Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

SciTech Connect (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

2

NETL: News Release - New Seismic Technology Improves Pre-Drill Diagnostics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 12, 2007 June 12, 2007 New Seismic Technology Improves Pre-Drill Diagnostics for Deep Oil and Gas Reservoirs WASHINGTON, DC - New technology developed through a cost-shared project managed by the Office of Fossil Energy's National Energy Technology Laboratory is improving industry's ability to identify commercially viable deep oil and gas targets prior to drilling. Applications of this groundbreaking technology will help to accelerate future development of deep oil and gas resources in the United States. As the oil and gas industry turns its attention toward deeper targets, particularly in the Gulf of Mexico, the tremendous costs involved require advanced technologies for pre-drill evaluation of a deep prospect's location, size, and hydrocarbon charge. Rock Solid Images, of Houston, Texas, answered the call with their much-needed pre-drill seismic imaging technology. The patented new technology improves pre-drill oil and gas detection in the reservoir and reduces the risks associated with drilling deep wells. With a significant portion of the Nation's oil and natural gas resource trapped in deep reservoirs, the new seismic technology represents a much-needed improvement that should bring more deep oil and gas to market.

3

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

4

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect (OSTI)

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

5

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect (OSTI)

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

6

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

SciTech Connect (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

7

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect (OSTI)

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

8

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

SciTech Connect (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

9

Progress review No. 24: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending September 30, 1980  

SciTech Connect (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection and thermal/heavy oil, as well as for the following areas of research: extraction technology; resource assessment technology; environmental; petroleum technology; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

10

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

SciTech Connect (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

11

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

12

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

13

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 35, quarter ending June 30, 1983  

SciTech Connect (OSTI)

Progress reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

14

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

15

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect (OSTI)

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

16

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 30, quarter ending March 31, 1982  

SciTech Connect (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; microbial enhanced oil recovery; improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

17

Progress review No. 25: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending December 31, 1980  

SciTech Connect (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improving drilling technology; and general supporting research.

Linville, B. (ed.)

1981-05-01T23:59:59.000Z

18

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 27, for quarter ending June 30, 1981  

SciTech Connect (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-09-01T23:59:59.000Z

19

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect (OSTI)

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.) [ed.

1983-07-01T23:59:59.000Z

20

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect (OSTI)

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

22

Proper planning improves flow drilling  

SciTech Connect (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

23

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

24

Drilling and production technology symposium  

SciTech Connect (OSTI)

This book presents the papers given at a conference on well drilling. Topics considered at the conference included ice island drilling structures, artificial intelligence, electric motors, mud pumps, bottom hole assembly failures, oil spills, corrosion, wear characteristics of drill bits, two-phase flow in marine risers, the training of drilling personnel, and MWD systems.

Welch, R.

1986-01-01T23:59:59.000Z

25

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

26

Offshore Drilling Safety and Response Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

27

Offshore Drilling Safety and Response Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

28

Improved practices, synthetic mud drive record 24-hr drilling  

SciTech Connect (OSTI)

Revised and improved drilling practices resulted in increased rate of penetration (ROP), improved hole cleaning, decreased circulating time, fewer instances of stuck pipe and reduced total drilling days. Rig equipment modifications and optimized techniques, combined with olefin-based synthetic fluid, produced significant efficiency improvements and cost reductions. Total-project strategy allows best technologies to be used, even if they are not low bid. In the Gulf of Mexico, a total-project concept helped Marathon drill back-to-back record 24-hr footages. Methods and philosophy described in this article allow drillers to choose optimum technologies, tools, materials and service performance for achieving optimum or lowest cost per foot rather than always using low bid.

Collins, G.J. [Marathon Oil Co., Houston, TX (United States); White, W.W. [Marathon Oil Co., Lafayette, LA (United States)

1995-05-01T23:59:59.000Z

29

Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.  

E-Print Network [OSTI]

of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling Pål The drilling process is getting increasingly more complex as oil fields mature and technology evolves actions. KEYWORDS: Oil well drilling, experience transfer, ontology, drilling failure, downtime, case

Aamodt, Agnar

30

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

31

Better practices and synthetic fluid improve drilling rates  

SciTech Connect (OSTI)

Improved drilling practices, combined with the use of olefin-based synthetic drilling fluids, have dramatically reduced drilling time and costs in a difficult drilling area in the Gulf of Mexico. In the South Pass area, Marathon Oil Co. and other operators have had wells with long drilling times and high costs. In addition to the two wells with record penetration rates, routine drilling rates have also increased from the use of synthetic mud and careful drilling practices. Through application of these improved drilling practices, 2,000--3,000 ft/day can be drilled routinely. Marathon achieves this goal by applying the experience gained on previous wells, properly training and involving the crews, and using innovative drilling systems. Improved drilling practices and systems are just one part of successful, efficient drilling. Rig site personnel are major contributors to safely and successfully drilling at high penetration rates for extended periods. The on site personnel must act as a team and have the confidence and proper mental attitude about what is going on downhole. The paper describes the drilling history in the South Pass area, the synthetic drilling fluid used, cuttings handling, hole cleaning, drilling practices, bottom hole assemblies, and lost circulation.

White, W. (Marathon Oil Co., Lafayette, LA (United States)); McLean, A.; Park, S. (M-I Drilling Fluids, Houston, TX (United States))

1995-02-20T23:59:59.000Z

32

Drilling Waste Management Technology Identification Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

33

DOE and Navy Collaborate on Geothermal Drilling Technology |...  

Energy Savers [EERE]

PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release, click on the link below:...

34

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

35

Slimhole Drilling, Logging, and Completion Technology - An Update  

SciTech Connect (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

36

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

SciTech Connect (OSTI)

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Ezra Zemach

2010-01-01T23:59:59.000Z

37

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted.

38

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

39

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

40

DOE Lab Receives Award for Work on Drilling Technology  

Broader source: Energy.gov [DOE]

On May 3, 2013 the Department of Energys National Energy Technology Laboratory (NETL) received an award for its role in a joint project that helped develop what is now Schlumbergers Slider product line. The Lab was recognized for the project's contributions to directional drilling.

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

42

Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes  

SciTech Connect (OSTI)

This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

Kolstad, George A.; Rowley, John C.

1987-01-16T23:59:59.000Z

43

Rotating mousehole improves top drive/conventional drilling  

SciTech Connect (OSTI)

Top drive speed and efficiency are limited and have not reached full potential because of operation ``bottlenecks`` during makeup or breakout of triple pipe stands and bottomhole assembly (BHA) change out. Operators and contractors analyzed tools to overcome these limitations and found a potential solution from International Tool Co., a supplier of kelly spinners, in a tool that has improved make/break efficiency and rig floor safety. The Phantom Mouse rotating mousehole assembly was developed to improve drilling efficiency on top-drive-equipped rigs. This new device tightens connections so pipe stands can be set back in derricks. Using the system, crews can quickly and efficiently make up and set back DP stands while drilling ahead with top drives. It can also be used to break out and lay down excess DP from the derrick.

NONE

1995-08-01T23:59:59.000Z

44

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

45

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

46

DOE Lab Receives Award for Work on Drilling Technology | Department of  

Broader source: Energy.gov (indexed) [DOE]

DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology June 13, 2013 - 11:52am Addthis DOE Lab Receives Award for Work on Drilling Technology Directional drilling - the drilling of non-vertical wells that helped make the development of shale gas possible -- will continue to play a key role in energy development, and so will the technologies that make it possible. The benefits of directional drilling are tremendous. Think cleaner, cheaper electricity; local economy booms; and decreased dependence on foreign energy. The unconventional oil and gas resources that can be tapped through directional drilling benefit consumers, businesses, and even the transportation sector. So being recognized as an innovator in this area is

47

Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

Jaffe, Todd

48

Horizontal Directional Drilling: A Green and Sustainable Technology for Site Remediation  

Science Journals Connector (OSTI)

Horizontal Directional Drilling: A Green and Sustainable Technology for Site Remediation ... Although a host of innovative technologies exist to treat contaminated soil and groundwater, constructing them in the field continues to rely on age-old, conventional methods: vertical drilling or excavation. ...

Michael D. Lubrecht; LG

2012-01-24T23:59:59.000Z

49

A leading index of drilling activity: Update and improvements  

SciTech Connect (OSTI)

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

50

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges (more)

Over, Lars

2010-01-01T23:59:59.000Z

51

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

Bauer Sandia National Laboratories High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

52

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

Science Journals Connector (OSTI)

A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil ...

Paal Skalle; Jostein Sveen; Agnar Aamodt

2000-01-01T23:59:59.000Z

53

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

via stress cycling. This can occur due to post cementing operations such as drilling and hydraulic fracturing, or thermal stresses. The testing method used a 3" PVC pipe to...

54

Near-Term Developments in Geothermal Drilling  

SciTech Connect (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

55

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

F weight-on-bit (WOB) A area N bit rotation rate (RPM) T torque-on bit (TOB) u rate-of-penetration (ROP) MSE is a measure of the efficiency of the drilling process,...

56

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network [OSTI]

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

57

Air drilling operations improved by percussion-bit/hammer-tool tandem  

SciTech Connect (OSTI)

Contractors and operators air drill whenever possible to improve rate of penetration (ROP). This is done with pneumatic hammer tools (HT's) and various bit types used with standard rotary air rigs. The recent application of a ''flat-bottomed'' percussion bit (FPB) combined with a custom-designed HT originally developed for mining operations has significantly improved air drilling operations in the Arkoma basin. The improvements include a large increase in ROP, improved hole geometry, reduced drillstring stresses, and a substantial reduction in cost per foot. This paper describes (1) a discussion of the engineering design and operation of the FPB/HT tandem, (2) applications and limitations of the tools, (3) guidelines for optimization of performance, and (4) documentation of field performance on Arkoma basin wells to demonstrate the improvements in air drilling operations.

Whiteley, M.C.; England, W.P.

1986-10-01T23:59:59.000Z

58

Research on Application of Steering Drilling Technologies in Shale Gas Development  

Science Journals Connector (OSTI)

Abstract HF-1 well of Pengye is a sidetracking horizontal well for shale gas development, the directional segment of the well is long, high requirements for well trajectory control of the directional segment in construction process. In allusion to the features and challenges of this well drilling, this paper introduces the application of slide steering drilling system and rotary steerable drilling system in this well, including analyzing all these tool basic principle, the characteristics and field application. The analysis shows that using different angel screw drill tool can meet the needs of increasing hole angle, steadying hole angle and adjusting the orientation; Adoption of EZ-Pilot steerable rotary system solves the problem of remarkable resistance and low degree of hole cleanness in long horizontal section, and satisfies the requirement of drilling and completion of the well. The system also shows the desirable performance in improving ROP and hole quality.

Guang Xinjun; Li Jing

2014-01-01T23:59:59.000Z

59

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

60

Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

David Gibbons; Larry A. Carrell; Richard D. George

1997-07-31T23:59:59.000Z

62

Top hole drilling with dual gradient technology to control shallow hazards  

E-Print Network [OSTI]

3.2 Riserless Dual Gradient Drilling Technology Description .........................36 3.2.1 Kick Detection.............................................................................37 3.2.2 Well Control ?Modified Driller?s Method... ? PRESSURE @ TOP OF KICK GRAPHS ? SET #1..........................140 ix Page APPENDIX F ? PRESSURE @ TOP OF KICK GRAPHS ? SET #2 ..........................159 VITA...

Elieff, Brandee Anastacia Marie

2006-10-30T23:59:59.000Z

63

Sandia technology & entrepreneurs improve Lasik  

SciTech Connect (OSTI)

Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

Neal, Dan; Turner, Tim

2013-11-21T23:59:59.000Z

64

Equipment and technique for improving penetration rate by the transformation of drill string vibration to hydraulic pulsating jet  

Science Journals Connector (OSTI)

Abstract To improve the down-hole drilling fluid energy and its utilization efficiency, a drilling string absorption and hydraulic pulsed jet generator was designed, its simulation model was established and simulation analysis was conducted, and its performance was tested in field application. Based on the idea of translating the energy of the drill string vibration into high pressure hydraulic pulsating jet energy, the structure of the device was designed and its working principle was analyzed, and then its simulation model was established. The simulation analysis results demonstrate that the device can produce the jet pressure 2 to 6 \\{MPa\\} higher than the nozzle pressure drop in conventional drilling. Field test results show that the device can improve the drilling speed significantly and extend the service life of the bit effectively; the device itself has steady performance and long service life, and can satisfy the drilling requirements.

Zhichuan GUAN; Hongning ZHANG; Wei ZHANG; Yongwang LIU; Deyang LIANG

2014-01-01T23:59:59.000Z

65

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

66

Measurement-while-drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

Rubin, L.A.; Harrison, W.H.

1992-06-01T23:59:59.000Z

67

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

68

Prospects for Improved Carbon Capture Technology  

E-Print Network [OSTI]

Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Kitchin July 2010 #12;(this page intentionally left blank) #12;Prospects for Improved Carbon Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY

69

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network [OSTI]

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

70

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

71

StarWars Laser Technology Applied to Drilling and Completing Gas Wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

u' m .,. . Society of Petroleum Engineers u I SPE 49259 StarWars Laser Technology Applied to Drilling and Completing Gas Wells R.M. Graves, SPE, Colorado School of Mines; and D.G. O'Brien, PE, SPE, Solutions Engineering Copyr@ht 1998, Scdety of Petroleum Engineers, Inc. This paper was prapared for presentation at the 1998 SPE Annual Technicar Conference and Exhibition bald in New Orteans, Lcuisiana, 27-30 September 1998, This paper waa selected for presentation by en SPE Program Commiftee folrowing review of information contained in an abstract submitted by the author(a). Contents of the paper, as prasented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The materiar, as presented, does not necessarily reflect any position of the .%ciety of Petroleum Engineers, its officers, or members. Papers prasented at SPE meetings

72

Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application  

Gasoline and Diesel Fuel Update (EIA)

TR-0565 TR-0565 Distribution Category UC-950 Drilling Sideways -- A Review of Horizontal Well Technology and Its Domestic Application April 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts This report was prepared by the Energy Information Administration, Office of Oil and Gas, under the general direction of Diane W. Lique, Director of the Reserves and Natural Gas Division, Craig H. Cranston, Chief of the Reserves and Production Branch, and David F. Morehouse, Senior Supervisory Geologist. Information regarding

73

Improving OLED technology for displays  

E-Print Network [OSTI]

Organic light emitting devices (OLEDs) are brightly emissive, efficient, have fast switching speeds, and are paper-thin in format, propelling their use as an emerging flat panel display technology. However, two primary ...

