power Flow Analysis  

Science Conference Proceedings (OSTI)

The power flow problem consists of determining the steady-state operating point of an electrical transmission network under specific loading conditions. This report describes the development of power flow techniques designed to improve the efficiency and reliability of an electrical power network. Leveraging advancements in computing technologies, data processing, and sophisticated computational methods can improve the performance of power system analysis tools, specifically their accuracy, speed, ...

2013-12-20T23:59:59.000Z

138

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Pathways: Cost, Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A1-46612 September 2009 Technical Report Hydrogen Pathways: Cost, NREL/TP-6A1-46612 Well-to-Wheels Energy Use, September 2009 and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Mark Ruth National Renewable Energy Laboratory Melissa Laffen and Thomas A. Timbario Alliance Technical Services, Inc. Prepared under Task No. HS07.1002 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393

139

PV Cz silicon manufacturing technology improvements. Annual subcontract report, 1 April 1992--31 March 1993  

DOE Green Energy (OSTI)

This report describes work performed under a 3-year contract to demonstrate significant cost reductions and improvements in manufacturing technology. The work focused on near-term projects for implementation in the Siemens Solar Industries Czochralski (Cz) manufacturing facility in Camarillo, California. The work was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each item through experimentation, materials refinement, and better industrial engineering. The initial phase of the program concentrated on the areas of crystal growth; wafer technology; and environmental, safety, and health issues.

Jester, T. [Siemens Solar Industries, Camarillo, CA (United States)

1994-01-01T23:59:59.000Z

140

Improved  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved Improved cache performance in Monte Carlo transport calculations using energy banding A. Siegel a , K. Smith b , K. Felker c,∗ , P . Romano b , B. Forget b , P . Beckman c a Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division b Massachusetts Institute of Technology, Department of Nuclear Science and Engineering c Argonne National Laboratory, Theory and Computing Sciences Abstract We present an energy banding algorithm for Monte Carlo (MC) neutral parti- cle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, ex- hibit poor locality, and are typically much too large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Wireless Smart Sensor Development Update: Applying Technology to Reduce Fire Watch Costs and to Improve Coverage  

Science Conference Proceedings (OSTI)

Smart Sensor product development for the use of fire watch improvement has been initiated by EPRI for the purposes of understanding the current state and/or industry available systems for electronically supporting the performance of existing work activities and/or providing for performance enhancement through cost effective monitoring and automation capabilities. The use of wireless technologies will allow a greater ease of deployment, reduced response time, and increased efficiency for fire watch equipm...

2004-12-11T23:59:59.000Z

142

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

143

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

144

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

145

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

146

Impact of geothermal technology improvements on royalty collections on Federal lands: Volume 1  

Science Conference Proceedings (OSTI)

The purpose of this study was to predict the value of increased royalties that could be accrued through the year 2010 by the federal government as a result of the accomplishments of the US Department of Energy (DOE) geothermal research and development (RandD) program. The technology improvements considered in this study coincide with the major goals and objectives of the DOE program as set forth in Section 3.0 and will: allow the geothermal industry to maintain a long-term competitive posture in the more favorable fields; and permit it to become competitive where the resource is of lower quality. The study was confined to power generation from liquid-dominated hydrothermal geothermal reservoirs. The technologies for exploiting the liquid-dominated, or hot water, fields for power generation are relatively new and still under development. Thus, each technology enhancement that permits greater economic use of the resource will potentially enhance royalty revenues. Potential royalty revenue from dry steam power production at The Geysers, direct use of geothermal fluids, and use of advanced geothermal technologies (i.e., hot dry rock, magma, and geopressured) has not been considered in this assessment. 12 refs.

Not Available

1988-10-01T23:59:59.000Z

147

Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module  

DOE Green Energy (OSTI)

This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

O'Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. (ENTECH, Inc., Dallas-Fort Worth Airport, TX (United States))

1991-11-01T23:59:59.000Z

148

A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities  

SciTech Connect

Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

Hendrik Hamann, Levente Klein

2012-06-28T23:59:59.000Z

149

Pathways to commercial success  

NLE Websites -- All DOE Office Websites (Extended Search)

HYDROGEN, FUEL CELLS & INFRASTRUCTURE HYDROGEN, FUEL CELLS & INFRASTRUCTURE TECHNOLOGIES (HFCIT) PROGRAM Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells & Infrastructure Technologies Program August 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program iii Table of Contents Summary .................................................................................................................................................................................................................. v 1.0 Introduction.......................................................................................................................................................................................................1-1

150

LED exit signs: Improved technology leads the way to energy savings  

SciTech Connect

Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

Sardinsky, R.; Hawthorne, S.

1994-12-31T23:59:59.000Z

151

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

of Demonstrated Energy Technologies, Newsletter No. 3.over 160 new, energy efficient technologies (42). Many oftargeted towards energy saving technologies and practices

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

152

The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful  

E-Print Network (OSTI)

Improvements in technology certainly play a pivotal role in the quest for increased energy efficiency. However, sophisticated industrial energy users are increasingly learning that technology alone cannot drive long-term, sustainable reductions in energy cost. The role of people within an organization is just as important as technology. In fact, as companies continue to improve their energy efficiency technology, and their production processes, the role of people, and the management approach they are engaged in, takes on an increasingly prominent role in driving additional energy management improvements. This paper will highlight how instituting a systematic approach to the people, or management aspect of energy management, can help ensure that a company first of all undertakes the most beneficial and cost effective technology improvements, and that the benefits of those improvements are, in fact, achieved. Moreover, the paper will demonstrate how such a systematic approach can help identify improvements in energy efficiency that require little or no capital investment, and can lay the groundwork for building on initial energy efficiency improvements in order to achieve long-term, continuous improvement in energy management results.

Feldman, J.

2003-05-01T23:59:59.000Z

153

Technology Transfer and Innovation in the Utility Organization: A Workbook on How to Look, Analyze, and Improve  

Science Conference Proceedings (OSTI)

In most technical organizations, there exist various cultural, organizational, and institutional barriers to innovation. This workbook will help utilities find these impediments and thus improve their ability to better assimilate new technologies.

1993-07-01T23:59:59.000Z

154

Improved Tubulars for Better Economics in Deep Gas Well Drilling Using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal

2006-09-30T23:59:59.000Z

155

Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology  

Science Conference Proceedings (OSTI)

The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

2007-07-31T23:59:59.000Z

156

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

Science Conference Proceedings (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

157

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

158

Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement  

SciTech Connect

Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

Principal Investigator Kent Peaslee; Co-PIƒ ƒ ‚ ¢ƒ ‚ ‚ € ƒ ‚ ‚ ™ s: Von Richards, Jeffrey Smith

2012-07-31T23:59:59.000Z

159

IMPROVED TUBULARS FOR BETTER ECONOMICS IN DEEP GAS WELL DRILLING USING MICROWAVE TECHNOLOGY  

Science Conference Proceedings (OSTI)

The main objective of the research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Originally, it was proposed to accomplish this by developing an efficient and economically viable continuous microwave process to sinter continuously formed/extruded steel powder for the manufacture of seamless coiled tubing and other tubular products. However, based on the results and faced with insurmountable difficulties in the extrusion and de-waxing processes, the approach of achieving the goals of the program has been slightly changed. In the continuation proposal an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) is adopted. This process can be developed into a semi-continuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. Originally, the entire program was spread over three phases with the following goals: Phase I: Demonstration of the feasibility concept of continuous microwave sintering process for tubular steel products. Phase II: Design, building and testing of a prototype microwave system which shall be combined with a continuous extruder for steel tubular objects. Phase III: Execution of the plan for commercialization of the technology by one of the industrial partners. However, since some of the goals of the phase I were not completed, an extension of nine months was granted and we continued extrusion experiments, designed and built semicontinuous microwave sintering unit.

Dinesh Agrawal; Paul Gigl; Mahlon Dennis; Roderic Stanley

2005-03-01T23:59:59.000Z

160

Technological distinctive competencies and organizational learning: Effects on organizational innovation to improve firm performance  

Science Conference Proceedings (OSTI)

This paper analyzes how top management support of technology influences the generation of technological skills, technological distinctive competencies and organizational learning. The research also examines the effects of technological distinctive competencies ... Keywords: O32, O33, Organizational innovation, Organizational learning, Organizational performance, Q55, Technological distinctive competencies, Top management support

MarA Teresa BolVar-Ramos; VCtor J. GarcA-Morales; EncarnaciN GarcA-SNchez

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Water-Energy Interface - Improvement to Air2Air Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling tower with relatively drier and cooler ambient air. This is done in an air-to-air heat exchanger made up of plastic sheets with two discreet air pathways. As the warm,...

162

Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments  

DOE Green Energy (OSTI)

This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

Yeh, B.

2011-03-01T23:59:59.000Z

163

Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants  

SciTech Connect

This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

Ken Mortensen

2010-12-31T23:59:59.000Z

164

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

165

Pathway and Resource Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway and Resource Overview Pathway and Resource Overview Delivering Renewable Hydrogen Workshop - A Focus on Near-Term Applications Mark F. Ruth November 16, 2009 Palm Springs, CA NREL/PR-6A1-47108 National Renewable Energy Laboratory Innovation for Our Energy Future Definition and Presentation Outline Hydrogen pathway analysis is analysis of the total levelized cost (including return on investment), well-to- wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways. This presentation focuses on * Pathway analyses using the Macro-System Model (MSM) * Resource and pathway analysis using the Hydrogen Demand and Resource Analysis Tool (HyDRA) * Status of water-electrolysis technology

166

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

Science Conference Proceedings (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

167

Progress review No. 24: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending September 30, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection and thermal/heavy oil, as well as for the following areas of research: extraction technology; resource assessment technology; environmental; petroleum technology; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

168

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

169

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

DOE Green Energy (OSTI)

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

170

A novel framework for information technology based agricultural information dissemination system to improve crop productivity  

E-Print Network (OSTI)

Indian farming community is facing a multitude of problems to maximize crop productivity. In spite of successful research on new agricultural practices concerning crop cultivation, the majority of farmers is not getting upper-bound yield due to several reasons. One of the reasons is that expert/scientific advice regarding crop cultivation is not reaching farming community in a timely manner. It is true that India possesses a valuable agricultural knowledge and expertise. However, a wide information gap exists between the research level and practice. Indian farmers need timely expert advice to make them more productive and competitive. In this paper, we made an effort to present a solution to bridge the information gap by exploiting advances in Information Technology (IT). We propose a framework of a cost-effective agricultural information dissemination system (AgrIDS) to disseminate expert agriculture knowledge to the farming community to improve the crop productivity. Some of the crucial benefits of AgrIDS are as follows. It is a scalable system which can be incrementally developed and extended to cover all the farmers (crops) of India in a cost effective manner. It enables the farmer to cultivate a crop with expertise, as that of an agricultural expert, by disseminating both crop and location specific expert advice in a personalized and timely manner. With AgrIDS, the lag period between research effort to practice can be reduced significantly. Finally, the proposed system assumes a great importance due to the trend of globalization, as it aims to provide expert advice which is crucial to for the Indian farmer to harvest different kinds of crop varieties based on the demand in the world market. 1

P. Krishna Reddy

2002-01-01T23:59:59.000Z

171

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

172

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

2002 Manufacturing Energy Consumption Survey, Washington,impacts on industrial energy consumption. The cumulativeemerging technologies on energy consumption in the U.S. food

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

173

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

174

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

yielding important energy savings and additional benefits.are targeted towards energy saving technologies anda baseline from which the energy savings potential of each

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

175

Technology Search Results | Brookhaven Technology ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

176

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

177

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

178

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2002-12-31T23:59:59.000Z

179

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

Science Conference Proceedings (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-07-30T23:59:59.000Z

180

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

Science Conference Proceedings (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

182

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

183

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

184

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

185

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

186

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

187

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 27, for quarter ending June 30, 1981  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-09-01T23:59:59.000Z

188

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

189

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

190

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 30, quarter ending March 31, 1982  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; microbial enhanced oil recovery; improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

191

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 35, quarter ending June 30, 1983  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

192

Progress review No. 25: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending December 31, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improving drilling technology; and general supporting research.

Linville, B. (ed.)

1981-05-01T23:59:59.000Z

193

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

194

Becoming Allies: Combining Social Science and Technological Perspectives to Improve Energy Research and Policy Making  

E-Print Network (OSTI)

as energy- efficient building shells, equipment, lighting, daylighting, windows, passive and active solar, photovoltaic, fuel cells, advanced sensors and controls, and combined 1 See Lutzenhiser and Shove (1999. Such technologies--together with a whole-buildings approach that optimizes interactions among building systems

Diamond, Richard

195

Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft  

E-Print Network (OSTI)

The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

Mahashabde, Anuja (Anuja Anil)

2006-01-01T23:59:59.000Z

196

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

197

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

198

New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities  

Science Conference Proceedings (OSTI)

An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

Brim, Cornelia P.

2013-03-04T23:59:59.000Z

199

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

DOE Green Energy (OSTI)

Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

Ruth, M.; Laffen, M.; Timbario, T. A.