Yu, Jennifer J. (Jennifer Jong-Hwa), 1980-

2008-01-01T23:59:59.000Z

74

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

75

Improve drilling efficiency with two nozzles and more weight-on-bit  

SciTech Connect (OSTI)

Field tests evaluated the performance of three-cone insert bits using only two nozzles sized from pressure measurements made at the rig to give maximum hydraulic impact. The tests were conducted on two rigs in California and three in Texas. Test techniques entailed finding a suitable formation that required two identical bits to drill through. The first bit was operated with three nozzles while the subsequent bit was operated with two nozzles. During the test the drilling parameters (such as weight-on-bit, rotary speed, nozzle flow area, pump pressure, circulation rate, and mud weight) were kept as constant as possible. Drilling rates of the two bits were then compared and analyzed with the aid of mud-logs, electric-logs, and drilling recorder information. The depth and the relative position of the formation were also carefully compared with offset well bit records.

Tsai, C.R.; Robinson, L.H.

1983-02-01T23:59:59.000Z

76

Drilling fluid technology for horizontal wells to protect the formations in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

Major factors that cause damage in drilling in unconsolidated sandstone heavy oil reservoirs include: invasion of solids in drilling fluid, incompatibility between the liquid phase of drilling fluid and crude oil, and hydration and expansion of reservoir clay minerals. Therefore, a solid-free weak gel drilling fluid system for horizontal wells to protect the formations was developed that contains seawater + 0.1%0.2% NaOH + 0.2% Na2CO3+ 0.7% VIS + 2.0% FLO + 2.0% JLX, weighed with \\{KCl\\} or sodium formate. The drilling fluid system has unique rheological properties, temporally independent gel strength, and excellent lubricating and inhibition performance. It is compatible with formation fluids, it not only meets the needs of horizontal well drilling, but also effectively protects the reservoir. The technique is well performed in tens of horizontal wells in offshore oilfields, such as WC13-1, BZ34-1, NP35-2, and BZ25-1 oilfields.

Yue Qiansheng; Liu Shujie; Xiang Xingjin

2010-01-01T23:59:59.000Z

77

Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites  

SciTech Connect (OSTI)

The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

Not Available

1993-11-01T23:59:59.000Z

78

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices  

E-Print Network [OSTI]

LABORATORY TESTS) STATISTICAL ANALYSIS AND CORRELATIONS FOR REGAINED PERMEABILITY AND BREAKTHROUGH TIME IN UNCONSOLIDATED SANDS FOR IMPROVED DRILL-IN FLUID CLEANUP PRACTICES A Thesis GERARDO ENRIQUE SERRANO Submitted to the Office of Graduate... AND BREAKTHROUGH TIME IN UNCONSOLIDATED SANDS FOR IMPROVED DRILL-IN FLUID CLEANUP PRACTICES A Thesis by GERARDO ENRIQUE SERRANO Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...

Serrano, Gerardo Enrique

2012-06-07T23:59:59.000Z

79

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

80

Municipal Utilities' Investment in Smart Grid Technologies Improves...  

Broader source: Energy.gov (indexed) [DOE]

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs Municipal Utilities' Investment in Smart Grid Technologies Improves Services and...

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

Carrell, L.A.; George, R.D.; Gibbons, D.

1998-07-01T23:59:59.000Z

82

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling  

E-Print Network [OSTI]

involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection...

Oluwadairo, Tolulope

2009-05-15T23:59:59.000Z

83

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

84

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Biodiesel and Improving Biodiesel and Other Fuels' Quality to someone by E-mail Share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Facebook Tweet about Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Twitter Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Google Bookmark Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Delicious Rank Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on Digg Find More places to share Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines

85

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

86

DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling  

Broader source: Energy.gov (indexed) [DOE]

Project Pushes the Limits of Seismic-While-Drilling Project Pushes the Limits of Seismic-While-Drilling Technology DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology August 12, 2009 - 1:00pm Addthis Washington, DC - In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization. By pushing the limits of seismic-while-drilling technology, the patent-pending SeismicPULSER system provides more accurate geo-steering for the discovery of new oil and natural gas reserves, facilitating new field development and improving well economics. Drill-bit seismic-while-drilling techniques use a downhole acoustic source and receivers at the surface to create real-time images that allow

87

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

88

Alternative Fuels Data Center: Improved Energy Technology Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Improved Energy Improved Energy Technology Loans to someone by E-mail Share Alternative Fuels Data Center: Improved Energy Technology Loans on Facebook Tweet about Alternative Fuels Data Center: Improved Energy Technology Loans on Twitter Bookmark Alternative Fuels Data Center: Improved Energy Technology Loans on Google Bookmark Alternative Fuels Data Center: Improved Energy Technology Loans on Delicious Rank Alternative Fuels Data Center: Improved Energy Technology Loans on Digg Find More places to share Alternative Fuels Data Center: Improved Energy Technology Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Improved Energy Technology Loans The U.S. Department of Energy (DOE) provides loan guarantees through the

89

Enhanced Wellbore Stabilization and Reservoir Productivity With Aphron Drilling Fluid Technology  

SciTech Connect (OSTI)

The Acoustic Bubble Spectrometer has been identified as a potential method for monitoring the size distribution of aphrons in situ, such as in an oil well drilling fluid flowline.1 Research was continued from Task 1.1 of this Project, Aphron Visualization,2 in which ABS was tested against laser light scattering (Coulter Counter) and optical (visual) imaging to determine the bubble size distribution (BSD) of the aphrons at ambient temperature and pressure. Task 2.1 continued this investigation by measuring the bubble size distribution via ABS and optical imaging at elevated pressures up to 2000 psig.

Bob O'Connor; Fred Growcock

2004-12-01T23:59:59.000Z

90

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

91

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

92

Methods of improving efficiency of drilling operations for increasing oil and gas production in Ukraine  

Science Journals Connector (OSTI)

The paper reports the main outcome of theoretical research, engineering development, and industrial design efforts to elaborate and implement a complex of technological solutions, equipment, and advanced material...

A. L. Maistrenko; M. O. Bondarenko; V. G. Gargin

2007-10-01T23:59:59.000Z

93

Vehicle Technologies Office: Improving Biodiesel and Other Fuels Quality  

Broader source: Energy.gov [DOE]

DOE's Vehicle Technologies Office is working with industry to test biofuels samples and improve their quality and consistency over time.

94

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

95

Z .Cold Regions Science and Technology 28 1998 189202 Antifreeze thermal ice core drilling: an effective approach to the  

E-Print Network [OSTI]

and intermediate ice coring was done with large thermal or electromechanical drilling systems using hy- Zdrophobic and Rufli, 1994; .Blake et al., 1998 . For non liquid filled boreholes, a thermal drill can go deeper due to its large clearance. The depth range of 800­1000 m was achieved with thermal drills in cold ice

Howat, Ian M.

96

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

97

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

98

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

99

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

100

Laser Drills Could Relight Geothermal Energy Dreams | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser Drills Could Relight Geothermal Energy Dreams Laser Drills Could Relight Geothermal Energy Dreams December 14, 2012 - 12:26pm Addthis Commercial-grade laser technology is...

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Vehicle Technologies Office: Improving Biodiesel and Other Fuels...  

Energy Savers [EERE]

minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve both their quality and consistency over time....

102

Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance  

E-Print Network [OSTI]

and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

2011-01-01T23:59:59.000Z

103

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

104

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

105

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

106

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, M.B.

1997-10-30T23:59:59.000Z

107

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

108

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

109

Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: August 19, 3: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings to someone by E-mail Share Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Facebook Tweet about Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Twitter Bookmark Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Google Bookmark Vehicle Technologies Office: Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings on Delicious Rank Vehicle Technologies Office: Fact #793: August 19, 2013

110

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Broader source: Energy.gov (indexed) [DOE]

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

111

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Broader source: Energy.gov (indexed) [DOE]

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

112

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium...  

Energy Savers [EERE]

while lowering costs and reducing impacts on the environment. Addthis Related Articles Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

113

Drilling, instrumentation and sampling consideration for geoscience studies of magma-hydrothermal regimes  

SciTech Connect (OSTI)

Drilling, diagnostic, and sampling technologies are reviewed and a strawman drill hole is used for identifying scientific and technological limitations. (MHR)

Traeger, R.K.; Varnado, S.G.; Veneruso, A.F.; Behr, V.L.; Ortega, A.

1981-05-01T23:59:59.000Z

114

Benchmarking and performance improvement at Rocky Flats Technology Site  

SciTech Connect (OSTI)

The Rocky Flats Environmental Technology Site has initiated a major work process improvement campaign using the tools of formalized benchmarking and streamlining. This paper provides insights into some of the process improvement activities performed at Rocky Flats from November 1995 through December 1996. It reviews the background, motivation, methodology, results, and lessons learned from this ongoing effort. The paper also presents important gains realized through process analysis and improvement including significant cost savings, productivity improvements, and an enhanced understanding of site work processes.

Elliott, C. [Kaiser-Hill Co., (United States); Doyle, G. [EG and G Rocky Flats, Inc., Golden, CO (United States); Featherman, W.L. [Project Performance Corp. (United States)

1997-03-01T23:59:59.000Z

115

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

Broader source: Energy.gov [DOE]

For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

116

HYDRATE CORE DRILLING TESTS  

SciTech Connect (OSTI)

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

117

Natural Gas Compression Technology Improves Transport and Efficiencies,  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Compression Technology Improves Transport and Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs May 10, 2012 - 1:00pm Addthis Washington, DC - An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy (DOE). OsComp Systems designed and tested the novel compressor design with funding from the DOE-supported Stripper Well Consortium, an industry-driven organization whose members include natural gas and petroleum producers,

118

New Technologies Improve WIPP Fleet Safety | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technologies Improve WIPP Fleet Safety Technologies Improve WIPP Fleet Safety New Technologies Improve WIPP Fleet Safety September 1, 2012 - 12:00pm Addthis Randy Anderson, a CAST Specialty Transportation Inc. driver, demonstrates the new hand-held Zonar system used to perform truck and trailer inspections at a September WIPP transportation exhibit in Carlsbad. Randy Anderson, a CAST Specialty Transportation Inc. driver, demonstrates the new hand-held Zonar system used to perform truck and trailer inspections at a September WIPP transportation exhibit in Carlsbad. CARLSBAD, N.M. - Recently, Waste Isolation Pilot Plant (WIPP) carriers, Visionary Solutions LLC and CAST Specialty Transportation Inc., equipped their trucks with new safety systems to further improve the WIPP transportation system.

119

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

120

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Educational Technology Improves ECG Interpretation of Acute Myocardial Infarction among Medical Students and Emergency Medicine Residents  

E-Print Network [OSTI]

Technology Improves ECG Interpretation Education. AAMCheartdisease. 2. Ripa, MS. The ECG as decision support inEducational Technology Improves ECG Interpretation of Acute

Pourmand, Ali; Tanski, Mary; Davis, Steven; Shokoohi, Hamid; Lucas, Raymond; Zaver, Fareen

2015-01-01T23:59:59.000Z

122

Effects of Market Approaches to Green Technologies for the Poor: The Case of Improved Cookstoves  

E-Print Network [OSTI]

UV Waterworks, a water purification technology, and Improved2005), mass adoption of water purification technologies hasa community-scale water purification technology distributed

Booker, Kayje Merrea

2011-01-01T23:59:59.000Z

123

Educational Technology Improves ECG Interpretation of Acute Myocardial Infarction among Medical Students and Emergency Medicine Residents  

E-Print Network [OSTI]

Use of Educational Technology in Medical Volume XVI, NO .et al. Educational Technology Improves ECG Interpretationthe field of educationaltechnology. Educ Technol. critical

Pourmand, Ali; Tanski, Mary; Davis, Steven; Shokoohi, Hamid; Lucas, Raymond; Zaver, Fareen

2015-01-01T23:59:59.000Z

124

Vehicle Technologies Office Merit Review 2013: Abuse Tolerance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory (SNL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on improving the tolerance of batteries for plug-in electric vehicles under abusive conditions.

125

In situ Remediation Technologies Associated with Sanitation Improvement  

E-Print Network [OSTI]

by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas12 In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental

Paris-Sud XI, Université de

126

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

127

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

128

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

129

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

130

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

131

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

132

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

133

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

134

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect (OSTI)

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

135

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

136

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

137

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

138

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2012-06-07T23:59:59.000Z

140

Smaller Footprint Drilling System for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices.  

E-Print Network [OSTI]

??Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper (more)

Serrano, Gerardo Enrique

2012-01-01T23:59:59.000Z

142

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices.  

E-Print Network [OSTI]

??This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an (more)

Lacewell, Jason Lawrence

2012-01-01T23:59:59.000Z

143

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

144

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

145

NETL: News Release - DOE-Funded Technology That 'Looks Ahead' of Drillbit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2006 6, 2006 DOE-Funded Technology That 'Looks Ahead' of Drillbit Commercialized Revolutionary 'Smart' Drill Pipe Creates Downhole Internet WASHINGTON, DC - A U.S. Department of Energy-funded technology that establishes a "downhole Internet" for drilling oil and natural gas wells is now available for commercial use. The technology turns ordinary drill pipe into a highway for transmitting drilling and geological formation data at blazing speed from the bottom of a well to the surface and vice-versa. The potential benefits of the new technology include decreased drilling costs, improved safety, and reduced environmental impacts of drilling. Grant Prideco's announcement of the commercial launch of its IntelliServ Network and related Intellipipe(tm) capped 5 years of research sponsored by DOE and managed by DOE's National Energy Technology Laboratory.

146

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico is a cost-shared field demonstration project in the US Department of Energy Class II Program. A major goal of the Class III Program is to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geologic, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description is being used as a risk reduction tool to identify ''sweet spots'' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well simulation, and well spacing to improve recovery from this reservoir.

Murphy, Mark B.

1999-02-24T23:59:59.000Z

147

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

148

petroleum-cut (drilling) mud  

Science Journals Connector (OSTI)

petroleum-cut (drilling) mud, oil cut (drilling) mud [Drilling mud unintentionally admixed with crude oil, may result from oil entering the mud while drilling or from a drill-stem test of an oil rese...

2014-08-01T23:59:59.000Z

149

A real-time borehole correction of electromagnetic wave resistivity logging while drilling  

Science Journals Connector (OSTI)

Abstract The response of electromagnetic wave logging while drilling is influenced greatly by borehole and drilling fluid resistivity when the size of borehole is relatively large and drilling fluid resistivity is low. Borehole radius and drilling fluid resistivity were introduced to obtain more accurate transformed resistivity on the basis of the commonly used resistivity transformation model. The influence of borehole was considered in the newly established three dimensional transformation model, and a new borehole correction method was proposed. The resistivity transformation database can be established by calculation according to a certain instrument, and the true resistivity is obtained by three dimensional interpolation search technology of real-time correction in practical use. The results of numerical simulation and modeling verification show that the transformed resistivity by real-time correction coincides with the resistivity corrected by charts. The method can eliminate the borehole influence, reduce calculation dimension, and improve the inversion efficiency of highly deviated and horizontal wells logging data.

Zhen YANG; Jinzhou YANG; Laiju HAN

2013-01-01T23:59:59.000Z

150

An advanced geothermal drilling system: Component options and limitations  

SciTech Connect (OSTI)

The historical developments of drilling technology for geothermal resources have followed traditional incremental trends. The local expertise and rigs were adapted from existing drill rigs used for mining, civil, and water well projects. In areas with hydrocarbon resources, petroleum drilling hardware has been adapted; and in other countries, these units were imported as depth requirements increased and more robust derricks and downhole tools were needed. This ad hoc approach has provided adequate exploration and production wells. In contrast to the incremental improvements in petroleum rotary drilling system components this paper reviews a new, purpose-developed system that would solve the known major problems by design. Performance goals of 4 km (12,000 ft.) depth, 400 C, (750 F) and penetration rates greater than 8 m/h (25 ft/h) were selected. This advanced system was reviewed extensively and estimates of perhaps 30 to 60% cost savings were projected, depending on the assumed effectiveness and performance improvements provided. This paper continues the design and feasibility study and presents some of the component and sub-system details developed thus far.

Rowley, J. [Pajarito Enterprises, Los Alamos, NM (United States); Saito, Seiji [JMC Geothermal Division, Tokyo (Japan); Long, R.C. [Department of Energy, Las Vegas, NV (United States). Yucca Mountain Site Characterization Project

1995-12-31T23:59:59.000Z

151

Los Alamos Drills to Record-breaking Depths  

Broader source: Energy.gov [DOE]

LOS ALAMOS, N.M. The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of a chromium remediation project.

152

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

153

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

Ravi Prasad

2003-11-01T23:59:59.000Z

154

Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices  

E-Print Network [OSTI]

This thesis examines, in detail, the procedures and practices undertaken in the drilling and completion phases of a Gulf of Mexico horizontal well in an unconsolidated sand. In particular, this thesis presents a detailed case history analysis...

Lacewell, Jason Lawrence

2012-06-07T23:59:59.000Z

155

Bosch Powertrain Technologies  

Broader source: Energy.gov (indexed) [DOE]

70 mm 80 mm Laser drilling Standard EDM Laser drilling, opt. Standard Individual spray beams Flexible hole design of single beams Improved homogenization Reduced wall...

156

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

157

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect (OSTI)

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

158

NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NEXT GENERATION SURFACTANTS NEXT GENERATION SURFACTANTS FOR IMPROVED CHEMICAL FLOODING TECHNOLOGY FINAL REPORT June 1, 2010 - May 31, 2012 Laura L Wesson, Prapas Lohateeraparp, Jeffrey H. Harwell, and Bor-Jier Shiau October 2012 DE-FE0003537 University of Oklahoma Norman, OK 73019-0430 ii DISCLAIMER This report is prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

159

Technology Improvement Pathway to Cost-effective Vehicle Electrification: Preprint  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

454 454 February 2010 Technology Improvement Pathways to Cost-Effective Vehicle Electrification Preprint A. Brooker, M. Thornton, and J. Rugh National Renewable Energy Laboratory To be presented at SAE 2010 World Congress Detroit, Michigan April 13-15, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

160

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This yearly technical progress report will summarize work accomplished for Phase 1 Program during the program year 2000/2001. In task 1, the lead material composition was modified to enable superior fluxes and its mechanical properties improved. In task 2, composite OTM elements were fabricated that enable oxygen production at the commercial target purity and 75% of the target flux. In task 3, manufacturing development demonstrated the technology to fabricate an OTM tube of the size required for the multi-tube tester. The work in task 4 has enabled a preferred composite architecture and process conditions to be predicted. In task 5, the multi-tube reactor is designed and fabrication almost complete.

Ravi Prasad

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technologies and Policies to Improve Energy Efficiency in Industry  

Science Journals Connector (OSTI)

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy?related carbon dioxide ( CO 2 ) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities concurrently reducing CO 2 emissions. With the support of strong policies and programs energy?efficient technologies and measures can be implemented that will reduce global CO 2 emissions. A number of countries including the Netherlands the UK and China have experience implementing aggressive programs to improve energy efficiency and reduce related CO 2 emissions from industry. Even so there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Lynn Price

2008-01-01T23:59:59.000Z

162

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

163

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

Ravi Prasad

2003-03-01T23:59:59.000Z

164

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

165

NETL: E&P Technologies - Improved Recovery - Stripper Well Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration & Production Technologies Improved Recovery - Stripper Well Technology image of a well linking to Stripper Well Consortium “Stripper well" is a term used to describe wells that produce natural gas or oil at very low rates—less than 10 barrels per day of oil or less than 60 thousand cubic feet per day of gas. Despite their small output, stripper oil and gas wells make a significant contribution to the Nation’s energy supply—and they are the lifeblood of thousands of small, independent oil and gas operating companies. About 80 percent of the roughly 500,000 producing oil wells in the United States are classified as stripper wells. Despite their small volumes, they add up. The >400,000 stripper oil wells in the United States produce, in aggregate, nearly 1 million barrels per day of oil, which represents almost 19% of domestic oil production.

166

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network [OSTI]

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

167

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

168

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

169

Foam drilling simulator  

E-Print Network [OSTI]

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

170

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

171

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

or quill assembly. The head of the drill press is composed of the sleeve, spindle, electric motor, and feed

Gellman, Andrew J.

172

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant. Good progress has been made towards achieving the DOE-IGCC program objectives. Two promising candidates for OTM materials have been identified and extensive characterization will continue. New compositions are being produced and tested which will determine if the material can be further improved in terms of flux, thermo-mechanical and thermo-chemical properties. Process protocols for the composite OTM development of high quality films on porous supports continues to be optimized. Dense and uniform PSO1 films were successfully applied on porous disc and tubular substrates with good bonding between the films and substrates, and no damage to the substrates or films.

Ravi Prasad

2000-04-01T23:59:59.000Z

173

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

174

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

175

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objective of this program is to conduct a technology development program to advance the state-of-the-art in ceramic Oxygen Transport Membranes (OTM) to the level required to produce step change improvements in process economics, efficiency, and environmental benefits for commercial IGCC systems and other applications. The IGCC program is focused on addressing key issues in materials, processing, manufacturing, engineering and system development that will make the OTM a commercial reality. The objective of the OTM materials development task is to identify a suitable material that can be formed into a thin film to produce the target oxygen flux. This requires that the material have an adequate permeation rate, and thermo-mechanical and thermo-chemical properties such that the material is able to be supported on the desired substrate and sufficient mechanical strength to survive the stresses involved in operation. The objective of the composite OTM development task is to develop the architecture and fabrication techniques necessary to construct stable, high performance, thin film OTMs supported on suitable porous, load bearing substrates. The objective of the process development task of this program to demonstrate the program objectives on a single OTM tube under test conditions simulating those of the optimum process cycle for the power plant.

Ravi Prasad

2000-04-01T23:59:59.000Z

176

Hydraulic Pulse Drilling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

177

Cross-domain comparison of quantitative technology improvement using patent derived characteristics  

E-Print Network [OSTI]

This thesis compares the performance improvement rates of 28 technological domains with characteristics derived from the patents of the domains, seeking to objectively test theories of how and why technologies change over ...

Benson, Christopher Lee

2014-01-01T23:59:59.000Z

178

Agent Technology to Improve Building Energy Efficiency and Occupant Comfort  

E-Print Network [OSTI]

become central to building services control strategies. Achieving synergy between end users and buildings is the ultimate in intelligent comfort control. This new comfort control technology, based on use of the latest ICT development in agent technology...

Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

2006-01-01T23:59:59.000Z

179

The Role of Design Complexity in Technology Improvement  

E-Print Network [OSTI]

We study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster ...

McNerney, James

180

Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

highway transportation technologies to reduce petroleum consumption, reducing operating cost, fuel consumption, environmental impact, and time to market * Approach: Through...

182

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

Not Available

2008-12-01T23:59:59.000Z

183

Determining root causes of drilling problems by combining cases and general knowledge  

E-Print Network [OSTI]

-based, knowledge intensive, oil well drilling 1 Introduction Drilling of oil wells is an expensive offshore based reasoning to improve efficiency of oil well drilling. Their focus was on lost circulation, whichDetermining root causes of drilling problems by combining cases and general knowledge Samad

Aamodt, Agnar

184

Vehicle Technologies Office Merit Review 2014: Abuse Tolerance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

185

Lighter and Stronger: Improving Clean Energy Technologies Through...  

Office of Environmental Management (EM)

Technologies Through Advanced Composites February 26, 2014 - 3:02pm Addthis Pete Johnson inspects the blades of a wind turbine at the National Renewable Energy...

186

Improving federal technology commercialization: Some recommendations from a field study  

Science Journals Connector (OSTI)

This study identified three distinct roles of the federal technology-transfer process in the Huntsville, Alabama region: sponsors, developers, and adopters. The basic structure of transfer barrie...

Mary S. Spann Ph.D.; Mel Adams Ph.D.

187

Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov (indexed) [DOE]

efficient highway transportation technologies to reduce petroleum consumption, operating cost, fuel consumption, environmental impact, and time to market for high risk high...

188

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESTCP Environmental Security Technology Certification Program FY fiscal year GEM Green Energy Machine H 2 S hydrogen sulfide HECO Hawaii Electric Company HEDWEC...

189

Technologies and Approaches for Improving Energy Efficiency of Network Elements  

Science Journals Connector (OSTI)

Technologies and approaches for implementing energy-efficient network elements are briefly reviewed. Optical transmission and switching together with an optimized network concept...

Aleksic, Slavia

190

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report (seventh quarter), April 1--June 30, 1997  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program -- based on advanced reservoir management methods -- can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized.

NONE

1997-07-30T23:59:59.000Z

191

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).

Arnis Judzis; Homer Robertson; Alan Black

2006-06-22T23:59:59.000Z

192

Electricity on the rig. Part 3 - New electric rig technology  

SciTech Connect (OSTI)

The use of an SCR-controlled power system on an offshore drilling rig has lead to an increased acceptance of high technology equipment. Such equipment increases drilling productivity, reduces maintenance, and improves reliability. Most new rigs now have AC squirrel cage motors, brushless AC generators, silicon controlled rectifiers, DC motors, and swtichgear and motor starters. Several opportunities for cost reductions in SCR systems, such as improving the power factor, are studied in this paper.

McNair, W.L.

1983-07-01T23:59:59.000Z

193

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

194

. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the  

E-Print Network [OSTI]

Vehicle Technology, the UI team has competed in the Clean Snowmobile Challenge for the past two years. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the National Institute for Advanced Transportation Technology TECH BRIEF March 2003

Kyte, Michael

195

Gel Evolution in Oil Based Drilling Fluids.  

E-Print Network [OSTI]

?? Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of (more)

Sandvold, Ida

2012-01-01T23:59:59.000Z

196

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

197

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

198

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

199

Student use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile Technology In CiCS (Corporate Information and Computing Services) we are always looking to improve our services.  

E-Print Network [OSTI]

Page 1 Student use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile Technology In CiCS (Corporate Information and Computing Services) we are always looking to improve our services. We are interested in your use of mobile technology (phones

Martin, Stephen John

200

Development and applications of solids-free oil-in-water drilling fluids  

Science Journals Connector (OSTI)

The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solids-free oil-in-wate...

Qiansheng Yue; Baoguo Ma

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

202

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

203

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

204

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

205

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

206

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

207

Chapter 4 Drilling Engineering  

Science Journals Connector (OSTI)

Publisher Summary Drilling operations are essentially carried out during all stages of the project life cycle (PLC) and in all types of environments. The main objectives of these operations includes: the acquisition of information and the safeguarding of production. Since the expenditure for drilling represents a large fraction of the total project's capital expenditure, an understanding of the techniques, equipment, and cost of drilling is very significant. This chapter focuses on the drilling activities. The chapter also explores the interactions between the drilling team and the other exploration and production (E&P) functions. Specifically, an initial successful exploration well can establish the presence of a working petroleum system. Following this, the data gathered in the first well is evaluated and the results are documented. The next step includes the appraisal of the accumulation requiring more wells. Finally, if the project is subsequently moved forward, development wells then needs to be engineered.