2009-09-01T23:59:59.000Z

200

Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios  

DOE Green Energy (OSTI)

This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios  

Fuel Cell Technologies Publication and Product Library (EERE)

Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

202

Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology  

Science Conference Proceedings (OSTI)

Technical Paper / Tritium Science and Technology - Tritium Science and Technology - Detritiation, Purification, and Isotope Separation

M. Rozenkevich et al.

203

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

204

Valve Packing Performance Improvement: Sealing Technology and Plant Leakage Reduction Series  

Science Conference Proceedings (OSTI)

"Valve Packing Performance Improvement" is the seventh in a series of training modules addressing leakage at nuclear power plants. The first six modules in this series address: o Leakage management programs o Assembling bolted joints with spiral-wound gaskets o Preload requirements for bolted joints with spiral-wound gaskets o Lube oil system leakage mitigation o Leakage reduction from threaded joints o Leakage reduction from bolted joints with sheet gaskets

2002-03-28T23:59:59.000Z

205

Saving energy and improving IAQ through application of advanced air cleaning technologies  

SciTech Connect

In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

2011-03-01T23:59:59.000Z

206

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

207

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

208

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

209

Program on Technology Innovation: Evaluation of Potential Improvements in IGCC Pre-Combustion CO2 Capture  

Science Conference Proceedings (OSTI)

This overall project is aimed at experimental proof-of-concept testing and validation of high-risk, early-stage ideas for CO2 capture. If successful, such processes are likely to reduce the energy penalty of CO2 capture processes significantly, or in other cases, they will increase our understanding of the practical limits of CO2 capture. This particular report focuses on potential improvements that are under research and development for the pre-combustion capture of CO2 in integrated-gasification-combin...

2010-12-31T23:59:59.000Z

210

Does Search-facilitating Technology Improve the Transparency of Financial Reporting?" The Accounting Review 79(3  

E-Print Network (OSTI)

ABSTRACT: XBRL (eXtensible Business Reporting Language) is an emerging technology that facilitates directed searches and simultaneous presentation of related financial statement and footnote information. We investigate whether using an XBRL-enhanced search engine helps nonprofessional financial statement users acquire and integrate related financial information when making an investment decision. We conduct our investigation in the context of recognition versus disclosure of stock option compensation. Our results reveal that many users do not access the technology, but those who do use it are better able to acquire and integrate information. Specifically, we find that when stock option accounting varies between firms, the use of an XBRL-enhanced search engine increases the likelihood that individuals acquire information about stock option compensation disclosed in the footnotes. We also find that XBRL helps individuals integrate the implications of this information, resulting in different investment decisions between individuals who use and do not use the search engine. Our results suggest that search-facilitating technologies, such as XBRL, aid financial statement users by improving the transparency of firms financial statement information and managers

Frank D. Hodge; Jane Jollineau Kennedy; Laureen A. Maines

2004-01-01T23:59:59.000Z

211

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

Science Conference Proceedings (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

212

AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels  

Science Conference Proceedings (OSTI)

Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

2002-10-10T23:59:59.000Z

213

Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs  

SciTech Connect

The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

2005-04-26T23:59:59.000Z

214

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

215

Information technology to support improved care for chronic illness. Journal of general internal medicine, 22 Suppl 3(0):425 430  

E-Print Network (OSTI)

BACKGROUND: In populations with chronic illness, outcomes improve with the use of care models that integrate clinical information, evidence-based treatments, and proactive management of care. Health information technology is believed to be critical for efficient implementation of these chronic care models. Health care organizations have implemented information technologies, such as electronic medical records, to varying degrees. However, considerable uncertainty remains regarding the relative impact of specific informatics technologies on chronic illness care. OBJECTIVE: To summarize knowledge and increase expert consensus regarding informatics components that support improvement in chronic illness care. Design: A systematic review of the literature was performed. Use

Er S. Young; Edmund Chaney; Rebecca Shoai; Mary K. Goldstein

2007-01-01T23:59:59.000Z

216

TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft  

SciTech Connect

The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

1980-12-31T23:59:59.000Z

217

Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts  

Science Conference Proceedings (OSTI)

The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

David Schwam, PI; Xuejun Zhu, Sr. Research Associate

2012-09-30T23:59:59.000Z

218

PVMaT Improvements in the BP Solarex Photovoltaic Module Manufacturing Technology: Annual Report, May 5, 1999 - June 15, 2000  

DOE Green Energy (OSTI)

This is the annual report for a 3-year PV program to continue to advance BP Solarex photovoltaic manufacturing technologies to design and implement a process that produces polycrystalline silicon PV modules that can be sold profitably for $2.00 per peak watt or less, and which increases the production capacity of the Frederick plant to at least 25 megawatts per year. The accomplishments discussed in this report include: (1) developed processes to produce high-purity SiF4 gas from a number of available commercial sources; (2) designed and implemented a new control system for casting; (3) verified relationship between higher minority-carrier lifetime in cast Si and cell efficiency; tracking material quality by measuring minority-carrier lifetime for each production casting; (4) reduced the wire-saw pitch to 450 microns with no loss in downstream yield; (5) demonstrated 8% improvement in average cell power on pre-production trial lots using PECVD silicon nitride; (6) developed a new EVA formation and demonstrated a 6-minute process to achieve adequate cure of PV modules in standard lamination equipment; (7) designed, purchased, and installed a new automated assembly line for large-area modules; and (8) implemented a factory-wide data collection and tracking system; production volumes and performance parameters are now monitored in real time through the local area network.

Wohlgemuth, J.; Shea, S. (BP Solarex)

2001-03-12T23:59:59.000Z

219

Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies  

SciTech Connect

We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt [Applied Materials, Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-11-06T23:59:59.000Z

220

Economic Effect of Energy Price and Economic Feasibility and Potenhal of New Technology and Improved Management for Irrigation in Texas  

E-Print Network (OSTI)

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production costs, are of primary concern because they impact on farm operations and producer economic viability. Recursive linear programming models for a typical Texas High Plains irrigated farm were developed to evaluate expected impact of energy and crop price changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping lift, the Fortran component updates the linear programming model. This procedure continues automatically to the end of a specified planning period or to economic exhaustion of the groundwater, whichever occurs first. Static applications of the model, in a deep water situation, showed that a natural gas price increase from $1.50 to $2.20 per thousand cubic feet (mcf) would result in reductions in irrigation levels. Irrigation was terminated when the price of natural gas reached about $7.00 per mcf. In a shallow water situation, much higher natural gas prices were reached ($3.60 per mcf) before short-run adjustments in farm organization began to occur. Under furrow irrigation, irrigation was terminated when the natural gas price reached $7.00 per mcf. Increased natural gas prices impact heavily on returns above variable costs (up to 15 percent reductions) for a 60 percent natural gas price increase. The effects of rising natural gas prices over a longer period of time were more significant. Annual returns (above variable and fixed costs) were reduced by as much as 30 percent, and the present value of returns to water was reduced by as much as 80 percent as the natural gas price was increased annually by $0.25 per mcf (from $1.50 per mcf). The economic life of deep groundwater was shortened by as much as 18 years. Renter-operators are even more vulnerable to rising natural gas prices than are owner-operators. With rising natural gas prices, profitability over time for the renter is low. As natural gas prices continue to increase, the greater will be the incentives for renter-operators to seek more favorable rental terms such as a sharing of irrigation costs. With the problem of a declining groundwater supply and rising natural gas prices, an economic incentive exists for producers to find new technologies that will enable them to make more efficient use of remaining groundwater and of natural gas. Substantial economic gains appear feasible through improved pump efficiency. Increasing pump efficiency from 50 to 75 percent will not increase the economic life of the water supply, but can improve farm profits over time; e.g., the present value of groundwater was increased 33 percent for a typical farm with an aquifer containing 250 feet of saturated thickness and 15 percent for 75 feet of saturated thickness. Improved irrigation distribution systems can help conserve water and reduce irrigation costs. Results indicate that irrigation can be extended by 11 or more years with 50 percent improved distribution efficiency. In addition, the increase in present value of groundwater on the 1.69 million irrigated acres of the Texas High Plains was estimated to be $995 million with 50 percent improved efficiency. New technology opportunities were expanded to include analysis of the economic feasibility of wind assisted irrigation pumping. Two wind machines were analyzed, with rate outputs of 40 to 60 kilowatts (KW). Each was applied to the Northern and Southern Texas High Plains over a range of land and water resource situations. Breakeven investment was estimated at discount rates of three, five and ten percent. Cropping patterns on the Southern High Plains were dominated by irrigated cotton and were insensit

Lacewell, Ronald D.; Hardin, D. C.; Petty, J. A.; Whitson, R. E.

1982-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

222

Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir  

SciTech Connect

The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

Rebecca Egg

2002-09-30T23:59:59.000Z

223

SRNL - Technology Transfer - Home  

Technology Transfer. Research and Development Savannah River Nuclear Solutions, LLC (SRNS) scientists and engineers develop technologies designed to improve ...

224

Projects selected in todays announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in today's announcement will focus on updating technologies in today's announcement will focus on updating technologies and methods to improve the performance of conventional hydropower plants. The projects selected for negotiation of awards include: Dehlsen Associates, LLC (Carpinteria, CA) will further develop and validate the Aquantis Current Plane ocean current turbine technology. The project will validate analytical design tools and develop the technology's direct drive component. DOE share: up to $750,000; Duration: up to 2 years Dehlsen Associates, LLC (Carpinteria, CA) will first develop a bottom habitat survey methodology and siting study approach in accordance with all relevant regulatory agencies in the southeast Florida region; then they will determine the most suitable areas for mooring marine and hydrokinetic facilities based on the

225

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

226

Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

2008-12-01T23:59:59.000Z

227

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

228

Program Design Analysis using BEopt Building Energy Optimization Software: Defining a Technology Pathway Leading to New Homes with Zero Peak Cooling Demand; Preprint  

SciTech Connect

An optimization method based on the evaluation of a broad range of different combinations of specific energy efficiency and renewable-energy options is used to determine the least-cost pathway to the development of new homes with zero peak cooling demand. The optimization approach conducts a sequential search of a large number of possible option combinations and uses the most cost-effective alternatives to generate a least-cost curve to achieve home-performance levels ranging from a Title 24-compliant home to a home that uses zero net source energy on an annual basis. By evaluating peak cooling load reductions on the least-cost curve, it is then possible to determine the most cost-effective combination of energy efficiency and renewable-energy options that both maximize annual energy savings and minimize peak-cooling demand.

Anderson, R.; Christensen, C.; Horowitz, S.

2006-08-01T23:59:59.000Z

229

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

230

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

231

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

232

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Improvement Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction July 9, 2005 - July 8, 2006 J. Cohen and T. Schweizer Princeton Energy Resources International (PERI) Rockville, Maryland A. Laxson, S. Butterfield, S. Schreck, and L. Fingersh National Renewable Energy Laboratory Golden, Colorado P. Veers and T. Ashwill Sandia National Laboratories Albuquerque, New Mexico Technical Report NREL/TP-500-41036 February 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

233

Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II  

SciTech Connect

The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

Hickman, T. Scott; Justice, James J.; Egg, Rebecca

2001-08-07T23:59:59.000Z

234

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

Science Conference Proceedings (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

235

Does the Introduction of RFID Technology Improve Livestock Subsidy Management?: A Success Story from an Arab Country  

Science Conference Proceedings (OSTI)

While the expected benefits and challenges of RFID technology have been well studied in the manufacturing and service sectors at the private organization level, little understanding exists of these two issues when exploring RFID adoption in the agricultural ... Keywords: Electronic Commerce, Information System, RFID Advantages, RFID Application, RFID Cost, RFID Investment, RFID Obstacles, Top Management Support

Kamel Rouibah; Abdulaziz Al Ateeqi; Samia Rouibah

2011-01-01T23:59:59.000Z

236

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

Science Conference Proceedings (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

237

Improving the Field Performance of Natural Gas Furnaces, Chicago, Illinois (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Field Performance the Field Performance of Natural Gas Furnaces Chicago, Illinois PROJECT INFORMATION Project Name: Improving Gas Furnace Performance-A Field and Lab Study at End of Life Location: Chicago, IL Partnership for Advanced Residential Retrofit www.gastechnology.org Building Component: Natural Gas Furnaces Application: New and/or retrofit; Single and/or multifamily Year Tested: 2012/2013 Applicable Climate Zone(s): All or specify which ones PERFORMANCE DATA Cost of Energy Efficiency Measure (including labor): $250 for adjustments Projected Energy Savings: 6.4% heating savings Projected Energy Cost Savings: $100/year climate-dependent Gas furnaces can successfully operate in the field for 20 years or longer with

238

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

239

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

240

Tracking Clean Energy Progress Energy Technology Perspectives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Perspectives 2012 excerpt as IEA input to the Clean Energy Ministerial Tracking Clean Energy Progress Energy Technology Perspectives 2012 Pathways to a Clean Energy...

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Climate VISION: Private Sector Initiatives: Forest Products: Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways AF&PA estimates that the forest products industry will reduce its greenhouse gas emissions intensity by 12% by 2012 relative to 2000 numbers. One of the main ways AF&PA anticipates that the industry will reduce its greenhouse gas emissions intensity is through implementation of new technologies from research and development programs. AF&PA has been participating in DOE's Industries of the Future program, a collaborative research and development partnership between DOE and the forest products industry. Through this program, AF&PA has participated in the development of a number of technologies aimed at cutting energy use, minimizing environmental impacts, and improving productivity in industry. If fully commercialized, these technologies could make the U.S. forest

242

Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991  

DOE Green Energy (OSTI)

This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. [ENTECH, Inc., Dallas-Fort Worth Airport, TX (United States)

1991-11-01T23:59:59.000Z

243

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

Savings From Improved Boiler Operation Kevin Carpenter Kelly Kissock Graduate Research Assistant Associate/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify boilers. The methods include calculation of combustion temperature, calculation of the relationship

Kissock, Kelly

244

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

Raj Kumar; Keith Brown; T. Scott Hickman; James J. Justice

2000-04-27T23:59:59.000Z

245

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service. Second topical report  

SciTech Connect

The January, 1988 draft topical report, entitled ``An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems`` [Ref.1.1], identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

246

A review of potential turbine technology options for improving the off-design performance of direct coal-fired gas turbines in base load service  

SciTech Connect

The January, 1988 draft topical report, entitled An Assessment of Off-Design Particle Control Performance on Direct Coal-Fired Gas Turbine Systems'' (Ref.1.1), identified the need to assess potential trade-offs in turbine aerodynamic and thermodynamic design which may offer improvements in the performance, operational and maintenance characteristics of open-cycle, direct coal-fired, combustion gas turbines. In this second of a series of three topical reports, an assessment of the technical options posed by the above trade-offs is presented. The assessment is based on the current status of gas turbine technology. Several industry and university experts were contacted to contribute to the study. Literature sources and theoretical considerations are used only to provide additional background and insight to the technology involved.

Thomas, R.L.

1988-03-01T23:59:59.000Z

247

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-08-10T23:59:59.000Z

248

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-06-16T23:59:59.000Z

249

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman

2003-01-17T23:59:59.000Z

250

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

T. Scott Hickman; James J. Justice

2001-12-11T23:59:59.000Z

251

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

252

Extension of Studies with 3M Empore TM and Selentec MAG *SEP SM Technologies for Improved Radionuclide Field Sampling  

Science Conference Proceedings (OSTI)

The Savannah River Technology Center is evaluating new field sampling methodologies to more easily determine concentrations of radionuclides in aqueous systems. One methodology studied makes use of 3M EmporeTM disks. The disks are composed of selective resins embedded in a Teflon support. The disks remove the ion of interest from aqueous solutions when the solution is passed through the disk. The disk can then be counted directly to quantify the isotope of interest. Four types of disks were studied during this work: for the extraction of technetium (two types), cesium, plutonium, and strontium. A sampler has been developed for automated, unattended, in situ use of the EmporeTM disks.

Beals, D.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bibler, J.P.; Brooks, D.A.

1996-07-10T23:59:59.000Z

253

NREL Improves Building Energy Simulation Programs Through Diagnostic Testing (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Improves Improves Building Energy Simulation Programs Through Diagnostic Testing Researchers at the National Renewable Energy Laboratory (NREL) have developed a new test procedure to increase the quality and accuracy of energy analysis tools for the building retrofit market. The Building Energy Simulation Test for Existing Homes (BESTEST-EX) is a test procedure that enables software developers to evaluate the performance of their audit tools in modeling energy use and savings in existing homes when utility bills are available for model cali- bration. Similar to NREL's previous energy analysis tests, such as HERS BESTEST and other BESTEST suites included in ANSI/ASHRAE Standard 140, BESTEST-EX compares soft- ware simulation findings to reference results generated with state-of-the-art

254

Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

Science Conference Proceedings (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-01-30T23:59:59.000Z

255

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS  

Science Conference Proceedings (OSTI)

The project has seen quite a bit of activity in this quarter, highlighted by the fabrication of a bit insert for field testing. In addition: (1) Several alternative process techniques were attempted to prevent bloating, cracking and delamination of FM material that occurs during binder burnout. The approaches included fabrication of FM material by three pass extrusion and warm isostatic pressing of green material, slow and confined burnouts as well as, burnout of thin plate instead of rod stock. Happily, a confined burnout followed by HIPing, produced FM button inserts without bloating or delamination. (2) Four rock bit inserts were produced from FM material and are ready for use on blast hole bits in the field. (3) Six of the project participants from Michigan Technological University, Advanced Ceramic Manufacturing, and The Robbins Group visited the Superior Rock Bit Company in Minnesota and planned the field test of FM inserts.

Xiaodi Huang; Richard Gertsch

2002-08-27T23:59:59.000Z

256

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

257

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

258

Fuel Cell Technologies Office: Roadmaps  

NLE Websites -- All DOE Office Websites (Extended Search)

This page contains documents that outline U.S. DOE efforts to develop a hydrogen-based energy system. Hydrogen Production Roadmap: Technology Pathways to the Future, published...

259

PVMaT improvements in the Solarex photovoltaic module manufacturing technology: Annual subcontract report: May 5, 1998 -- April 30, 1999  

DOE Green Energy (OSTI)

This report describes work done by Solarex during the first year of this subcontract. The objective of this three-year PVMaT program is to continue the advancement of Solarex PV manufacturing technologies to design and implement a process that produces polycrystalline silicon PV modules that can be sold profitably for $2.00 per peak watt or less and that will increase the production capacity of the Frederick plant to at least 25 megawatts per year. Accomplishments during the first year of the program include: (1) Verification of the process to produce SiF{sub 4}, the precursor to silicon feedstock. (2) Design of a silicon feedstock pilot facility using the SiNaF process. (3) Development of and transfer to manufacturing of a process to use thinner wire in the wire saw. (4) Completion of a production trial with recycled SiC. (5) Laboratory development of a selective emitter process using rapid thermal processing. (6) Fabrication of high-efficiency polycrystalline cells using silicon nitride from three different sources. (7) Development of a new encapsulation formulation and laboratory demonstration of a 6-minute lamination cycle. (8) Implementation of an automated laminator. (9) Laboratory demonstration of automated handling of ceramics.

Wohlgemuth, J.

2000-01-10T23:59:59.000Z

260

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, 1 January 1996--31 December 1996  

DOE Green Energy (OSTI)

This report describes Solarex`s accomplishments during this phase of the Photovoltaic Manufacturing Technology (PVMaT) program. During this reporting period, Solarex researchers converted 79% of production casting stations to increase ingot size and operated them at equivalent yields and cell efficiencies; doubled the casting capacity at 20% the cost of buying new equipment to achieve the same capacity increase; operated the wire saws in a production mode with higher yields and lower costs than achieved on the ID saws; purchased additional wire saws; developed and qualified a new wire-guide coating material that doubles the wire-guide lifetime and produces significantly less scatter in wafer thickness; ran an Al paste back-surface-field process on 25% of all cells in manufacturing; completed environmental qualification of modules using cells produced by an all-print metallization process; qualified a vendor-supplied Tedlar/ethylene vinyl acetate (EVA) laminate to replace the combination of separate sheets of EVA and Tedlar backsheet; substituted RTV adhesive for the 3M Very High Bond tape after several field problems with the tape; demonstrated the operation of a prototype unit to trim/lead attach/test modules; demonstrated the use of light soldering for solar cells; demonstrated the operation of a wafer pull-down system for cassetting wet wafers; and presented three PVMaT-related papers at the 25th IEEE Photovoltaic Specialists Conference.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Available Technologies: Engineering Competitive Pathways for ...  

Biofuels derived from lignocellulosic biomass are promising alternatives to fossil fuels. ... reduce them into simple sugars that can then be converted into fuels.

262

Measuring clinical pathway adherence  

Science Conference Proceedings (OSTI)

As clinical pathway adoption continues worldwide, it is necessary to establish adherence measurement methods in order to understand the difficulties and results of implementation. Adherence measurement literature mostly provides binary measurements of ... Keywords: Adherence, Clinical pathways, Dynamic programming

Joris van de Klundert; Pascal Gorissen; Stef Zeemering

2010-12-01T23:59:59.000Z

263

Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations  

Science Conference Proceedings (OSTI)

The concept of using a dry, density-based separator to achieve efficient, near-face rock removal, commonly referred to as deshaling, was evaluated in several applications across the U.S.. Varying amounts of high-density rock exist in most run-of-mine feed. In the central Appalachian coalfields, a rock content exceeding 50% in the feed to a preparation plant is commonplace due to high amounts of out-of-seam dilution made necessary by extracting coal from thin seams. In the western U.S, an increase in out-of-seam dilution and environmental regulations associated with combustion emissions have resulted in a need to clean low rank coals and dry cleaning may be the only option. A 5 ton/hr mobile deshaling unit incorporating a density-based, air-table technology commercially known as the FGX Separator has been evaluated at mine sites located within the states of Utah, Wyoming, Texas, West Virginia, Virginia, Pennsylvania and Kentucky. The FGX technology utilizes table riffling principles with air as the medium. Air enters through the table and creates a fluidized bed of particles comprised of mostly fine, high density particles. The high density particle bed lifts the low-density coal particles to the top of the bed. The low-density coal moves toward the front of the table due to mass action and the downward slope of the table. The high-density particles settle through the fluidized particle bed and, upon making contact with the table, moves toward the back of the table with the assistance of table vibration. As a result, the low-density coal particles exit the front of the table closest to the feed whereas the high-density, high-ash content particles leave on the side and front of the table located at the farthest from the feed entry. At each test site, the run-of-mine feed was either directly fed to the FGX unit or pre-screened to remove the majority of the -6mm material. The surface moisture of the feed must be maintained below 9%. Pre-screening is required when the surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results obtained from Site No. 1 to obtain the optimum results shown in Table E-1. Approximately 9 tests w

Rick Honaker; Gerald Luttrell

2007-09-30T23:59:59.000Z

264

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants  

Science Conference Proceedings (OSTI)

This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

Ken Mortensen

2011-12-31T23:59:59.000Z

265

Improved Electrospray Technology - PNNL: Available ...  

Summary. Electrospray is a mainstay ionization method for liquid chromatography/mass spectrometry (LC/MS). For optimal electrospray characteristics at ...

266

Available Technologies: Improving Saccharification Efficiency ...  

Specifically, cell wall extracts given a hot water pre-treatment exhibit a 62% increase in the total sugars released in an enzyme mixture that ...

267

Available Technologies: Long-term Growth of Finite Life ...  

APPLICATIONS OF TECHNOLOGY: Examine carcinogenesis, aging, expression of genes, proteins and miRNA, signaling pathways, epigenetics, and genomic ...

268

Program on Technology Innovation: Development of Flexible Electrochromic Films  

Science Conference Proceedings (OSTI)

Even with today's energy-efficient low-emissivity (low-E) coatings, more than 4 quads of energy are lost through windows each year, costing building owners over 40 billion. Electrochromic windows that allow active control of transmitted light and solar heating offer a pathway to improved window performance that maintains optimal occupant comfort while minimizing the energy footprint. This report reviews the benefits of electrochromic window technology to help meet these goals and the opportunity for new ...

2011-04-01T23:59:59.000Z

269

Technology Overview: Concentrator PV 2010 Boot Camp (CPV) (Presentation)  

DOE Green Energy (OSTI)

The presentation introduces the various types of CPV technologies and provides a status report of today's CPV companies. Six different architectures of multijunction cells are shown to near or surpass 40% in efficiency. The design space for CPV is quite complex, which is a curse for those trying to narrow it down for the first prototype, but a blessing for those who want multiple pathways for product improvement in coming years.

Kurtz, S.; Bett, A.; Hartsoch, N.

2010-10-11T23:59:59.000Z

270

Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management  

SciTech Connect

This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

Shawn St. Germain; Ronald Farris; Heather Medeman

2013-09-01T23:59:59.000Z

271

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

272

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 37, quarter ending December 31, 1983  

SciTech Connect

Project reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal methods; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; and general supporting research.

Linville, B. (ed.)

1984-08-01T23:59:59.000Z

273

Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction: July 9, 2005 - July 8, 2006  

DOE Green Energy (OSTI)

This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

Cohen, J.; Schweizer, T.; Laxson, A.; Butterfield, S.; Schreck, S.; Fingersh, L.; Veers, P.; Ashwill, T.

2008-02-01T23:59:59.000Z

274

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995  

SciTech Connect

Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

NONE

1996-01-22T23:59:59.000Z

275

Technology '90  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

276

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES). (November 2009). Hydrogen Pathways: Cost,...

277

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

SciTech Connect

The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

Tom Beebe

2003-05-05T23:59:59.000Z

278

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR  

Science Conference Proceedings (OSTI)

The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

T. Scott Hickman; James J. Justice

2002-01-09T23:59:59.000Z

279

Lipid Oxidation Pathways  

Science Conference Proceedings (OSTI)

This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. Lipid Oxidation Pathways Hardback Books Health - Nutrition -

280

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

Science Conference Proceedings (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

National Center for Hydrogen Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

required to develop advanced hydrogen production and delivery technologies from fossil fuels. The EERC works with industry partners on the development of technology to improve the...