F. Jahn; M. Cook; M. Grahm

2008-01-01T23:59:59.000Z

208

Supporting technology for enhanced recovery, Annex V: evaluate application of recently developed techniques in the areas of drilling, coring, and telemetry. Venezuela-MEM/USA-DOE fossil-energy report V-1  

SciTech Connect (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex V - Drilling, Coring, and Telemetry as supporting technology for enhanced oil recovery projects in the United States and Venezuela. Annex V consists of 18 tasks to perform these three projects. This report completes the work for Annex V. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist in the implementation of EOR projects. Technology development that reduces costs and provides better reservoir information often has a direct impact on the economic viability of EOR projects and Annex V addresses these areas. Each of the three areas covered by Annex V are separate entities and are presented in this report as different sections. Each has its own Abstract. The drilling and coring tests were highly successful but only a limited amount of work was necessary in the Telemetry area because a field test was not feasible.

Williams, C.R.; Lichaa, P.; Van Domselaar, H.

1983-04-01T23:59:59.000Z

209

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

210

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

211

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

Ravi Prasad

2004-03-31T23:59:59.000Z

212

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Preferred OTM architectures have been identified through stress analysis; and The 01 reactor was operated at target flux and target purity for 1000 hours.

Ravi Prasad

2003-04-30T23:59:59.000Z

213

Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism  

SciTech Connect (OSTI)

As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

Richardson, J; Yuldashev, B; Labov, S; Knapp, R

2006-06-12T23:59:59.000Z

214

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

215

Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology  

SciTech Connect (OSTI)

The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

2006-05-09T23:59:59.000Z

216

A predictive model of enhanced oil recovery by infill drilling and its application  

Science Journals Connector (OSTI)

Infill drilling is now recognized as a viable improved ... the reliable prediction of incremental recovery by infill drilling cannot be readily and accurately determined by ... calculates the geometries of stream...

Jianhong Xu; Linsong Cheng; Lili Ma

2007-08-01T23:59:59.000Z

217

Photo of the Week: Improving Power Plant Technology... in 3-D | Department  

Broader source: Energy.gov (indexed) [DOE]

Improving Power Plant Technology... in 3-D Improving Power Plant Technology... in 3-D Photo of the Week: Improving Power Plant Technology... in 3-D June 6, 2013 - 12:58pm Addthis This week, Secretary Ernest Moniz experienced the 3-D visualizations at the Consortium for the Advanced Simulation of Light Water Reactors (CASL), one of the Department's Energy Innovation Hubs. The facility, located at Oak Ridge National Laboratory, develops computer models that simulate nuclear power plant operations. The researchers at CASL are developing technology that could accelerate upgrades at existing nuclear plants while improving the plants' reliability and safety. Check out more photos from Secretary Moniz's visit to CASL. | Photo courtesy of Oak Ridge National Laboratory.

218

Novel enabling technologies of gene isolation and plant transformation for improved crop protection  

SciTech Connect (OSTI)

Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

Torok, Tamas

2013-02-04T23:59:59.000Z

219

MObile Technology for Improved Family Planning: update to randomised controlled trial protocol  

Science Journals Connector (OSTI)

This update outlines changes to the MObile Technology for Improved Family Planning study statistical analysis plan and plans for long-term follow-up. These changes result from obtaining additional funding and ...

Chris Smith; Thoai D Ngo; Phil Edwards; Caroline Free

2014-11-01T23:59:59.000Z

220

Technological change for environmental improvement : the case of the Mexican automobile sector  

E-Print Network [OSTI]

The main objective of this research was to articulate the processes and factors of technological change that promote environmental improvement while contributing to development goals in the Mexican automobile sector. The ...

Aoki, Chizuru, 1968-

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-05-01T23:59:59.000Z

222

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 7, reactor cost analysis was performed to determine whether OTM technology when integrated with IGCC provides a commercially attractive process. In task 9, discussions with DOE regarding restructuring the program continued. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: IGCC process analysis and economics.

John Sirman

2005-01-01T23:59:59.000Z

223

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota  

E-Print Network [OSTI]

V2G Technology to Improve Wind Power Quality and Stability F. R. Islam and H. R. Pota Abstract an implementation of V2G technology is proposed here to improve the quality and stability of wind power output

Pota, Himanshu Roy

224

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect (OSTI)

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

225

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

226

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

The objectives of the second year of the program are to define a material composition and composite architecture that enable the oxygen flux and stability targets to be obtained in high-pressure flux tests. Composite technology will be developed to enable the production of high-quality, defect free membranes of a thickness that allows the oxygen flux target to be obtained. The fabrication technology will be scaled up to produce three feet composite tubes with the desired leak rate. A laboratory scale, multi-tube pilot reactor will be designed and constructed to produce oxygen. In the third quarter of the second year of the program, work has focused on materials optimization, composite and manufacturing development and oxygen flux testing at high pressures. This work has led to several major achievements, summarized by the following statements: Oxygen has been produced under conditions similar to IGCC operation using composite OTM elements at a flux greater than the 2001 target. Under conditions with a greater driving force the commercial target flux has been met. Methods to significantly increase the oxygen flux without compromise to its mechanical integrity have been identified. Composite OTM elements have demonstrated stable operation at {Delta}P > 250 psi Design of the pilot plant is complete and construction will begin next quarter.

Ravi Prasad

2001-08-01T23:59:59.000Z

227

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

228

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

229

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

technologies Conventional ammonia-based refrigeration systems Production growth through 2020 1%/year Specific energy consumption of base technologies (delivered) 0.008 kWh/lb. (electricity) Regional weighted average fossil fuel intensity of electricity... consumption and improve productivity by increasing the energy efficiency of industrial processes and systems. Therefore, the adoption of such technologies is important because they enable manufacturing plants to become both more competitive and productive...

Lung, R. B.; Masanet, E.; McKane, A.

2006-01-01T23:59:59.000Z

230

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter April to June 2002. In task 1 improvements to the membrane material have shown increased flux, stability and strength. In task 2, composite development has demonstrated the ability to cycle membranes. In task 3, scale-up issues associated with manufacturing large elements have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity after 10 thermal and pressure cycles. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

Ravi Prasad

2002-08-01T23:59:59.000Z

231

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2000. In task 1 careful modification of the processing conditions of the OTM has improved the properties of the final element. In addition, finite element modeling has been used to predict the mechanical behavior of OTM tubes and to identify strategies for improving OTM robustness. In task 2, composite elements of PSO1d have been prepared and tested for over 800 hours without degradation in oxygen flux. Alternative materials for composite OTM and architectures have been examined with success. In task 3, modification of fabrication routes has resulted in a substantial increase in the yield of PSO1d composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor has begun.

Ravi Prasad

2001-01-01T23:59:59.000Z

232

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

SciTech Connect (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

233

Research and Application of Auger-air Drilling and Sieve Tube Borehole Protection in Soft Outburst-prone Coal Seams  

Science Journals Connector (OSTI)

Abstract Hole accidents during drilling and borehole collapse during extracting are bottlenecks restricting gas drainage efficiency in soft outburst-prone coal seams in China. The auger-air combined drilling technique and sieve tube mounting method are an alternative solution to these technology bottlenecks. The auger-air drilling technique combines the advantages of dry style auger drilling and air drilling. Specially designed blade in drill rod can stir up large particles of coal so that large particles can be brought to ground smoothly using compressed air and is efficient to prevent borehole accidents. After drilling is completed, the sieve tube is tripped in through the inner hole of drilling pipes, and then lifting up drilling pipes, the tube sieve will provide a complete tunnel for gas extraction. Field application proves that with proper drilling parameter selection and appropriate tube install control, it is more promising to double drilling depth and raise gas drainage efficiency.

Ji Qianhui

2014-01-01T23:59:59.000Z

234

Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs  

Broader source: Energy.gov [DOE]

OE has released a new Smart Grid report describing the activities of three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program. "Municipal Utilities' Investment in Smart Grid Technologies Improves Services and Lowers Costs" reports on the benefits of the cities' investments, including improved operating efficiencies, lower costs, shorter outages, and reduced peak demands and electricity consumption.

235

V2G Technology for Designing Active Filter System to Improve Wind Power Quality  

E-Print Network [OSTI]

V2G Technology for Designing Active Filter System to Improve Wind Power Quality F. R. Islam, H. R factor correction and harmonics current compensation. Index Terms--PHEVs, V2G, Wind Power, Battery Scheme to design active filter is proposed here to improve the quality of wind power output. Harmonics is one

Pota, Himanshu Roy

236

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2001. In task 1 optimization of the substrate material has yielded substantial improvements to membrane life. In task 2, composite development has enabled 50% of the target flux under Type 1B process conditions. In task 3, manufacturing development has demonstrated that 36 inch long tubes can be produced. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 500 hours of the target flux. In task 5 construction of the multi-tube OTM reactor is completed and initial startup testing was carried out.

Ravi Prasad

2002-02-01T23:59:59.000Z

237

CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2001. In task 1 careful modification of the composition and processing conditions of the OTM has enabled manufacture of high quality OTM elements. In addition, finite element modeling has been used to identify a suitable composition and geometry for successful pilot plant operation. In task 2, composite elements of materials with improved mechanical properties have been developed. In task 3, development of preferred fabrication methods has resulted in production of pilot plant scale composite elements. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at atmospheric pressure of greater than 95% purity from a high-pressure air feed gas. The work in task 5 to construct a multi-tube OTM reactor is ongoing.

Ravi Prasad

2001-04-01T23:59:59.000Z

238

Improving exploration with geographical information system (GIS) technology  

SciTech Connect (OSTI)

Timely reliable access to data is required by Earth Scientists and Engineers evaluating geology, facilities, environment, and new business opportunities. Geographical Information System (GIS) technology has been recently implemented to provide efficient and comprehensive access to data for exploration work in Venezuela. The GIS allows rapid comparisons, queries, sorting, and evaluation of data that in the past required multiple hardware platforms, multiple software packages, paper plots, spreadsheets, and time. A vendor GIS database package formed the foundation. This GIS provided regional coverage for the entire country of Venezuela at a scale of 1:250,000. It included 36,000 wells and associated attributes, facilities, geologic maps, potential field data, and transportation networks. Essential with GIS, all of the data were transformed from multiple cartographic datums to a single map projection. Proprietary and other tabular databases were incorporated into the vendor GIS by Chevron, significantly upgrading the value of the system for company exploration. Tabular databases were either imported, linked or converted to the GIS. They included Nomad, Paradox, Oracle, Openworks, and PC-based spreadsheets containing wells, seismic, and geochemistry data. Nontabular data types incorporated into the GIS included digital outcrop log and paleosections, maps, other GIS data, Global Positioning System control points, satellite imagery and scanned photographs. The enhanced GIS has proven valuable for facilitating access to, and rapid and accurate evaluation of, large geographic areas with multiple data sources and types.

Goodwin, P.B.; Choiniere, M.R.; Harris, F.W. [Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)] [and others

1996-12-31T23:59:59.000Z

239

Vehicle Technologies Office Merit Review 2014: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement  

Broader source: Energy.gov [DOE]

Presentation given by Volvo at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck powertrain...

240

NETL: News Release - New Projects to Investigate Smart Drilling Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Penetration rate prediction for percussive drilling via dry friction model  

E-Print Network [OSTI]

Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a. Similarly, an increased weight on bit in downhole drilling does not improve the penetration rates when hard- tration rate is presented. The inherent nonlinearity of the discontinuous impact process is modelled

Krivtsov, Anton M.

242

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1996 (fifth quarter)  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery. The plan includes developing a control area using standard reservoir management techniques while comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program, can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results so far are described on geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1997-01-31T23:59:59.000Z

243

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

NONE

1996-10-31T23:59:59.000Z

244

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, January 1--March 31, 1998  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program--based on advanced reservoir management methods--can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the US oil and gas industry. Results obtained to date are summarized for the following: geostatistics and reservoir mapping; reservoir engineering; reservoir characterization/reservoir simulation; miscible recovery simulations; and technology transfer.

NONE

1998-04-30T23:59:59.000Z

245

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

246

Precision micro drilling with copper vapor lasers  

SciTech Connect (OSTI)

The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

1994-09-02T23:59:59.000Z

247

Stimulation Technologies for Deep Well Completions  

SciTech Connect (OSTI)

The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

Stephen Wolhart

2005-06-30T23:59:59.000Z

248

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

249

Evaluation of an air drilling cuttings containment system  

SciTech Connect (OSTI)

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

250

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

251

ANL/TD/TM03-01: Lasers and Beam Delivery for Rock Drilling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development ANL/TD/TM03-01 Development ANL/TD/TM03-01 Division Technology Development Division Technology Development Division Technology Development Division Technology Development Lasers and Beam Delivery for Division Rock Drilling Technology Development Division Technology Development Division by Technology Development K.H. Leong, Z. Xu, C.B. Reed, and Division R.A. Parker Technology Development Division

252

On improving wave energy conversion, part II: Development of latching control technologies  

Science Journals Connector (OSTI)

Abstract In the first part of the investigation, a new latching control technology is proposed, and it has been shown that the new latching control technique is capable of greatly improving wave energy conversion in regular waves. In this part of the research, a new analysis technique is developed for studying the latching control technology. A time-out method is developed and employed for re-packing the dynamic system, hence the analysis of the latching control technology can be changed from a complete nonlinear dynamics into a simple linear dynamic system, and it is further proven that the re-packed dynamic system can be transformed back to frequency domain for further analysis. In the research, we could prove how the phase optimal condition can be attained. Further on, the new latching control technology will be used in irregular waves. Unlike many other latching control technologies, the new latching control does not need the detailed future information. In the development of the technology, we will show how we can obtain the latching duration for irregular waves for improving wave power extraction. As a result, we could remove one barrier in implementing latching control strategy while the wave energy conversion can still be much improved.