282

Fuel Pathway Integration Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Pathway Integration Fuel Pathway Integration Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Fuel Pathway Integration Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to enable

283

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Biofuels Biofuels Biotechnology and Medecine Biotechnology & Medicine Chemistry Developing World Energy Efficient Technologies Energy Environmental Technologies...

284

The dynamics of forming a technology based start-up : how founders use external advice to improve their firm's chance of succeeding  

E-Print Network (OSTI)

External advice can be a valuable resource for founders of high technology startup companies. As with any resource, the pursuit and efficient use of the external advice resource is one of the greatest challenges for founders. ...

Cravalho, Nick

2007-01-01T23:59:59.000Z

285

Low Wind Speed Technology Phase II: Investigation of the Application of Medium-Voltage Variable-Speed Drive Technology to Improve the Cost of Energy from Low Wind Speed Turbines; Behnke, Erdman and Whitaker Engineering, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Behnke, Erdman & Whitaker Engineering, Inc. to test the feasibility of applying medium-voltage variable-speed drive technology to low wind speed turbines.

2006-03-01T23:59:59.000Z

286

Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants ProMIS/Project No.:DE-NT0005647  

NLE Websites -- All DOE Office Websites (Extended Search)

Improvement to AIr2AIr® technology Improvement to AIr2AIr® technology to reduce Fresh-WAter evAporAtIve coolIng loss At coAl-BAsed thermoelectrIc poWer plAnts promIs/project no. :de-nt0005647 Background The production of electricity requires a reliable, abundant, and predictable source of freshwater - a resource that is limited in many parts of the United States and throughout the world. The process of thermoelectric generation from fossil fuels such as coal, oil, and natural gas is water intensive. According to the 2000 U.S. Geological Survey, thermoelectric-power withdrawals accounted for 48 percent of total water use, 39 percent of total freshwater withdrawals (136 billion gallons per day) for all categories, and 52 percent of fresh surface water withdrawals. As a growing economy drives the need for more electricity, demands on freshwater

287

Using Advanced Control and Power Technologies to Improve the Reliability and Energy Efficiency of Petroleum Refining and Petrochemical Manufacturing in California  

Science Conference Proceedings (OSTI)

Full implementation of advanced control and power technologies could save U.S. refineries and petrochemical plants an estimated $7.14 billion/year. California refineries process 1,893,020 barrels of crude per day -- about 11% of the total U.S. crude. Implementation of advanced control and power technologies could provide California refineries and petrochemical plants significant savings from increased energy efficiency and productivity. This report identifies these savings opportunities for California re...

2004-05-17T23:59:59.000Z

288

Multijunction Photovoltaic Technologies for High-Performance Concentrators: Preprint  

DOE Green Energy (OSTI)

Multijunction solar cells provide high-performance technology pathways leading to potentially low-cost electricity generated from concentrated sunlight. The National Center for Photovoltaics at the National Renewable Energy Laboratory has funded different III-V multijunction solar cell technologies and various solar concentration approaches. Within this group of projects, III-V solar cell efficiencies of 41% are close at hand and will likely be reported in these conference proceedings. Companies with well-developed solar concentrator structures foresee installed system costs of $3/watt--half of today's costs--within the next 2 to 5 years as these high-efficiency photovoltaic technologies are incorporated into their concentrator photovoltaic systems. These technology improvements are timely as new large-scale multi-megawatt markets, appropriate for high performance PV concentrators, open around the world.

McConnell, R.; Symko-Davies, M.

2006-05-01T23:59:59.000Z

289

Pathways Analysis for State Proliferators  

E-Print Network (OSTI)

A computational tool to assess the most likely path a state proliferator would take in making a nuclear weapon was created in a Bayesian network. The purpose of this work was to create a tool to facilitate analysts and policymakers in learning about state proliferation. In carrying out this work, a previous Bayesian network based on nuclear weapon proliferation was expanded to include dual-use export controlled technologies. The constant nodes in the network quantifying technical capability, international networking, and available infrastructure were developed to be based on pertinent characteristics that were appropriately weighted. To verify the network, nine historical cases of state proliferation were tested over time, and the enrichment and weapon pathways were graphed. The network sufficiently modeled the cases, so it was concluded that, while one can never truly being able to sufficiently validate a network of this type, sufficient verification was achieved. The tool was used to gain knowledge and insight concerning technology transfers with four countries in hypothetical cases. This exercise proved that the network can in fact be used to learn about state proliferation under different policies and conditions.

Mella, Michael

2011-05-01T23:59:59.000Z

290

Refractory Improvement  

NLE Websites -- All DOE Office Websites (Extended Search)

Refractory Improvement Refractory Improvement NETL Office of Research and Development Project Number: FWP-2012.03.03 Task 2 Project Description Industry would like gasifier on-line availability of 85-95% for utility applications and 95% for applications such as chemical production. Gasification facilities' are currently unable to meet these requirements, which have created a potential roadblock to widespread acceptance and commercialization of gasification technologies. Refractory liners and syngas coolers are among key components of the gasification process previously identified as negatively impacting gasifier availability. Ash originating from impurities in the gasifier's carbon feedstock is the root cause of many problems impacting gasifier RAM (Reliability Availability Maintainability). At the high temperatures of gasification, ash changes to liquid, gas, and solid phases which wear down refractory materials and can cause fouling, either of which can lead to unplanned shutdowns for system repair, replacement, or cleaning.

291

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network (OSTI)

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four origin, gender, age, marital status, sexual orientation, status as a Vietnam-era veteran, or disability

292

Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

293

ATOM-ECONOMICAL PATHWAYS TO METHANOL FUEL CELL FROM BIOMASS  

DOE Green Energy (OSTI)

An economical production of alcohol fuels from biomass, a feedstock low in carbon and high in water content, is of interest. At Brookhaven National Laboratory (BNL), a Liquid Phase Low Temperature (LPLT) concept is under development to improve the economics by maximizing the conversion of energy carrier atoms (C,H) into energy liquids (fuel). So far, the LPLT concept has been successfully applied to obtain highly efficient methanol synthesis. This synthesis was achieved with specifically designed soluble catalysts, at temperatures < 150 C. A subsequent study at BNL yielded a water-gas-shift (WGS) catalyst for the production of hydrogen from a feedstock of carbon monoxide and H{sub 2}O at temperatures < 120 C. With these LPLT technologies as a background, this paper extends the discussion of the LPLT concept to include methanol decomposition into 3 moles of H{sub 2} per mole of methanol. The implication of these technologies for the atom-economical pathways to methanol fuel cell from biomass is discussed.

MAHAJAN,D.; WEGRZYN,J.E.

1999-03-01T23:59:59.000Z

294

Wireless Temperature Sensors for Improved HVAC Control  

NLE Websites -- All DOE Office Websites (Extended Search)

reliable, and affordable and affordable Wireless Temperature Sensors for Improved HVAC Control An assessment of wireless sensor technology Executive Summary This Technology...

295

Secretary Chu Announces $47 Million to Improve Efficiency in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Million to Improve Efficiency in Information Technology and Communications Sectors Secretary Chu Announces 47 Million to Improve Efficiency in Information Technology and...

296

Pathway and Resource Overview (Presentation)  

DOE Green Energy (OSTI)

This presentation provides information about hydrogen pathway analysis, which is analysis of the total levelized cost (including return on investment). Well-to-wheels (WTW) energy use, and WTW emissions for hydrogen production, delivery, and distribution pathways.

Ruth, M. F.

2009-11-16T23:59:59.000Z

297

Lipid Oxidation Pathways, Volume 2  

Science Conference Proceedings (OSTI)

This book complements Lipid Oxidation Pathways, Volume 1. Lipid Oxidation Pathways, Volume 2 Health acid analysis aocs april articles chloropropanediol contaminants detergents dietary fats division divisions esters fats fatty food foods glycidol Health h

298

Understanding the Autophagy Pathway  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Autophagy Pathway Understanding the Autophagy Pathway Understanding the Autophagy Pathway Print Monday, 13 February 2012 14:22 Autophagy is a process in which a double-membrane structure called an 'autophagosome' engulfs portions of a cell's cytoplasm, including organelles. The contents of the autophagosome are then directed for degradation in the lysosome, an organelle that breaks down waste and debris in cells so the raw materials can be reused. Recent research at the ALS clarifies key aspects of enzyme activity in this process. Autophagy is key to maintaining cellular equilibrium, or homeostasis; however, dysregulation of autophagy has been implicated in several diseases. Central to autophagy is a ubiquitin-like protein (Ubl) system called Atg8. In general, Ubls serve as molecular tags, altering the fate of their targets. In autophagy, Atg8 is activated by its E1 enzyme Atg7, then handed off to its E2 enzyme Atg3, and finally attached to a lipid moiety (phosphatidylethanolamine) within the expanding autophagosome.

299

Understanding the Autophagy Pathway  

NLE Websites -- All DOE Office Websites (Extended Search)

Understanding the Autophagy Pathway Understanding the Autophagy Pathway Understanding the Autophagy Pathway Print Monday, 13 February 2012 14:22 Autophagy is a process in which a double-membrane structure called an 'autophagosome' engulfs portions of a cell's cytoplasm, including organelles. The contents of the autophagosome are then directed for degradation in the lysosome, an organelle that breaks down waste and debris in cells so the raw materials can be reused. Recent research at the ALS clarifies key aspects of enzyme activity in this process. Autophagy is key to maintaining cellular equilibrium, or homeostasis; however, dysregulation of autophagy has been implicated in several diseases. Central to autophagy is a ubiquitin-like protein (Ubl) system called Atg8. In general, Ubls serve as molecular tags, altering the fate of their targets. In autophagy, Atg8 is activated by its E1 enzyme Atg7, then handed off to its E2 enzyme Atg3, and finally attached to a lipid moiety (phosphatidylethanolamine) within the expanding autophagosome.

300

The improvement of near-term CdTe processing and product capabilities and establishment of next-generation CdTe technology. Annual technical progress report, September 1, 1995--August 31, 1996  

DOE Green Energy (OSTI)

The potential of photovoltaics to become a major global business enterprise still lingers outside the limits of industrial capabilities. For the Cadmium Sulfide/Cadmium Telluride (CdS/CdTe) system this potential has continued to focus on improvements in efficiency, stability, and cost reduction. This triad is the primary objective of the present subcontract with NREL entitled {open_quotes}The Improvement of Near-term CdTe Processing and Product Capabilities & Establishment of Next Generation CdTe Technology{close_quotes}. This subcontract represents an intermediate stage of NREL`s plan to assist the growth of the photovoltaic industry in overcoming the scientific and technical barriers to commercialization. This report outlines the progress that has been made during the period of August 1995 through August 1996. The objectives of this subcontract are to improve processing methods, quantify and understand efficiency improvement mechanisms, meet life-testing goals, and address cadmium safety concerns. Task and subtask goals are defined to meet these objectives in specific areas. The approach to fulfilling the subcontract goals is through a balanced plan of process improvement and mechanism identification. These are carried out and continued through monitoring under various long term and accelerated stress conditions. GPI maintains an on-going awareness of all safety related issues, can in particular, those involving cadmium.

Kester, J.; Albright, S. [Golden Photon, Inc., CO (United States)

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain  

SciTech Connect

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2006-05-31T23:59:59.000Z

302

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain  

Science Conference Proceedings (OSTI)

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2003-12-31T23:59:59.000Z

303

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

304

Potentials and policy implications of energy and material efficiency improvement  

E-Print Network (OSTI)

steam reforming of natural gas. Ammonia production technology has significantly improved in the last three decades, improving economies

Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

1997-01-01T23:59:59.000Z

305

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

Science Conference Proceedings (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

306

The Role of Technology in the Outlook for Energy  

Science Conference Proceedings (OSTI)

The Role of Technology in the Outlook for Energy. Purpose: ExxonMobil is investing in technologies for improving energy ...

2012-03-09T23:59:59.000Z

307

Technology Commercialization and Partnerships | BNL 12-42 ...  

Receive Technology Updates. Get email notifications about new or improved technologies in your area of interest. Subscribe

308

Improved energy sealing capability  

DOE Green Energy (OSTI)

In response to the need for tapping national energy resources, an improved high temperature sealing material has been developed through the sponsorship of the Department of Energy. Parker Seal was selected as one of the technology transferees from L'Garde Inc. and has optimized this transferred technology for further improved performance capabilities and acceptable plant processing. This paper summarizes Parker Seal's testing and evaluation efforts on L'Garde's Y267 transferred technology for a new geothermal and stream service material. This new product, Parker's E962-85 is described in this paper.

Barsoumian, Jerry L.

1982-10-08T23:59:59.000Z

309

Climate Change Mitigation: An Analysis of Advanced Technology Scenarios  

SciTech Connect

This report documents a scenario analysis that explores three advanced technology pathways toward climate stabilization using the MiniCAM model.