Wanan Sheng; Raymond Alcorn; Anthony Lewis

2014-01-01T23:59:59.000Z

253

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

254

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

255

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

256

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

257

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

258

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

259

Improving Life through Science and Technology Texas AgriLife Research  

E-Print Network [OSTI]

Develop information for sound carbon-trading guidelines #4 New Technologies to Sustain Texas Water Quality into water Improve agricultural and urban water use efficiency Address Storm Water issues · Investments 0.5M acre-feet/year of water from Edwards Aquifer Developed preventative measures for golden algae

260

invert(ed) (oil) emulsion (drilling) mud  

Science Journals Connector (OSTI)

invert(ed) (oil) emulsion (drilling) mud, water-in-oil (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

water-in-oil (drilling) mud  

Science Journals Connector (OSTI)

water-in-oil (drilling) mud, invert(ed) (oil) emulsion (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

262

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

263

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

264

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

265

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the U.S. oil and gas industry.

Murphy, M.B.

1996-07-26T23:59:59.000Z

266

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

267

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

268

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-12-31T23:59:59.000Z

269

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-01-01T23:59:59.000Z

270

Before the House Science, Space, and Technology Subcommittee on Energy and Environment  

Broader source: Energy.gov [DOE]

Subject: Offshore Drilling Safety and Response Technologies By: Victor Der, Assistant Secretary Office of Fossil Energy

271

An analysis of factors improving technology roadmap credibility: A communications theory assessment of roadmapping processes  

Science Journals Connector (OSTI)

In recent years, many industrial firms have been able to use roadmapping as an effective process methodology for projecting future technology and for coordinating technology planning and strategy. Firms potentially realize a number of benefits in deploying technology roadmapping (TRM) processes. Roadmaps provide information identifying which new technologies will meet firms' future product demands, allowing companies to leverage R&D investments through choosing appropriately out of a range of alternative technologies. Moreover, the roadmapping process serves an important communication tool helping to bring about consensus among roadmap developers, as well as between participants brought in during the development process, who may communicate their understanding of shared corporate goals through the roadmap. However, there are few conceptual accounts or case studies have made the argument that roadmapping processes may be used effectively as communication tools. This paper, therefore, seeks to elaborate a theoretical foundation for identifying the factors that must be considered in setting up a roadmap and for analyzing the effect of these factors on technology roadmap credibility as perceived by its users. Based on the survey results of 120 different R&D units, this empirical study found that firms need to explore further how they can enable frequent interactions between the TRM development team and TRM participants. A high level of interaction will improve the credibility of a TRM, with communication channels selected by the organization also positively affecting TRM credibility.

Jung Hoon Lee; Hyung-il Kim; Robert Phaal

2012-01-01T23:59:59.000Z

272

Experimental study of the D-OSKIL mechanism for controlling the stick-slip oscillations in a drilling laboratory testbed  

E-Print Network [OSTI]

]. We implemented it on an experimental setup that emulates a real oil drilling platform. The mechanism gives the conclusion. II. TESTBED DESCRIPTION An experimental setup which emulates the oil drilling in a drilling laboratory testbed Haochuan Lu Electrical&Electronic Engineering Nanyang Technological University

Paris-Sud XI, Université de

273

Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China  

Science Journals Connector (OSTI)

...Employing the most recent drilling technologies, the CCSD...International Continental Drilling Program and the Chinese...a 5,000-m-deep borehole in the eastern part...geology. The CCSD Project drilling site is located in Donghai...potential storage spaces for large pockets of fluids and...

Gengxin Zhang; Hailiang Dong; Zhiqin Xu; Donggao Zhao; Chuanlun Zhang

2005-06-01T23:59:59.000Z

274

Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Evaporative and Innovative Evaporative and Thermally Activated Technologies Improve Air Conditioning Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way-with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVap), also controls humidity more effectively to improve the comfort of people in buildings. Desiccants are an example of a thermally activated technology (TAT) that relies on heat instead

275

Use of Clays as Drilling Fluids and Filters  

Science Journals Connector (OSTI)

In geotechnical engineering, drilling fluid is a fluid used to drill boreholes into the earth. In drilling rigs, drilling fluids help to do drill for exploration of oil and natural gas. Liquid drilling fluid is o...

Swapna Mukherjee

2013-01-01T23:59:59.000Z

276

The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology  

E-Print Network [OSTI]

SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, August 4-6th, 2004, p. 1 THE DEVELOPMENT OF IMPROVED ENERGY EFFICIENT 1 HOUSING FOR THAILAND UTILIZING RENEWABLE ENERGY TECHNOLOGY 2 3... The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy...

Rasisuttha, S.; Haberl, J.

277

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

SciTech Connect (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

278

Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Improved cache performance in Monte Carlo transport calculations using energy banding A. Siegel a , K. Smith b , K. Felker c,∗ , P . Romano b , B. Forget b , P . Beckman c a Argonne National Laboratory, Theory and Computing Sciences and Nuclear Engineering Division b Massachusetts Institute of Technology, Department of Nuclear Science and Engineering c Argonne National Laboratory, Theory and Computing Sciences Abstract We present an energy banding algorithm for Monte Carlo (MC) neutral parti- cle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, ex- hibit poor locality, and are typically much too large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on

279

The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful  

E-Print Network [OSTI]

The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful Jon Feldman Senior Consultant Hatch Consulting Mississauga, Ontario, Canada ABSTRACT Improvements... in technology certainly playa pivotal role in the quest for increased energy efficiency. However, sophisticated industrial energy users are increasingly learning that technology alone cannot drive long-tenn, sustainable reductions in energy cost. The role...

Feldman, J.

280

Simulation of air and mist drilling for geothermal wells  

SciTech Connect (OSTI)

An improved method for calculating downhole temperatures, pressures, fluid densities and velocities during air drilling has been developed. The basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressures in typical air and mist drilling situations. 8 refs.

Mitchell, R.F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

1990-06-01T23:59:59.000Z

282

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

283

Drill Program Ensures Emergency Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground event. Drill scenarios have included a full evacuation of the WIPP underground facility and responding to radiological incidents and a variety of emergencies on the...

284

Drilling deep in South Pole Ice  

E-Print Network [OSTI]

To detect the tiny flux of ultra-high energy neutrinos from active galactic nuclei or from interactions of highest energy cosmic rays with the microwave background photons needs target masses of the order of several hundred cubic kilometers. Clear Antarctic ice has been discussed as a favorable material for hybrid detection of optical, radio and acoustic signals from ultra-high energy neutrino interactions. To apply these technologies at the adequate scale hundreds of holes have to be drilled in the ice down to depths of about 2500 m to deploy the corresponding sensors. To do this on a reasonable time scale is impossible with presently available tools. Remote drilling and deployment schemes have to be developed to make such a detector design reality. After a short discussion of the status of modern hot water drilling we present here a design of an autonomous melting probe, tested 50 years ago to reach a depth of about 1000 m in Greenland ice. A scenario how to build such a probe today with modern technologies...

Karg, Timo

2014-01-01T23:59:59.000Z

285

Portable drilling mud system  

SciTech Connect (OSTI)

A portable well drilling mud storage and recirculation unit includes a mud storage tank mounted on an over-the-road semi-trailer having an engine driven circulating pump mounted onboard and adapted to withdraw mud from the tank for circulation to the well and for recirculation through a set of mud agitating nozzles disposed in the bottom of the tank. A mud degassing vessel, a solids separator unit and an additive blending unit are all mounted above the tank. The degassing vessel is supported by hydraulic cylinder actuators for movement between a retracted transport position and a vertically elevated working position.

Etter, R. W.; Briggs, J. M.

1984-10-02T23:59:59.000Z

286

Deep Drilling in Crystalline Bedrock, Volumes 1 and 2 A. Bod and K. G. Eriksson (eds), Springer-Verlag, 1988, Volume 1: The Deep Gas Drilling in the Siljan Impact Structure, Sweden, and Astroblemes, xiv + 364 pp, ISBN 3-540-18995-5, $83.50 (DM 138); Volume 2: Review of Deep Drilling Projects, Technology, Sciences and Prospects for the Future, xii + 538 pp, ISBN 3-540-18996-3, $102 (DM 168)  

Science Journals Connector (OSTI)

......by the collision of a large meteorite or asteroid...As with many other large circular features in...is the idea that such large impacts should shatter...carried out preliminary drilling and other geophysical...1985and spudded the deep borehole in the northeastern sector......

H. Olsen Kenneth

1989-12-01T23:59:59.000Z

287

NETL: News Release - Carbon Fiber Drill Pipe Performs Flawlessly in First  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 9, 2003 January 9, 2003 Carbon Fiber Drill Pipe Performs Flawlessly in First Field Test Private Company to Use DOE-Sponsored Technology To Help Restore Domestic Production from Older Oil Wells TULSA COUNTY, OK - A new lightweight, flexible drill pipe engineered from space-age composites rather than steel has passed an important field test in a U.S. Department of Energy project and is now being readied for its first commercial use. - Photo - Composite Drill Pipe Being Bent - The advanced composite drill pipe could enable drillers in the future to bore sharply-curved "short radius" horizontal wells without creating fatigue stress on the drill pipe. The Energy Department's National Energy Technology Laboratory announced that the drill pipe, made from carbon fiber resins by Advanced Composite

288

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

SciTech Connect (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

289

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and  

Open Energy Info (EERE)

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Abstract No abstract prepared. Authors Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen and Gene Polik Organization Sandia National Laboratories Published Geothermal Technologies Legacy Collection, 1999 Report Number SAND99-1976 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Citation

290

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Drilling Tests of an Active Vibration Damper Authors: Mark Wassell, Martin Cobern, Carl Perry, Jason Barbely, and Daniel Burgess, APS Technology, Inc. Venue: Drilling Engineering Association’s 2007 DEA Workshop in Galveston, TX, June 19-20, 2007 Abstract: Testing of an active drilling vibration damper (AVD) system at TerraTek Laboratory, under conditions designed to induce vibration, demonstrated that the use of the AVD reduced vibration, maintained more consistent weight-on-bit, and increased rate of penetration (ROP). These tests demonstrated that the AVD is likely to provide significant time and cost savings, particularly in deep wells. The results of these tests will be outlined. Related NETL Project: The goal of the related NETL project DE-FC26-02NT41664, “Drilling Vibration Monitoring and Control System,” is to improve ROP and reduce the incidence of premature equipment failures in deep hard rock drilling environments by reducing harmful drillstring vibration.

291

Impact of geothermal technology improvements on royalty collections on Federal lands: Volume 1  

SciTech Connect (OSTI)

The purpose of this study was to predict the value of increased royalties that could be accrued through the year 2010 by the federal government as a result of the accomplishments of the US Department of Energy (DOE) geothermal research and development (RandD) program. The technology improvements considered in this study coincide with the major goals and objectives of the DOE program as set forth in Section 3.0 and will: allow the geothermal industry to maintain a long-term competitive posture in the more favorable fields; and permit it to become competitive where the resource is of lower quality. The study was confined to power generation from liquid-dominated hydrothermal geothermal reservoirs. The technologies for exploiting the liquid-dominated, or hot water, fields for power generation are relatively new and still under development. Thus, each technology enhancement that permits greater economic use of the resource will potentially enhance royalty revenues. Potential royalty revenue from dry steam power production at The Geysers, direct use of geothermal fluids, and use of advanced geothermal technologies (i.e., hot dry rock, magma, and geopressured) has not been considered in this assessment. 12 refs.

Not Available

1988-10-01T23:59:59.000Z

292

Improved Electrical Contact For Dowhhole Drilling Networks  

DOE Patents [OSTI]

An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

2005-08-16T23:59:59.000Z

293

Oil and Gas Drilling Bit Tribology  

Science Journals Connector (OSTI)

A drilling bit is used in petroleum exploration to drill a wellbore through various layers of rock formations to access oil or natural gas resources. It is engineered...1). A roller cone drill bit is categorized ...

Dr. Chih Lin Ph.D.

2013-01-01T23:59:59.000Z

294

oil-emulsion (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-emulsion (rotary) drilling fluid, oil-emulsion fluid [Used where low fluid-loss, very thin cake, and good lubrication of the drill pipe are of primary importance, such as in directional drilling ...

2014-08-01T23:59:59.000Z

295

oil-base(d) (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-base(d) (rotary) drilling fluid, oil-base(d) fluid [Used primarily for drilling-in or recomputing wells in formations subject ... with low formation pressures. See remark under drilling fluid] ...

2014-08-01T23:59:59.000Z

296

Saving energy and improving IAQ through application of advanced air cleaning technologies  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Building TechnologiesEfficiency and Renewable Energy, Building Technologies

Fisk, W.J

2012-01-01T23:59:59.000Z

297

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico. Annual report, September 25, 1995--September 24, 1996  

SciTech Connect (OSTI)

The basic driver for this project is the low recovery observed in Delaware reservoirs, such as the Nash Draw Pool (NDP). This low recovery is caused by low reservoir energy, less than optimum permeabilities and porosities, and inadequate reservoir characterization and reservoir management strategies which are typical of projects operated by independent producers. Rapid oil decline rates and high gas/oil ratios are typically observed in the first year of primary production. Based on the production characteristics that have been observed in similar Delaware fields, pressure maintenance is a likely requirement at the Nash Pool. Three basic constraints to producing the Nash Draw Brushy Canyon Reservoir are: (1) limited areal and interwell geologic knowledge, (2) lack of an engineering tool to evaluate the various producing strategies, and (3) limited surface access prohibiting development with conventional drilling. The limited surface access is caused by the proximity of underground potash mining and surface playa lakes. The objectives of this project are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers, especially in the Permian Basin.

Murphy, M.B.

1997-08-01T23:59:59.000Z

298

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. Carl Drive College Station TX 77845-9547 USA #12;PUBLISHER'S NOTES Material in this publication may be copied

299

A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities  

SciTech Connect (OSTI)

Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

Hendrik Hamann, Levente Klein

2012-06-28T23:59:59.000Z

300

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 19762009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

302

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

303

LED exit signs: Improved technology leads the way to energy savings  

SciTech Connect (OSTI)

Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

Sardinsky, R.; Hawthorne, S.

1994-12-31T23:59:59.000Z

304

low-solids oil emulsion (drilling) mud  

Science Journals Connector (OSTI)

low-solids oil emulsion (drilling) mud, low-solids oil-in-water (drilling) mud ? l-in-Wasser-(Bohr)...m, (f) mit geringem Feststoffanteil

2014-08-01T23:59:59.000Z

305

Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

306

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...Teamwork plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility Garth Booker P Eng Extraction Energy Engineer Suncor Energy Company Fort McMurray, Alberta, Canada ABSTRACT...

Booker, G.; Robinson, J.

307

Improved information processing and dissemination through the introduction of new technology  

SciTech Connect (OSTI)

This paper discusses the following topic on information technology: technology signals a liberation; application of information technology; optical character recognition; optical memories; and planning considerations and the future.

Spath, C E; Marsh, Jr, F E

1983-10-01T23:59:59.000Z

308

A simulation study of a Subsea Mudlift Drilling system during tripping operations  

E-Print Network [OSTI]

To face the new challenges that the petroleum industry has in deepwaters, a Subsea Mudlift Drilling Joint Industry Project, SMDJIP, was formed. The main task for this project is to develop the technology needed to drill in water depths beyond 7500...

Escobar Parada, Alvaro Hernando

1999-01-01T23:59:59.000Z

309

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

310

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

311

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

312

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

313

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

SciTech Connect (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1997-04-30T23:59:59.000Z

314

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

315

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

316

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

;1. INTRODUCTION A drill-string is a slender structure used in oil wells to penetrate the soil in search of oilDRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill

Boyer, Edmond

317

Interagency Collaboration to Address Environmental Impacts of Shale Gas Drilling  

Broader source: Energy.gov [DOE]

A memorandum of understanding to perform collaborative research related to airborne emissions and air quality at natural gas drilling sites has been signed by the Office of Fossil Energys National Energy Technology Laboratory and the National Institute for Occupational Safety and Health.

318

Improved Approach for Utilization of FPGA Technology into DAQ, DSP, and Computing Applications  

SciTech Connect (OSTI)

Innovation Partners proposed and successfully demonstrated in this SBIR Phase I grant a software/hardware co-design approach to reduce both the difficulty and time to implement Field Programmable Gate Array (FPGA) solutions to data acquisition and specialized computational applications. FPGAs can require excessive time for programming and require specialized knowledge that will be greatly reduced by the company's solution. Not only are FPGAs ideal for DAQ and embedded solutions, they can also be the best solution to specialized signal processing to replace Digital Signal Processors (DSPs). By allowing FPGA programming to be done in C with the equivalent of a simple compilation, algorithm changes and improvements can be implemented decreasing the life-cycle costs and allow subsitution of new FPGA designs staying above the technological details.

Isenhower, Larry Donald

2009-01-28T23:59:59.000Z

319

Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement  

SciTech Connect (OSTI)

Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

Principal Investigator Kent Peaslee; Co-PIƒ ƒ ‚ ¢ƒ ‚ ‚ € ƒ ‚ ‚ ™ s: Von Richards, Jeffrey Smith

2012-07-31T23:59:59.000Z

320

OIT geothermal system improvements  

SciTech Connect (OSTI)

The Oregon Institute of Technology campus has been heated by the direct use of geothermal fluids since 1964. The 11 building campus uses geothermal energy for space heating/cooling, domestic water heating, the swimming pool and sidewalk snow melt. The hydronic system was designed to use the geothermal fluids directly in heating units. In the 1970s, problems were experienced with the design and operation of the well pumps, buried piping and heating equipment. Beginning in the early 1980`s, many improvements were made to the system due to equipment performance problems and resource management requirements. This paper discusses those improvements that included the distribution system, cooling, well pumps, cascading of geothermal fluids, installation of isolation plate heat exchangers in each building and drilling of two injection wells. Plans for future improvements include better controls to manage energy use and data monitoring systems for individual buildings, and instrumentation to monitor well pump performance.

Lienau, P.J.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

322

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

323

Vibratory Drilling of Oil Wells  

Science Journals Connector (OSTI)

Vibratory drilling refers to the process of drilling into rock by vibrating the drilling tool at audio?frequencies. The basic mechanism of vibratory drilling was ascertained by preliminary laboratory experimentation to consist of a series of impacts on the rock at the frequency of vibration. A fundamental study of this basic mechanism made by dropping weighted chisels on rock showed that the primary parameter which determined the rate of penetration was the mechanical power input to the rock per unit cross section of hole; the values of the vibration frequency and of other variables were of minor consequence over wide ranges. A theoretical analysis was made of the vibration of an elongated magnetostrictiontransducer capable of generating the required power level taking into account the distributed nature of the generation of vibrations. Intermediate power transducers have been built and tested and a high?power transducer for down?hole operation is under construction. [The material for this presentation is based on work carried out at the Battelle Memorial Institute under the sponsorship of Drilling Research Inc. an organization formed by a group of major companies engaged in various phases of oil production for the purpose of investigating novel methods of rock drilling.

Ralph Simon

1956-01-01T23:59:59.000Z

324

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

325

A review of light amplification by stimulated emission of radiation in oil and gas well drilling  

Science Journals Connector (OSTI)

Abstract The prospect of employing Light Amplification by Stimulated Emission of Radiation (LASER) for well drilling in oil and gas industry was examined. In this work, the experimental works carried out on various oil well drilling operations was discussed. The results show that, LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling, including high penetration rate, reduction or elimination of tripping, casing, bit costs, enhanced well control, as well as perforating and side-tracking capabilities. The investigation also reveals that modern infrared \\{LASERs\\} have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation. It also reveals that LASER can destroy rock without damaging formation permeability but rather, it enhances or improves permeability and that permeability and porosity increases in all rock types. The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.

M OLALEYE B

2010-01-01T23:59:59.000Z

326

Vehicle Technologies Office Merit Review 2014: DOEs Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOEs...

327

Simulation of air and mist drilling for geothermal wells  

SciTech Connect (OSTI)

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

328

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

329

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And  

Open Energy Info (EERE)

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Details Activities (27) Areas (8) Regions (0) Abstract: No abstract prepared. Author(s): Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik Published: Geothermal Technologies Legacy Collection, 1999 Document Number: Unavailable DOI: Unavailable Source: View Original Report Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Steamboat Springs Area (Combs, Et Al., 1999) Core Analysis At Fort Bliss Area (Combs, Et Al., 1999)

330

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

331

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

drills are made of oae of two differeat materials. The most common material in use today 1s aa 18-4-1 type of high speed steel. This steel contains about O. VS per cent carboa, 18. 00 per eeet tungstea, 4. 00 per cent chromium, and 1. 10 per eeet... vanadium. The primary advaatage of steel of this type is its ability to maintain its cutt1ng edge and haxdaess at high tempexatures. Besides beiag used for drills, this steel finds applicntioa in waay other tools such as willing cutters, taps, reamers...

Reichert, William Frederick

2012-06-07T23:59:59.000Z

332

April 25, 1997: Yucca Mountain exploratory drilling | Department...  

Office of Environmental Management (EM)

April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers...

333

Improved recovery demonstration for Williston Basin carbonates. Final report  

SciTech Connect (OSTI)

The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

Sippel, M.A.

1998-07-01T23:59:59.000Z

334

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

335

Slim hole drilling proven in remote exploration project  

SciTech Connect (OSTI)

This paper reports on a helicopter-supported slim hole exploration project in a remote tropical forest which cost 15% less than a conventional drilling operation. The potential savings after improvements in rig equipment, bits, and drilling and coring methods may approach 30%. Because of the small size of the slim hole equipment, the impact on the rain forest was small. The areas cleared for locations and access during the operation were 75% less than that required for similar operations with conventional road-transported rigs. During the second half of 1991, Total Exploration Gabon, a subsidiary of Total Exploration Production, conducted a slim hole drilling project in the Gabonese tropical rain forest in a joint venture with Chevron Corp., Exxon Corp., and Austria's OMV AG. During this helicopter-supported operation, two wells were drilled: one to 2,747 m (9,010 ft) ending with a 3 in. hole and one to 418 m (1,371 ft) ending with a 5-7/8 in. hole. Continuous coring operations recovered 1,868 m (6,127 ft), or 59% of the total length drilled.

Dachary, J. (Total Exploration Production, Libreville (GA)); Vighetto, R. (Total Exploration Production, Paris (FR))

1992-06-22T23:59:59.000Z

336

DOE Project Leads to New Alliance to Promote Low-Impact Drilling |  

Broader source: Energy.gov (indexed) [DOE]

Project Leads to New Alliance to Promote Low-Impact Drilling Project Leads to New Alliance to Promote Low-Impact Drilling DOE Project Leads to New Alliance to Promote Low-Impact Drilling February 25, 2009 - 12:00pm Addthis Washington, DC -- A project supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling. Announced earlier this month by the Houston Advanced Research Center (HARC) and Texas A&M University, the University/National Laboratory Alliance will fund and transfer advanced technologies to accelerate development of domestic oil and natural gas resources with minimal environmental impact. The alliance has its roots in a project funded through the Office of Fossil

337

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

338

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

339

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

340

Steerable BHAs drill storage wells with difficult trajectories. [Bottom Hole Assembly  

SciTech Connect (OSTI)

The use of steerable downhole motor assemblies allows greater variation in well bore trajectory for drilling gas and oil storage wells in salt domes in areas with surface site restrictions. With modern directional drilling tools, the cavern wells are drilled vertically, kicked off in an S turn, and then finished with a vertical section. The last 100 m of a cavern well above the last cemented casing shoe must be vertical because of the technical demands of brining and completion. To date, Kavernen Bauund Betriebs-GmbH has successfully drilled and completed three directional cavern boreholes in Germany. These directional drilling techniques have also been used successfully for vertical boreholes with strict deviation limits. The paper describes this technology.

Gomm, H.; Peters, L. (Kavernen Bau- und Betriebs-GmbH, Hannover (Germany))

1993-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

342

Scientific drilling into the San Andreas fault and site characterization research: Planning and coordination efforts. Final technical report  

SciTech Connect (OSTI)

The fundamental scientific issue addressed in this proposal, obtaining an improved understanding of the physical and chemical processes responsible for earthquakes along major fault zones, is clearly of global scientific interest. By sampling the San Andreas fault zone and making direct measurements of fault zone properties to 4.0 km at Parkfield they will be studying an active plate-boundary fault at a depth where aseismic creep and small earthquakes occur and where a number of the scientific questions associated with deeper fault zone drilling can begin to be addressed. Also, the technological challenges associated with drilling, coring, downhole measurements and borehole instrumentation that may eventually have to be faced in deeper drilling can first be addressed at moderate depth and temperature in the Parkfield hole. Throughout the planning process leading to the development of this proposal they have invited participation by scientists from around the world. As a result, the workshops and meetings they have held for this project have involved about 350 scientists and engineers from about a dozen countries.

Zoback, M.D.

1998-08-30T23:59:59.000Z

343

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

SciTech Connect (OSTI)

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

344

Development of a high-temperature diagnostics-while-drilling tool.  

SciTech Connect (OSTI)

The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

2009-01-01T23:59:59.000Z

345

Wayne field: A horizontal drilling case study  

SciTech Connect (OSTI)

Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

Jennings, J.B. [GeoResources, Inc., Williston, ND (United States); Johnson, R.P. [Harris, Brown, & Kiemer, Inc., Bismarck, ND (United States)

1996-06-01T23:59:59.000Z

346

Drilling Waste Management Fact Sheet: Land Application  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

347

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

at realistic annual penetration rates. The total energy usean available market portion penetration rate of 10% per yearper year market penetration rate for emerging technologies

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

348

Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation  

Broader source: Energy.gov [DOE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

349

Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

350

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

351

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network [OSTI]

z = specific primary energy consumption of RF dryer (Btu/and specific primary energy consumption (240 Btu/lb. ) of RFenergy consumption of base technologies in 2020 (primary)

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

352

Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

353

Improving the liquid-cooling systems of power units and technological equipment  

Science Journals Connector (OSTI)

Processes in the liquid cooling systems of power units and technological equipment are considered. Criteria ... of the energy and resource aspects of the cooling systems.

V. A. Zhukov

2011-12-01T23:59:59.000Z

354

Effects of Market Approaches to Green Technologies for the Poor: The Case of Improved Cookstoves  

E-Print Network [OSTI]

see solar cookers as superior to improved biomass stovessolar cooker examples we see the first attempts to import stove &

Booker, Kayje Merrea

2011-01-01T23:59:59.000Z

355

Optimization of Performance Qualifiers during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract An optimization analysis of the drilling process constitutes a powerful tool for operating under desired pressure levels (inside operational window) and, simultaneously, maximizing the rate of penetration, which must be harmonized with the conflicting objective of minimizing the specific energy. The drilling efficiency is improved as the rate of penetration is increased, however, there are conflicts with performance qualifiers, such as down hole tool life, footage, vibrations control, directional effectiveness and hydraulic scenarios. Concerning hydraulic effects, the minimization of the specific energy must be constrained by annulus bottom hole pressure safe region, using the operational window, placed above porous pressure and below fracture pressure. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. The objective being tracked is operating under desired pressure levels, which assures process safety, also reducing costs. In this scenario, optimization techniques are important tools for narrow operational windows, commonly observed at deepwater and pre-salt layer environments. The major objective of this paper is developing an optimization methodology for minimizing the specific energy, also assuring safe operation (inside operational window), despite the inherent process disturbances, under a scenario that maximization of ROP (rate of penetration) is a target.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

356

NETL: News Release - New Carbon Drill Pipe Signals Technical Achievement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 17, 2004 May 17, 2004 New Carbon Drill Pipe Signals Technical Achievement Technology May Benefit American Energy Production WASHINGTON, DC -- The Department of Energy (DOE) announced today the development of a new "composite" drill pipe that is lighter, stronger and more flexible than steel, which could significantly alter the ability to drain substantially more oil and gas from rock than traditional vertical wells. MORE INFO Read about January, 2003 field test Read about October, 2003 field test - "This is another example of the technology breakthroughs in the arena of domestic energy production being carried out by our Office of Fossil Energy," said Secretary of Energy Spencer Abraham. "To reach and recover untapped domestic oil and gas reserves, we must have the ability to

357

NETL: News Release - Regional Partner Launches Drilling Test in DOE's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 30, 2007 August 30, 2007 Regional Partner Launches Drilling Test in DOE's Carbon Sequestration Program Project Focuses on Greenhouse Gas Storage in Lignite Seam, Methane Gas Recovery MORGANTOWN, WV - As an integral part of the U.S. Department of Energy's effort to develop carbon sequestration technologies to capture and permanently store greenhouse gases, the Plains CO2 Reduction (PCOR) Partnership has begun drilling operations to determine the suitability of a North Dakota lignite coal seam to simultaneously sequester the greenhouse gas carbon dioxide and produce valuable coalbed methane. The PCOR Partnership-one of seven partnerships in the Department of Energy's Regional Carbon Sequestration Partnership Program, which is managed by the National Energy Technology Laboratory-plans to inject at least 400 tons of CO2 to a depth of approximately 1,200 feet into an unminable lignite seam in Burke County, ND.

358

NREL: Energy Analysis - Geothermal Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by...

359

Chemical Speciation of Chromium in Drilling Muds  

SciTech Connect (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

360

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Final report on the design and development of a Rolling Float Meter for drilling-fluid outflow measurement  

SciTech Connect (OSTI)

Lost circulation, which is the loss of well drilling fluids to the formation while drilling, is a common problem encountered while drilling geothermal wells. The rapid detection of the loss of well drilling fluids is critical to the successful and cost-effective treatment of the wellbore to stop or minimize lost circulation. Sandia National Laboratories has developed an instrument to accurately measure the outflow rate of drilling fluids while drilling. This instrument, the Rolling Float Meter, has been under development at Sandia since 1991 and is now available for utilization by interested industry users. This report documents recent Rolling Float Meter design upgrades resulting from field testing and industry input, the effects of ongoing testing and evaluation both in the laboratory and in the field, and the final design package that is available to transfer this technology to industry users.

Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wright, E.K.; Glowka, D.A.

1998-03-01T23:59:59.000Z

362

Behavior of oil muds during drilling operations  

SciTech Connect (OSTI)

This paper presents an analysis of the behavior of diesel-oil-based muds with an advanced thermal and hydraulic wellbore mathematical simulator. Recent diesel-oil-mud rheological correlations have been incorporated into the model to account for viscosity and density variations of oil mud with temperature and pressure. As rheological correlations are developed for other oil-based muds, such as mineral-oil based muds, they can also be incorporated into the model. A specific deep-well application of the model illustrates the behavior of the oil-based muds and shows the differences between water-based mud and oil-mud for local fluid densities during drilling, circulating, and static conditions. Temperature and density profiles are presented for various operating conditions to show that modeling improves the understanding of oil-mud behavior downhole.

Galate, J.W.; Mitchell, R.F.

1986-04-01T23:59:59.000Z

363

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

364

Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

2014-03-01T23:59:59.000Z

365

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

366

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

SciTech Connect (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

367

U.S. drilling: Solid reasons for optimism  

SciTech Connect (OSTI)

One year ago, it was apparent that 1996 would be a better year for drilling in the US, primarily because 1995 performance was lower than expected due to low oil and natural gas prices in mid-year during the peak drilling season. Improving energy prices last year did spur more drilling, and a 2.9% increase to a total 23,560 wells is estimated for 1996. This year should show an even stronger increase, as the US gas market remains attractive and industry`s perception is that crude prices are stabilizing at higher levels, i.e., $20--25, instead of $15--20. The US rotary rig count followed the price up, from a low near 700 in January/February to slightly over 850 in December. To drill the expected wells this year will require an average number at the 850 level. Operators are investing more in their established oil producing areas to take advantage of improved cast flows. This will generate higher activity nearly everywhere. Gas drilling activity will be more geographical, depending on transport availability to surging winter markets and Canadian competition. The US, and world, hot spot is the Gulf of Mexico led by renewed activity on the shelf and an exciting new deepwater play. The expected activity surge has already taxed a service industry that has not yet upgraded its capacity from the long downturn. And spot shortages will temper the activity rise, particularly offshore. The following discussion and six statistical presentations detail these basic concepts and other key factors.

NONE

1997-02-01T23:59:59.000Z

368

Vehicle Technologies Office Merit Review 2014: Class 8 Truck Freight Efficiency Improvement Project  

Broader source: Energy.gov [DOE]

Presentation given by Daimler Truck North America LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Class 8 Truck...

369

Closing the loop : improving technology transfer by learning from the past  

E-Print Network [OSTI]

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

370

Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

371

Improvements in Modeling Microbially Induced Calcite Precipitation as a Leakage Mitigation Technology  

E-Print Network [OSTI]

such as CO2 storage in the subsurface or fracking could be reduced with sealing technologies like microbially Abandonnedwell Injectionwellvicinity Fracking CO2 Reservoir Figure 1: Potential application sites of MICP

Cirpka, Olaf Arie

372

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

373

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

SciTech Connect (OSTI)

The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

Jill S. Buckley; Norman R. Morrow

2006-01-01T23:59:59.000Z

374

VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK  

SciTech Connect (OSTI)

Testing of recent upgrades to the drill pipe telemetry system in a 1000-ft vertical well has shown that the new system can achieve at least 1,000 ft passive transmission distance with sufficient bandwidth to accommodate a digital transmission rate of 2 Mbit/sec. Digitized data from a module at the bottom of the well has been successfully transmitted through the transmission line to the top of the well for a period of approximately one month. Manufacture of 30 prototype range 2 drill pipes has demonstrated greater simplicity of manufacturing and greater consistency of electrical characteristics from part to part, as compared to the first production run previously reported. Further work is needed to improve the high pressure capability of the system and to improve the robustness of the system in a high-vibration environment.

David S. Pixton

2002-08-01T23:59:59.000Z

375

A H-infinity Control Approach for Oil Drilling Processes  

Science Journals Connector (OSTI)

Abstract This paper presents a robust optimization framework to improve the Managed Pressure Drilling (MPD) process for safer and superior economical and environmental operations while removing risk-prone conventional drilling limitations such as a need for constant monitoring of the system parameters. The nonlinear MPD process considers the mud pump flow rate and the differential flow rate of the backpressure pump and the choke as the two inputs while the process downhole pressure rate as the output. The MPD process unmodeled disturbances, uncertain geological parameters and related model nonlinearities are considered to be the corresponding system uncertainties in a closed loop robust control and optimization framework for real-time operations. Moreover, the MPD process inputs are formulated to remain within practical bounds by introducing performance weighting functions. The proposed framework numerical results demonstrate the efficiency of the closed loop robust control implementations for efficient drilling operations in operator guidance systems and provide a low-computational complexity design algorithm for safer drilling operations in regions with a-priori unknown geological properties.

Muhittin Yilmaz; Salman Mujeeb; Naren Reddy Dhansri

2013-01-01T23:59:59.000Z

376

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

377

Improving the reliability of microelectronic packaging through core-shell rubber technology  

E-Print Network [OSTI]

The field of microelectronics is currently in high demand considering the many applications it is used for. With this demand, several concerns are raised to improve the reliability while in use. The microelectronic device is composed of numerous...

Weaver, Jana Lynn

2012-06-07T23:59:59.000Z

378

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

the earlier successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs for either the riserless or riser vessel, such as near the shoreline in shallow-water areas

379

Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft  

E-Print Network [OSTI]

The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

Mahashabde, Anuja (Anuja Anil)

2006-01-01T23:59:59.000Z

380

Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621)  

Broader source: Energy.gov [DOE]

Closed Total DOE Funding: $12 million The focus of this Funding Opportunity Announcement (FOA) is to develop cost-effective building technologies that can have a tremendous impact on energy savings overall and lead to a market-ready solution (e.g. at the commercial prototype phase) within five years of project launch.

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

drilling-tools | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

drilling-tools Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Tally II: Pipe Tally Sheet for Pocket PC allows...

382

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

383

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

384

Offshore Drilling and Production: A Short History  

Science Journals Connector (OSTI)

Drilling in Louisianas marshes and shallow waters ... or worse the expanding presence of the oil and gas industry has changed everyones...

Joseph A. Tainter; Tadeusz W. Patzek

2012-01-01T23:59:59.000Z

385

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

386

Analysis of drill stem test data  

E-Print Network [OSTI]

constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties... constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties...

Zak, Albin Joseph

2012-06-07T23:59:59.000Z

387

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

388

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

389

Cutting and drilling studies using high power visible lasers  

SciTech Connect (OSTI)

High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 {mu}m) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel.

Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

1993-05-27T23:59:59.000Z

390

June2004TopicalReportANS-Drilling.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling and Data Acquisition Planning Drilling and Data Acquisition Planning Topical Report Cooperative Agreement Award Number DE-FC-01NT41332 Submitted to the United States Department of Energy National Energy Technology Laboratory ADD Document Control by BP Exploration (Alaska), Inc. Robert Hunter (Principal Investigator) P.O. Box 196612 Anchorage, Alaska 99519-6612 Email: hunterrb@bp.com robert.hunter@asrcenergy.com Tel: (907)-339-6377 with University of Alaska Fairbanks Shirish Patil (Principal Investigator) 425 Duckering Building P.O. Box 755880 Fairbanks, Alaska 99775-5880 and Arizona Board of Regents University of Arizona, Tucson Robert Casavant (Principal Investigator) Dept. Mining and Geological Engineering Rm. 245, Mines and Metallurgy Bldg. #12 1235 E. North Campus Dr., POB 210012

391

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Broader source: Energy.gov (indexed) [DOE]

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

392

DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at  

Broader source: Energy.gov (indexed) [DOE]

Drilling Projects Demonstrate Significant CO2 Storage Drilling Projects Demonstrate Significant CO2 Storage at Three Sites DOE-Sponsored Drilling Projects Demonstrate Significant CO2 Storage at Three Sites May 3, 2012 - 1:00pm Addthis Washington, DC - Evaluation-related test drilling at geologic sites in three states that could store a combined 64 million metric tons of carbon dioxide (CO2) emissions - an important component of carbon capture, utilization and storage (CCUS) technology development - has been completed in projects supported by the U.S. Department of Energy. If the potential of the sites is eventually fulfilled, they could safely and permanently store combined CO2 emissions equivalent to that produced by more than 11 million passenger vehicles annually or from the electricity use of more than 7 million homes for one year, according to Environmental

393

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

394

Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in  

Broader source: Energy.gov (indexed) [DOE]

Sequestration Partner Initiates Drilling of CO2 Injection Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin Carbon Sequestration Partner Initiates Drilling of CO2 Injection Well in Illinois Basin February 17, 2009 - 12:00pm Addthis Washington, D.C. -- The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon sequestration technologies nationwide, has begun drilling the injection well for their large-scale carbon dioxide (CO2) injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute

395

Improving the management of nuclear technology: Technical, financial, and organizational measures for assessing the performance of nuclear utilities  

Science Journals Connector (OSTI)

This paper is the outcome of a study with the objective of better understanding and improving the quality of the management of technology in the case of the nuclear power industry. The authors tried to deal with this topic in an empirical way, namely by conducting four case studies on the major nuclear power utilities in the State of New York and by doing a comparative analysis of the material collected, focusing on the main economic and organizational issues, and the management of technology practices that pertain to nuclear power generation. The study covered in depth the nuclear divisions of only four out of a total of fifty-five nuclear utilities that exist in the United States, hence we want to stress the caveat that it has an exploratory rather than a statistically conclusive nature.

Elias Carayannis; Jose Maldifassi

1992-01-01T23:59:59.000Z

396

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

397

Laser Rock Drilling on the History Channel - The NE Multimedia Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Departments > System Technologies & Diagnostics > Videos Departments > System Technologies & Diagnostics > Videos Laser Oil & Gas Well Drilling: Laser Rock Drilling on the History Channel Argonne's Laser Applications Lab and researcher Claude Reed (NE) appeared in the History Channel program "Modern Marvels: Drilling" (May 10, 2006). "Modern Marvels" relates the ingenuity, invention and imagination behind everyday items, technological breakthroughs and man-made wonders. :: Please wait until video loads completely :: Argonne Experts Dr. Claude B. Reed is one of the Experts featured in the Argonne Experts Guide. The video is in mp4 format. Closed Captioning Transcript Live Closed captioning of the video is not available; however -as an alternative- we provide a transcript of the audio portion of this video as a separate web page.

398

New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities  

SciTech Connect (OSTI)

An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

Brim, Cornelia P.

2013-03-04T23:59:59.000Z

399

Improved recovery demonstration for Williston Basin carbonates. Quarterly technical progress report, October--December 1996  

SciTech Connect (OSTI)

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Sippel, M.A.; Carrell, L.A.

1997-04-01T23:59:59.000Z

400

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of the drill pipeStress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan  

SciTech Connect (OSTI)

In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

Miyasaka, Tadahisa

1993-12-31T23:59:59.000Z

402

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

403

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

404

Semantic technologies improving the recall and precision of the Mercury metadata search engine  

E-Print Network [OSTI]

acquire context: biomass as Material or biomass as Energy Super-classes have different properties Mercury improve Recall? Full Text search: Biomass OR Humus 192 Biomass 187 Humus 5 Humus is a type of Biomass: 5 additional datasets are found Humus is contained in their metadata but NOT Biomass Query Service Controller

Pouchard, Line

405

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia Institute of Technology  

E-Print Network [OSTI]

Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia or organization) DOT - $92,292.15 Total Project Cost $92,292.15 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 2013 - June 2015 Brief Description of Research Project Local governments are using

California at Davis, University of

406

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction  

Broader source: Energy.gov [DOE]

Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

407

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

408

Offshore oil and gas: global resource knowledge and technological change  

Science Journals Connector (OSTI)

It is argued that the contribution of technological change to the offshore oil and gas industry's progress is under-researched. As a prelude this theme, the changing geography of known offshore oil and gas resources is reviewed. Significant, and largely technologically dependent, developments are identified in terms of the industry's global spread, its extension into deep and ultradeep waters and its ability to enhance output from well-established oil and gas provinces. Three sections (on the evolution of exploration and production rigs, drilling techniques and the application of IT to improve resource knowledge and access) then examine the relationships between technological change and the offshore industry's progress. It is concluded that new technologies improve knowledge of, and access to, resources via four distinctive routes, but that the full impact of R & D is frequently related to the inter-dependence of technologies. Opportunities for further research are identified.

David Pinder

2001-01-01T23:59:59.000Z

409

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The Scotia in 1978 and had previously sailed the world as a top-class oil-exploration vessel. JOIDES, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven

Purkis, Sam

410

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

411

OCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

." The source area, Gran Canaria, one of the best studied volcanic islands, has a 15-m.y.-long record the Miocene, Pliocene, and Quaternary compositionally evolved volcanic phases on Gran Canaria and neighboringOCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS DRILLING INTO THE CLASTIC APRON OF GRAN

412

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS GAS HYDRATE SAMPLING ON THE BLAKE RIDGE Drive College Station, Texas 77845-9547 U.S.A. Timothy J.G. Francis Acting Director ODP/TAMU Jack Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station, Texas, 77845

413

Energy conservation: a route to improved distillation profitability. Executive briefing report, technology transfer  

SciTech Connect (OSTI)

The savings potential of energy-conservation measures applied to distillation is examined. The document catalogs all of the various energy-conservation options applicable to distillation; categorizes the options by investment required; and describes in detail the options having a significant potential to reduce distillation energy requirements economically. A technology applications manual designed to assist distillation process engineers who will perform technical and economic analyses to determine the conservation measures most suitable for their particular plant is also available (DOE/CS/4431-T2).

Not Available

1980-01-01T23:59:59.000Z

414

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

415

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

417

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

418

Bureau of Land Management - Geothermal Drilling Permit | Open...  

Open Energy Info (EERE)

Bureau of Land Management - Geothermal Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling...

419

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

420

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels  

SciTech Connect (OSTI)

Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

2002-10-10T23:59:59.000Z

422

Attenuation of sound waves in drill strings  

Science Journals Connector (OSTI)

During drilling of deep wells digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used transmission of these data by elastic carrier waves traveling within the drill pipe is possible but the potential communication range is uncertain. The problem is complicated by the presence of heavy?threaded tool joints every 10 m which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location width and attenuation of the passbands. Mode conversion between extensional and bending waves and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length.

Douglas S. Drumheller

1993-01-01T23:59:59.000Z

423

Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs  

SciTech Connect (OSTI)

The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

2005-04-26T23:59:59.000Z

424

Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluids  

E-Print Network [OSTI]

Designing a fit-for-purpose drilling fluid for high-pressure, high-temperature (HP/HT) operations is one of the greatest technological challenges facing the oil and gas industry today. Typically, a drilling fluid is subjected to increasing...

Ibeh, Chijioke Stanley

2009-05-15T23:59:59.000Z

425

Before the House Science, Space, and Technology Subcommittee...  

Broader source: Energy.gov (indexed) [DOE]

and Environment By: Victor Der, Assistant Secretary Office of Fossil Energy Subject: Offshore Drilling Safety and Response Technologies FinalTestimonyVictorKDer04-06-2011.pdf...

426

NETL: News Release - DOE-Funded "Smart" Drilling Prototype On Track for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 13, 2004 September 13, 2004 DOE-Funded "Smart" Drilling Prototype On Track for Commercialization A Department of Energy-sponsored technology that allows natural gas and oil explorers to drill safer, more productive wells by using a high-speed, down-hole communications system has crossed a major milestone: A prototype is being successfully tested in a full-scale commercial well for the first time, putting it on the fast track to commercialization. MORE INFO Read about the June, 2003 IntellipipeTM field test The technology, called Intellipipe(TM), is able to transmit large bits of data to the surface as a well is being drilled. About 1 million bits of information-including temperature, geology, pressure, and rate of penetration-can be transmitted in a single second, which is

427

Development and Testing of Insulated Drill Pipe  

SciTech Connect (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

428

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Semiannual subcontract report, January 1--June 30, 1995  

SciTech Connect (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three. To achieve these objectives, Solarex is working in the following technical areas: casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling. Accomplishments reported include: Cast first successful larger ingot producing 73% larger volume of usable Si; Increased the size of the ingot even further and cast an ingot yielding nine 11.4 {times} 11.4 cm bricks, representing a 125% increase in usable Si from a single casting; Operated the wire-saw in a semi-operational mode, producing 459,000 wafers at 94.1% overall yield; Reduced the cost of wire-saw consumables, spare parts, and waste disposal; Developed a cost-effective back surface field process that increases cell efficiency by 5% and began production trials; Developed a plan for increasing the capacity in the module assembly area; Completed qualification testing of modules built using Spire`s automated tabbing and stringing machine; Selected, tested, and qualified a low-cost electrical termination system; Completed long-term UV testing of experimental back sheets; Qualified the structure and adhesive-tape system for mounting frameless modules; and ARRI completed a study of the fracture properties of cast polycrystalline Si wafers and provided the information necessary to calculate the maximum stresses allowable during wafer handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1996-02-01T23:59:59.000Z

429

Status of water jet drilling R and D. Final report  

SciTech Connect (OSTI)

Several computerized data bases were searched, and telephone interviews were conducted with nearly 100 experts in drilling R and D. The following information was obtained for each organization engaged in water jet drilling (WJD) R and D: program descriptions, program status, future plans, level of effort, source of funds, and problems encountered in WJD programs. WJD programs were classified in terms of surface pressure requirements. A total of 18 downhole-WJD programs were identified, with 9 using high surface pressures (5000 psi or higher) and 9 requiring only conventional or low surface pressures (generally below 3500 psi). The high-pressure approach to WJD has been investigated much more intensively than the low-pressure approach. Most drilling experts consider the lack of reliable surface equipment such as mud pumps and swivels to be the most critical problem associated with high-pressure WJD. Several programs to develop improved surface equipment for high-pressure operation were also identified. In addition, 28 organizations investigating non-downhole uses of water jets, such as mining or excavation, were also identified. Several large WJD programs were terminated during the 1970's because of a variety of problems. Two significant field programs are planned for 1980.

Breitstein, L.

1980-09-01T23:59:59.000Z

430

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

SciTech Connect (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

431

TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft  

SciTech Connect (OSTI)

The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

NONE

1980-12-31T23:59:59.000Z

432

Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts  

SciTech Connect (OSTI)

The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

David Schwam, PI; Xuejun Zhu, Sr. Research Associate

2012-09-30T23:59:59.000Z

433

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2012-06-07T23:59:59.000Z

434

Marine bearing for a downhole drilling apparatus  

SciTech Connect (OSTI)

A bearing supports a rotatable shaft in a fluid environment. The bearing can be utilized to support a drive shaft connected to a drill bit in a downhole drilling apparatus. The drive shaft extends through a housing in which drilling fluid is flowing. Preferably, the bearing includes an inner elastomeric sleeve and an outer rigid sleeve attached to the interior side wall of the housing. The drive shaft has a wear sleeve attached for rotation therewith. The wear sleeve is rotatably received in the bearing inner sleeve. The inner sleeve is relatively short as compared with the drive shaft and absorbs radial loads imposed on the drive shaft. The bearing is lubricated by a portion of the drilling fluid in the housing which flows between the exterior side wall of the wear sleeve and the interior side wall of the inner sleeve.

Beimgraben, H.W.

1984-07-31T23:59:59.000Z

435

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2012-06-07T23:59:59.000Z

436

Handbook of Best Practices for Geothermal Drilling  

Broader source: Energy.gov [DOE]

This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

437

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

438

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

439

HP-41CV applied drilling engineering manual  

SciTech Connect (OSTI)

Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

Chenevert, M.; Williams, F.; Hekimian, H.

1983-01-01T23:59:59.000Z

440

Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements  

Broader source: Energy.gov [DOE]

Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A reservoir engineering and economic evaluation of waterflood infill drilling in the Johnson J.L. "AB" unit  

E-Print Network [OSTI]

. Infill drilling is one of the improved waterflood strategies which increases oil recovery efficiency. This thesis presents a 3-D, 3-P simulation and economic study of waterflood infill drilling performance on a study area from the Johnson J. L. "AB... SIMULATION IN THE STUDY AREA. . . . . 5 6 5. 1 Black Oil Reservoir Simulation. . 5. 2 Task A. 5, 2. 1 Primary Production Data. 5. 2. 2 Original Oil-In-Place. 5. 3 Task B. 5. 3. 1 Pattern Waterflood Simulation. 5. 3. 2 Targeted Infill Drilling...

Yadavalli, Sameer Kumar

2012-06-07T23:59:59.000Z

442

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

443

Program plan for the development of advanced synthetic-diamond drill bits for hard-rock drilling  

SciTech Connect (OSTI)

Eight companys have teamed with Sandia Labs to work on five projects as part of a cooperative effort to advance the state of the ar in synthetic-diamond drill bit design and manufacture. DBS (a Baroid Company), Dennis Tool Company, Hughes Christensen Company, Maurer Engineering, Megadiamond, Security Diamond Products, Slimdril International, and Smith International. Objective of each project is to develop advanced bit technology that results in new commercial products with longer bit life and higher penetration rates in hard formations. Each project explores a different approach to synthetic-diamond cutter and bit design and, consequently, uses different approaches to developing the technology. Each of these approaches builds or the respective companies` capabilities and current product interests. Sandia`s role is to assure integration of the individual projects into a coherent program and tc provide unique testing and analytical capabilities where needed. One additional company, Amoco Production Research, will provide synthetic-diamond drill bit research expertise and field testing services for each project in the program.

Glowka, D.A.; Schafer, D.M.

1993-09-01T23:59:59.000Z

444

Improved roof stabilization technologies  

SciTech Connect (OSTI)

Decontamination and decommissioning (D and D) activities require that personnel have access to all areas of structures, some of which are more than 40 years old. In many cases, these structures have remained in a standby condition for up to 10 years; few preventative maintenance activities have been performed on them because of lack of funding or a defined future plan of action. This situation has led to deteriorated building conditions, resulting in potential personnel safety hazards. In addition, leaky roofs allow water to enter the buildings, which can cause the spread of contamination and increase building deterioration, worsening the already unsafe working conditions. To ensure worker safety and facilitate building dismantlement, the assessment of roof stabilization techniques applicable to US Department of Energy (DOE) structures has become an important issue. During Fiscal year 1997 (FY97), a comprehensive reliability-based model for the structural stabilization analysis of roof system in complex structures was developed. The model consists of three major components: a material testing method, a deterministic structural computer model, and a reliability-based optimization, and probabilistic analyses of roof structures can be implemented. Given site-specific needs, this model recommends the most appropriate roof stabilization system. This model will give not only an accurate evaluation of the existing roof system in complex structures, but it will also be a reliable method to aid the decision-making process. This final report includes in its appendix a Users` Manual for the Program of Deterministic and Reliability Analysis of Roof Structures.

Ebadian, M.A.

1998-01-01T23:59:59.000Z

445

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

446

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

447

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

Abstract: Offshore oil drilling has been controversial inCalifornia for decades. Oil drilling in national forests hasopinion regarding oil drilling in California's forests. We

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

448

Cryogenic ion implantation near amorphization threshold dose for halo/extension junction improvement in sub-30 nm device technologies  

SciTech Connect (OSTI)

We report on junction advantages of cryogenic ion implantation with medium current implanters. We propose a methodical approach on maximizing cryogenic effects on junction characteristics near the amorphization threshold doses that are typically used for halo implants for sub-30 nm technologies. BF{sub 2}{sup +} implant at a dose of 8 Multiplication-Sign 10{sup 13}cm{sup -2} does not amorphize silicon at room temperature. When implanted at -100 Degree-Sign C, it forms a 30 - 35 nm thick amorphous layer. The cryogenic BF{sub 2}{sup +} implant significantly reduces the depth of the boron distribution, both as-implanted and after anneals, which improves short channel rolloff characteristics. It also creates a shallower n{sup +}-p junction by steepening profiles of arsenic that is subsequently implanted in the surface region. We demonstrate effects of implant sequences, germanium preamorphization, indium and carbon co-implants for extension/halo process integration. When applied to sequences such as Ge+As+C+In+BF{sub 2}{sup +}, the cryogenic implants at -100 Degree-Sign C enable removal of Ge preamorphization, and form more active n{sup +}-p junctions and steeper B and In halo profiles than sequences at room temperature.

Park, Hugh; Todorov, Stan; Colombeau, Benjamin; Rodier, Dennis; Kouzminov, Dimitry; Zou Wei; Guo Baonian; Khasgiwale, Niranjan; Decker-Lucke, Kurt [Applied Materials, Varian Semiconductor Equipment, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

2012-11-06T23:59:59.000Z

449

Systems study of drilling for installation of geothermal heat pumps  

SciTech Connect (OSTI)

Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

1997-09-01T23:59:59.000Z

450

Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy  

Broader source: Energy.gov [DOE]

U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and improve resource characterization, drilling, and reservoir engineering techniques, which will enable geothermal energy sources to help reduce the nation's reliance on fossil fuels.

451

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

452

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

453

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

454

Delaware-Val Verde gas drilling busy  

SciTech Connect (OSTI)

Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

Petzet, G.A.

1992-01-13T23:59:59.000Z

455

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

456

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

457

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

458

Riser and wellhead monitoring for improved offshore drilling operations  

E-Print Network [OSTI]

in mind during riser operations. Safe operation... ...deals with conduction the operation within operation

Nørvåg, Kjetil

459

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

460

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology improved drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Broader source: Energy.gov (indexed) [DOE]

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction cou