Clarke, Leon E.; Wise, Marshall A.; Placet, Marylynn; Izaurralde, R Cesar; Lurz, Joshua P.; Kim, Son H.; Smith, Steven J.; Thomson, Allison M.

2006-09-18T23:59:59.000Z

310

Technology Search  

home \\ technologies \\ search. Technologies: Ready-to-Sign Licenses: Software: Patents: Technology Search. ... Operated by Lawrence Livermore National Security, LLC, ...

311

Improved Energy Management during Anode Setting Activity  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Aluminum Reduction Technology. Presentation Title, Improved Energy...

312

Improved Modular CSSX Unit (MCU) Operations  

Change Distributed Control System software to reflect new flowsheet Develop on-line solvent analysis technology DSSHT SEHT. Improved MCU ...

313

Resources and Training for Continuous Program Improvement ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Continuous Improvement of Academic Programs (and Satisfying ABET Along...

314

Energy Savings by Cell Design Improvements  

Science Conference Proceedings (OSTI)

Mar 3, 2011 ... Aluminum Reduction Technology: Energy Savings by Cell Design Improvements Sponsored by: The Minerals, Metals and Materials Society,...

315

NREL Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Develops Develops Diagnostic Test Cases To Improve Building Energy Simulation Programs The National Renewable Energy Laboratory (NREL) Residential and Commercial Buildings research groups developed a set of diagnostic test cases for building energy simulations. Eight test cases were developed to test surface conduction heat transfer algorithms of building envelopes in building energy simulation programs. These algorithms are used to predict energy flow through external opaque surfaces such as walls, ceilings, and floors. The test cases consist of analyti- cal and vetted numerical heat transfer solutions that have been available for decades, which increases confidence in test results. NREL researchers adapted these solutions for comparisons with building energy simulation results.

316

Building Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Roland Risser Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving Building Performance Research & Development Developing High Impact Technologies Standards & Codes Locking in the Savings Market Stimulation Accelerating Tech-to- Market 3 Building Technologies Office Goal: Reduce building energy use by 50% (compared to a 2010 baseline) 4 Building Technologies Office Working to Overcome Challenges Information Access * Develop building performance tools, techniques, and success stories, such as case studies * Form market partnerships and programs to share best practices * Solution Centers * Certify the workforce to ensure quality work

317

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Printable Version Share this resource Send a link to Building Technologies Office: Emerging Technologies to someone by E-mail Share Building Technologies Office: Emerging Technologies on Facebook Tweet about Building Technologies Office: Emerging Technologies on Twitter Bookmark Building Technologies Office: Emerging Technologies on Google Bookmark Building Technologies Office: Emerging Technologies on Delicious Rank Building Technologies Office: Emerging Technologies on Digg Find More places to share Building Technologies Office: Emerging Technologies on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Technology Research, Standards, & Codes Popular Links Success Stories Previous Next Lighten Energy Loads with System Design.

318

Novel Platinum/Chromium Alloy for the Manufacture of Improved ...  

Novel Platinum/Chromium Alloy for the Manufacture of Improved Coronary Stents National Energy Technology Laboratory

319

Technology Transfer Commercialization Act of 2000 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Commercialization Act of 2000 Technology Transfer Commercialization Act of 2000 PUBLIC LAW 106-404-NOV. 1, 2000 To improve the ability of Federal agencies to...

320

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Radio Mobile Radio Service (WRI - CMRS) Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Universal ID Pilot Test WRI Overview * The goal: Improved motor carrier safety due to increased compliance caused by higher frequency of roadside safety inspections using wireless technologies. * Benefits * Improved safety of CMVs and their operation * Reductions in accidents * Increased productivity and mobility of the transportation system * Increased security and livability Universal ID Pilot Test The CMRS Platform for WRI * CMRS - Commercial Mobile Radio Services * Includes telematics devices (such as electronic on-board recorders) Universal ID Pilot Test

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technology Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Homeland Security & Defense Homeland Security & Defense Information Technology & Communications Information Technology & Communications Sensors, Electronics &...

322

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

323

Process Design and Optimization of Biorefining Pathways  

E-Print Network (OSTI)

Synthesis and screening of technology alternatives is a key process-development activity in the process industries. Recently, this has become particularly important for the conceptual design of biorefineries. A structural representation (referred to as the chemical species/conversion operator) is introduced. It is used to track individual chemicals while allowing for the processing of multiple chemicals in processing technologies. The representation is used to embed potential configurations of interest. An optimization approach is developed to screen and determine optimum network configurations for various technology pathways using simple data. The design of separation systems is an essential component in the design of biorefineries and hydrocarbon processing facilities. This work introduces methodical techniques for the synthesis and selection of separation networks. A shortcut method is developed for the separation of intermediates and products in biorefineries. The optimal allocation of conversion technologies and recycle design is determined in conjunction with the selection of the separation systems. The work also investigates the selection of separation systems for gas-to-liquid (GTL) technologies using supercritical Fischer-Tropsch synthesis. The task of the separation network is to exploit the pressure profile of the process, the availability of the solvent as a process product, and the techno-economic advantages of recovering and recycling the solvent. Case studies are solved to illustrate the effectiveness of the various techniques developed in this work. The result shows 1, the optimal pathway based on minimum payback period for cost efficiency is pathway through alcohol fermentation and oligomerized to gasoline as 11.7 years with 1620 tonne/day of feedstock. When the capacity is increased to 120,000 BPD of gasoline production, the payback period will be reduced to 3.4 years. 2, from the proposed separation configuration, the solvent is recovered 99% from the FT products, while not affecting the heavier components recovery and light gas recovery, and 99% of waster is recycled. The SCF-FT case is competitive with the traditional FT case with similar ROI 0.2. 3, The proposed process has comparable major parts cost with typical GTL process and the capital investment per BPD is within the range of existing GTL plant.

Bao, Buping

2012-05-01T23:59:59.000Z

324

Vehicle Technologies Office: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

alternatives. Achieving these aims would drastically reduce America's dependence on foreign oil, while improving the country's environmental and economic security....

325

Research article: Identifying novel prostate cancer associated pathways based on integrative microarray data analysis  

Science Conference Proceedings (OSTI)

The development and diverse application of microarray and next generation sequencing technologies has made the meta-analysis widely used in expression data analysis. Although it is commonly accepted that pathway, network and systemic level approaches ... Keywords: Gene set enrichment analysis, GeneGo database, KEGG database, Meta-analysis, Pathway enrichment analysis

Ying Wang; Jiajia Chen; Qinghui Li; Haiyun Wang; Ganqiang Liu; Qing Jing; Bairong Shen

2011-06-01T23:59:59.000Z

326

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

327

Morgantown Energy Technology Center, technology summary  

Science Conference Proceedings (OSTI)

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

Not Available

1994-06-01T23:59:59.000Z

328

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6...

329

Vehicle Technologies Office: Materials by Design  

NLE Websites -- All DOE Office Websites (Extended Search)

improve research on a variety of technologies, such as: Magnetics for electric motors Thermoelectric materials for energy recovery Improved catalysts for exhaust...

330

PNNL: Available Technologies: Aerospace & Defense Industry  

Other. Improved Materials for Sampling of Surfaces for Measurement of Explosives and Other Chemicals of Interest; Improved Sensor Technology using Qua ...

331

Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions...  

NLE Websites -- All DOE Office Websites (Extended Search)

A1-46612 September 2009 Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution...

332

Railroad and locomotive technology roadmap.  

Science Conference Proceedings (OSTI)

Railroads are important to the U.S. economy. They transport freight efficiently, requiring less energy and emitting fewer pollutants than other modes of surface transportation. While the railroad industry has steadily improved its fuel efficiency--by 16% over the last decade--more can, and needs to, be done. The ability of locomotive manufacturers to conduct research into fuel efficiency and emissions reduction is limited by the small number of locomotives manufactured annually. Each year for the last five years, the two North American locomotive manufacturers--General Electric Transportation Systems and the Electro-Motive Division of General Motors--have together sold about 800 locomotives in the United States. With such a small number of units over which research costs can be spread, outside help is needed to investigate all possible ways to reduce fuel usage and emissions. Because fuel costs represent a significant portion of the total operating costs of a railroad, fuel efficiency has always been an important factor in the design of locomotives and in the operations of a railroad. However, fuel efficiency has recently become even more critical with the introduction of strict emission standards by the U.S. Environmental Protection Agency, to be implemented in stages (Tiers 0, 1, and 2) between 2000 and 2005. Some of the technologies that could be employed to meet the emission standards may negatively affect fuel economy--by as much as 10-15% when emissions are reduced to Tier 1 levels. Lowering fuel economy by that magnitude would have a serious impact on the cost to the consumer of goods shipped by rail, on the competitiveness of the railroad industry, and on this country's dependence on foreign oil. Clearly, a joint government/industry R&D program is needed to help catalyze the development of advanced technologies that will substantially reduce locomotive engine emissions while also improving train system energy efficiency. DOE convened an industry-government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical approaches for engine, locomotive, rail systems, and advanced power plants and fuels are presented.

Stodolsky, F.; Gaines, L.; Energy Systems

2003-02-24T23:59:59.000Z

333

Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Technologies Technologies November 1, 2013 - 11:40am Addthis Distributed energy (DE) technologies consist primarily of energy generation and storage systems placed at or near the point of use. DE provides consumers with greater reliability, adequate power quality, and the possibility to participate in competitive electric power markets. DE also has the potential to mitigate congestion in transmission lines, control price fluctuations, strengthen energy security, and provide greater stability to the electricity grid. The use of DE technologies can lead to lower emissions and, particularly in combined heat and power (CHP) applications, to improved efficiency. Example of a thermally activated energy conversion technology (TAT) -- a type of distributed energy technology. Distributed energy technologies consist primarily of energy generation and storage systems placed at or near the point of use. This gas engine-driven heat pump is operating on a rooftop.

334

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

335

Nanolubricants to Improve Chiller Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanolubricants to Improve Chiller Nanolubricants to Improve Chiller Performance Mark Kedzierski NIST MAK@NIST.GOV 301 975 5282 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Enabling technology for improving the efficiency of chillers that cool large buildings with nanolubricants. (Nanolubricants are not currently used in chillers.) Develop fundamental understanding of how nanolubricants enhance refrigerant/nanolubricant. What nanoparticle size,

336

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect

The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

2010-07-01T23:59:59.000Z

337

Vehicle Technologies Office: Software Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

dynamictransient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption...

338

GARS | Sustainable Energy Technologies Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy storage The Sustainable Energy Technologies Department finds alternatives to fossil fuels and improves energy efficiency to meet our exponentially growing energy needs...

339

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

340

Vendor / Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor...

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Faience Technology  

E-Print Network (OSTI)

by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

Nicholson, Paul

2009-01-01T23:59:59.000Z

342

TECHNOLOGY READINESS ASSESSMENT  

NLE Websites -- All DOE Office Websites (Extended Search)

DECEMBER 2012 DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal li- ability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific

343

Hydropower Technology Roundup Report  

Science Conference Proceedings (OSTI)

EPRI's 2002 report, Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report (1005194) provided a comprehensive review of a wide range of techniques and technologies for improving the dissolved oxygen (DO) levels in releases from hydroelectric projects. This report supplements EPRI 1005194, focusing primarily on aerating turbine technologies for new turbine installations and for turbine upgrades.

2009-12-23T23:59:59.000Z

344

Available Technologies: Renewable Chemicals Produced from Lignin  

Renewable Energy; Environmental Technologies. Monitoring and Imaging; ... paper pulping and agriculture; Potential to significantly improve economics of a biorefinery;

345

Available Technologies: Heat Transfer Interface for Thermo ...  

Refrigeration systems; Internal combustion engines; ... The components of the technology could be used to improve heat transfer in industrial, ...

346

TECHNOLOGY ADMINISTRATION  

E-Print Network (OSTI)

This report originated in the authors participation in a multi-country study of national innovation systems and their impact on new technology development, sponsored by the Organization for Economic Cooperation and Development (OECD). Our task was to look at the U.S. national innovation systems impact on the commercial development of Proton Exchange Membrane (PEM) fuel cells for residential power applications. Early drivers of PEM fuel cell innovation were the aerospace and defense programs, in particular the National Aeronautics and Space Administration (NASA), which used fuel cells on its spacecraft. In the early 1990s, deregulation hit the electric utility industry, which made utilities and entrepreneurs see the potential in generating electricity from distributed power. Throughout the 1990s, the Department of Energy funded a significant portion of civilian fuel cell research, while the Department of Defense and NASA funded more esoteric military and space applications. In 1998, the Department of Commerces Advanced Technology Program (ATP) awarded the first of 25 fuel cell projects, as prospects for adoption and commercialization of fuel cell technologies improved.

John M. Nail; Gary Anderson; Gerald Ceasar; Christopher J. Hansen; John M. Nail; Gerald Ceasar; Christopher J. Hansen; Carlos M. Gutierrez; Hratch G. Samerjian; Acting Director; Marc G. Stanley; Director Abstract

2005-01-01T23:59:59.000Z

347

IEA Technology Roadmaps | Open Energy Information  

Open Energy Info (EERE)

IEA Technology Roadmaps IEA Technology Roadmaps Jump to: navigation, search Tool Summary Name: IEA Technology Roadmaps Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, Industry, Solar, Transportation, Wind Topics: Finance, Implementation, Low emission development planning, Market analysis, Pathways analysis, Technology characterizations Resource Type: Guide/manual Website: www.iea.org/subjectqueries/keyresult.asp?KEYWORD_ID=4156 References: IEA Technology Roadmaps[1] "... the IEA is developing a series of global low-carbon energy technology roadmaps covering the most important technologies. The IEA is leading the process, under international guidance and in close consultation with government and industry. The overall aim is to advance global development

348

Technology and international climate policy  

SciTech Connect

Both the nature of international climate policy architectures and the development and diffusion of new energy technologies could dramatically influence future costs of reducing global emissions of greenhouse gases. This paper explores the implications of interactions between technology availability and performance and international policy architectures for technology choice and the social cost of limiting atmospheric CO2 concentrations to 500 ppm by the year 2095. Key issues explored in the paper include the role of bioenergy production with CO2 capture and storage (CCS), overshoot concentration pathways, and the sensitivity of mitigation costs to policy and technology.

Clarke, Leon; Calvin, Kate; Edmonds, James A.; Kyle, Page; Wise, Marshall

2009-05-01T23:59:59.000Z

349

Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries  

DOE Green Energy (OSTI)

Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

Hitz, William D.

2010-12-07T23:59:59.000Z

350

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

351

Technology Search Results | Brookhaven Technology ...  

There are no technology records available that match the search query. Find a Technology. Search our technologies by categories or by keywords.

352

Pathways Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » Jobs & Internships » Pathways Programs About Us » Jobs & Internships » Pathways Programs Pathways Programs As directed by President Obama, the Pathways Programs offer clear paths to Federal internships for students from high school through post-graduate school and to careers for recent graduates, and provide meaningful training and career development opportunities for individuals who are at the beginning of their Federal service. As a student or recent graduate, you can begin your career in the Federal government by choosing the path that best describes you and where you are in your academics: Internship Program: This program is for current students enrolled in a wide variety of educational institutions from high school to graduate level, with paid opportunities to work in agencies and explore Federal

353

Career Pathways | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Career Career Pathways Career Pathways The Energy/National Nuclear Security Administration (NNSA) Career Pathways Program is an innovative employment program targeting students and recent college graduates. If you are seeking an entry-level federal job or a federal internship, then check out our various opportunities! Intern Program The Pathways intern program allows students taking at least a half-time course load in an accredited high school, home schooling program, technical school, vocational school, two- or four- year college or university, or graduate or professional school to be part of a cooperative-learning environment. The program offers flexible work schedules, competitive pay, and the ability to gain experience while still completing your academic pursuits.

354

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

355

Energy Efficient Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficient Technologies Energy Efficient Technologies Energy efficient technologies are available now! Many of the vehicles currently on display in dealer showrooms boast new performance-enhancing, fuel-saving technologies that can save you money. Engine Technologies Transmission Technologies All Engine Technology Average Efficiency Increase Variable Valve Timing & Lift improve engine efficiency by optimizing the flow of fuel & air into the engine for various engine speeds. 5% Cylinder Deactivation saves fuel by deactivating cylinders when they are not needed. 7.5% Turbochargers & Superchargers increase engine power, allowing manufacturers to downsize engines without sacrificing performance or to increase performance without lowering fuel economy. 7.5% Integrated Starter/Generator (ISG) Systems automatically turn the engine on/off when the vehicle is stopped to reduce fuel consumed during idling. 8%

356

NIST's Advanced Technology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST's Advanced NIST's Advanced Technology Program NIST's Advanced Technology Program DOE Workshop on Hydrogen Separation and Purification Technologies Arlington, VA, Sept. 8-9, 2004 Jason Huang 301-975-4197 National Institute of Standards and Technology 100 Bureau Drive Stop 4730 Gaithersburg, MD 20899-4730 http://www.atp.nist.gov National Institute of Standards and Technology * Technology Administration * U.S. Department of Commerce ATP is part of NIST Helping America Measure Up NIST Mission ATP is part of NIST NIST Mission: Strengthen the U.S. economy and improve the quality of life by working with industry to develop and apply technology, measurements, and standards. * * * * * * 3,000 employees $771 million annual budget 2,000 field agents 1,800 guest researchers $2.2 billion co-funding of

357

A Pathway of Advanced Technologies for IGCC Carbon Capture  

NLE Websites -- All DOE Office Websites (Extended Search)

reference) 1.2 415 -12 Coal feed pump Increases cold gas efficiency 0.5 - - Materialsinstrumentation advanced controls demonstration Increases planned & unplanned...

358

Building Technologies Office: Improving the Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

demonstrating, and deploying cost-effective solutions, BTO strives to reduce energy consumption across the commercial building sector by at least 1,600 TBtu. Photo of the National...

359

Available Technologies: Ventilation Controller for Improved Indoor ...  

Iain Walker and colleagues at Berkeley Lab have developed a dynamic control system for whole-house ventilation fans that provides maximal air quality while reducing ...

360

Available Technologies: Improved Phylogenic Microarray Design ...  

Biofuels; Biotechnology & Medicine. Diagnostics and Therapeutics; ... the number of potential cross-hybridizations of a target to competing probes rapidly increases.

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Available Technologies: Improved Cathode Contact Materials for ...  

For Industry; For Researchers; Success Stories; About Us; ... The stainless steel interconnect that brings oxygen to the cathode of a SOFC is a critical feature of ...

362

Available Technologies: Improved Carbon Black Additives for ...  

Low cost ; ABSTRACT: ... commonly used as a conducting additive in lithium ion battery composite cathodes, can be highly reactive toward organic ...

363

Prospects for Improved Carbon Capture Technology  

E-Print Network (OSTI)

nonetheless be used to obtain a qualitative model of the two main forces acting on intermediate-size beads microscopy is a versatile design that is particularly useful for the study of systems susceptible to laser-inducedN (Wuite et al., 2000), respectively. Force-induced structural transition in nucleic acids (Cluzel et al

364

Technology Search Results | Brookhaven Technology ...  

BSA 08-04: High Temperature Interfacial Superconductivity; Find a Technology. Search our technologies by categories or by keywords. Search ...

365

Technology Search Results | Brookhaven Technology ...  

Staff Directory; BNL People Technology Commercialization & Partnerships. Home; For BNL Inventors; ... a nonprofit applied science and technology organization. ...

366

Technology Search Results | Brookhaven Technology ...  

Non-Noble Metal Water Electrolysis Catalysts; Find a Technology. Search our technologies by categories or by keywords. Search ...

367

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

368

Operations Improvement Surveys  

E-Print Network (OSTI)

Exxon Chemical Company developed unique site-wide energy optimization technology in the mid1970's. This technology was applied by means of site energy surveys which were carried out at every major Exxon facility throughout the world during the 1976-1981 timeframe. The first 20% of energy savings, versus the 1972 reference, had already been captured or was in progress via conventional energy conservation methods. The site energy surveys identified attractive investments to save a second 20% of energy use. In early 1982, Exxon Corp. started to apply this same technology to its major facilities to define attractive NO INVESTMENT and LOW INVESTMENT operational improvement savings which could be implemented quickly. This presentation covers Exxon's approach to site energy optimization and the Operations Improvement Survey Program. The Program has identified at many sites, an average of 5% reduction in today's energy costs at No/Low investment plus additional savings in the feedstock and energy supply areas.

Guide, J. J.; O'Brien, W. J.

1984-01-01T23:59:59.000Z

369

Vendor / Technology A  

NLE Websites -- All DOE Office Websites (Extended Search)

Electronic Machines Corporation Electronic Machines Corporation Smart Infrared Inspection System Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor Smart Infrared Inspection System (SIRIS) * Grant for a demonstration of thermal imaging technologies - Identify, in real time, faults and failures in tires, brakes and bearings mounted on commercial motor vehicles - Employ system along the interstate - Explore whether statistical tools can be developed that can predict impending tire, brake, or bearing failures SIRIS - Details * $1.4 M Research Grant * 3-year Project * Grant competitively awarded September 2006 to IEM, Inc. of Troy, NY * Supplemental $500K from NYSERDA for improved high

370

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

371

Manipulating the Steady State of Metabolic Pathways  

Science Conference Proceedings (OSTI)

Metabolic pathways show the complex interactions among enzymes that transform chemical compounds. The state of a metabolic pathway can be expressed as a vector, which denotes the yield of the compounds or the flux in that pathway at a given time. The ... Keywords: Metabolic pathway, steady state, traversal approach, genetic algorithm.

Bin Song; I. Esra Buyuktahtakin; Sanjay Ranka; Tamer Kahveci

2011-05-01T23:59:59.000Z

372

Vehicle Technologies Office: Software Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Software Tools Software Tools Several software programs are available, either for free or for a nominal charge, that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Autonomie Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Developed in partnership with General Motors, Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

373

Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. End of budget period report, August 3, 1994--December 31, 1996  

Science Conference Proceedings (OSTI)

The Oxy West Welch project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in a lower quality shallow shelf carbonate reservoir. The research and design phase primarily involves advanced reservoir characterization and accelerating the production response. The demonstration phase will implement the reservoir management plan based on an optimum miscible CO{sub 2} flood as designed in the initial phase. During Budget Period 1, work was completed on the CO{sub 2} stimulation treatments and the hydraulic fracture design. Analysis of the CO{sub 2} stimulation treatment provided a methodology for predicting results. The hydraulic fracture treatment proved up both the fracture design approach a and the use of passive seismic for mapping the fracture wing orientation. Although the 3-D seismic interpretation is still being integrated into the geologic model and interpretation of borehole seismic is still underway, the simulator has been enhanced to the point of giving good waterflood history matches. The simulator-forecasted results for an optimal designed miscible CO{sub 2} flood in the demonstration area gave sufficient economics to justify continuation of the project into Budget Period 2.

Taylor, A.R.; Hinterlong, G.; Watts, G.; Justice, J.; Brown, K.; Hickman, T.S.

1997-12-01T23:59:59.000Z

374

CMM Technology  

SciTech Connect

This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

Ward, Robert C.

2008-10-20T23:59:59.000Z

375

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

376

Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms  

SciTech Connect

PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLAs designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

None

2012-01-01T23:59:59.000Z

377

Available Technologies  

The technologys subnanometer resolution is a result of superior ... Additional R&D will be required ... U.S. DEPARTMENT OF ENERGY OFFICE OF SCIENCE ...

378

Tools & Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Weprovide leadership for transforming workforce development through the power of technology. It develops corporate educational technology policy and enables the use of learning tools and...

379

Geothermal: Sponsored by OSTI -- Improving Convection Parameterization...  

Office of Scientific and Technical Information (OSTI)

Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

380

Improved Anti-Scatter Grids and Collimators  

Office of Technology Transfer Improved Anti-Scatter Grids and Collimators New Fabrication Method Enhances X-Ray, Nuclear Imaging to Save Lives, Reduce ...

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE RFP Seeks Projects for Improving Environmental Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE RFP Seeks Projects for Improving Environmental Performance of Unconventional Natural Gas Technologies DOE RFP Seeks Projects for Improving Environmental Performance of...

382

Next stages in HDR technology development  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective ``fuel costs`` of 2--3{cents} per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-03-01T23:59:59.000Z

383

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

-duty markets for advanced electric-drive technologies such as plug-in hybrids and hydrogen fuel cell vehicles improvements in gasoline internal combustion engine vehicle (ICEV) and hybrid electric vehicle (HEV) technology electric vehicles (PHEVs) play a major role beyond 2025. · FCV success--Hydrogen fuel cell vehicles (FCVs

California at Davis, University of

384

Technology transfer 1994  

SciTech Connect

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

1994-01-01T23:59:59.000Z

385

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

386

Fuel Cell Technologies Office: Technology Validation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Technology Validation Search Search Help Technology Validation EERE Fuel Cell Technologies Office Technology Validation Printable Version Share this resource...

387

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

388

Chemistry - Technology Transfer: Available Technologies  

Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you ...

389

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

390

Genomic encyclopedia of sugar utilization pathways in the Shewanella genus  

Science Conference Proceedings (OSTI)

To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we have established a subsystems-based comparative approach and applied it to 19 genomes from the Shewanella genus. The key stages of our approach include: (i) a homology-based identification of gene candidates using a genomic compilation of ~500 known components of sugar catabolic pathways; (ii) functional assignment of orthologs and prediction of alternative genes and pathway variants based on genomic (operons, regulons) and functional (subsystems, pathways) context analysis; (iii) validation of bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. The reconstructed catabolic pathways are significantly enriched by nonorthologous gene replacements and alternative biochemical routes. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars. In addition to improving our knowledge of genomics, functional organization and evolution of the sugar catabolome, this study confirmed the efficiency of the established approach, which is scalable and applicable to other groups of microorganisms.

Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Rodionova, Irina A.; Wang, Yanbing; Obraztsova, Anna; Zagnitko, Olga P.; Overbeek, Ross; Romine, Margaret F.; Reed, Samantha B.; Fredrickson, Jim K.; Nealson, Kenneth H.; Osterman, Andrei L.

2010-09-13T23:59:59.000Z

391

Concentrating Solar Thermal Technology  

Science Conference Proceedings (OSTI)

After nearly 20 years of commercial dormancy, concentrating solar thermal (CST) power development and investment activity is heating up globally. Encouraged by volatile energy prices, carbon markets, and renewable-friendly policies, an increasing number of established companies, newcomers, utilities, and government agencies are planning to deploy CST systems to tap the technologies' improving conversion efficiencies and low-cost electricity production potential. This renewable energy technology perspecti...

2009-03-27T23:59:59.000Z

392

Available Technologies  

Energy Storage and Recovery; Renewable Energy; Environmental Technologies. Monitoring and Imaging; Remediation; Modeling; Imaging & Lasers.

393

Available Technologies  

APPLICATIONS OF TECHNOLOGY: Thermal management for: microelectronic devices; solar cells and solar energy management systems ; refrigerators

394

Negative Electrodes Improve Safety in Lithium Cells and Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost negativeelectrodes...

395

U.S. Department of Energy Buildings Technologies Program: Better...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Technologies Program (BTP): * Leads research, development, and deployment of energy-efficient building technologies and practices; * Works to strengthen and improve...

396

Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid  

E-Print Network (OSTI)

Program, Office of Power Technologies, U.S. Department ofand demonstration of technology enhancements to improve theValue and Technology Assessment to Enhance the Business Case

Lasseter, Robert

2010-01-01T23:59:59.000Z

397

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

398

Metabolic Pathways and Metabolic Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Metabolic pathways and Metabolic pathways and metabolic engineering Adam Guss Genetic and Metabolic Engineer Oak Ridge National Laboratory Sept 25, 2013 2 Managed by UT-Battelle for the U.S. Department of Energy Metabolic engineering of Clostridium thermocellum for cellulosic ethanol production NAD(P)H NAD(P) + Acetyl-P 2 H + NAD + NAD + NADH NADH P i CoA ADP ATP L-Lactic Acid Acetic Acid Ethanol NADH NAD + NADH NAD + H 2 2 H + Fd oxidized Fd reduced Formic acid H 2 Cellulose Acetaldehyde Pyruvate Acetyl-CoA Glucose-6P 0 10 20 30 40 Product concentration (mM) Clostridium thermocellum mutant fermentation Ethanol Acetate Lactate By understanding and then modifying carbon and electron flux, we have increased ethanol yield in C. thermocellum 3 Managed by UT-Battelle for the U.S. Department of Energy

399

State Agency Energy Efficiency or Renewable Energy Technology Test Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

The State of Connecticut has an established pathway to test new energy efficiency or renewable energy technologies in state offices. The technology, product or process must be presently available...

400

Processing Technology  

Science Conference Proceedings (OSTI)

Aug 5, 2013... relevant polymers and hybrid nanocomposite material systems. ... technology to perform lightweight manufacturing of car components.

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technology Transfer  

Science Conference Proceedings (OSTI)

... get started on understanding accessibility in elections and voting technology. ... bibliography was created by the Georgia Tech Research Institute ...

2013-09-17T23:59:59.000Z

402

Technology Transfer  

A new search feature has been implemented, which allows searching of technology transfer information across the Department of Energy Laboratories.

403

Turbine airfoil manufacturing technology  

DOE Green Energy (OSTI)

The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

1995-12-31T23:59:59.000Z

404

Technology Strategies  

Science Conference Proceedings (OSTI)

From the Book:PrefaceTechnology as the Strategic AdvantageWhen I began writing this book I struggled with the direction I wanted it to take. Is this book to be about business, technology, or even the business of technology? I ...

Cooper Smith

2001-07-01T23:59:59.000Z

405

Long Term Innovative Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's Hydrogen and DOE's Hydrogen and Fuel Cell Technologies, Fuel Cell Presolicitation Workshop Bryan Pivovar With Input/Feedback from Rod Borup (LANL), Debbie Myers (ANL), DOE and others as noted in presentation Lakewood, CO March 16, 2010 Long Term Innovative Technologies National Renewable Energy Laboratory Innovation for Our Energy Future Innovative/Long Term and RELEVANT Mission of DOE Mission of EERE (Applied Program) Mission of HFCT To enable the widespread commercialization of hydrogen and fuel cells in diverse sectors of the economy-with emphasis on applications that will most effectively strengthen the nation's energy security and improve our stewardship of the environment-through research, development, and demonstration of critical improvements in the technologies, and through diverse activities to overcome

406

How technology is disrupting fashion  

E-Print Network (OSTI)

This thesis analyzes how the fashion industry has begun to leverage technology to increase branding, improve products, drive sales and experiment with new business models. Overall, the fashion industry has been slow to ...

Herbst, Kendall

2013-01-01T23:59:59.000Z

407

Energy efficiency in office technology  

E-Print Network (OSTI)

This thesis, directed toward a wide variety of persons interested in energy efficiency issues with office technology, explores several issues relating to reducing energy use and improving energy efficiency of office ...

Dandridge, Cyane Bemiss

1994-01-01T23:59:59.000Z

408

Technology Development Advances EM Cleanup  

Energy.gov (U.S. Department of Energy (DOE))

The unique nature of many of EM's remaining facilities will require a strong and responsive engineering and technology program to improve work and public safety, and reduce costs and environmental impacts while completing the cleanup program.

409

Building Technology and Urban Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Office building exterior and infrared thermograph Office building exterior and infrared thermograph Building Technology and Urban Systems Building Technology and Urban Systems application/pdf icon btus-org-chart-03-2013.pdf In the areas of Building Technology and Urban Systems, EETD researchers conduct R&D and develop physical and information technologies to make buildings and urban areas more energy- and resource-efficient. These technologies create jobs and products for the marketplace in clean technology industries. They improve quality of life, and reduce the emissions of pollutants, including climate-altering greenhouse gases. BTUSD's goal is to provide the technologies needed to operate buildings at 50 to 70 percent less energy use than average today. BTUS develops, demonstrates and deploys: Information technologies for the real-time monitoring and control of

410

Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

60-46674 60-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum Directed Technologies, Inc. Arlington, Virginia National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Subcontract Report NREL/SR-560-46674 September 2009 Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production March 27, 2008 - August 31, 2009 B.D. James, G.N. Baum, J. Perez, and K.N. Baum

411

Sandia National Laboratories : Licensing/Technology Transfer ...  

Technology Summary There is a need for improved active infrared optical elements such as modulators. Extraordinary optical transmission (EOT) through subwavelength ...

412

Nuclear Energy Enabling Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enabling Technologies Enabling Technologies Nuclear Energy Enabling Technologies Nuclear Energy Enabling Technologies The Nuclear Energy Enabling Technologies (NEET) Program will develop crosscutting technologies that directly support and complement the Department of Energy, Office of Nuclear Energy's (DOE-NE) advanced reactor and fuel cycle concepts, focusing on innovative research that offers the promise of dramatically improved performance. NEET will coordinate research efforts on common issues and challenges that confront the DOE-NE R&D programs (Light Water Reactor Sustainability [LWRS], Next Generation Nuclear Plant [NGNP], Advanced Reactor Technologies [ART], and Small Modular Reactors [SMR]) to advance technology development and deployment. The activities undertaken in the NEET program will

413

GeoEnergy technology  

DOE Green Energy (OSTI)

The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

NONE

1980-12-31T23:59:59.000Z

414

Available Technologies: Modified Metal Organic Framework (MOF) as ...  

APPLICATIONS OF TECHNOLOGY: Lithium-ion batteries for electric vehicles and consumer electronics ; ADVANTAGES: Safer; Reduces battery weight; Improved conductivity

415

Advanced Lithium Ion Battery Technologies - Energy Innovation Portal  

The Berkeley Lab technology contributes to improved battery safety by circumventing lithium metal dendrite formation. Benefits. ... hybrid electric vehicles;

416

Broadening Uses Put MEMS Technology on the Map(s)  

Science Conference Proceedings (OSTI)

... Industry roadmaps are forecasts of technology advances and processing improvements necessary to sustain progress in enhancing the ...

2011-10-03T23:59:59.000Z

417

Fossil Technology Newsletter, Summer 2007  

Science Conference Proceedings (OSTI)

The Fossil Technology News newsletter covers the activities and research for I&C and Automation for Improved Plant Operations (Program 68), Maintenance Management and Technology (Program 69), Operations Management and Technology (Program 108), and Energy Workforce Planning and Performance Interest Group (EWPPIG). The feature article for this issue is Outage Scope Management. Other features in this issue include the following: The Benefit of Equipment Risk Management On-Line Monitoring Update Contacts Wir...

2007-11-21T23:59:59.000Z

418

Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways  

SciTech Connect

Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

2005-04-13T23:59:59.000Z

419

Building Technologies Office: Technology Research, Standards...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Building Technologies Office: Technology Research, Standards, and Codes in Emerging Technologies on Facebook Tweet about Building Technologies...

420

Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

projects are designed to: enhance domestic oil and natural gas supplies through advanced exploration and production technology; examine water related concerns; investigate...

422

Technology Update  

Science Conference Proceedings (OSTI)

A Novel Solvent Extraction Process With Bottom Gas Injection for Liquid Waste ... Membrane Technology for Treatment of Wastes Containing Dissolved Metals:...

423

Microwave Technology  

Science Conference Proceedings (OSTI)

Oct 20, 2011 ... These wastes are found in the market. ... Cherian1; Michael Kirksey1; Sandwip Dey2; 1Spheric Technologies Inc; 2Arizona State University

424

Transmission Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

electronically (shift-by-wire) and performed by a hydraulic system or electric motor. In addition, technologies can be employed to make the shifting process smoother than...

425

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Bridges DNA Base and Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Wednesday, 28 October 2009 00:00 Alkyltransferase proteins (AGT) protect cells from the biological effects of DNA damage caused by the addition of alkyl groups (alkylation). Alkyltransferase-like proteins (ATLs) can do the same, but they lack the reactive cysteine residue that allows the alkyltransferase function, and the mechanism for cell protection has remained unknown. To address this mystery, a British-American team lead by researchers at the Scripps Research Institute recently applied a combination of x-ray structural, biochemical, and genetic studies to ATLs in the yeast Schizosaccharomyces pombe without and with damaged DNA. By showing how a process called non-enzymatic nucleotide flipping activates ATL-initiated DNA repair, their results may improve our understanding of genomic integrity and responses to DNA damage relevant to pathogens and cancer development.

426

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Alkyltransferase proteins (AGT) protect cells from the biological effects of DNA damage caused by the addition of alkyl groups (alkylation). Alkyltransferase-like proteins (ATLs) can do the same, but they lack the reactive cysteine residue that allows the alkyltransferase function, and the mechanism for cell protection has remained unknown. To address this mystery, a British-American team lead by researchers at the Scripps Research Institute recently applied a combination of x-ray structural, biochemical, and genetic studies to ATLs in the yeast Schizosaccharomyces pombe without and with damaged DNA. By showing how a process called non-enzymatic nucleotide flipping activates ATL-initiated DNA repair, their results may improve our understanding of genomic integrity and responses to DNA damage relevant to pathogens and cancer development.

427

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Alkyltransferase proteins (AGT) protect cells from the biological effects of DNA damage caused by the addition of alkyl groups (alkylation). Alkyltransferase-like proteins (ATLs) can do the same, but they lack the reactive cysteine residue that allows the alkyltransferase function, and the mechanism for cell protection has remained unknown. To address this mystery, a British-American team lead by researchers at the Scripps Research Institute recently applied a combination of x-ray structural, biochemical, and genetic studies to ATLs in the yeast Schizosaccharomyces pombe without and with damaged DNA. By showing how a process called non-enzymatic nucleotide flipping activates ATL-initiated DNA repair, their results may improve our understanding of genomic integrity and responses to DNA damage relevant to pathogens and cancer development.

428

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Protein Bridges DNA Base and Nucleotide Excision Repair Pathways Print Alkyltransferase proteins (AGT) protect cells from the biological effects of DNA damage caused by the addition of alkyl groups (alkylation). Alkyltransferase-like proteins (ATLs) can do the same, but they lack the reactive cysteine residue that allows the alkyltransferase function, and the mechanism for cell protection has remained unknown. To address this mystery, a British-American team lead by researchers at the Scripps Research Institute recently applied a combination of x-ray structural, biochemical, and genetic studies to ATLs in the yeast Schizosaccharomyces pombe without and with damaged DNA. By showing how a process called non-enzymatic nucleotide flipping activates ATL-initiated DNA repair, their results may improve our understanding of genomic integrity and responses to DNA damage relevant to pathogens and cancer development.

429

Roof bolting equipment & technology  

SciTech Connect

Technology provides an evaluator path to improvement for roof bolting machines. Bucyrus offers three different roof bolts models for various mining conditions. The LRB-15 AR is a single-arm boiler recommended for ranges of 32 inches and above; the dual-arm RB2-52A for ranges of 42 inches and above; and the dual-arm RB2-88A for ranges of 54 inches and above. Design features are discussed in the article. Developments in roof bolting technology by Joy Mining Machinery are reported. 4 photos.

Fiscor, S.

2009-04-15T23:59:59.000Z

430

NETL: Advanced Research - Pathways to Commercial Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Pathways to Commercial Applications CHALLENGE: Separating H2 and CO2 Pilot plant pyrolysis unit with biomass feedstack system. Pilot plant pyrolysis unit with biomass...

431

Comments on MHK Cost Reduction Pathway White Papers | OpenEI Community  

Open Energy Info (EERE)

Comments on MHK Cost Reduction Pathway White Papers Comments on MHK Cost Reduction Pathway White Papers Home > Groups > Water Power Forum Feedback Welcome: The Water Power Program welcomes comments on MHK Cost Reduction Pathway white paper products from the MHK community. Comments will be used for the Program's internal purposes and DOE is not obligated to provide a response to comments. Please provide your feedback regarding the content of the white papers via this Forum. Cost Reduction Pathways White Papers: The U.S. Department of Energy's Water Power Program is seeking to demonstrate the technical and economic opportunity of marine and hydrokinetic (MHK) technologies. As part of this process, Sandia National Laboratories, in partnership with the Water Power Program, developed four white papers to identify and address critical cost drivers, and

432

Nuclear Proliferation Technology Trends Analysis  

SciTech Connect

A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

2005-10-04T23:59:59.000Z

433

Metering Technology  

Science Conference Proceedings (OSTI)

Utilities are looking to replace meters that only measure kilowatt-hours with advanced meters with greater features and functions. This White Paper describes the smart metering technology that is already available or will be available in the near future. It also provides a high-level overview of the wired and wireless communication technologies used in the metering industry.

2008-06-20T23:59:59.000Z

434

Improving Floating Point Compression  

NLE Websites -- All DOE Office Websites (Extended Search)

Improving Improving Floating Point Compression through Binary Masks Leonardo A. Bautista Gomez Argonne National Laboratory Franck Cappello Argonne National Laboratory Abstract-Modern scientific technology such as particle accel- erators, telescopes and supercomputers are producing extremely large amounts of data. That scientific data needs to be processed using systems with high computational capabilities such as supercomputers. Given that the scientific data is increasing in size at an exponential rate, storing and accessing the data is becoming expensive in both, time and space. Most of this scientific data is stored using floating point representation. Scientific applications executed in supercomputers spend a large amount of CPU cycles reading and writing floating point values, making data compression techniques an interesting way to increase computing efficiency.

435

Technology Search Results | Brookhaven Technology ...  

BSA 11-30: Enhanced Alkane production by Aldehyde Decarbonylase Fusion Constructs; BSA 12-36: Oil Accumulation in Plant Leaves; Find a Technology.

436

Technology Search Results | Brookhaven Technology ...  

There are 9 technologies tagged "cancer". BSA 01-02: ... a limited-liability company founded by the Research Foundation for the State University of ...

437

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

438

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

parts Brazing large complex parts The joining and heat-treating technologies in the Thin Film, Vacuum, & Packaging department include brazing, heat-treating, diffusion...

439

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain, Class II  

Science Conference Proceedings (OSTI)

The principal objectives of the project were: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs.

Mancini, Ernest, A.; Crate, David; Blasingame, Thomas; Major, R.P.; Brown, Lewis; Stafford, Wayne

2002-11-02T23:59:59.000Z

440

Oxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature  

E-Print Network (OSTI)

- ronmental impact. Present technology uses steam reforming to produce synthesis gas which is converted into enhance- ment of the carbon balance of methane conversion by reforming with CO2 in order to "recycleOxygen Pathways and Carbon Dioxide Utilization in Methane Partial Oxidation in Ambient Temperature

Mallinson, Richard

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Technology Demonstrations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstrations Demonstrations Technology Demonstrations Efficient new building technologies can help meet our country's energy goals, stimulate U.S. manufacturing, create jobs, and improve the environment. However, many high-performing technologies are not readily adopted in the marketplace due to lack of information about their real-world performance. To address this gap in information, the DOE frequently supports demonstrations to assess technologies' energy performance, installation procedures, operations, and maintenance characteristics. The information from these demonstrations helps consumers make more informed decisions and helps U.S. manufacturers validate the performance of their products. Frequently Asked Questions How does DOE prioritize demonstration projects?

442

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

443

Vehicle Technologies Office: Graduate Automotive Technology Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) to someone by E-mail Share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Facebook Tweet about Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Twitter Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Google Bookmark Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Delicious Rank Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on Digg Find More places to share Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) on AddThis.com...

444

Building Technologies Office: Emerging Technologies Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Emerging Technologies Emerging Technologies Activities to someone by E-mail Share Building Technologies Office: Emerging Technologies Activities on Facebook Tweet about Building Technologies Office: Emerging Technologies Activities on Twitter Bookmark Building Technologies Office: Emerging Technologies Activities on Google Bookmark Building Technologies Office: Emerging Technologies Activities on Delicious Rank Building Technologies Office: Emerging Technologies Activities on Digg Find More places to share Building Technologies Office: Emerging Technologies Activities on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research

445

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

446

Coal mining technology, economics and policy 1991  

SciTech Connect

The 1991 session papers from the American Mining Congress Coal Convention covered a variety of technical, economic, regulatory, and health and safety issues. The papers were grouped into the following categories: Coal mine ventilation technology; Coal policy; Coal utilization -- problems and opportunities; Dealing with spontaneous combustion; Energy taxation; Environmental issues; Ergonomics in the underground mine environment; Ground control technology; Lessons in compromise: the need to improve our communications strategies; Management - improving operations through organizational change; Productivity forum - how to improve the bottom line; Reclamation technology; Safety and health; Subsidence; Surface mining - technology and reclamation policy; Underground haulage - from the face to the surface.

Not Available

1991-01-01T23:59:59.000Z

447

EPA, Technology Innovation Office  

E-Print Network (OSTI)

technologies have become available with documented performance showing them capable of substantially improving the costeffectiveness of site characterization. The current traditional phased engineering approach to site investigation (mobilize staff and equipment to a site, take samples to send off to a lab, wait for results to come back and be interpreted, then re-mobilize to collect additional samples, and repeat one or more times) can be incrementally improved by the occasional use of on-site analysis to screen samples so that expensive off-site analysis is reserved for more critical samples. Yet, as discussed elsewhere, integration of new tools into site cleanup practices faces an array of obstacles [1]. If the cost savings promised by new technologies is to be realized, a fundamental change in thinking is needed. Faster acceptance of cost-effective characterization and monitoring tools among practitioners is even more important now that Brownfields and Voluntary Cleanup Progr

Crumbling Executive Summary; United States; D. M. Crumbling

2002-01-01T23:59:59.000Z

448

Highly Insulating Window Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Window Technology Window Technology Temperature differentials across a window, particularly with cold exterior environments in residential buildings, can lead to significant energy losses. Currently available low-emissivity coatings, gas-fills, and insulating frames provide significant energy savings over typical single or double glazed products. The EWC website provides information on how double glazed low-e gas-filled windows work as well as information on commercially available superwindows (three layer, multiple low-e coatings, high performance gas-fills). The next generation of highly insulating window systems will benefit from incremental improvements being made to current components (i.e. more insulating spacers and frame materials/designs, low-e coatings with improved performance properties). LBNL uses its experimental facilities and software tools to collaborate with window and glass industry representatives to better understand the impacts of new components on overall product performance.

449

Building Technologies Office: Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

450

The Western Environmental Technology Office (WETO), Butte, Montana, technology summary  

SciTech Connect

This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

Not Available

1994-09-01T23:59:59.000Z

451

Privacy in mobile technology for personal healthcare  

Science Conference Proceedings (OSTI)

Information technology can improve the quality, efficiency, and cost of healthcare. In this survey, we examine the privacy requirements of mobile computing technologies that have the potential to transform healthcare. Such mHealth technology enables ... Keywords: HIPAA, Privacy framework, e-health, electronic health record, home healthcare, mHealth, medicine, mobile healthcare, personal health record

Sasikanth Avancha; Amit Baxi; David Kotz

2012-11-01T23:59:59.000Z

452

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

453

Technology transfer 1995  

Science Conference Proceedings (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

454

China 2050 Pathways Calculator | Open Energy Information  

Open Energy Info (EERE)

China 2050 Pathways Calculator China 2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator Agency/Company /Organization: China's Energy Research Institute (ERI), UK Department of Energy and Climate Change (DECC), UK Foreign and Commonwealth Office (FCO) Focus Area: Non-renewable Energy, Renewable Energy Phase: Evaluate Options, Prepare a Plan Topics: Low-carbon plans/TNAs/NAMAs, Resource assessment, Pathways analysis Resource Type: Guide/manual, Training materials, Lessons learned/best practices, Online calculator User Interface: Website Website: china-en.2050calculator.net/pathways/111011011011101101011010111101101 Country: China OpenEI Keyword(s): International Eastern Asia Language: English References: Global Energy Governance Reform, 3 October 2012[1]

455

TransForum v7n1 - Diversity of Choices: Key to Improving Transportatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity of Choices: Key to Improving Transportation Energy Efficiency Argonne's Mobile Automotive Technology Testbed Argonne's Mobile Automotive Technology Testbed can be...

456

Cone penetrometer: Innovative technology summary report  

Science Conference Proceedings (OSTI)

Cone penetrometer technology (CPT) provides cost-effective, real-time data for use in the characterization of the subsurface. Recent innovations in this baseline technology allow for improved access to the subsurface for environmental restoration applications. The technology has been improved by both industry and government agencies and is constantly advancing due to research efforts. The U.S. Department of Energy (DOE) Office of Science and Technology (formerly Technology Development) has contributed significantly to these efforts. This report focuses on the advancements made in conjunction with DOE`s support but recognizes Department of Defense (DOD) and industry efforts.

NONE

1996-04-01T23:59:59.000Z

457

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

458

Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

* Heavy Vehicle Technologies * Heavy Vehicle Technologies * Multi-Path Transportation Futures * Idling Studies * EDrive Vehicle Monthly Sales Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Technology Analysis truck Heavy vehicle techologies are one subject of study. Research Reducing Greenhouse Gas Emissions from U.S. Transportation Heavy Vehicle Technologies Multi-Path Transportation Futures Study Idling Studies Light Duty Electric Drive Vehicles Monthly Sales Updates Lithium-Ion Battery Recycling and Life Cycle Analysis Reports Propane Vehicles: Status, Challenges, and Opportunities (pdf; 525 kB) Natural Gas Vehicles: Status, Barriers, and Opportunities (pdf; 696 kB) Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles (pdf; 1.02 MB)

459

Available Technologies  

Gas Exploration Software for ... Improve estimation of reservoir parameters and quantify uncertainty in the estimation when exploring for gas and oil ...

460

Fabrication Technology  

SciTech Connect

The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

Blaedel, K.L.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improvement pathways" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

462

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

463

National Energy Technology Laboratory Technology Marketing ...  

National Energy Technology Laboratory Technology Marketing Summaries. Here youll find marketing summaries for technologies available for licensing from the ...

464

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain, Class II  

Science Conference Proceedings (OSTI)

The principal objectives of this project was to: increase the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. Efforts for Year 1 of this project has been reservoir characterization, which has included three (3) primary tasks: geoscientific reservoir characterization, petrophysical and engineering property characterization, and microbial characterization.

Mancini, Ernest A.; Cate, David; Blasingame, Thomas; Major, R.P.; Brown, Lewis; Stafford, Wayne

2001-08-07T23:59:59.000Z

465

Next stages in HDR technology development. [Hot Dry Rock (HDR)  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective fuel costs'' of 2--3[cents] per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-01-01T23:59:59.000Z

466

Ceramic Technology Project  

DOE Green Energy (OSTI)

The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

Not Available

1992-03-01T23:59:59.000Z

467

Program on Technology Innovation: Impact of Wireless Power Transfer Technology  

Science Conference Proceedings (OSTI)

This report presents an overview and analysis of wireless power transmission, also called wireless power transfer (WPT), a means of delivering power from a source to an end-use device without wires or contacts. The recent explosive growth in wireless data applications and the surge in the use of portable electronic devices has dramatically increased the market potential for wireless energy-transfer technologies. Industries are investigating the latest wireless power technologies to improve versatility, r...

2009-12-22T23:59:59.000Z

468

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

469

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

470

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

471

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

472

Building Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Building Technologies Office: News on Google Bookmark Building Technologies Office: News on Delicious Rank Building Technologies...

473

Building Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: About on Twitter Bookmark Building Technologies Office: About on Google Bookmark Building Technologies Office: About on Delicious Rank Building Technologies...

474

Improve Your Boiler's Combustion Efficiency  

SciTech Connect

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

475

Intermetallic Electrodes Improve Safety and Performance in Lithium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermetallic Electrodes Improve Safety and Performance in Lithium-Ion Batteries Technology available for licensing: A new class of intermetallic material that can be used as a...

476

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: