Sample records for technology improved drilling

  1. Improved Tubulars for Better Economics in Deep Gas Well Drilling using Microwave Technology

    SciTech Connect (OSTI)

    Dinesh Agrawal; Paul Gigl; Mark Hunt; Mahlon Dennis

    2007-07-31T23:59:59.000Z

    The main objective of the entire research program has been to improve the rate-of-penetration in deep hostile environments by improving the life cycle and performance of coiled-tubing, an important component of a deep well drilling system for oil and gas exploration, by utilizing the latest developments in the microwave materials technology. Based on the results of the Phase I and insurmountable difficulties faced in the extrusion and de-waxing processes, the approach of achieving the goals of the program was slightly changed in the Phase II in which an approach of microwave sintering combined with Cold Isostatic Press (CIP) and joining (by induction or microwave) has been adopted. This process can be developed into a semicontinuous sintering process if the CIP can produce parts fast enough to match the microwave sintering rates. The main objective of the Phase II research program is to demonstrate the potential to economically manufacture microwave processed coiled tubing with improved performance for extended useful life under hostile coiled tubing drilling conditions. After the completion of the Phase II, it is concluded that scale up and sintering of a thin wall common O.D. size tubing that is widely used in the market is still to be proved and further experimentation and refinement of the sintering process is needed in Phase III. Actual manufacturing capability of microwave sintered, industrial quality, full length tubing will most likely require several million dollars of investment.

  2. Sandia National Laboratories: Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

  3. Blasthole drilling technology

    SciTech Connect (OSTI)

    Zink, C. [Atlas Copco BHMT, Inc., Grand Prairie, TX (United States)

    2006-09-15T23:59:59.000Z

    Drilling in Appalachian coal overburdens presents challenges to conventional tricone bit operations due to the high rates of advance. In 2005, design engineers Atlas Copco BHMT (formerly Baker Hughes Mining Tools) began creating and testing a new lug design for bits used in these coalfields. The design was aided by use of computational flow dynamics. The article describes the design development and testing. Average footage drilled per bit by the new streamlined lug increased an average of 32.3% at Coal Mine No. 1 and 34.5% at Coal Mine No. 2 over the standard lug previously used. Average bit life increased by 32.3% at Coal Mine No.1 and 34.5% at Coal Mine No. 2. 3 figs., 2 photos.

  4. StarWars technology may revolutionize natural gas drilling

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    A 2-year basic research project will examine the feasibility, costs, benefits and environmental impact of applying laser technologies to drill and complete wells. An improved understanding of laser applications could lead to the development of several products, including a downhole laser drilling machine, laser-assisted drill bits for both conventional and coiled tubing applications, a laser perforating tool and sidetrack and directional laser drilling devices. The laser drilling consortium has five primary objectives: determine the amount of data available on StarWars laser technologies; evaluate the capabilities and limitations of applying lasers to drill and complete gas wells; decide what areas of laser drilling research need to be addressed; quantify benefits that can be obtained from laser drilling, such as higher penetration rates, reduced rig day rates and casing requirements, and improved safety and economics; and undertake laboratory research to understand laser, rock and fluid interactions.

  5. Improved Efficiency of Oil Well Drilling through Case Based Reasoning

    E-Print Network [OSTI]

    Aamodt, Agnar

    to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil1 Improved Efficiency of Oil Well Drilling through Case Based Reasoning Paal Skalle Norwegian University of Science and Technology, Dept. of Petroleum Technology, N-7491, Trondheim, Norway (pskalle

  6. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

  7. Technology Development and Field Trials of EGS Drilling Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  8. Geothermal Drilling and Completion Technology Development Program Annual Progress Report

    SciTech Connect (OSTI)

    Varnado, S. G.

    1981-03-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

  9. Evaluation of Emerging Technology for Geothermal Drilling and...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

  10. Advances in Drilling Technology -E-proceedings of the First International Conference on Drilling Technology (ICDT -2010) and National Workshop on Manpower Development in Petroleum Engineering (NWMDPE -2010), November 18-21, 2010.

    E-Print Network [OSTI]

    Aamodt, Agnar

    Advances in Drilling Technology - E-proceedings of the First International Conference on Drilling of Technology Madras, Chennai (TN) - 600 036, India. Transfer of experience for improved oil well drilling Pål The drilling process is getting increasingly more complex as oil fields mature and technology evolves

  11. The Study of Drilling and Countersink Technology in Robot Drilling End-effector

    E-Print Network [OSTI]

    The Study of Drilling and Countersink Technology in Robot Drilling End-effector Chengkun Wang--Aiming at the drilling verticality in aircraft assembly, this paper presents a design method of a Double- Eccentricdisc by the interaction of two eccentric discs, and make the drill axis coincide with the normal direction of the drilling

  12. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01T23:59:59.000Z

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  13. Evaluation of Emerging Technology for Geothermal Drilling and...

    Broader source: Energy.gov (indexed) [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

  14. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  15. ResonantSonic drilling. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes.

  16. Riser and wellhead monitoring for improved offshore drilling operations

    E-Print Network [OSTI]

    Nørvåg, Kjetil

    Riser and wellhead monitoring for improved offshore drilling operations Gullik A. Jensen, Ph ­ Offshore drilling with riser ­ On the riser and the riser joints ­ On damage and consequences · Operational Page 2 #12;The KONGSBERG Riser Management Systems (RMS) Integrity of drilling riser based on monitoring

  17. Offshore application of a novel technology for drilling vertical boreholes

    SciTech Connect (OSTI)

    Foster, P.E. [Elf Enterprise Caldeonia Ltd., Aberdeen (United Kingdom); Aitken, A. [Baker Hughes INTEQ, Aberdeen (United Kingdom)

    1996-03-01T23:59:59.000Z

    A new concept for automatically drilling vertical boreholes was recently implemented by Elf Enterprise Caledonia called the vertical drilling system (VDS). The VDS was used to drill the 16-in. hole section of a North Sea exploration well. This was the first time this technology had been used offshore, drilling from a semisubmersible drilling unit. The VDS was shown to have an application in penetrating a drilling target that required a near-vertical wellbore. Technical functioning of the tool and field experience is reported along with performance comparisons to offset wells.

  18. Lowering Drilling Cost, Improving Operational Safety, and Reducing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact through Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale 10122.19.Final 11132014 Jeff Watters, Principal Investigator General Manager CSI...

  19. Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...

    Open Energy Info (EERE)

    Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last...

  20. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    technologies (i.e. percussion hammers, PDC bits, hybrid bits, mud hammers, and turbo drills) - Select Two Candidate Options - Field test (Secure industry partner with...

  1. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2005-09-30T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.

  2. New oilfield air bit improves drilling economics in Appalachian Basin

    SciTech Connect (OSTI)

    Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

    1994-12-31T23:59:59.000Z

    Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

  3. Pioneering work, economic factors provide insights into Russian drilling technology

    SciTech Connect (OSTI)

    Gaddy, D.E.

    1998-07-06T23:59:59.000Z

    In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

  4. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov (indexed) [DOE]

    Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D April 22-25, 2013 This...

  5. Geothermal drilling and completion technology development program plan

    SciTech Connect (OSTI)

    Varnado, S.G.; Kelsey, J.R.; Wesenberg, D.L.

    1981-02-01T23:59:59.000Z

    A long-range plan for the development of new technology that will reduce the cost of drilling and completing geothermal wells is presented. The role of this program in relation to the total Federal Geothermal Energy Program is defined and specific program goals are identified. Then, the current status of the program, initiated in FY 1978, is presented, and research and development activities planned through 1987 are described. Budget and milestone estimates for each task are provided. The management plan for implementing the program is also discussed. The goals of this program are to develop the technology required to reduce the cost of drilling and completing geothermal wells by 25% in the near term and by 50% in the long term. Efforts under this program to date have resulted in new roller bit designs that will reduce well costs by 2% to 4%, new drag bits that have demonstrated marked increases in penetration rate, and the field verification of the effectiveness of inert drilling fluids in reducing drill pipe corrosion. Activities planned for the next six years for achieving the program goals are described. Technical activities include work in the areas of drilling hardware, drilling fluids, lost circulation control methods, completion technology, advanced drilling systems, and supporting technology.

  6. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  7. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    SciTech Connect (OSTI)

    Zemach, Ezra

    2010-01-01T23:59:59.000Z

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  8. Deep drilling technology for hot crystalline rock

    SciTech Connect (OSTI)

    Rowley, J.C.

    1984-01-01T23:59:59.000Z

    The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

  9. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for the high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.

  10. Bent-housing turbodrills improve hard-formation directional drilling

    SciTech Connect (OSTI)

    Koot, L.; Koole, K. (Shell U.K. Exploration and Production, Lowestoft (United Kingdom)); Gaynor, T. (Neyrfor-Weir Ltd., Aberdeen (United Kingdom))

    1993-02-15T23:59:59.000Z

    Improvements in the design of turbine-powered downhole motors allowed steerable drilling in a hard formation at a high rate of penetration (ROP). Drilling in this dolomite formation with the rotary or with positive-displacement motors (PDMs) was slow during steering operations. Shell's solution to the steering penetration rate problems was to change the well plans if suitable directional drilling tools weren't available. Where possible, the wells were designed with the Zechstein interval drilled as a tangent section with non-steerable turbodrills. However, a better solution was the use of a steerable turbodrill-a tool unavailable on the market at that time. The paper describes motor development, a field test, and the design and operation of the motor.

  11. Technology Development and Field Trials of EGS Drilling Systems...

    Open Energy Info (EERE)

    compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling...

  12. Extended-length power sections improve PDM drilling

    SciTech Connect (OSTI)

    Moles, H. [Baker Hughes INTEQ, Aberdeen (United Kingdom)

    1995-12-01T23:59:59.000Z

    Since being introduced in the 1960s, downhole positive displacement motors (PDMs) have evolved steadily from early applications. Initially considered only for high-speed, medium-torque, initial directional kickoffs; and short, corrective directional operations, these tools were not expected to operate for more than a few hours at a time. Progressive improvements have led to tools that are capable of extended runs in a variety of configurations. Current generation PDMs have a broad range of applications and include fully steerable systems for directional or horizontal drilling, and instrumented motors incorporating formation evaluation measurement-while-drilling (FEMWD) systems for geological steering and reservoir navigation. Design improvements also expanded PDM applications to include hole sections traditionally drilled with conventional rotary-driven bottomhole assemblies (BHAs). This paper reviews these new motor designs and provides case histories of their performance.

  13. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2003-10-01T23:59:59.000Z

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  14. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-03-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  15. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1981-06-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

  16. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    SciTech Connect (OSTI)

    TerraTek

    2007-06-30T23:59:59.000Z

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance of drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.

  17. Innovative technology summary report: ResonantSonic{reg_sign} drilling

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    ResonantSonic{trademark} drilling has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology has been developed by industry with assistance from the U.S. Department of Energy (DOE) Office of Technology Development to ensure it meets the needs of the environmental restoration market.

  18. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01T23:59:59.000Z

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  19. Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes

    SciTech Connect (OSTI)

    Kolstad, George A.; Rowley, John C.

    1987-01-16T23:59:59.000Z

    This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

  20. Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-04-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  1. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-11-01T23:59:59.000Z

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  2. Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-01-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  3. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01T23:59:59.000Z

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  4. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G. (ed.)

    1980-05-01T23:59:59.000Z

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  5. Program for the improvement of downhole drilling motors

    SciTech Connect (OSTI)

    Finger, J.T.

    1983-11-01T23:59:59.000Z

    This report describes the work done under contract to Sandia National Labs and to the Department of Energy for improvement of downhole drilling motors. The focus of this program was the development of a better bearing-and-seal assembly that could be used in different kinds of drilling motors in a geothermal environment. Major tasks were: (1) design and construction of seal testing devices, (2) screening and evaluation of candidate seals in a simulated bearing/seal package, (3) tests of the most promising candidates in a full-scale bearing/seal package, and (4) analysis of failed seals after testing. The key results from this program were: (1) identification of seal/shaft/lubricant systems that performed well at high pressure and temperature, (2) identification of other seal designs that should be avoided for similar applications, and (3) evaluation of the test machines' design.

  6. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  7. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    SciTech Connect (OSTI)

    Jaffe, Todd

    2012-01-01T23:59:59.000Z

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  8. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    None

    2010-01-15T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energys laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  9. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect (OSTI)

    Carden, R.S.

    1993-08-18T23:59:59.000Z

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  10. FIVE PAPERS ON THE OCEAN DRILLING PROGRAM REPRINTED FROM THE MARINE TECHNOLOGY SOCIETY CONFERENCE

    E-Print Network [OSTI]

    FIVE PAPERS ON THE OCEAN DRILLING PROGRAM REPRINTED FROM THE MARINE TECHNOLOGY SOCIETY CONFERENCE OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE NUMBER 4 APRIL, 1986 Philip ff. Rabinowitz portion requires the written consent of the Director, Ocean Drilling Program, Texas A & M University

  11. Geothermal drilling research in the United States

    SciTech Connect (OSTI)

    Varnado, S.G.; Maish, A.B.

    1980-01-01T23:59:59.000Z

    The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

  12. Radical improvements to blast hole drilling cost and productivity thru integrated teams

    SciTech Connect (OSTI)

    Thomas, R.W. [Baker Hughes Mining Tools, Inc., Grand Prairie, TX (United States)

    1996-12-31T23:59:59.000Z

    This paper explores the possibilities of generating radical improvements in the drilling costs and productivity of blastholes through the efforts of integrated teams as opposed to traditional customer/vendor relationships. The formation and operation of teams comprising both mine operations personnel and key vendors will be presented and explained. Further, the author will present an expanded Total Drilling Cost Formula, followed by a hypothetical example of how the formula and teams can be applied to a mining project to produce significant improvement in value and drilling/producing efficiency. The primary driving force to achieve the aforementioned benefits is the rate of production, or in drilling vernacular, the rate of penetration (ROP). For the purpose of this paper, ROP will refer to the net production rate of footage drilled, rather than the instantaneous rate of penetration achieved during the drilling process. This definition opens up an array of issues that can be addressed to improve actual production rates.

  13. Proceedings of the 9th International Scientific and Technical Conference "New Methods and Technologies in Petroleum Geology, Drilling and Reservoir

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    and Technologies in Petroleum Geology, Drilling and Reservoir Engineering," Volume II, 311-317, AGH, Krakow, Poland

  14. drilling.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRILLING PROGRAM Objective R MOTC's Drilling Program provides opportuni- ties for testing and demonstrating a broad range of new drilling technologies. Background RMOTC is a U.S....

  15. Z .Cold Regions Science and Technology 28 1998 189202 Antifreeze thermal ice core drilling: an effective approach to the

    E-Print Network [OSTI]

    Howat, Ian M.

    Z .Cold Regions Science and Technology 28 1998 189­202 Antifreeze thermal ice core drilling Antifreeze thermal electric drills have a long history of ice drilling in temperate, subpolar and polar the past 25 years. A modified version of the antifreeze thermal electric ice coring drill has recently been

  16. Windmills or deepwater drills?: Normative Roles of Technology in Norwegian Resource Extraction Policy debates

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Windmills or deepwater drills?: Normative Roles of Technology in Norwegian Resource Extraction, countries worldwide are racing to stake their claim in the Arctic, a new frontier estimated to hold and drilling efforts in the Barents Sea, but also the challenges of harsh weather, darkness, and ice. It also

  17. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect (OSTI)

    Larry Stolarczyk

    2008-08-08T23:59:59.000Z

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  18. An integrated approach to characterize reservoir connectivity to improve waterflood infill drilling recovery

    E-Print Network [OSTI]

    Malik, Zaheer Ahmad

    1993-01-01T23:59:59.000Z

    Infill drilling can significantly improve reservoir interwell connectivity in heterogeneous reservoirs, thereby enhances the waterflood recovery. This study defines and investigates the Hydraulic Interwell Connectivity (HIC) concept to characterize...

  19. Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems

    E-Print Network [OSTI]

    Augustine, Chad R

    2009-01-01T23:59:59.000Z

    The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

  20. Air drilling operations improved by percussion-bit/hammer-tool tandem

    SciTech Connect (OSTI)

    Whiteley, M.C.; England, W.P.

    1986-10-01T23:59:59.000Z

    Contractors and operators air drill whenever possible to improve rate of penetration (ROP). This is done with pneumatic hammer tools (HT's) and various bit types used with standard rotary air rigs. The recent application of a ''flat-bottomed'' percussion bit (FPB) combined with a custom-designed HT originally developed for mining operations has significantly improved air drilling operations in the Arkoma basin. The improvements include a large increase in ROP, improved hole geometry, reduced drillstring stresses, and a substantial reduction in cost per foot. This paper describes (1) a discussion of the engineering design and operation of the FPB/HT tandem, (2) applications and limitations of the tools, (3) guidelines for optimization of performance, and (4) documentation of field performance on Arkoma basin wells to demonstrate the improvements in air drilling operations.

  1. Beneficial Use of Drilling Waste - A Wetland Restoration Technology

    SciTech Connect (OSTI)

    Pioneer Natural Resources

    2000-08-14T23:59:59.000Z

    This project demonstrated that treated drill cuttings derived from oil and gas operations could be used as source material for rebuilding eroding wetlands in Louisiana. Planning to supply a restoration site, drill a source well, and provide part of the funding. Scientists from southeastern Louisiana University's (SLU) Wetland Biology Department were contracted to conduct the proposed field research and to perform mesocosm studies on the SLU campus. Plans were to use and abandoned open water drill slip as a restoration site. Dredged material was to be used to create berms to form an isolated cell that would then be filled with a blend of dredged material and drill cuttings. Three elevations were used to test the substrates ability to support various alternative types of marsh vegetation, i.e., submergent, emergent, and upland. The drill cuttings were not raw cuttings, but were treated by either a dewatering process (performed by Cameron, Inc.) or by a stabilization process to encapsulate undesirable constituents (performed by SWACO, Division of Smith International).

  2. Exotic drilling: contractor drills pipelines

    SciTech Connect (OSTI)

    McReynolds, L.

    1980-04-01T23:59:59.000Z

    Drilling of pipelines has been technologically developed for applications such as river crossings, tunnelling through tar-sand or oil-shale strata for more effective in situ combustion production projects, and drilling inside rather than through heavy oil pays to create extensive horizontal well bores suitable for steam heating the formation. The horizontal drilling concept for river crossing involves installation of pipelines in an inverted arc 25 to 100 ft below a river bed. The directional control required to produce a curved hole is maintained by rotating the bit without rotating the pipe. When the drill string is activated by a forward thrust, it creates a reactive subsurface pressure against the front surface of the bent sub, thus causing the bend. The bit then deviates in the direction of the bend. Little disruption of the environment occurs, and the directionally drilled crossings offer improved pipeline security, maintenance of year-round construction schedules, easier permitting, no navigational hazards or interruption for waterway traffic, elimination of bank restoration costs and most repair costs, and a maintenance-free crossing section.

  3. DOE/Fossil Energy`s drilling, completion, and stimulation RD&D: A technologies/products overview

    SciTech Connect (OSTI)

    Duda, J.R.; Yost, A.B. II

    1995-12-31T23:59:59.000Z

    An overview of natural gas drilling, completion, and stimulation RD&D sponsored by the US Department of Energy is reported in this paper. Development of high rate-of-penetration drilling systems and underbalanced drilling technologies are detailed among other RD&D activities. The overview serves as a technology transfer medium and is intended to accelerate the deployment of the products and technologies described.

  4. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    SciTech Connect (OSTI)

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01T23:59:59.000Z

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  5. Optimizing drilling performance using a selected drilling fluid

    DOE Patents [OSTI]

    Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

    2011-04-19T23:59:59.000Z

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  6. Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin

    SciTech Connect (OSTI)

    David Gibbons; Larry A. Carrell; Richard D. George

    1997-07-31T23:59:59.000Z

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

  7. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect (OSTI)

    Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

    1998-12-31T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  8. APPLICATION OF WATER-JET HORIZONTAL DRILLING TECHNOLOGY TO DRILL AND ACIDIZE HORIZONTAL DRAIN HOLES, TEDBIT (SAN ANDRES) FIELD, GAINES COUNTY, TEXAS

    SciTech Connect (OSTI)

    Michael W. Rose

    2005-09-22T23:59:59.000Z

    The San Andres Formation is one of the major hydrocarbon-producing units in the Permian Basin, with multiple reservoirs contained within the dolomitized subtidal portions of upward shoaling carbonate shelf cycles. The test well is located in Tedbit (San Andres) Field in northeastern Gaines County, Texas, in an area of scattered San Andres production associated with local structural highs. Selected on the basis of geological and historical data, the Oil and Gas Properties Wood No. 1 well is considered to be typical of a large number of San Andres stripper wells in the Permian Basin. Thus, successful completion of horizontal drain holes in this well would demonstrate a widely applicable enhanced recovery technology. Water-jet horizontal drilling is an emerging technology with the potential to provide significant economic benefits in marginal wells. Forecast benefits include lower recompletion costs and improved hydrocarbon recoveries. The technology utilizes water under high pressure, conveyed through small-diameter coiled tubing, to jet horizontal drain holes into producing formations. Testing of this technology was conducted with inconclusive results. Paraffin sludge and mechanical problems were encountered in the wellbore, initially preventing the water-jet tool from reaching the kick-off point. After correcting these problems and attempting to cut a casing window with the water-jet milling assembly, lateral jetting was attempted without success.

  9. IMPROVED ROOF STABILIZATION TECHNOLOGIES

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.

    1999-01-01T23:59:59.000Z

    Many U.S. Department of Energy (DOE) remediation sites have performed roof repair and roof replacement to stabilize facilities prior to performing deactivation and decommissioning (D&D) activities. This project will review the decision criteria used by these DOE sites, along with the type of repair system used for each different roof type. Based on this information, along with that compiled from roofing experts, a decision-making tool will be generated to aid in selecting the proper roof repair systems. Where appropriate, innovative technologies will be reviewed and applied to the decision-making tool to determine their applicability. Based on the results, applied research and development will be conducted to develop a method to repair these existing roofing systems, while providing protection for the D and D worker in a cost-efficient manner.

  10. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect (OSTI)

    Goranson, C.

    1992-09-01T23:59:59.000Z

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  11. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema (OSTI)

    Neal, Dan; Turner, Tim

    2014-02-26T23:59:59.000Z

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  12. Technology Development and Field Trials of EGS Drilling Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy Technology Demonstration

  13. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    SciTech Connect (OSTI)

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.; DiBona, B.G.

    1983-08-01T23:59:59.000Z

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  14. A Study To Determine Necessity of Pilot Holes When Drilling Shallow Gas Zones Using Top Hole Dual Gradient Drilling Technology

    E-Print Network [OSTI]

    King, Lauren

    2010-01-16T23:59:59.000Z

    Mud Weight OWM Old Weight Mud RBOP Rotating Blowout Preventer SICP Shut In Casing Pressure SIDPP Shut In Drillpipe Pressure SMD JIP SubSea MudLift Drilling Joint Industry Project TD Total Depth TVD True Vertical Depth vii TABLE... Geometry and Subsea Pump Data ............................................. 16 Figure 5- Kick and Formation Property Data...................................................... 17 Figure 6- Pump Data and Other Information...

  15. Prospects for Improved Carbon Capture Technology

    E-Print Network [OSTI]

    Prospects for Improved Carbon Capture Technology Report to the Congressional Research Service Capture Technology i Table of Contents CHAPTER 1. EXECUTIVE SUMMARY ................................................................................................................ 7 CHAPTER 3. OVERVIEW OF CO2 CAPTURE TECHNOLOGIES

  16. Integrated test plan ResonantSonic drilling system technology demonstration-1995, at the Hanford Site: Revision 1

    SciTech Connect (OSTI)

    McLellan, G.W.

    1994-11-17T23:59:59.000Z

    This integrated test plan describes the demonstration test of the ResonantSonic drilling system. This demonstration is part of the Office of Technology Development`s Volatile Organic Compound Arid Integrated Demonstration (VOC-Arid ID). Two main purposes of this demonstration are (1) to continue testing the ResonantSonic drilling system compatibility with the Hanford Site waste characterization programs, and (2) to transfer this method for use at the Hanford Site, other government sites, and the private sector. The ResonantSonic method is a dry drilling technique. Field testing of this method began in July 1993. During the next four months, nine holes were drilled, and continuous core samples were retrieved. Penetration rates were 2 to 3 times the baseline, and the operational downtime rate was less than 10%. Successfully demonstrated equipment refinements included a prototype 300 series ResonantSonic head, a new drill rod design for 18-centimeter diameter pipe, and an automated pipe handling system. Various configurations of sampling equipment and drill bits were tested, depending on geologic conditions. The principal objective of the VOC-Arid ID is to determine the viability of emerging technologies that can be used to characterize, remediate, and/or monitor arid or semiarid sites containing VOCs (e.g., carbon tetrachloride) with or without associated metal and radionuclide contamination.

  17. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19T23:59:59.000Z

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  18. Advanced Drilling Systems for EGS

    Broader source: Energy.gov [DOE]

    Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

  19. Development of a Mine Rescue Drilling System (MRDS) :

    SciTech Connect (OSTI)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

    2014-06-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

  20. Numerical Simulation Study to Investigate Expected Productivity Improvement Using the "Slot-Drill" Completion

    E-Print Network [OSTI]

    Odunowo, Tioluwanimi Oluwagbemiga

    2012-07-16T23:59:59.000Z

    The "slot-drill" completion method, which utilizes a mechanically cut high-conductivity "slot" in the target formation created using a tensioned abrasive cable, has been proposed as an alternative stimulation technique for shale-gas and other low...

  1. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    SciTech Connect (OSTI)

    Fred Growcock

    2004-03-31T23:59:59.000Z

    During this second Quarter of the Project, the first four tasks of Phase I--all focusing on the behavior of aphrons--were continued: (a) Aphron Visualization--evaluate and utilize various methods of monitoring and measuring aphron size distribution at elevated pressure; (b) Fluid Density--investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity--determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility--determine whether aphron bridges created in fractures and pore throats reduce fracture propagation. The project team expanded the laboratory facilities and purchased a high-pressure system to measure bubble size distribution, a dissolved oxygen (DO) probe and computers for data acquisition. Although MASI Technologies LLC is not explicitly ISO-certified, all procedures are being documented in a manner commensurate with ISO 9001 certification, including equipment inventory and calibration, data gathering and reporting, chemical inventory and supplier data base, waste management procedures and emergency response plan. Several opportunities presented themselves to share the latest aphron drilling fluid technology with potential clients, including presentation of papers and working exhibit booths at the IADC/SPE Drilling Conference and the SPE Coiled Tubing Conference & Exhibition. In addition, a brief trip to the Formation Damage Symposium resulted in contacts for possible collaboration with ActiSystems, the University of Alberta and TUDRP/ACTS at the University of Tulsa. Preliminary results indicate that the Aphron Visualization and Pressure Transmissibility tasks should be completed on time. Although the Aphron Air Diffusivity task has been impeded by the lack of a suitable DO probe, it is hoped to be completed on time, too. The Fluid Density task, on the other hand, has had significant delays caused by faulty equipment and will likely require an additional month of work. Meanwhile, an assessment of potential methodologies for the Aphron Hydrophobicity project has been initiated and is now focused on measuring wettability of the aphron surface rather than interfacial tension.

  2. Subsea Mudlift Drilling: evaluation of the pressure differential problem with subsea pump

    E-Print Network [OSTI]

    Johansen, Tarjei

    2000-01-01T23:59:59.000Z

    The petroleum industry is trying to develop new and improved technology to safely, successfully and profitably extract hydrocarbons in deep water. One such technology under development is subsea mudlift drilling (SMD), a joint industry project...

  3. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop blind geothermal resources.

  4. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Fact 868: April 13, 2015 Automotive Technology Has Improved Performance and...

  5. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    SciTech Connect (OSTI)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01T23:59:59.000Z

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  6. Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997

    SciTech Connect (OSTI)

    Carrell, L.A.; George, R.D.; Gibbons, D.

    1998-07-01T23:59:59.000Z

    Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

  7. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

    1996-05-01T23:59:59.000Z

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  8. Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

    2014-12-30T23:59:59.000Z

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called Direct Energy Drilling, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2 diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

  9. Systems Approach and Quantitative Decision Tools for Technology Selection in Environmentally Friendly Drilling

    E-Print Network [OSTI]

    Yu, Ok Y.

    2010-01-16T23:59:59.000Z

    . offsite). Step 6: Construct access road. Step 7: Construct pad (site preparation) including mud reserve pits if applicable. Step 8: Place a rig and other required components. Step 9: Drill the hole. 3.2 Pile Foundation Design Use of a raised...

  10. An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling

    E-Print Network [OSTI]

    Oluwadairo, Tolulope

    2009-05-15T23:59:59.000Z

    involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection...

  11. Application of high powered lasers to drilling and completing deep walls.

    SciTech Connect (OSTI)

    Reed, C. B.; Xu, Z.; Parker, R. A.; Gahan, B. C.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Deeg, W.

    2003-07-30T23:59:59.000Z

    High powered laser rock drilling was studied as a revolutionary method for drilling and completing deep gas and oil wells. The objectives of this 2002 to 2003 fiscal year research were to study the concept that large diameter holes can be created by multiple overlapping small beam spots, to determine the ability of lasers to drill rock submerged to some depth in water, to demonstrate the possibilities of lasers for perforating application, and to determine the wavelength effects on rock removal. Laser technology applied to well drilling and completion operations is attractive because it has the potential to reduce drilling time, create a ceramic lining that may eliminate the need for steel casing, provide additional monitor-on-drilling laser sensors and improve well performance through improved perforation. The results from this research will help engineering design on a laser-based well drilling system.

  12. JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study

    E-Print Network [OSTI]

    Lindanger, Catharina

    2014-05-03T23:59:59.000Z

    The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

  13. Systems Approach and Quantitative Decision Tools for Technology Selection in Environmentally Friendly Drilling

    E-Print Network [OSTI]

    Yu, Ok Y.

    2010-01-16T23:59:59.000Z

    .............................................. 79 5-11 Selection procedure and constraints for the ?Rig? subsystem ................... 80 5-12 An example of input scores........................................................................ 80 5-13 Overall attribute score for each... ......................................... 90 6-3 Influence diagram for the drilling site of the case study ............................ 91 6-4 Selection procedure for the ?Rig? subsystem of the case study................. 92 6-5 An example of input scores of the case study...

  14. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement...

    Energy Savers [EERE]

    SuperTruck - Powertrain Technologies for Efficiency Improvement 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  15. Enhanced Wellbore Stabilization and Reservoir Productivity With Aphron Drilling Fluid Technology

    SciTech Connect (OSTI)

    Bob O'Connor; Fred Growcock

    2004-12-01T23:59:59.000Z

    The Acoustic Bubble Spectrometer has been identified as a potential method for monitoring the size distribution of aphrons in situ, such as in an oil well drilling fluid flowline.1 Research was continued from Task 1.1 of this Project, Aphron Visualization,2 in which ABS was tested against laser light scattering (Coulter Counter) and optical (visual) imaging to determine the bubble size distribution (BSD) of the aphrons at ambient temperature and pressure. Task 2.1 continued this investigation by measuring the bubble size distribution via ABS and optical imaging at elevated pressures up to 2000 psig.

  16. Vehicle Technologies Office Merit Review 2014: Improved Solvers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Solvers for Advanced Engine Combustion Simulation Vehicle Technologies Office Merit Review 2014: Improved Solvers for Advanced Engine Combustion Simulation Presentation...

  17. OCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    designed bare rock guide base and use new drilling technology. The drillship JOIDES Resolution is scheduledOCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS BARE ROCK DRILLING IN THE KANE FRACTURE ZONE Drilling Program Texas A & M University College Station, TX 77843-3469

  18. Molten carbonate fuel cell technology improvement

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  19. Program for the improvement of downhole drilling-motor bearings and seals. Final report: Phase III, Part 1

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    A systematic laboratory testing and evaluation program to select high-temperature seals, bearings, and lubricants for geothermal downhole drilling motors is summarized.

  20. Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch

    E-Print Network [OSTI]

    KELLOGG, RYAN M

    2007-01-01T23:59:59.000Z

    and Henry Licis, Improving Drilling Performance ThroughJ.F. and K.K. Millheim, The Drilling Performance Curve: AYardstick for Judging Drilling Performance, Society of

  1. Cost effectiveness of sonic drilling

    SciTech Connect (OSTI)

    Masten, D.; Booth, S.R.

    1996-03-01T23:59:59.000Z

    Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

  2. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29T23:59:59.000Z

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

  3. DOE-Sponsored Project Pushes the Limits of Seismic-While-Drilling Technology

    Broader source: Energy.gov [DOE]

    In a project sponsored by the U.S. Department of Energy, Technology International Inc. has developed a breakthrough borehole imaging system that stands on the cusp of commercialization.

  4. Vehicle Technologies Office: Improving Biodiesel and Other Fuels...

    Energy Savers [EERE]

    Quality Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems....

  5. Learning from Buildings: Technologies for Measuring, Benchmarking, and Improving Performance

    E-Print Network [OSTI]

    Arens, Edward; Brager, Gail; Goins, John; Lehrer, David

    2011-01-01T23:59:59.000Z

    and P. Price, 2009. Building Energy Information Systems:2011. Learning from buildings: technologies for measuring,Information to Improve Building Performance: A Study of

  6. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30T23:59:59.000Z

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

  7. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01T23:59:59.000Z

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

  8. Directional Drilling and Equipment for Hot Granite Wells

    SciTech Connect (OSTI)

    Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

    1981-01-01T23:59:59.000Z

    Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

  9. Progress in the Advanced Synthetic-Diamond Drill Bit Program

    SciTech Connect (OSTI)

    Glowka, D.A. [Sandia National Labs., Albuquerque, NM (United States); Dennis, T. [Dennis Tool Co., Houston, TX (United States); Le, Phi [Security DBS, Houston, TX (United States); Cohen, J. [Maurer Engineering, Inc., Houston, TX (United States); Chow, J. [Hughes Christensen Co., Salt Lake City, UT (United States)

    1995-11-01T23:59:59.000Z

    Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

  10. Stakeholder acceptance analysis ResonantSonic drilling

    SciTech Connect (OSTI)

    Peterson, T. [Battelle Seattle Research Center, WA (United States)

    1995-12-01T23:59:59.000Z

    This report presents evaluations, recommendations, and requirements concerning ResonantSonic Drilling (Sonic Drilling), derived from a three-year program of stakeholder involvement. Sonic Drilling is an innovative method to reach contamination in soil and groundwater. The resonant sonic drill rig uses counter-rotating weights to generate energy, which causes the drill pipe to vibrate elastically along its entire length. In the resonant condition, forces of up to 200,000 pounds are transmitted to the drill bit face to create a cutting action. The resonant energy causes subsurface materials to move back into the adjacent formation, permitting the drill pipe to advance. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders` perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of sonic drilling to the remediation problems they face.

  11. Comprehensive Ocean Drilling

    E-Print Network [OSTI]

    Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

  12. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    SciTech Connect (OSTI)

    Stephen Wolhart

    2003-06-01T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  13. Drill bit assembly for releasably retaining a drill bit cutter

    DOE Patents [OSTI]

    Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

    2002-01-01T23:59:59.000Z

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  14. Geothermal drilling research in the United States

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-01-01T23:59:59.000Z

    Current research and development in the following areas are presented: geothermal roller cone bits, polycrystalline diamond compact bits, a continuous chain drill, drilling fluids test equipment, mud research, inert fluids, foam fluids, lost circulation control, completion technology, and advanced drilling and completion systems. (MHR)

  15. Drilling optimization using drilling simulator software

    E-Print Network [OSTI]

    Salas Safe, Jose Gregorio

    2004-09-30T23:59:59.000Z

    al. 8 ) Select Bits and Operational Parameters Determine The Drilling Cost Drilling Data Recorded(Offset Well) Drilling ROP Model Labs Test and Correlations GDL (Unconfined Rock Strength) Drilling ROP Model New Set Operational Parameters and Bits... ROP PredictionsBits Wear DeterminationCost per Foot Drilling Data Recorded(Offset Well) Drilling ROP Model Labs Test and Correlations GDL (Unconfined Rock Strength) Drilling ROP Model New Set Operational Parameters and Bits ROP PredictionsBits Wear...

  16. Improved screen-bowl centrifuge recovery using polymer injection technology

    SciTech Connect (OSTI)

    Burchett, R.T.; McGough, K.M.; Luttrell, G.H.

    2006-08-15T23:59:59.000Z

    The paper reports the improved screen-bowl centrifuge recovery process using polymer injection technology. Field test and economic analysis are also included in the paper. 3 refs., 3 figs., 1 tab.

  17. Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality

    Broader source: Energy.gov [DOE]

    For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

  18. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  19. Improving neutron dosimetry using bubble detector technology

    SciTech Connect (OSTI)

    Buckner, M.A.

    1993-02-01T23:59:59.000Z

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  20. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    SciTech Connect (OSTI)

    Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

    2008-03-31T23:59:59.000Z

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

  1. Status Report A Review of Slimhole Drilling

    SciTech Connect (OSTI)

    Zhu, Tao; Carroll, Herbert B.

    1994-09-01T23:59:59.000Z

    This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

  2. Optical coherence tomography guided dental drill

    DOE Patents [OSTI]

    DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

    2002-01-01T23:59:59.000Z

    A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

  3. DRILLED HYDROTHERMAL ENERGY Drilling for seawater

    E-Print Network [OSTI]

    DRILLED HYDROTHERMAL ENERGY Drilling for seawater An "ALL of the ABOVE" Approach to Ocean Thermal-Arsène d'Arsonval in 1881 conceptualized producing electricity from ocean temperature difference DRILLED HYDROTHERMAL ENERGY BACKGROUND #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND French Inventor Georges Claude

  4. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    SciTech Connect (OSTI)

    Arnis Judzis

    2006-03-01T23:59:59.000Z

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.

  5. Geothermal: Sponsored by OSTI -- Deep Geothermal Drilling Using...

    Office of Scientific and Technical Information (OSTI)

    Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic...

  6. Vehicle Technologies Office Merit Review 2013: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory (SNL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on improving the tolerance of batteries for plug-in electric vehicles under abusive conditions.

  7. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III

    SciTech Connect (OSTI)

    Murphy, Michael B.

    2002-02-21T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

  8. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  9. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    SciTech Connect (OSTI)

    Alan Black; Arnis Judzis

    2004-10-01T23:59:59.000Z

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

  10. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02T23:59:59.000Z

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  11. Innovative applications of technology for nuclear power plant productivity improvements

    SciTech Connect (OSTI)

    Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

    2012-07-01T23:59:59.000Z

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  12. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01T23:59:59.000Z

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  13. Ice Drilling Gallonmilkjugs

    E-Print Network [OSTI]

    Saffman, Mark

    Ice Drilling Materials · Gallonmilkjugs · Syringes,largeand small · Pitchers · Spraybottles · 13x9? ·Isitbettertosquirtthewaterslowlyorasquicklyaspossible? ·Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? ·Doesthetypeof`drill

  14. Drilling optimization using drilling simulator software

    E-Print Network [OSTI]

    Salas Safe, Jose Gregorio

    2004-09-30T23:59:59.000Z

    the results of using drilling simulator software called Drilling Optimization Simulator (DROPS) in the evaluation of the Aloctono block, in the Pirital field, eastern Venezuela. This formation is characterized by very complex geology, containing faulted...

  15. DRILLING MACHINES GENERAL INFORMATION

    E-Print Network [OSTI]

    Gellman, Andrew J.

    TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

  16. Well descriptions for geothermal drilling

    SciTech Connect (OSTI)

    Carson, C.C.; Livesay, B.J.

    1981-01-01T23:59:59.000Z

    Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

  17. INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

  18. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

    2007-02-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  19. Horizontal drilling: Overview of geologic aspects and opportunities

    SciTech Connect (OSTI)

    Stark, P.H. (Petroleum Information Corp., Denver, CO (United States))

    1991-06-01T23:59:59.000Z

    Horizontal drilling and completions may become the most significant petroleum technology enhancement since reflection seismic. Through September 1990, 640 US horizontal completions were recorded, resulting in 532 oil and 69 gas producers. In addition, 345 horizontal wells were drilling or completing and 255 permits were outstanding. Mroe than 60% of historic US horizontal wells will be completed during 1990. Case studies demonstrate higher production rates and improved recoveries for horizontal completions. There are abundant global geologic opportunities for horizontal well technolgoy. Eight geologic criteria with potential for horizontal technology are reviewed. Models and examples showing results are presented for each. Source rocks - Bakken Shale case history, North Dakota; Fractured reservoirs - Austin Chalk case history, Texas; Paleokarst reservoirs - Liuhua field example, South China Sea; and karst reservoir potential, Mediterranean region; Chalk reservoirs - global distribution and Niobrara example, Colorado and Wyoming; Stratigraphic traps - Niagaran Reef example, Michigan basin; and tight, overpressured gas sands, northern Rocky Mountains; Reservoir/heterogeneity - Spraberry trend example, Midland basin; Coal-bed methane - US potential; Coning - Prudhoe Bay example, Alaska. Forecasts showing 5,000 worldwide horizontal completions by the year 2000 are tempered by limited equipment, crews, and recognized opportunity. If, however, economic benefits from case histories are creatively applied to potential geologic opportunities, then horizontal technology may comprise 30% or more of worldwide drilling at the turn of the century. Certainly, a technology that reduces dry-hole and environmental risks, increases productivity, and generates profits with $20/bbl oil could revitalize the domestic onshore industry.

  20. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30T23:59:59.000Z

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  1. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2000-01-01T23:59:59.000Z

    Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed...

  2. Horizontal well construction/completion process in a Gulf of Mexico unconsolidated sand: development of baseline correlations for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Lacewell, Jason Lawrence

    1999-01-01T23:59:59.000Z

    of well planning, completion and cleanup operations. Our objectives are to present a complete examination of the openhole horizontal well construction/completion process using a new drill-in fluid (DIF). Further, we will establish data critical...

  3. Improved HEPA Filter Technology for Flexible and Rigid Containment Barriers

    SciTech Connect (OSTI)

    Pinson, Paul Arthur

    1998-07-01T23:59:59.000Z

    Safety and reliability in glovebox operations can be significantly improved and waste packaging efficiencies can be increased by inserting flexible, lightweight, high capacity HEPA filters into the walls of plastic sheet barriers. This HEPA filter/barrier technology can be adapted to a wide variety of applications: disposable waste bags, protective environmental barriers for electronic equipment, single or multiple use glovebag assemblies, flexible glovebox wall elements, and room partitions. These reliable and inexpensive filtered barriers have many uses in fields such as radioactive waste processing, HVAC filter changeout, vapor or grit blasting, asbestos cleanup, pharmaceutical, medical, biological, and electronic equipment containment. The applications can result in significant cost savings, improved operational reliability and safety, and total waste volume reduction. This technology was developed at the Argonne National Laboratory-West (ANL-W) in 1993 and has been used at ANL-W since then at the TRU Waste Characterization Chamber Gloveboxes. Another 1998 AGS Conference paper titled "TRU Waste Characterization Gloveboxes", presented by Mr. David Duncan of ANL-W, describes these boxes.

  4. Temporary Bridging Agents for Use in Drilling and Completions...

    Broader source: Energy.gov (indexed) [DOE]

    Temporary Bridging Agents for Use in Drilling and Completions of EGS Principal Investigator - Larry Watters Presenter - Jeff Watters CSI Technologies LLC Track Name May 18, 2010...

  5. advanced drill components: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agnar Aamodt and Odd Erik Norwegian University of Science and Technology, NTNU, Norway ABSTRACT The drilling process is getting increasingly more complex as oil fields...

  6. Geothermal: Sponsored by OSTI -- Vale exploratory slimhole: Drilling...

    Office of Scientific and Technical Information (OSTI)

    Vale exploratory slimhole: Drilling and testing Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New...

  7. Geothermal: Sponsored by OSTI -- A study of geothermal drilling...

    Office of Scientific and Technical Information (OSTI)

    A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  8. Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...

    Office of Scientific and Technical Information (OSTI)

    Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New Hot...

  9. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    SciTech Connect (OSTI)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-02-22T23:59:59.000Z

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windows{trademark}-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide-thallium activated crystal coupled to a photomultiplier tube (PMT). The output of the PMT goes to a multichannel analyzer (MCA).The MCA data is transmitted to the surface via a signal conditioning and transmitter board similar to that used with the GMT. The EMWD system is described and the results of the GRS field tests and field demonstration are presented.

  10. Molten carbonate fuel cell technology improvement. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  11. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-11-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter July to September 2003. In task 1 OTM development has led to improved strength and composite design. In task 2, the manufacture of robust PSO1d elements has been scaled up. In task 3, operational improvements in the lab-scale pilot reactor have reduced turn-around time and increased product purity. In task 7, economic models show substantial benefit of OTM IGCC over CRYO based oxygen production. The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Element production at Praxair's manufacturing facility is being scaled up and Substantial improvements to the OTM high temperature strength have been made.

  12. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20T23:59:59.000Z

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  13. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

    1989-01-01T23:59:59.000Z

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  14. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect (OSTI)

    Price, Lynn; Price, Lynn

    2008-03-01T23:59:59.000Z

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  15. Counter-Rotating Tandem Motor Drilling System

    SciTech Connect (OSTI)

    Kent Perry

    2009-04-30T23:59:59.000Z

    Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

  16. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  17. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  18. 2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-

    E-Print Network [OSTI]

    2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

  19. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  20. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-03-01T23:59:59.000Z

    The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were: (1) Methods to improve the strength and stability of PSO1x were identified. (2) The O1 reactor was operated at target flux and target purity for 1000 hours. This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter October to December 2002. In task 1 improvements to PSO1x have shown increased performance in strength and stability. In task 2, PSO1d and PSO1x elements have been fabricated for testing in the pilot reactor. In task 3, the lab-scale pilot reactor has been operated for 1000 hours. In task 6 initial power recovery simulation has begun. In task 7, HYSIS models have been developed to optimize the process for a future demonstration unit.

  1. Westinghouse GOCO conduct of casualty drills

    SciTech Connect (OSTI)

    Ames, C.P.

    1996-02-01T23:59:59.000Z

    Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

  2. Volvo SuperTruck - Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov (indexed) [DOE]

    time to market Develop more efficient highway transportation technologies to reduce petroleum consumption Project Objectives Objective 1: Develop powertrain technologies to...

  3. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez, B.; Sanchez, G.

    1981-01-01T23:59:59.000Z

    To date, 71 goethermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion - the most important aspect for the success of a well - that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300/sup 0/C (572/sup 0/F), it has been necessary to use an organic polymer to stabilize the mud properties.

  4. Development of a new roof bolt technology to improve gate-road performance

    SciTech Connect (OSTI)

    Caggiano, V.; Rauch, G.; Beck, K.-D.; Chen, J. [Hilti, Inc. (United States)

    2005-10-01T23:59:59.000Z

    Hilti has developed, in conjunction with Foundation Coal, a self-drilling bolt that cuts roof bolting times. The system uses a wet, self-drilling, hollow bolt technology with a self-contained resin cartridge. The resin is dispensed using an injection adapter that provides the high pressure water needed to dispense the resin. The OneStep roof bolt contains an axially shifting mixer that ensures the resin is properly mixed as it exits the water ports near the end of the bolt near the drill head. This eliminates the opportunity for plastic materials to interface between the strata and the bolt. In 2004 the OneStep Bolt was successfully installed in DSK's Prosper Haniel Colliery in Germany, achieving a 42% reduction in single-boom roof bolt cycle time and a 36% reduction in twin-boom roof bolt cycle time. Foundation Coal will be installing 2000 6 ft active bolts in one of the North Appalachian longwall locations. 1 fig.

  5. Recovery Act: Electrochromic Glazing Technology: Improved Performance, Lower Price

    SciTech Connect (OSTI)

    Burdis, Mark; Sbar, Neil

    2012-06-30T23:59:59.000Z

    The growing dependency of the US on energy imports and anticipated further increases in energy prices reinforce the concerns about meeting the energy demand in the future and one element of a secure energy future is conservation. It is estimated that the buildings sector represents 40% of the US's total energy consumption. And buildings produce as much as one third of the greenhouse gas emissions primarily through fossil fuel usage during their operational phase. A significant fraction of this energy usage is simply due to inefficient window technology. Electrochromic (EC) windows allow electronic control of their optical properties so that the transparency to light can be adjusted from clear to dark. This ability to control the amount of solar energy allowed into the building can be advantageously used to minimize lighting, heating and air conditioning costs. Currently, the penetration of EC windows into the marketplace is extremely small, and consequently there is a huge opportunity for energy savings if this market can be expanded. In order to increase the potential energy savings it is necessary to increase the quantity of EC windows in operation. Additionally, any incremental improvement in the energy performance of each window will add to the potential energy savings. The overall goals of this project were therefore to improve the energy performance and lower the cost of dynamic (EC) smart windows for residential and commercial building applications. This project is obviously of benefit to the public by addressing two major areas: lowering the cost and improving the energy performance of EC glazings. The high level goals for these activities were: (i) to improve the range between the clear and the tinted state, (ii) reduce the price of EC windows by utilizing lower cost materials, (iii) lowering the U-Value1 SAGE Electrochromics Inc. is the only company in the US which has a track record of producing EC windows, and presently has a small operational factory in Faribault MN which is shipping products throughout the world. There is a much larger factory currently under construction close by. This project was targeted specifically to address the issues outlined above, with a view to implementation on the new high volume manufacturing facility. Each of the Tasks which were addressed in this project is relatively straightforward to implement in this new facility and so the benefits of the work will be realized quickly. , and (iv) ensure the proposed changes have no detrimental effect to the proven durability of the window. The research described here has helped to understand and provide solutions to several interesting and previously unresolved issues of the technology as well as make progress in areas which will have a significant impact on energy saving. In particular several materials improvements have been made, and tasks related to throughput and yield improvements have been completed. All of this has been accomplished without any detrimental effect on the proven durability of the SageGlass EC device. The project was divided into four main areas: 1. Improvement of the Properties of the EC device by material enhancements (Task 2); 2. Reduce the cost of production by improving the efficiency and yields of some key manufacturing processes (Task 3); 3. Further reduce the cost by significant modifications to the structure of the device (Task 4); 4. Ensure the durability of the EC device is not affected by any of the changes resulting from these activities (Task 5). A detailed description of the activities carried out in these areas is given in the following report, along with the aims and goals of the work. We will see that we have completed Tasks 2 and 3 fully, and the durability of the resulting device structure has been unaffected. Some of Task 4 was not carried out because of difficulties with integrating the installation of the required targets into the production coater due to external constraints not related to this project. We will also see that the durability of the devices produced as a result of this work was

  6. Cross-domain comparison of quantitative technology improvement using patent derived characteristics

    E-Print Network [OSTI]

    Benson, Christopher Lee

    2014-01-01T23:59:59.000Z

    This thesis compares the performance improvement rates of 28 technological domains with characteristics derived from the patents of the domains, seeking to objectively test theories of how and why technologies change over ...

  7. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01T23:59:59.000Z

    of Policy Instruments for Energy-Efficiency Improvements inand Graus, W. , 2007. Energy Efficiency Improvement and Costimplementation of energy-efficiency and greenhouse gas

  8. Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving...

  9. The Role of Design Complexity in Technology Improvement

    E-Print Network [OSTI]

    McNerney, James

    We study a simple model for the evolution of the cost (or more generally the performance) of a technology or production process. The technology can be decomposed into n components, each of which interacts with a cluster ...

  10. The Software Factory: Integrating CASE Technologies to Improve Productivity

    E-Print Network [OSTI]

    Menendez, Jose

    This report addresses the use of computer-aided software engineering (CASE) technology for the development of aircraft software.

  11. The Role of Design Complexity in Technology Improvement

    E-Print Network [OSTI]

    . We show that the relationship between the cost of the whole technology and the number of innovation The relation between a technology's cost c and the cumu- lative amount produced y is often empirically observed of historical performance curves for several different technologies in Figure 1. The relationship between cost

  12. Methane contamination of drinking water accompanying gas-well drilling and

    E-Print Network [OSTI]

    Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

  13. Methane contamination of drinking water accompanying gas-well drilling and

    E-Print Network [OSTI]

    Jackson, Robert B.

    Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

  14. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31T23:59:59.000Z

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  15. IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

    SciTech Connect (OSTI)

    Xiaodi Huang; Richard Gertsch

    2005-02-04T23:59:59.000Z

    Michigan Technological University, together with The Robbins Group, Advanced Ceramic Research, Advanced Ceramic Manufacturing, and Superior Rock Bits, evaluated a new process and a new material for producing drill bit inserts and disc cutters for the mining industry. Difficulties in the material preparation stage slowed the research initially. Prototype testing of the drill bit inserts showed that the new inserts did not perform up to the current state of the art. Due to difficulties in the prototype production of the disc cutters, the disc cutter was manufactured but not tested. Although much promising information was obtained as a result of this project, the objective of developing an effective means for producing rock drill bits and rock disc cutters that last longer, increase energy efficiency and penetration rate, and lower overall production cost was not met.

  16. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01T23:59:59.000Z

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  17. Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990

    SciTech Connect (OSTI)

    None

    1990-06-01T23:59:59.000Z

    This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

  18. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  19. Strategies and Technologies for Improving Air Quality Around Ports

    E-Print Network [OSTI]

    Khan, Mohammad Yusuf

    2013-01-01T23:59:59.000Z

    Energy, May 2010. 44. Solazyme. www.solazyme.com/technology.fuel was produced to Navy specifications by Solazyme, Inc.Solazyme uses standard industrial fermentation equipment and

  20. Vehicle Technologies Office Merit Review 2015: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

  1. IMPROVING FISHERIES SCIENCE WITH ADVANCED SAMPLING TECHNOLOGIES FEATURE ARTICLE 2

    E-Print Network [OSTI]

    of advanced sam- pling technologies for providing accurate, precise, and timely population estimates density) in red. Echogram images are vertically exag- gerated to highlight features and patterns

  2. Lighter and Stronger: Improving Clean Energy Technologies Through...

    Broader source: Energy.gov (indexed) [DOE]

    Technology Center in Boulder, Colorado. Advanced fiber-reinforced polymer composite materials can help make wind turbine blades stronger and lighter. | Photo by Dennis Schroeder,...

  3. Vehicle Technologies Office Merit Review 2014: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

  4. ResonantSonic drilling: History, progress and advances in environmental restoration programs

    SciTech Connect (OSTI)

    Volk, B.W.; McLellan, G.W.; Moak, D.J.; Lerch, R.E. [Westinghouse Hanford Co., Richland, WA (United States); Thompson, K.M. [USDOE, Richland, WA (United States); Barrow, J.C. [Water Development Corp., (United States)

    1993-09-29T23:59:59.000Z

    ResonantSonic{sup SM} drilling is being used in the environmental industry to drill faster, cheaper, and safer than conventional drilling methodologies. ResonantSonic is a registered service mark of the Water Development Corporation, Woodland, California. The ResonantSonic drilling method, requires no mud, air or water for rapid penetration through geologic materials ranging from rock and clay to sand and boulders. The specialized drill head imparts high frequency vibrations into a steel drill pipe creating a drilling action which allows the retrieval of continuous, undisturbed cores. An added benefit is that the method can be used for angle drilling. The ReasonantSonic method has been used in the past for projects ranging from pile driving to horizontal drilling. Current programs are utilizing the technique as a valuable tool for obtaining in situ, pristine environmental samples. In the future, this drilling technology could be used for remote, automated sampling at hazardous waste sites.

  5. Student use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile Technology In CiCS (Corporate Information and Computing Services) we are always looking to improve our services.

    E-Print Network [OSTI]

    Martin, Stephen John

    Page 1 Student use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile TechnologyStudent use of Mobile Technology In CiCS (Corporate Information and Computing Services) we are always looking to improve our services. We are interested in your use of mobile technology (phones

  6. Trinidad Carnival : improving design through computation and digital technology

    E-Print Network [OSTI]

    Noel, Vernelle A. A. (Vernelle Aletia)

    2013-01-01T23:59:59.000Z

    This thesis explores the integration of computation and digital technology to support design in the Trinidad Carnival. I argue that computation can contribute to design in the Trinidad Carnival by (1) addressing the dying ...

  7. Agent Technology to Improve Building Energy Efficiency and Occupant Comfort

    E-Print Network [OSTI]

    Zeiler, W.; van Houten, R.; Kamphuis, R.; Hommelberg, M.

    2006-01-01T23:59:59.000Z

    Global warming, caused largely by energy consumption, has become a major problem. During the last decades the introduction of energy saving technologies has strongly reduced energy consumption of buildings. Users' preferences and behavior have...

  8. Field Demonstraton of Existing Microhole Coiled Tubing Rig (MCTR) Technology

    SciTech Connect (OSTI)

    Kent Perry; Samih Batarseh; Sheriff Gowelly; Thomas Hayes

    2006-05-09T23:59:59.000Z

    The performance of an advanced Microhole Coiled Tubing Rig (MCTR) has been measured in the field during the drilling of 25 test wells in the Niobrara formation of Western Kansas and Eastern Colorado. The coiled tubing (CT) rig designed, built and operated by Advanced Drilling Technologies (ADT), was documented in its performance by GTI staff in the course of drilling wells ranging in depth from 500 to nearly 3,000 feet. Access to well sites in the Niobrara for documenting CT rig performance was provided by Rosewood Resources of Arlington, VA. The ADT CT rig was selected for field performance evaluation because it is one of the most advanced commercial CT rig designs that demonstrate a high degree of process integration and ease of set-up and operation. Employing an information collection protocol, data was collected from the ADT CT rig during 25 drilling events that encompassed a wide range of depths and drilling conditions in the Niobrara. Information collected included time-function data, selected parametric information indicating CT rig operational conditions, staffing levels, and field observations of the CT rig in each phase of operation, from rig up to rig down. The data obtained in this field evaluation indicates that the ADT CT rig exhibited excellent performance in the drilling and completion of more than 25 wells in the Niobrara under varied drilling depths and formation conditions. In the majority of the 25 project well drilling events, ROP values ranged between 300 and 620 feet per hour. For all but the lowest 2 wells, ROP values averaged approximately 400 feet per hour, representing an excellent drilling capability. Most wells of depths between 500 and 2,000 feet were drilled at a total functional rig time of less than 16 hours; for wells as deep at 2,500 to 3,000 feet, the total rig time for the CT unit is usually well under one day. About 40-55 percent of the functional rig time is divided evenly between drilling and casing/cementing. The balance of time is divided among the remaining four functions of rig up/rig down, logging, lay down bottomhole assembly, and pick up bottomhole assembly. Observations made during all phases of CT rig operation at each of the project well installations have verified a number of characteristics of the technology that represent advantages that can produce significant savings of 25-35 percent per well. Attributes of the CT rig performance include: (1) Excellent hole quality with hole deviation amounting to 1-2 degrees; (2) Reduced need for auxiliary equipment; (3) Efficient rig mobilization requiring only four trailers; (4) Capability of ''Zero Discharge'' operation; (5) Improved safety; and, (6) Measurement while drilling capability. In addition, commercial cost data indicates that the CT rig reduces drilling costs by 25 to 35% compared to conventional drilling technology. Widespread commercial use of the Microhole Coiled Tubing technology in the United States for onshore Lower-48 drilling has the potential of achieving substantially positive impacts in terms of savings to the industry and resource expansion. Successfully commercialized Microhole CT Rig Technology is projected to achieve cumulative savings in Lower-48 onshore drilling expenditures of approximately 6.8 billion dollars by 2025. The reduced cost of CT microhole drilling is projected to enable the development of gas resources that would not have been economic with conventional methods. Because of the reduced cost of drilling achieved with CT rig technology, it is estimated that an additional 22 Tcf of gas resource will become economic to develop. In the future, the Microhole Coiled Tubing Rig represents an important platform for the continued improvement of drilling that draws on a new generation of various technologies to achieve goals of improved drilling cost and reduced impact to the environment.

  9. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  10. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21T23:59:59.000Z

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  11. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2005-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

  12. a microsoft white paper Drilling for new Business Value

    E-Print Network [OSTI]

    Bernstein, Phil

    a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

  13. KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING

    E-Print Network [OSTI]

    Aamodt, Agnar

    for capturing and reusing experience and best practice in industrial operations5-7 . CBR as a technology has nowKNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process

  14. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20T23:59:59.000Z

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  15. Report of the Offset Drilling Workshop Ocean Drilling Program

    E-Print Network [OSTI]

    Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

  16. Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration

    E-Print Network [OSTI]

    Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated of a sufficient number of neurosurgeons [3]. The cranial drilling device described in this paper designed to allow

  17. Biomass Logistics and Particle Technology Group Purdue Improved Drying

    E-Print Network [OSTI]

    Ginzel, Matthew

    to maintain quality of grain in storage. n Farmers primarily depended on open air solar drying after logistics Grain & pest management Pre-Harvest losses from: Insect, molds and birds Harvesting & handling of PICS, technology Open Air Solar Drying of Maize in Ejura Market, Ashanti Region, Ghana #12;4 Chronology

  18. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2004-03-31T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter January to March 2004. In task 1 OTM development has led to improved strength and composite design for lower temperatures. In task 2, the measurement system of OTM element dimensions was improved. In task 3, a 10-cycle test of a three-tube submodule was reproduced successfully. In task 5, sizing of several potential heat recovery systems was initiated. In task 7, advanced OTM and cryogenic IGCC cases for near-term integration were developed.

  19. The Ecological Society of America www.frontiersinecology.org Natural gas drilling has dramatically expanded with

    E-Print Network [OSTI]

    Entrekin, Sally

    to address these threats. n Horizontal drilling and hydraulic fracturing Gas-well drilling has historically dramatically expanded with advances in extraction technology and the need for cleaner burning fuels], sulfur oxide [SOx]) than compared with that of coal or petroleum. Horizontal drilling and hydraulic

  20. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  1. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect (OSTI)

    Torok, Tamas

    2013-02-04T23:59:59.000Z

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  2. Managed Pressure Drilling Candidate Selection

    E-Print Network [OSTI]

    Nauduri, Anantha S.

    2010-07-14T23:59:59.000Z

    Managed Pressure Drilling now at the pinnacle of the 'Oil Well Drilling' evolution tree, has itself been coined in 2003. It is an umbrella term for a few new drilling techniques and some preexisting drilling techniques, all of them aiming to solve...

  3. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

  4. January 2003 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

  5. December 2001 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  6. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2003-04-30T23:59:59.000Z

    The objectives of the first year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: Element reliability; Element fabrication; Systems technology; Power recovery; and IGCC process analysis and economics. The major accomplishments this quarter were Preferred OTM architectures have been identified through stress analysis; and The 01 reactor was operated at target flux and target purity for 1000 hours.

  7. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31T23:59:59.000Z

    Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  8. Improved Technology To Prevent Nuclear Proliferation And Counter Nuclear Terrorism

    SciTech Connect (OSTI)

    Richardson, J; Yuldashev, B; Labov, S; Knapp, R

    2006-06-12T23:59:59.000Z

    As the world moves into the 21st century, the possibility of greater reliance on nuclear energy will impose additional technical requirements to prevent proliferation. In addition to proliferation resistant reactors, a careful examination of the various possible fuel cycles from cradle to grave will provide additional technical and nonproliferation challenges in the areas of conversion, enrichment, transportation, recycling and waste disposal. Radiation detection technology and information management have a prominent role in any future global regime for nonproliferation. As nuclear energy and hence nuclear materials become an increasingly global phenomenon, using local technologies and capabilities facilitate incorporation of enhanced monitoring and detection on the regional level. Radiation detection technologies are an important tool in the prevention of proliferation and countering radiological/nuclear terrorism. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, passive detection, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. For example, various gamma ray imaging approaches are being explored to combine spatial resolution with background suppression in order to enhance sensitivity many-fold at reasonable standoff distances and acquisition times. New materials and approaches are being developed in order to provide adequate energy resolution in field use without the necessity for liquid nitrogen. Different detection algorithms enable fissile materials to be distinguished from other radioisotopes.

  9. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  10. OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie ?cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

  11. Deep-hole drilling Fruit Flies & Zebrafish

    E-Print Network [OSTI]

    Li, Yi

    surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

  12. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect (OSTI)

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01T23:59:59.000Z

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  13. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-05-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter January to March 2002. In task 1 improvements to the membrane material have shown increased flux, and high temperature mechanical properties are being measured. In task 2, composite development has shown that alternative fabrication routes of the substrate can improve membrane performance under certain conditions. In task 3, scale-up issues associated with manufacturing large tubes have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 1000 hours of the target flux under simulated IGCC operating conditions. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

  14. NREL Collaborates to Improve Wind Turbine Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    NREL's Gearbox Reliability Collaborative leads to wind turbine gearbox reliability, lowering the cost of energy. Unintended gearbox failures have a significant impact on the cost of wind farm operations. In 2007, the National Renewable Energy Laboratory (NREL) initiated the Gearbox Reliability Collaborative (GRC), which follows a multi-pronged approach based on a collaborative of manufacturers, owners, researchers, and consultants. The project combines analysis, field testing, dynamometer testing, condition monitoring, and the development and population of a gearbox failure database. NREL and other GRC partners have been able to identify shortcomings in the design, testing, and operation of wind turbines that contribute to reduced gearbox reliability. In contrast to private investigations of these problems, GRC findings are quickly shared among GRC participants, including many wind turbine manufacturers and equipment suppliers. Ultimately, the findings are made public for use throughout the wind industry. This knowledge will result in increased gearbox reliability and an overall reduction in the cost of wind energy. Project essentials include the development of two redesigned and heavily instrumented representative gearbox designs. Field and dynamometer tests are conducted on the gearboxes to build an understanding of how selected loads and events translate into bearing and gear response. The GRC evaluates and validates current wind turbine, gearbox, gear and bearing analytical tools/models, develops new tools/models, and recommends improvements to design and certification standards, as required. In addition, the GRC is investigating condition monitoring methods to improve turbine reliability. Gearbox deficiencies are the result of many factors, and the GRC team recommends efficient and cost-effective improvements in order to expand the industry knowledge base and facilitate immediate improvements in the gearbox life cycle.

  15. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    John Sirman

    2005-01-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 2 Program during the quarter April to June 2004. In task 7, reactor cost analysis was performed to determine whether OTM technology when integrated with IGCC provides a commercially attractive process. In task 9, discussions with DOE regarding restructuring the program continued. The objectives of the second year of phase 2 of the program are to construct and operate an engineering pilot reactor for OTM oxygen. Work to support this objective is being undertaken in the following areas in this quarter: IGCC process analysis and economics.

  16. Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology Performance Exchange(tm)MEMORANDUM FORfromBattery,

  17. Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of EnergyReportTechnology|

  18. Directional drilling sub

    SciTech Connect (OSTI)

    Benoit, L.F.

    1980-09-02T23:59:59.000Z

    A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

  19. Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, July 1--September 30, 1996 (fourth quarter)

    SciTech Connect (OSTI)

    NONE

    1996-10-31T23:59:59.000Z

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced reservoir management methods. Specific goals to attain the objective are: (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced methodologies to oil and gas producers in the Permian Basin and elsewhere in the US oil and gas industry. Results obtained to date are summarized on the following: geology, engineering, 3-D seismic, reservoir characterization and simulation, and technology transfer.

  20. Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-01-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  1. Evaluation of potential kick scenarios in riserless drilling

    E-Print Network [OSTI]

    Seland, Stig

    1999-01-01T23:59:59.000Z

    In order to cope with the challenges the petroleum industry is faced with in deepwater exploration today, a Marine Riserless Drilling Joint Industry Project, MRDJIP, was formed. The main task for this project is to develop the technology neede...

  2. IMPROVING THE USER EXPERIENCE BY WEB TECHNOLOGIES FOR COMPLEX MULTIMEDIA SERVICES

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    IMPROVING THE USER EXPERIENCE BY WEB TECHNOLOGIES FOR COMPLEX MULTIMEDIA SERVICES Tayeb Lemlouma where several multimedia services exist and their use requires complex configurations and the ability and multimedia streaming with different protocols. In order to improve the user's experience in such environments

  3. Advanced Seismic While Drilling System

    SciTech Connect (OSTI)

    Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

    2008-06-30T23:59:59.000Z

    A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

  4. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-08-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter April to June 2002. In task 1 improvements to the membrane material have shown increased flux, stability and strength. In task 2, composite development has demonstrated the ability to cycle membranes. In task 3, scale-up issues associated with manufacturing large elements have been identified and are being addressed. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity after 10 thermal and pressure cycles. In task 5 the multi-tube OTM reactor has been operated and produced oxygen.

  5. Field Testing of Environmentally Friendly Drilling System

    SciTech Connect (OSTI)

    David Burnett

    2009-05-31T23:59:59.000Z

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  6. Recovery Act Weekly Video: 200 West Drilling

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

  7. Drill wear: its effect on the diameter of drilled holes

    E-Print Network [OSTI]

    Reichert, William Frederick

    1955-01-01T23:59:59.000Z

    genoa arrrZgg zo gaamWra gHZ. zo ZaaXm axz:gVm VZXgg DRILL WEhR: ITS EFFECT ON THE DlhEETER GF DRILLED HOLES h Thesis Villian Frederick Reiehert, Jr. hpproved as to style and oontent by: a rman o onn ee ea o par nen hugus t 1955 h.... I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat...

  8. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    Stephen Wolhart

    2005-06-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  9. Precision micro drilling with copper vapor lasers

    SciTech Connect (OSTI)

    Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

    1994-09-02T23:59:59.000Z

    The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

  10. CERAMIC MEMBRANE ENABLING TECHNOLOGY FOR IMPROVED IGCC EFFICIENCY

    SciTech Connect (OSTI)

    Ravi Prasad

    2002-02-01T23:59:59.000Z

    This quarterly technical progress report will summarize work accomplished for Phase 1 Program during the quarter October to December 2001. In task 1 optimization of the substrate material has yielded substantial improvements to membrane life. In task 2, composite development has enabled 50% of the target flux under Type 1B process conditions. In task 3, manufacturing development has demonstrated that 36 inch long tubes can be produced. The work in task 4 has demonstrated that composite OTM elements can produce oxygen at greater than 95% purity for more than 500 hours of the target flux. In task 5 construction of the multi-tube OTM reactor is completed and initial startup testing was carried out.

  11. Finite Element Modeling of Drilling Using DEFORM

    E-Print Network [OSTI]

    Gardner, Joel D.; Dornfeld, David

    2006-01-01T23:59:59.000Z

    Vijayaraghavan, A. (2005), Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool ABSTRACT DEFORM-

  12. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck- Powertrain Technologies for Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Volvo at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Volvo SuperTruck - powertrain...

  13. Evaluation of an air drilling cuttings containment system

    SciTech Connect (OSTI)

    Westmoreland, J.

    1994-04-01T23:59:59.000Z

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  14. Drill pipe corrosion control using an inert drilling fluid

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1981-01-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  15. On 26th December 2006, at the ANDRILL McMurdo Ice Shelf (MIS) drill site, the final section of core was retrieved from the

    E-Print Network [OSTI]

    on the cores at the drill site. ANDRILL was one of the largest projects ever supported by Antarctica New: Technology Gives Scientists Plenty to Work On The ANDRILL drill site team Looking up the drilling mast #12;IIceSked On 26th December 2006, at the ANDRILL McMurdo Ice Shelf (MIS) drill site, the final section

  16. Vehicle Technologies Office Merit Review 2014: Significant Cost Improvement of Li-ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  17. Vehicle Technologies Office Merit Review 2015: Significant Cost Improvement of Li-Ion Cells Through Non-NMP Electrode Coating, Direct Separator Coating, and Fast Formation Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Johnson Controls at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about significant cost improvement...

  18. Managed pressure drilling techniques and tools

    E-Print Network [OSTI]

    Martin, Matthew Daniel

    2006-08-16T23:59:59.000Z

    The economics of drilling offshore wells is important as we drill more wells in deeper water. Drilling-related problems, including stuck pipe, lost circulation, and excessive mud cost, show the need for better drilling ...

  19. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J. (Kansas City, MO)

    1989-01-01T23:59:59.000Z

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  20. RECIPIENT:Potter Drilling Inc

    Broader source: Energy.gov (indexed) [DOE]

    Potter Drilling Inc u.s. DEPARTUEN T OF ENERG EERE PROJECT MANAGEMENT CENT ER NEPA DEIERlIINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS...

  1. Continuous Improvement Energy Projects Reduce Energy Consumption

    E-Print Network [OSTI]

    Niemeyer, E.

    2014-01-01T23:59:59.000Z

    Continuous Improvement Energy Projects Reduce Energy Consumption Eric Niemeyer, Operations Superintendent Drilling Specialties Company A division of Chevron Phillips Chemical Company LP ESL-IE-14-05-31 Proceedings of the Thrity..., LA. May 20-23, 2014 A presentation of the paper Continuous Improvement Energy Projects Reduce Energy Consumption by Bruce Murray and Allison Myers ESL-IE-14-05-31 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans...

  2. Laser Drilling - Drilling with the Power of Light

    SciTech Connect (OSTI)

    Brian C. Gahan; Samih Batarseh

    2004-09-28T23:59:59.000Z

    Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser compares with other lasers used in past experimental work, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. Variables investigated include laser power, beam intensity, external purging of cut materials, sample orientation, beam duration, beam shape, and beam frequency. The investigation also studied the thermal effects on the two sample rock types and their methods of destruction: spallation for sandstone, and thermal dissociation for limestone. Optimal operating conditions were identified for each rock type and condition. As a result of this experimental work, the HPFL has demonstrated a better capability of cutting and drilling limestone and sandstone when compared with other military and industrial lasers previously tested. Consideration should be given to the HPFL as the leading candidate for near term remote high power laser applications for well construction and completion.

  3. November 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

  4. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  5. Well drilling tool

    SciTech Connect (OSTI)

    Fox, F.K.

    1981-04-07T23:59:59.000Z

    There is disclosed a turbodrill having an axial thrust bearing section which is contained within a lubricant chamber arranged within an annular space between the case and shaft of the turbodrill above the turbine section, and which is defined between means sealing between the shaft and the case which, in use of the turbodrill, are above the drilling fluid circulating therethrough.

  6. Proposed Drill Sites

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  7. Drilling subsurface wellbores with cutting structures

    DOE Patents [OSTI]

    Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

    2010-11-30T23:59:59.000Z

    A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

  8. Measurement-While-Drilling (MWD) development for air drilling

    SciTech Connect (OSTI)

    Harrison, W.A.; Rubin, L.A.

    1993-12-31T23:59:59.000Z

    When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

  9. Investigation of the feasibility of deep microborehole drilling

    SciTech Connect (OSTI)

    Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

    1997-01-01T23:59:59.000Z

    Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

  10. Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices

    E-Print Network [OSTI]

    Walker, D. Greg

    Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices 19 th University Nashville, TN 37221 greg.walker@vanderbilt.edu Thermoelectric devices have gained importance focused towards developing both thermoelectric structures and materials that have high efficiency

  11. Improving environmental performances of organic spreading technologies through the use of life cycle

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Improving environmental performances of organic spreading technologies through the use of life) is generally used to assess environmental performances of a product or a system. Some agricultural LCA were carried out to assess environmental performances of fertilisation processes, but they barely take

  12. Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies

    E-Print Network [OSTI]

    Saving Energy and Improving IAQ through Application of Advanced Air Cleaning Technologies Table 1 equipment and people from particles. Criteria for Air Cleaning Reducing ventilation rates to save energy, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates

  13. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01T23:59:59.000Z

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  14. Impact of common problems in geothermal drilling and completion

    SciTech Connect (OSTI)

    Carson, C.C.; Lin, Y.T.

    1982-01-01T23:59:59.000Z

    Problems that arise in geothermal drilling and completion account for a significant portion of geothermal well costs. In order to evaluate new technologies for combatting these problems, the relative frequencies and severities of different problems have been estimated. The estimates were based on both subjective judgements and analysis of available drilling records. The most common problems include lost circulation, stuck pipe and cementing, and their impact is to increase well cost by an average of at least 15%.

  15. Stimulation Technologies for Deep Well Completions

    SciTech Connect (OSTI)

    None

    2003-09-30T23:59:59.000Z

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  16. Experimental study of the D-OSKIL mechanism for controlling the stick-slip oscillations in a drilling laboratory testbed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in a drilling laboratory testbed Haochuan Lu Electrical&Electronic Engineering Nanyang Technological University details of the experimental process and the obtained drilling performance. Results show that the stick are drilled with a rotary drillstring system. Different drillstring oscillations are an important cause

  17. Development of a micro-drilling burr-control chart for PCB drilling

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    single- or double-sided). Drilling provides the holes forstandard conditions. Fig. 4. Drilling experimental setup.a standard procedure in PCB drilling). These were clamped

  18. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Murphy, M.B.

    1999-02-01T23:59:59.000Z

    Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

  19. DOE Project Leads to New Alliance to Promote Low-Impact Drilling

    Broader source: Energy.gov [DOE]

    A project supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has given rise to a major new research consortium to promote advanced technology for low-impact oil and gas drilling.

  20. Practical applications of a drilling data center

    SciTech Connect (OSTI)

    Graff, R.L.; Segrest, R.P.

    1986-05-19T23:59:59.000Z

    Tenneco Oil is using a real-time drilling-data acquisition, telemetry, data base, and applications-program system for Gulf of Mexico operations. The system provides for data acquisition in real time from commercially available logging units. The data are transmitted into a central office onshore via microwave or satellite telemetry links. Up to 352 drilling parameters are transmitted from each computerized logging unit and archived in the data base every 20 sec. Parameters can include measurement-while-drilling (MWD) data as well as mud-logging data. Applications programs utilizing these parameters are available in the central site data center (CSDC) and in locations throughout Tenneco's facilities in Lafayette, La. Access to the CSDC and its computing power is also available on the offshore rig. Backup surveillance of critical drilling parameters is provided through alarms and continuous monitoring of the parameters, thus providing for a safer operation. Rig efficiency has also been improved through analysis of the data and comparison of the data between various rig operations and rigs. Both tangible and intangible cost savings are discussed.

  1. Deep Drilling Basic Research: Volume 4 - System Description. Final Report, November 1988--August 1990

    SciTech Connect (OSTI)

    Anderson, E.E.; Maurer, W.C.; Hood, M.; Cooper, G.; Cook, N.

    1990-06-01T23:59:59.000Z

    The first section of this Volume will discuss the ''Conventional Drilling System''. Today's complex arrangement of numerous interacting systems has slowly evolved from the very simple cable tool rigs used in the late 1800s. Improvements to the conventional drilling rig have varied in size and impact over the years, but the majority of them have been evolutionary modifications. Each individual change or improvement of this type does not have significant impact on drilling efficiency and economics. However, the change is almost certain to succeed, and over time--as the number of evolutionary changes to the system begin to add up--improvements in efficiency and economics can be seen. Some modifications, defined and described in this Volume as Advanced Modifications, have more than just an evolutionary effect on the conventional drilling system. Although the distinction is subtle, there are several examples of incorporated advancements that have had significantly more impact on drilling procedures than would a truly evolutionary improvement. An example of an advanced modification occurred in the late 1970s with the introduction of Polycrystalline Diamond Compact (PDC) drill bits. PDC bits resulted in a fundamental advancement in drilling procedures that could not have been accomplished by an evolutionary improvement in materials metallurgy, for example. The last drilling techniques discussed in this Volume are the ''Novel Drilling Systems''. The extent to which some of these systems have been developed varies from actually being tested in the field, to being no more than a theoretical concept. However, they all have one thing in common--their methods of rock destruction are fundamentally different from conventional drilling techniques. When a novel drilling system is introduced, it is a revolutionary modification of accepted drilling procedures and will completely replace current techniques. The most prominent example of a revolutionary modification in recent history was the complete displacement of cable tool rigs by rotary drilling rigs in the late 1920s.

  2. Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds

  3. Greening PCB Drilling Process: Burr Minimization and Other Strategies

    E-Print Network [OSTI]

    Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

    2011-01-01T23:59:59.000Z

    Multi-layer PWB by LASER Direct Drilling, The proceedingsresearch about using laser direct drilling to drill hole in

  4. System design and field results of closed loop guided directional drilling system

    SciTech Connect (OSTI)

    Calderoni, A.; Donati, F.; Ligrone, A. [AGIP S.p.A., Milan (Italy); Oppelt, J.; Ragnitz, D. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1996-09-01T23:59:59.000Z

    A new family of automatic directional drilling tools has been introduced to the field. The development process started with an automated vertical drilling system, followed by a more generally applicable straight hole drilling device. Now a fully directional closed loop system has been established comprising a rotary steering device, a two-way communication link and an intelligent surface system. The downhole tool includes a modular electronic control and measurement system with directional and formation evaluation sensors and can operate at temperatures up to 185 C with full functionality. The paper presents system and tool design and reports about field results and experience in terms of performance, reliability, directional behavior etc. The vertical drilling system was a breakthrough in vertical drilling technology for the German deep drilling project, the straight hole drilling device has been successfully run in various oilfield applications in Europe. The fully directional system is looking forward for early field testing by the end of 1995.

  5. Proposal for a Planetary Geology and Geophysics Initiative on Lunar Drilling Shaopeng Huang, Dept. Geol. Sciences., University of Michigan, Ann Arbor, MI 48109-1005

    E-Print Network [OSTI]

    Huang, Shaopeng

    and technology. As the Moon is the cornerstone for deep space exploration, lunar drilling will become technologies for lunar drilling is lagging behind deep space exploration strategy and planning. Compelling verification of those new conceptual models. · Borehole drilling is the only means of directly measuring

  6. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim [Cooper Tire & Rubber Company Incorporated, Findlay, OH (United States)

    2014-12-31T23:59:59.000Z

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the replacement market that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Coopers CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  7. Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:

    SciTech Connect (OSTI)

    Satrape, J.V.

    1987-11-24T23:59:59.000Z

    The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

  8. OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

  9. The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful

    E-Print Network [OSTI]

    Feldman, J.

    The New Energy Management Frontier: The Critical Role of a Systematic Management Approach in Making Technology Improvements Successful Jon Feldman Senior Consultant Hatch Consulting Mississauga, Ontario, Canada ABSTRACT Improvements... in technology certainly playa pivotal role in the quest for increased energy efficiency. However, sophisticated industrial energy users are increasingly learning that technology alone cannot drive long-tenn, sustainable reductions in energy cost. The role...

  10. Recommendations of the workshop on advanced geothermal drilling systems

    SciTech Connect (OSTI)

    Glowka, D.A.

    1997-12-01T23:59:59.000Z

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  11. The Development of Improved Energy Efficient Housing for Thailand Utilizing Renewable Energy Technology

    E-Print Network [OSTI]

    Rasisuttha, S.; Haberl, J.

    SimBuild 2004, IBPSA-USA National Conference, Boulder, CO, August 4-6th, 2004, p. 1 THE DEVELOPMENT OF IMPROVED ENERGY EFFICIENT 1 HOUSING FOR THAILAND UTILIZING RENEWABLE ENERGY TECHNOLOGY 2 3... The paper reports on the results of research to reduce energy consumption in residential buildings in a hot and humid climate region (Thailand) using efficient architectural building components, energy efficient building systems, and renewable energy...

  12. Transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R; Fox, Joe R

    2006-05-30T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

  13. Research and Application on the Mechanical Characters of Rotary Steering Drilling Tool

    E-Print Network [OSTI]

    Jiang, Shan

    2014-12-10T23:59:59.000Z

    AND CHARACTERISTICS OF ROTARY STEERABLE DRILLING TOOL SYSTEMS (RSS) TECHNOLOGY ................................................. 8 2.1 Main Features of Baker Hughes AutoTrak Rotary Steering Drilling Tool ..... 10 2.2 Main Features of Schlumberger PowerDriver RSS.... Baker Hughes AutoTrak, Schlumberger PowerDrive and Halliburton Geopilot are the most typical representatives of technical progress [1] [2]. The RSS has entered a large-scale industrial application stage, greatly advancing the progress of drilling...

  14. Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

  15. Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design

    SciTech Connect (OSTI)

    Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States); Heuze, F.E.; Butler, M.W. [Lawrence Livermore National Lab., CA (United States)

    1996-09-01T23:59:59.000Z

    While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

  16. February 2002 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE, Italy, The Netherlands, Norway, Spain, Sweden, and Switzerland) Institut National des Sciences de l States) Natural Environment Research Council (United Kingdom) Ocean Research Institute of the University

  17. Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

  18. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22T23:59:59.000Z

    OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  19. Improved Electrical Contact For Dowhhole Drilling Networks

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

    2005-08-16T23:59:59.000Z

    An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

  20. PV Cz silicon manufacturing technology improvements. Semiannual subcontract report, 1 April 1993--30 September 1993

    SciTech Connect (OSTI)

    Jester, T. [Siemens Solar Industries, Camarillo, CA (United States)

    1994-06-01T23:59:59.000Z

    This report describes work performed under a 3-year contract to demonstrate signfficant cost reductions and improvements in manufacturing technology. The work focused an near-term projects for implementation in the Siemens Solar Industries (SSI) Czochralski (CZ) manufacturing facility in Camarillo, California, and was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each Rem through experimentation, materials refinement, and better industrial engineering. During this reporting period, several significant improvements were achieved. (1) The crystal-growing operation improved with an increase in growth capacity. Higher growing throughput was demonstrated with larger crucibles, higher polysilicon packing density, and higher pull speeds. (2) The operation was completely converted to wire-saw wafer processing. The wire saws yield over 40% more wafers per inch in production. The capacity improvement generated by wire saws increased overall manufacturing volume by more than 40% without additional expenses in cyrstal growth. (3) Cell processing improvements focused on better understanding of the contact paste and firing processes. (4) Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and less costly framing technique. CFC usage was completely eliminated in the SSI manufacturing facility during this phase of the contract.

  1. A simulation study of a Subsea Mudlift Drilling system during tripping operations

    E-Print Network [OSTI]

    Escobar Parada, Alvaro Hernando

    1999-01-01T23:59:59.000Z

    To face the new challenges that the petroleum industry has in deepwaters, a Subsea Mudlift Drilling Joint Industry Project, SMDJIP, was formed. The main task for this project is to develop the technology needed to drill in water depths beyond 7500...

  2. Elk's drilling pace steadies

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    The production level in the Elk Hills oil field in California (normally 161,000 bpd) is expected to remain constant in 1980 with the possibility of a 2000 to 3000 bpd increase in the second 6 months. The drilling pace also is expected to follow the same pattern of increased activity in the second 6 months of the year. The field is part of Naval Petroleum Reserve No. 1, where operation of a gas plant and construction of new production facilities also is occurring. The predicted increase in Elk Hills production would come from operations of the gas plant as it comes fully on stream. The new production facilities include a low temperature separation facility. The possibility of implementing a waterflood program in part of the reserve and the future development of fractured shale sections also are discussed.

  3. Horizontal well successfully drilled in Black Warrior basin

    SciTech Connect (OSTI)

    Butler, J.R. [Mississippi Valley Gas Co., Jackson, MS (United States); Skeen, B. [Sperry-Sun Drilling Services, Dallas, TX (United States)

    1996-07-22T23:59:59.000Z

    The first horizontal well successfully drilled and completed in the very abrasive Black Warrior basin required the use of several state-of-the-art drilling technologies and quick decision making at the well site. Mississippi Valley Gas Co.`s first horizontal well in the Goodwin natural gas storage field has a deliverability about six times that of a conventional vertical well in the same reservoir. The MVG Howard 35-4 No. 1 was drilled in 23 days during September and October 1995. The well reached 1,805 ft true vertical depth (TVD) and 3,660 ft measured depth. The horizontal section length was 1,650 ft. The well reached the target, and the economics were favorable. The paper describes the geology of the basin, Goodwin field, the decision for a horizontal well, the difficulties encountered, and evaluation of the technologies used.

  4. A Measurement Management Technology for Improving Energy Efficiency in Data Centers and Telecommunication Facilities

    SciTech Connect (OSTI)

    Hendrik Hamann, Levente Klein

    2012-06-28T23:59:59.000Z

    Data center (DC) electricity use is increasing at an annual rate of over 20% and presents a concern for the Information Technology (IT) industry, governments, and the society. A large fraction of the energy use is consumed by the compressor cooling to maintain the recommended operating conditions for IT equipment. The most common way to improve the DC efficiency is achieved by optimally provisioning the cooling power to match the global heat dissipation in the DC. However, at a more granular level, the large range of heat densities of today's IT equipment makes the task of provisioning cooling power optimized to the level of individual computer room air conditioning (CRAC) units much more challenging. Distributed sensing within a DC enables the development of new strategies to improve energy efficiency, such as hot spot elimination through targeted cooling, matching power consumption at rack level with workload schedule, and minimizing power losses. The scope of Measurement and Management Technologies (MMT) is to develop a software tool and the underlying sensing technology to provide critical decision support and control for DC and telecommunication facilities (TF) operations. A key aspect of MMT technology is integration of modeling tools to understand how changes in one operational parameter affect the overall DC response. It is demonstrated that reduced ordered models for DC can generate, in less than 2 seconds computational time, a three dimensional thermal model in a 50 kft{sup 2} DC. This rapid modeling enables real time visualization of the DC conditions and enables 'what if' scenarios simulations to characterize response to 'disturbances'. One such example is thermal zone modeling that matches the cooling power to the heat generated at a local level by identifying DC zones cooled by a specific CRAC. Turning off a CRAC unit can be simulated to understand how the other CRAC utilization changes and how server temperature responds. Several new sensing technologies were added to the existing MMT platform: (1) air contamination (corrosion) sensors, (2) power monitoring, and (3) a wireless environmental sensing network. All three technologies are built on cost effective sensing solutions that increase the density of sensing points and enable high resolution mapping of DCs. The wireless sensing solution enables Air Conditioning Unit (ACU) control while the corrosion sensor enables air side economization and can quantify the risk of IT equipment failure due to air contamination. Validation data for six test sites demonstrate that leveraging MMT energy efficiency solutions combined with industry best practices results in an average of 20% reduction in cooling energy, without major infrastructure upgrades. As an illustration of the unique MMT capabilities, a data center infrastructure efficiency (DCIE) of 87% (industry best operation) was achieved. The technology is commercialized through IBM System and Technology Lab Services that offers MMT as a solution to improve DC energy efficiency. Estimation indicates that deploying MMT in existing DCs can results in an 8 billion kWh savings and projection indicates that constant adoption of MMT can results in obtainable savings of 44 billion kWh in 2035. Negotiations are under way with business partners to commercialize/license the ACU control technology and the new sensor solutions (corrosion and power sensing) to enable third party vendors and developers to leverage the energy efficiency solutions.

  5. Air emissions from laser drilling of printed wiring board materials. Report for May 1995--July 1997

    SciTech Connect (OSTI)

    Darvin, C.H.; Kershner, C.J.

    1999-05-01T23:59:59.000Z

    The paper gives results of a study to characterize gases generated during laser drilling of printed wiring board (PWB) material and identifies the pollutants and generation rates found during the drilling process. The electronics packaging industry has traditionally relied on mechanical drilling systems to prepare holes in PWB material. Recently, however, a potentially new and innovative application for laser technology was developed for drilling PWB holes. This application of lasers has the potential to significantly reduce the time and cost of producing PWBs. The process is also predicted to reduce the volume of solid waste product generated during PWB manufacture. The continuing question presented on the use of laser drilling is its potential for producing air pollution which may be generated from thermal decomposition at the laser drilling site.

  6. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  7. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  8. GeoEnergy technology

    SciTech Connect (OSTI)

    NONE

    1980-12-31T23:59:59.000Z

    The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

  9. LED exit signs: Improved technology leads the way to energy savings

    SciTech Connect (OSTI)

    Sardinsky, R.; Hawthorne, S.

    1994-12-31T23:59:59.000Z

    Recent innovations in light-emitting diode (LED) exit signs may make LED signs the best choice among the energy efficient options available. In the past, LED signs have offered low power consumption, projected long lamp life, and low maintenance requirements. Now, the best of the LED signs also offer improved optical designs that reduce their already low power consumption while improving visibility and appearance, and even reduce their cost. LED exit signs are gaining market share, and E Source expects this technology to eventually dominate over incandescent, compact fluorescent, and electroluminescent signs. More research is needed, however, to confirm manufacturers` claims of 20-year operating lives for LED signs. Conservative estimates place the number of exit signs in US buildings at about 40 million. Although each sign represents a very small part of a building`s load, exit signs are ready targets for energy efficiency upgrades -- they operate continuously and most use inefficient incandescent sources. With an LED sign, annual energy and maintenance costs can be reduced by more than 90 percent compared to a typical incandescent sign. Low annual costs help to offset the LED sign`s relatively high first cost. More than 25 utilities offer DSM incentives for energy efficient exit signs, and efficient alternatives are becoming more readily available. Recent improvements in optical designs enable many LED signs to visually out perform other sources. In addition to these benefits, LED exit signs have lower life cycle cost than most other options. The biggest barrier to their success, however, is that their first cost has been considerably higher than competing technologies. LED sign prices are falling rapidly, though, because manufacturers are continually improving optical designs of the fixtures to use fewer LEDs and thus even less energy while providing better performance.

  10. Drilling engineering package used for extended reach project

    SciTech Connect (OSTI)

    Chapman, P. (BP Exploration, Sunbury (United Kingdom)); Good, A. (Baker Hughes Inteq, Houston, TX (United States))

    1995-02-20T23:59:59.000Z

    Extended reach drilling can improve the economics of some field developments by minimizing the number of facilities required to access remote reserves. The technique requires detailed engineering design and monitoring, however, to minimize the risk of operating at the limits of drilling equipment. Working as a team over the past 4 years, BP Exploration (BPX) and Baker Hughes Inteq have developed an integrated drilling engineering package for the planning, monitoring, and review of well construction data. The drilling engineering application platform (DEAP) is now used by BP Exploration worldwide for the integrated engineering design, monitoring, and review of its wells. These engineering applications are linked together via a data base and drilling reporting system. Integration between rig site reporting and the engineering applications allows the current drilling operation to be analyzed at the touch of a single computer button. DEAP also provides links to commercially available software packages. This facility, along with its graphical user interface, encourages and simplifies the use of engineering tools at the rig site. The full capabilities of DEAP can perhaps be seen as four key functions necessary for successful well bore construction management.

  11. Laser Oil and Gas Well Drilling Demonstration Videos

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

  12. Site selection, drilling, and completion of two horizontal wells in the Devonian Shales of West Virginia. Final report

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Locke, C.D.; Salamy, S.P.; Reeves, T.K.; Johnson, H.R.

    1992-03-01T23:59:59.000Z

    This report presents a summary of the geologic site selection studies, planning, drilling, completing, stimulating, and testing of two horizontal wells drilled in the Devonian Shales of the Appalachian Basin in West Virginia. Each horizontal well was designed and managed by BDM as the prime contractor to the Department of Energy. The first well was drilled with industry partner Cabot Oil and Gas Corporation in Putnam County, West Virginia. The second well was drilled with Consolidated Natural Gas Company in Calhoun County, West Virginia. This report summarizes four reports prepared by BDM which detail the site selection rationale and the drilling and completion operations of each well. Each horizontal well is currently producing commercial quantities of hydrocarbons. The successful application of horizontal well technology represent continued development of the technology for application to tight and unconventional natural gas resources of the United States. Continued technology development is expected to ultimately result in commercial horizontal well drilling activity by industry in the Appalachian Basin.

  13. An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars

    E-Print Network [OSTI]

    McConnell, Joshua B

    2000-01-01T23:59:59.000Z

    with investigating the properties of the created liner. Research Goal The Rock Melt Drill is one of several drilling technologies that may possess the potential for being an optimum choice for drilling on Mars, as will be discussed in greater depth in Chapter...

  14. Manufacturing improvements in the Photovoltaic Manufacturing Technology (PVMaT) Project

    SciTech Connect (OSTI)

    Witt, C.E.; Mitchell, R.L.; Thomas, H.P.; Symko, M.I. [National Renewable Energy Lab., Golden, CO (United States); King, R. [Dept. of Energy, Washington, DC (United States); Ruby, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1998-08-01T23:59:59.000Z

    The Photovoltaic Manufacturing Technology Project (PVMaT) is a government/industry research and development (R and D) partnership between the US federal government (through the US Department of Energy [DOE]) and members of the US PV industry. The goals of PVMaT are to help the US PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance the investment opportunities for substantial scale-ups of US-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share risk taking by industry as it explores new manufacturing options and ideas for improved PV modules and other components, advances system and product integration, and develops new system designs, all of which will lead to overall reduced system life-cycle costs for reliable PV end products. The PVMaT Phase 4A module manufac turing R and D projects are just being completed, and initial results for the work directed primarily to module manufacture are reported in this paper. Fourteen new Phase 5A subcontracts have also just been awarded, and planned R and D areas for the ten focused on module manufacture are described. Finally, government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are presented.

  15. Geothermal drill pipe corrosion test plan

    SciTech Connect (OSTI)

    Caskey, B.C.; Copass, K.S.

    1980-12-01T23:59:59.000Z

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  16. REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

  17. OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

  18. OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  19. OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

  20. HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN

    E-Print Network [OSTI]

    HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

  1. OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

  2. OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

  3. INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)

    E-Print Network [OSTI]

    INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

  4. OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

  5. OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  6. Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    SciTech Connect (OSTI)

    Mark B. Murphy

    1998-04-30T23:59:59.000Z

    The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

  7. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry

    E-Print Network [OSTI]

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-01-01T23:59:59.000Z

    of Demonstrated Energy Technologies, Newsletter No. 3.over 160 new, energy efficient technologies (42). Many oftargeted towards energy saving technologies and practices

  8. Under-sodium viewing technology for improvement of fast-reactor safeguards

    SciTech Connect (OSTI)

    Beddingfield, David H [Los Alamos National Laboratory; Gerhart, Jeremy J [Los Alamos National Laboratory; Kawakubo, Yoko [JAEA

    2009-01-01T23:59:59.000Z

    The current safeguards approach for fast reactors relies exclusively on maintenance of continuity of knowledge to track the movement of fuel assemblies through these facilities. The remote handling of fuel assemblies, the visual opacity of the liquid metal coolant. and the chemical reactivity of sodium all combine and result in significant limitations on the available options to verify fuel assembly identification numbers or the integrity of these assemblies. These limitations also serve to frustrate attempts to restore the continuity-of-knowledge in instances where the information is under a variety of scenarios. The technology of ultrasonic under-sodium viewing offers new options to the safeguards community for recovering continuity-of-knowledge and applying more traditional item accountancy to fast reactor facilities. We have performed a literature review to investigate the development of under-sodium viewing technologies. In this paper we will summarize our findings and report the state of development of this technology and we will present possible applications to the fast reactor system to improve the existing safeguards approach at these reactors and in future fast reactors.

  9. DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto

    E-Print Network [OSTI]

    Boyer, Edmond

    DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

  10. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  11. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  12. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  13. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  14. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure ModeGeothermal

  15. Friction Reduction for Microhole CT Drilling

    SciTech Connect (OSTI)

    Ken Newman; Patrick Kelleher; Edward Smalley

    2007-03-31T23:59:59.000Z

    The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

  16. Improved recovery demonstration for Williston Basin carbonates. Final report

    SciTech Connect (OSTI)

    Sippel, M.A.

    1998-07-01T23:59:59.000Z

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

  17. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PIƒ ƒ ‚ ¢ƒ ‚ ‚ € ƒ ‚ ‚ ™ s: Von Richards, Jeffrey Smith

    2012-07-31T23:59:59.000Z

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  18. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf San Andres Reservoir.

    SciTech Connect (OSTI)

    Taylor, A.R.; Hickman, T.S. [T. SCOTT HICKMAN AND ASSOCIATES 550 WEST TEXAS STREET SUITE 950 MIDLAND, TX (United States) 79701; Justice, J.J. [ADVANCED RESERVOIR TECHNOLOGIES P. O. BOX 985 ADDISON, TX (United States) 75001-0985

    1997-07-30T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l. Advanced petrophysics 2. Three-dimensional (3-D) seismic 3. Cross-well bore tomography 4. Advanced reservoir simulation 5. Carbon dioxide (CO{sub 2}) stimulation treatments 6. Hydraulic fracturing design and monitoring 7. Mobility control agents. West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982-86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible C0 injection project at the South Welch Unit. The reservoir quality at the West Welch Unit is poorer than other San Andres reservoirs due to its relative position to sea level during deposition. Because of the proximity of a C0{sub 2} source and the C0{sub 2} operating experience that would be available from the South Welch Unit, West Welch Unit is an ideal location for demonstrating methods for enhancing economics of IOR projects in lower quality SSC reservoirs. This Class 2 project concentrates on the efficient design of a miscible C0{sub 2} project based on detailed reservoir characterization from advanced petrophysics, 3- D seismic interpretations and cross wellbore tomography interpretations. During the quarter, the project area was expanded to include an area where the seismic attribute mapping indicated potential for step-out locations. Progress was made on interpreting the crosswell seismic data and the C0{sub 2} performance simulation was further improved. Construction of facilities required for C0{sub 2} injection were completed.

  19. Shallow gas well drilling with coiled tubing in the San Juan Basin

    SciTech Connect (OSTI)

    Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

    1996-12-31T23:59:59.000Z

    Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

  20. BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE

    E-Print Network [OSTI]

    Kurfurst, P.J.

    2011-01-01T23:59:59.000Z

    Drilling Costs and Rates . . . . . . . . . . , . .TABLES I. II. III. Costs of Core Drilling Per Meter. . . . .ABSTRACT . . L vi vi vii INTRODUCTION DRILLING . Surface

  1. Greening PCB Drilling Process: Burr Minimization and Other Strategies

    E-Print Network [OSTI]

    Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

    2011-01-01T23:59:59.000Z

    of Analytical Model for Drilling Burr Formation in DuctileJ. and Chen, L. , Drilling Burr Formation in Titaniumfor Burr Minimization in Drilling, PhD dissertation, The

  2. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  3. Bioaugmentation for the treatment of oilfield drilling waste

    SciTech Connect (OSTI)

    Barber, T.P. [BioGEE International, Inc., Houston, TX (United States)

    1997-06-01T23:59:59.000Z

    Disposal of oilfield drilling pit waste is a problem for the petroleum industry. In the past, drilling pits were covered with dirt of the waste was excavated and hauled to a landfill. Bioremediation can clean-up the waste and save the oilfield drillers money and headaches. Bioremediation is the technique of using microbes capable of metabolizing hydrocarbons into environmentally safe water and carbon dioxide. Drilling companies can utilize bioremediation to treat the petroleum wastes in-situ rather than transport the waste. BioGEE has developed a procedure to use in-situ bioremediation on drilling wastes. After environmental conditions are adjusted, hydrocarbon degrading microbes and nutrients are applied. Drilling wastes consist primarily of hydrocarbons. An average well has a total petroleum hydrocarbon (TPH) level of 44,880 PPM. Using BioGEE`s bioremediation technology, TPH levels have successfully been lowered to below the maximum allowable level of 10,000 PPM to 6,486 PPM of TPH in 47 days.

  4. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect (OSTI)

    Robert Radtke

    2006-01-31T23:59:59.000Z

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  5. VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK

    SciTech Connect (OSTI)

    David S. Pixton

    2002-11-01T23:59:59.000Z

    Testing of a high-speed digital data transmission system for drill pipe is described. Passive transmission of digital data through 1000 ft of telemetry drill pipe has been successfully achieved. Data rates of up to 2 Mbit/sec have been tested through the 1000 ft system with very low occurrence of data errors: required error correction effort is very low or nonexistent. Further design modifications have been made to improve manufacturability and high pressure robustness of the transmission line components. Failure mechanisms of previous designs at high pressure and high temperature are described. Present design limitations include high temperature application.

  6. Design Improvements and Analysis of Innovative High-Level Waste Pipeline Unplugging Technologies - 12171

    SciTech Connect (OSTI)

    Pribanic, Tomas; Awwad, Amer; Crespo, Jairo; McDaniel, Dwayne; Varona, Jose; Gokaltun, Seckin; Roelant, David [Florida International University, Miami, Florida (United States)

    2012-07-01T23:59:59.000Z

    Transferring high-level waste (HLW) between storage tanks or to treatment facilities is a common practice performed at the Department of Energy (DoE) sites. Changes in the chemical and/or physical properties of the HLW slurry during the transfer process may lead to the formation of blockages inside the pipelines resulting in schedule delays and increased costs. To improve DoE's capabilities in the event of a pipeline plugging incident, FIU has continued to develop two novel unplugging technologies: an asynchronous pulsing system and a peristaltic crawler. The asynchronous pulsing system uses a hydraulic pulse generator to create pressure disturbances at two opposite inlet locations of the pipeline to dislodge blockages by attacking the plug from both sides remotely. The peristaltic crawler is a pneumatic/hydraulic operated crawler that propels itself by a sequence of pressurization/depressurization of cavities (inner tubes). The crawler includes a frontal attachment that has a hydraulically powered unplugging tool. In this paper, details of the asynchronous pulsing system's ability to unplug a pipeline on a small-scale test-bed and results from the experimental testing of the second generation peristaltic crawler are provided. The paper concludes with future improvements for the third generation crawler and a recommended path forward for the asynchronous pulsing testing. (authors)

  7. Improving consumer value through enhanced performance around...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including very deep wells already producing oil and gas and drilling operations for new wells. Wireless technology collects real-time information from oil and gas wells April,...

  8. Improved Performance of an Air Cooled Condenser (ACC) Using SPX Wind Guide Technology at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2010-12-31T23:59:59.000Z

    This project added a new airflow enhancement technology to an existing ACC cooling process at a selected coal power plant. Airflow parameters and efficiency improvement for the main plant cooling process using the applied technology were determined and compared with the capabilities of existing systems. The project required significant planning and pre-test execution in order to reach the required Air Cooled Condenser system configuration for evaluation. A host Power Plant ACC system had to be identified, agreement finalized, and addition of the SPX ACC Wind Guide Technology completed on that site. Design of the modification, along with procurement, fabrication, instrumentation, and installation of the new airflow enhancement technology were executed. Baseline and post-modification cooling system data was collected and evaluated. The improvement of ACC thermal performance after SPX wind guide installation was clear. Testing of the improvement indicates there is a 5% improvement in heat transfer coefficient in high wind conditions and 1% improvement at low wind speed. The benefit increased with increasing wind speed. This project was completed on schedule and within budget.

  9. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  10. OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

  11. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21T23:59:59.000Z

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  12. Development of a high-temperature diagnostics-while-drilling tool.

    SciTech Connect (OSTI)

    Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

    2009-01-01T23:59:59.000Z

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

  13. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  14. AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program

    E-Print Network [OSTI]

    AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

  15. Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference

    E-Print Network [OSTI]

    Aamodt, Agnar

    Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid and how to free stuck drill strings. IADC Middle East Drilling Conference, Dubai, Nov. 3 - 4, 1998. P

  16. CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS**, Dr. VASILIS

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS, antoniadis@dpem.tuc.gr Abstract: Twist drills are geometrically complex tools, which are used in industry and experimental approaches for drilling simulation. The present paper is based on the ground that the increasing

  17. 2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database

    E-Print Network [OSTI]

    2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

  18. Downhole drilling network using burst modulation techniques

    DOE Patents [OSTI]

    Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

    2007-04-03T23:59:59.000Z

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  19. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

  20. Energy Efficiency Improvements of U.S. Olefins Crackers

    E-Print Network [OSTI]

    Benton, J.

    2013-01-01T23:59:59.000Z

    ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 8 Energy Efficiency Initiatives ? Energy ?Best Practices? Deep-Drills ? Driven by Technology Center; business-wide approach...1 Energy Efficiency Improvements of U.S. Olefins Crackers Jim Benton Energy Efficiency Leader - Hydrocarbons Dow Chemical Company ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21...

  1. OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

  2. OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  3. OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  4. OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

  5. OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

  6. OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

  7. OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

  8. SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

  9. OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

  10. OCEAN DRILLING PROGRAM LEG 100 REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

  11. OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

  12. drilling in Tapping Automaker Ingenuity to

    E-Print Network [OSTI]

    Kammen, Daniel M.

    drilling in detroit Tapping Automaker Ingenuity to Build Safe and Efficient Automobiles DAVID paper #12;iiiDrilling in Detroit Figures v Tables vii Acknowledgements xi Executive Summary xiii 1. Actual Motor Vehicle Crash Statistics 97 #12;vDrilling in Detroit Figures 1. US Oil Product Demand 2 2

  13. OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

  14. OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

  15. ESF Consortium for Ocean Drilling White Paper

    E-Print Network [OSTI]

    Purkis, Sam

    ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

  16. OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

  17. OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

  18. OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

  19. OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

  20. LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM

    E-Print Network [OSTI]

    LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

  1. OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

  2. DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS

    E-Print Network [OSTI]

    for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

  3. Directional drilling and equipment for hot granite wells

    SciTech Connect (OSTI)

    Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

    1981-01-01T23:59:59.000Z

    The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

  4. The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    The SWEET-HOME Project: Audio Technology in Smart Homes to improve Well-being and Reliance Michel- nologies (ICT), one way to achieve this aim is to promote the development of smart homes. In the health domain, a health smart home is a habitation equipped with a set of sensors, actuators, automated devices

  5. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  6. Role of design complexity in technology improvement James McNerneya,b

    E-Print Network [OSTI]

    model for the evolution of the cost (or more generally the performance) of a technology or production experience curve learning curve performance curve The relation between a technology's cost c technologies in Fig. 1. The relationship between cost and cumulative production goes under several different

  7. High-temperature directional drilling turbodrill

    SciTech Connect (OSTI)

    Neudecker, J.W.; Rowley, J.C.

    1982-02-01T23:59:59.000Z

    The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

  8. Conformable apparatus in a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2007-08-28T23:59:59.000Z

    An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

  9. Underbalanced drilling with air offers many pluses

    SciTech Connect (OSTI)

    Shale, L. [Baker Hughes Inteq, Houston, TX (United States)

    1995-06-26T23:59:59.000Z

    A pressure overbalance during conventional drilling can cause significant fluid filtrate invasion and lost circulation. Fluid invasion into the formation can lead to formation damage, high mud costs, a need for expensive completions, and well productivity impairment. Because underbalanced drilling creates a natural tendency for fluid and gas to flow from the formation to the borehole, successful underbalanced drilling depends upon the appropriate selection of circulating fluid. The use of a compressible fluid in the circulating system, referred to as air drilling, lowers the downhole pressure, allowing drilling into and beyond these sensitive formations. The paper discusses the equipment needed; well control; downhole air requirements; air drilling techniques using dry air, air-mist, stable foam, stiff foam, and aerated-fluid; downhole fires; directional air drilling; and well completions.

  10. Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

  11. Directional drilling equipment and techniques for deep hot granite wells

    SciTech Connect (OSTI)

    Brittenham, T.L.; Sursen, G.; Neudecker, J.W.; Rowley, J.C.; Williams, R.E.

    1980-01-01T23:59:59.000Z

    Conventional directional drilling technology has been extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, Hot dry Rock (HDR) experimental site. Completing the first of a two-wellbore HDR system has resulted in the definition of operational limitations of many conventional directional drilling tools, instrumentation and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-2), to a measured depth of 15,300 ft (4.7 km) in granite reservoir rock with a bottomhole temperature of 530/sup 0/F (275/sup 0/C) required the development of a new high temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 8500 ft (2.6 km) of directional hole to a final inclination of 35/sup 0/ from the vertical at a controlled azimuthal orientation.

  12. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01T23:59:59.000Z

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  13. Filter for a drill string

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

    2007-12-04T23:59:59.000Z

    A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

  14. Vehicle Technologies Office Merit Review 2014: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office Merit Review 2015: A Novel Lubricant Formulation Scheme for 2% Fuel Efficiency Improvement

    Broader source: Energy.gov [DOE]

    Presentation given by Northwestern University at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about a novel lubricant...

  17. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry

    E-Print Network [OSTI]

    Lung, R. B.; Masanet, E.; McKane, A.

    2006-01-01T23:59:59.000Z

    generation 0.6 kg CO 2 /kWh 327-436 GWh/year (electricity) Projected annual energy consumption of base technologies in 2020 (delivered) 1.8 TBtu/year (natural gas) Projected annual energy consumption of base technologies in 2020 (primary) 4.2-5.0 TBtu/year... generation 0.57 kg CO 2 /kWh 5 GWh/year (electricity) Projected annual energy consumption of base technologies in 2020 (delivered) 1.2-2.4 TBtu/year (natural gas) Projected annual energy consumption of base technologies in 2020 (primary) 1.2-2.4 TBtu/year...

  18. Vehicle Technologies Office Merit Review 2015: Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2015: Tailored Materials for Improved Internal Combustion Engine Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Horizontal well drill-in fluid utilizing alcohol ethoxylate

    SciTech Connect (OSTI)

    Jachnik, R.P.; Green, P.

    1995-11-01T23:59:59.000Z

    The drilling of horizontal wells in the last 6 years has significantly improved the economics of oil and gas production from depleted reservoirs or tight sands. This paper illustrates the application of an alcohol ethoxylate into a drill-in fluid designed to minimize formation damage in low permeability sandstones while drilling horizontal sections as long as 1,617 meters (5,306 ft) at depths approaching 6,580 meters (21,600 ft) and to facilitate formation cleanup. The chemistry of alcohol ethoxylates/alkoxylates are described and the more popular names used within the industry will be discussed. Laboratory results are presented which illustrate colloidal phenomena not previously reported with these systems, the routes taken for successful application into a drill-in fluid and how complex these particular colloidal systems are from a physical chemical viewpoint, along with the inevitable learning curve required to fully optimize these systems. Generalized case histories from the UK Southern North Sea will be described, along with field observations which back up the colloidal phenomena seen in the laboratory.

  1. The Public Heath Implications of Unconventional Gas Drilling For presentation to the

    E-Print Network [OSTI]

    Jiang, Huiqiang

    is hearing from industry, and from the government, that exciting new technology permits obtaining gas from1 The Public Heath Implications of Unconventional Gas Drilling For presentation to the Energy and Environment Subcommittee, Committee on Science, Space, and Technology Feb 1, 2012 Bernard D. Goldstein, MD

  2. Survey of historical incidences with Controls-Structures Interaction and recommended technology improvements needed to put hardware in space

    SciTech Connect (OSTI)

    Ketner, G.L.

    1989-03-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) conducted a survey for the Controls-Structures Interaction (CSI) Office of the National Aeronautics and Space Administration's (NASA) Langley Research Center. The purpose of the survey was to collect information documenting past incidences of problems with CSI during design, analysis, ground development, test and/or flight operation of space systems in industry. The survey was conducted to also compile recommended improvements in technology to support future needs for putting hardware into space. 3 refs., 1 tab.

  3. Greater Green River Basin Production Improvement Project

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01T23:59:59.000Z

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  4. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

    2011-05-01T23:59:59.000Z

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  5. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01T23:59:59.000Z

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  6. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  7. Drilling Report- First CSDP (Continental Scientific Drilling Program)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling Fluids MarketThermal

  8. Use of an inert drilling fluid to control geothermal drill pipe corrosion

    SciTech Connect (OSTI)

    Caskey, B.C.

    1981-04-01T23:59:59.000Z

    The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

  9. Evaluation of liquid lift approach to dual gradient drilling

    E-Print Network [OSTI]

    Okafor, Ugochukwu Nnamdi

    2008-10-10T23:59:59.000Z

    ............................................... 4 2.2 Dual Gradient Drilling Method.............................................. 5 2.3 Methods of Achieving Dual Gradient Drilling ...................... 9 2.3.1 Subsea Mudlift Drilling... ................................................... 9 2.5 Schematic diagram of a modified subsea mudlift system .......................... 11 2.6 Hollow glass-spheres dual gradient drilling system................................... 13 2.7 A typical offshore drilling rig modified...

  10. Introduction to the Ocean Drilling Program JOIDES RESOLUTION

    E-Print Network [OSTI]

    Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

  11. 2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2009 Produced by Integrated Ocean Drilling Program

  12. 2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2008 Produced by Integrated Ocean Drilling Program

  13. 2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2012 Produced by Integrated Ocean Drilling Program

  14. Silica dust control when drilling concrete Page 1 of 2

    E-Print Network [OSTI]

    Knowles, David William

    Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

  15. 2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2007 Produced by Integrated Ocean Drilling Program

  16. 2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the

    E-Print Network [OSTI]

    2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2011 Produced by Integrated Ocean Drilling Program

  17. Closing the loop : improving technology transfer by learning from the past

    E-Print Network [OSTI]

    Witinski, Paul (Paul F.)

    2010-01-01T23:59:59.000Z

    Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

  18. Improvements in Modeling Microbially Induced Calcite Precipitation as a Leakage Mitigation Technology

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    such as CO2 storage in the subsurface or fracking could be reduced with sealing technologies like microbially Abandonnedwell Injectionwellvicinity Fracking CO2 Reservoir Figure 1: Potential application sites of MICP

  19. Synthesis of TiO2 photocatalyst and study on their improvement technology of photocatalytic activity

    E-Print Network [OSTI]

    Boo, Jin-Hyo

    was evaluated by the measurements of the UV/vis. irradiation, infrared spectroscopy, XPS, and contact angleO2) plays an important role in a variety of technological applications ranging from sensors

  20. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01T23:59:59.000Z

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  1. High Temperature 300C Directional Drilling System

    Broader source: Energy.gov (indexed) [DOE]

    300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

  2. Loaded transducer for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

    2006-02-21T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

  3. Loaded Transducer Fpr Downhole Drilling Component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2005-07-05T23:59:59.000Z

    A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

  4. PDM vs. Turbodrill: A drilling comparison

    SciTech Connect (OSTI)

    De Lucia, F.; Herbert, P.

    1984-09-01T23:59:59.000Z

    This study was undertaken to investigate and compare the two most prevalent down-hole motor types, Positive-Displacement and Turbodrill. The intent of this comparison was to evaluate the technical and operational performance characteristics and present them in a manner to aid the drilling contractor or drilling engineer in determining the best down-hole motor for a specific drilling application. Each type of drilling tool utilizing either power source possesses unique characteristics which can be tailored to the overall system to optimize the target objective; increase ROP at less cost.

  5. Driltac (Drilling Time and Cost Evaluation)

    SciTech Connect (OSTI)

    None

    1986-08-01T23:59:59.000Z

    The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

  6. High Temperature 300C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

  7. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01T23:59:59.000Z

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  8. V2G Technology for Designing Active Filter System to Improve Wind Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    generation. A system model with wind generator and a dynamic model of PHEVs are introduced here based on the instantaneous power theory (p-q theory) to improve the wind generator performance through compensating have the potential to work as active filter with wind generator to improve power quality, dynamic power

  9. Microsoft Technology Centers Novosibirsk

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  10. Microsoft Technology Centers Philadelphia

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  11. Microsoft Technology Centers Minneapolis

    E-Print Network [OSTI]

    Hunt, Galen

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  12. West Coast drilling/production

    SciTech Connect (OSTI)

    Rintoul, B.

    1980-01-01T23:59:59.000Z

    Heavy California oil has come into its own as a likely source for increased production. The removal of price controls for crude 16 gravity and lower has given producers incentive, but obstacles remain in the regulatory atmosphere of uncertainty and confusion. Accelerated drilling operations in California aiming at heavy oil production are described. The Elk Hills field continues to be the main site of resurgence of California oil, and steamflooding is the primary method of recovery. Hot plate and hydraulic mining methods also are proposed for heavy oil recovery. Pacific Northwest activities outside of California also are mentioned.

  13. Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey: EnergyDrewDrilling Fluids

  14. Coiled tubing drilling with supercritical carbon dioxide

    DOE Patents [OSTI]

    Kolle , Jack J. (Seattle, WA)

    2002-01-01T23:59:59.000Z

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  15. Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

    2014-01-01T23:59:59.000Z

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

  16. Improving the reliability of microelectronic packaging through core-shell rubber technology

    E-Print Network [OSTI]

    Weaver, Jana Lynn

    2001-01-01T23:59:59.000Z

    The field of microelectronics is currently in high demand considering the many applications it is used for. With this demand, several concerns are raised to improve the reliability while in use. The microelectronic device is composed of numerous...

  17. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint Oceanographic Institutions, Inc. Executive Director, Ocean Drilling Programs Joint Oceanographic Institutions.................................... 19 3.3.1. Drilling and Science Services

  18. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

  19. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

  20. Technology Innovations to Improve Biomass Cookstoves to Meet Tier 4 Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment of Energy TechnologyDepartmentTechnology

  1. Communication adapter for use with a drilling component

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Hall; Jr.; H. Tracy (Provo, UT); Bradford, Kline (Orem, UT); Rawle, Michael (Springville, UT)

    2007-04-03T23:59:59.000Z

    A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

  2. Design a PV-AF system using V2G Technology to Improve Power Quality

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    are going to have plug-in option to recharge their batteries and by the year 2030, PHEV penetration of PHEVs with photo- voltaic sources as an implementation of Vehicle to Grid (V2G) technology for designing battery model. A simple battery scheme is proposed for the control of the charging and discharging

  3. Assessing selected technologies and operational strategies for improving the environmental performance of future aircraft

    E-Print Network [OSTI]

    Mahashabde, Anuja (Anuja Anil)

    2006-01-01T23:59:59.000Z

    The aviation industry is expected to grow at a rate of 4-5% in the next 20 years. Such a growth rate may have important impacts on local air quality, climate change and community noise. This work assesses selected technologies ...

  4. A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    A concept for marine shallow drilling Drill test from R/V Håkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

  5. Multi-gradient drilling method and system

    DOE Patents [OSTI]

    Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

    2003-01-01T23:59:59.000Z

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  6. OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

  7. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf San Andres reservoir. Quarterly progress report, October 1--December 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R.; Hickman, T.S.; Justice, J.J.

    1998-01-31T23:59:59.000Z

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4,800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982--86 pilot CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed the phased development of a miscible CO{sub 2} injection project at the South Welch Unit. The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: advanced petrophysics; three-dimensional seismic; cross-well bore tomography; advanced reservoir simulation; CO{sub 2} stimulation treatments; hydraulic fracturing design and monitoring; and mobility control agents. During the quarter, development of the project`s south expansion area was undertaken, work was continued on interpreting the crosswell seismic data and CO{sub 2} injection into 11 wells was initiated.

  8. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect (OSTI)

    Taylor, Archie R.

    1996-07-01T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  9. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    SciTech Connect (OSTI)

    Unknown

    2003-01-15T23:59:59.000Z

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  10. Vibration monitoring system for drill string

    SciTech Connect (OSTI)

    Wassell, M.E.

    1993-07-13T23:59:59.000Z

    A vibration monitoring system is described for use in monitoring lateral and torsional vibrations in a drill string comprising: a drill string component having an outer surface; first accelerometer means A[sub 1] for measuring tangential acceleration; second accelerometer means A[sub 2] for measuring tangential acceleration; third accelerometer means A[sub 3] for measuring tangential acceleration; said first, second and third accelerometer means A[sub 1], A[sub 2] and A[sub 3] being mounted in said drill string component and being spaced from one another to measure acceleration forces on said drill string component tangentially with respect to the outer surface of said component wherein said first, second and third accelerometer means are adapted to measure and distinguish between lateral and torsional vibrations exerted on said drill string component.

  11. Odessa fabricator builds rig specifically for geothermal drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Odessa fabricator builds rig specifically for geothermal drilling Odessa fabricator builds rig specifically for geothermal drilling August 3, 2008 - 2:59pm Addthis For 35 years, MD...

  12. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

  13. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  14. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  15. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

  16. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

  17. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

  18. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

  19. Temporary Bridging Agents for Use in Drilling and Completions...

    Broader source: Energy.gov (indexed) [DOE]

    Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 -...

  20. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

  1. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  2. Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition. Industrial Technologies Program (ITP) (Book)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost FoamCooling andProgram Improving

  3. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-03-04T23:59:59.000Z

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  4. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect (OSTI)

    Brim, Cornelia P.

    2013-04-01T23:59:59.000Z

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSAs Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilitiesin this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVAhybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  5. Natural Gas Compression Technology Improves Transport and Efficiencies, Lowers Operating Costs

    Broader source: Energy.gov [DOE]

    An award-winning compressor design that decreases the energy required to compress and transport natural gas, lowers operating costs, improves efficiencies and reduces the environmental footprint of well site operations has been developed by a Massachusetts-based company with support from the U.S. Department of Energy

  6. USING VIRTUAL REALITY TECHNOLOGY TO IMPROVE AIRCRAFT INSPECTION PERFORMANCE: PRESENCE AND PERFORMANCE MEASUREMENT STUDIES

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    and maintenance has revealed the criticality of human inspection performance in improving aviation safety. If we of Industrial Engineering Clemson University, SC Eric Medlin, Andrew T. Duchowski Department of Computer Science are to provide the general public with a safe and reliable air transportation system, inspection must

  7. Improving Life through Science and Technology Texas AgriLife Research

    E-Print Network [OSTI]

    into water Improve agricultural and urban water use efficiency Address Storm Water issues · Investments and Quantity ($4M) Detect and model water contaminants Develop management practices to reduce loadings 0.5M acre-feet/year of water from Edwards Aquifer Developed preventative measures for golden algae

  8. rillEdge is a software system that provides real-time deci-sion support when drilling oil wells. Decisions are sup-

    E-Print Network [OSTI]

    Aamodt, Agnar

    are combined to provide best practices for how to handle the current situation. Verdande Technology hasD rillEdge is a software system that provides real-time deci- sion support when drilling oil wells on the surface and downhole when drilling. The real-time analysis identifies symptoms of problems, which

  9. Application of a New Structural Model and Exploration Technologies...

    Open Energy Info (EERE)

    Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to:...

  10. El Paso County Geothermal Project: Innovative Research Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    (EGI) - Demonstrate a low-impact rig technology with potential to reduce the cost of drilling temperature gradient wells (Aerospect) - Identify best locale within designated area...

  11. Before the House Science, Space, and Technology Subcommittee...

    Broader source: Energy.gov (indexed) [DOE]

    By: Victor Der, Assistant Secretary Office of Fossil Energy Subject: Offshore Drilling Safety and Response Technologies FinalTestimonyVictorKDer04-06-2011.pdf More...

  12. Saving energy and improving IAQ through application of advanced air cleaning technologies

    SciTech Connect (OSTI)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01T23:59:59.000Z

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  13. DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001

    SciTech Connect (OSTI)

    William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

    2001-07-01T23:59:59.000Z

    Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

  14. In-well vapor stripping drilling and characterization work plan

    SciTech Connect (OSTI)

    Koegler, K.J.

    1994-03-13T23:59:59.000Z

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable.

  15. A study of fatigue in drill collars

    E-Print Network [OSTI]

    Fowler, Joe Robert

    1969-01-01T23:59:59.000Z

    A STUDY OF FATIGUE IN DRILL COLLARS A Thesis by Joe Robert Feeler Approved as to style and content by: Chairman of Committee Head of Department Member /n/X~l~~ Member Member January 1969 ABSTRACT A Study of Fatigue in Drill Collars.... (January, 1969) Joe R. Fowler, B. S. , Texas A&M University; Directed by: Dr. P. D. Neiner Fatigue failures of drill collar connectors are presently cost- ing the major oil companies enormous sums of money in ruined equipment and lost time...

  16. Improved geomembrane damage/leak detection through co-extrusion technology

    SciTech Connect (OSTI)

    Messmer, D.P.; Cadwallader, M. (Gundle Lining Systems, Inc., Houston, TX (United States))

    1994-04-01T23:59:59.000Z

    There has been a considerable advancement in technology available for providing a barrier system in the containment and storage of waste materials. Natural soil liners several feet in thickness have been augmented by factory-produced, synthetic materials that have permeability coefficients several orders of magnitude lower than any natural soil system. To carry the systems approach one step farther, engineers use multiple layers of synthetics separated at times by layers of clay offering a redundant composite barrier to protect the groundwater. Each geosynthetic material offers its own unique contribution to the system based upon its physical characteristics. Co-extrusion -- the process of combining two or more materials into a single product, through a single process -- is now revolutionizing the liner industry.

  17. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

  18. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY10 Annual Report #12;Crane ball #12;The Integrated Ocean Drilling Program (IODP) is an international marine research program Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs that revolutionized our view

  19. Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg

    E-Print Network [OSTI]

    Bromberg, Kenneth

    Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

  20. Integrated Ocean Drilling Program U.S. Implementing Organization

    E-Print Network [OSTI]

    Integrated Ocean Drilling Program U.S. Implementing Organization FY13 Annual Report #12;Tripping Integrated Ocean Drilling Program (IODP) monitored subseafloor environments and explored Earth's history Drilling Project (DSDP) and the Ocean Drilling Program (ODP), which revolutionized our view of Earth

  1. Acronyms and Abbreviations Used in the Ocean Drilling Program

    E-Print Network [OSTI]

    Stone Soup Acronyms and Abbreviations Used in the Ocean Drilling Program Ocean Drilling Program Texas A&M University Technical Note No. 13 Compiled by Elizabeth A. Heise Ocean Drilling Program Texas A orpersonalresearchpurposes; however,republicationof any portion requires the written consent of the Director, Ocean Drilling

  2. Hydraulic Fracturing and Horizontal Gas Well Drilling Reference List Updated June 23, 2011

    E-Print Network [OSTI]

    ://www.netl.doe.gov/technologies/oil-gas/publications/EPreports/Shale_Gas_Primer_2009.pdf Good of shale gas drilling in New York State, as well as the most comprehensive collection of data and consultant-supplied analyses Addressing the Environmental Risks from Shale Gas Development (2010) Worldwatch

  3. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    SciTech Connect (OSTI)

    Conger, R.L. [Pacific Northwest Lab., Richland, WA (United States); Lee, V.E.; Buel, L.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01T23:59:59.000Z

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  4. AISI/DOE Technology Roadmap Program: Improved Surface Quality of Exposed Automotive Sheet Steels

    SciTech Connect (OSTI)

    John G. Speer; David K. Matlock; Noel Meyers; Young-Min Choi

    2002-10-10T23:59:59.000Z

    Surface quality of sheet steels is an important economic and technical issue for applications such as critical automotive surfaces. This project was therefore initiated to develop a more quantitative methodology for measuring surface imperfections, and to assess their response to forming and painting, particularly with respect to their visibility or invisibility after painting. The objectives were met, and included evaluation of a variety of imperfections present on commercial sheet surfaces or simulated using methods developed in the laboratory. The results are expected to have significant implications with respect to the methodology for assessing surface imperfections, development of quantitative criteria for surface inspection, and understanding and improving key painting process characteristics that influence the perceived quality of sheet steel surfaces.

  5. OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

  6. OCEAN DRILLING PROGRAM LEG 166 SCIENTIFIC PROSPECTUS

    E-Print Network [OSTI]

    Director ODP/TAMU _____________________ Jack Baldauf Manager Science Operations ODP Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

  7. Sandia National Laboratories: percussive drilling with compressed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    percussive drilling with compressed air Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News &...

  8. Formation damage in underbalanced drilling operations

    E-Print Network [OSTI]

    Reyes Serpa, Carlos Alberto

    2003-01-01T23:59:59.000Z

    Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

  9. Limitations of extended reach drilling in deepwater

    E-Print Network [OSTI]

    Akinfenwa, Akinwunmi Adebayo

    2000-01-01T23:59:59.000Z

    As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

  10. Drill Rig Safety Topics of the Presentation

    E-Print Network [OSTI]

    ;Inspect Cooling System & Fan #12;The Most Injury Related Activity Handling Drill Pipe Tools Casing #12;Automated Loading Arms w/ Radio Remote Controls #12;Automatic Pipe Handling System w/ Tilt Out Top Head #12

  11. OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT

    E-Print Network [OSTI]

    OCEAN DRILLING PROGRAM LEG 164 PRELIMINARY REPORT GAS HYDRATE SAMPLING ON THE BLAKE RIDGE of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council (United, Iceland, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and Turkey) Any opinions, findings

  12. Integrated services help drill horizontal well ahead of schedule

    SciTech Connect (OSTI)

    Rizk, G. (Baker Hughes Inteq, Houston, TX (United States)); Clough, M. (Baker Hughes Inteq, Aberdeen (United Kingdom))

    1994-03-14T23:59:59.000Z

    Integrated services and incentive contracts helped deliver an onshore horizontal gas well ahead of schedule. Elf Petroland BV's Harlingen 8 well in Holland was drilled and completed in 26 days, instead of the 33 days planned. Incentive bonuses were awarded, and the gas well began production early. Elf Petroland used one supplier to coordinate service operations and make rig site operations more efficient. The streamlined organization on site improved communication and simplified administration and logistics. Rig site problems were addressed quickly, and solutions implemented effectively because of the integrated-services structure. The paper discusses the organizational plan and how it was carried out.

  13. An Integrated Surface Engineering Technology Development for Improving Energy Efficiency of Engine Components

    SciTech Connect (OSTI)

    Stephen Hsu; Liming Chang; Huan Zhan

    2009-05-31T23:59:59.000Z

    Frictional losses are inherent in most practical mechanical systems. The ability to control friction offers many opportunities to achieve energy conservation. Over the years, materials, lubricants, and surface modifications have been used to reduce friction in automotive and diesel engines. However, in recent years, progress in friction reduction technology has slowed because many of the inefficiencies have been eliminated. A new avenue for friction reduction is needed. Designing surfaces specifically for friction reduction with concomitant enhanced durability for various engine components has emerged recently as a viable opportunity due to advances in fabrication and surface finishing techniques. Recently, laser ablated dimples on surfaces have shown friction reduction properties and have been demonstrated successfully in conformal contacts such as seals where the speed is high and the load is low. The friction reduction mechanism in this regime appears to depend on the size, patterns, and density of dimples in the contact. This report describes modeling efforts in characterizing surface textures and understanding their mechanisms for enhanced lubrication under high contact pressure conditions. A literature survey is first presented on the development of descriptors for irregular surface features. This is followed by a study of the hydrodynamic effects of individual micro-wedge dimples using the analytical solution of the 1-D Reynolds equation and the determination of individual components of the total friction resistance. The results obtained provide a better understanding of the dimple orientation effects and the approach which may be used to further compare the friction reduction provided by different texture patterns.

  14. Fundamentals of Melt-Water Interfacial Transport Phenomena: Improved Understanding for Innovative Safety Technologies in ALWRs

    SciTech Connect (OSTI)

    M. Anderson; M. Corradini; K.Y. Bank; R. Bonazza; D. Cho

    2005-04-26T23:59:59.000Z

    The interaction and mixing of high-temperature melt and water is the important technical issue in the safety assessment of water-cooled reactors to achieve ultimate core coolability. For specific advanced light water reactor (ALWR) designs, deliberate mixing of the core-melt and water is being considered as a mitigative measure, to assure ex-vessel core coolability. The goal of this work is to provide the fundamental understanding needed for melt-water interfacial transport phenomena, thus enabling the development of innovative safety technologies for advanced LWRs that will assure ex-vessel core coolability. The work considers the ex-vessel coolability phenomena in two stages. The first stage is the melt quenching process and is being addressed by Argonne National Lab and University of Wisconsin in modified test facilities. Given a quenched melt in the form of solidified debris, the second stage is to characterize the long-term debris cooling process and is being addressed by Korean Maritime University in via test and analyses. We then address the appropriate scaling and design methodologies for reactor applications.

  15. NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program

    E-Print Network [OSTI]

    Gilli, Adrian

    NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.14,September2012 ScientificDrilling ISSN: 1816-8957 Exp. 333: Nankai Trough Subduction Input and Records of Slope Instability 4 Lake Drilling In Eastern Turkey 18 Exp. 326 and 332: Nan

  16. Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

  17. NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program

    E-Print Network [OSTI]

    Demouchy, Sylvie

    NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change in the Bering Sea 4 San Andreas Fault Zone Drilling 14 Climate History from Lake El'gygytgyn, Siberia 29 World

  18. HP-41CV applied drilling engineering manual

    SciTech Connect (OSTI)

    Chenevert, M.; Williams, F.; Hekimian, H.

    1983-01-01T23:59:59.000Z

    Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

  19. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01T23:59:59.000Z

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  20. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  1. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  2. ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS

    E-Print Network [OSTI]

    Verma, Ankit

    2010-07-14T23:59:59.000Z

    on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

  3. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect (OSTI)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30T23:59:59.000Z

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

  4. Microsoft Technology Centers Thames Valley

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  5. Microsoft Technology Centers Mexico City

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  6. Microsoft Technology Centers Silicon Valley

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  7. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

    2007-04-24T23:59:59.000Z

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  8. Vehicle Technologies Office Merit Review 2015: High Temperature DC-Bus Capacitor Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  9. Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  10. Laser drilling of superdeep micron holes in various materials with a programmable control of laser radiation parameters

    SciTech Connect (OSTI)

    Basiev, Tasoltan T; Osiko, Vyacheslav V [Laser Materials and Technology Research Center, A. M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Gavrilov, A V; Smetanin, S N; Fedin, A V [V.A.Degtyarev Kovrov State Technological Academy, Kovrov, Vladimir region (Russian Federation)

    2007-01-31T23:59:59.000Z

    The possibilities of enhancing the efficiency of laser drilling of micron holes, increasing their depth, and eliminating their conic shape are studied by using a single-mode loop Nd:YAG laser with self-phase conjugation on the gain gratings and passive Q-switching by a scanned gradiently coloured F{sub 2}{sup -}:LiF crystal. Holes of diameters 15-150 {mu}m and depth up to 20 mm with the aspect ratio (ratio of the hole depth to its diameter) of 50-155 are drilled in various metals and alloys. It is shown that passive Q-switch scanning during drilling provides the increase in the depth and speed of the laser drilling of superdeep holes by a factor of 1.5-2. (laser technologies)

  11. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect (OSTI)

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01T23:59:59.000Z

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  12. Validation of Innovative Exploration Technologies for Newberry Volcano

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

  13. New technology for gas finding; How important has it been

    SciTech Connect (OSTI)

    Ellis, P.A. (Booz Allen and Hamilton, Dallas, TX (US))

    1991-09-30T23:59:59.000Z

    This paper reports that finding costs for natural gas in the U.S. were more than halved in real terms from 94{cents}/Mcf in 1983 to 44{cents} in 1989. A number of industry analysts and oil company executives recently have suggested that technology improvements contributed significantly to this improvement. This claim is an especially important one because its proponents often use it to support the view that the gas glut in the U.S. will persist. In this view, new technology will push finding costs lower and help sustain deliverability, further prolonging the bubble. Managers who are convinced of this position will want to invest in the people, software, and equipment that is supposed to be behind this improved performance. But they also are more likely to defer drilling and acquisitions of companies or producing leases to avoid adding to the supply overhang.

  14. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    SciTech Connect (OSTI)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.; Finger, J.T.; Keefe, R.; Neal, J.T.

    1996-10-01T23:59:59.000Z

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drilling method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).

  15. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29T23:59:59.000Z

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  16. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31T23:59:59.000Z

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  17. Monitoring MWD torque improved pdc bit penetration rates

    SciTech Connect (OSTI)

    Koskie, E.T. Jr. (Diamant Boart, Stratabit, Houston, TX (US)); Slagel, P. (Anadrill Schlumberger, New Orleans, LA (US)); Lesso, W. Jr. (Anadrill Schlumberger, Sugar Land, TX (US))

    1988-10-01T23:59:59.000Z

    Measurement while drilling tools were used to monitor and adjust downhole torque, which resulted in faster drilling and longer bit life. Polycrystalline diamond compact (PDC) bits have changed drilling strategies in the sand shale sequences of the Gulf of Mexico, increasing both rate of penetration and bit run lengths, and decreasing drilling costs, particularly in directional wells. While these important results have been achieved using the best drilling information available, little attention has been paid to downhole operating conditions since this information was unavailable during realtime drilling operations. In an effort to learn what benefits could be realized through applying MWD drilling technology to directional drilling with PDC bits, Tenneco teamed up with Anadrill Schlumberger for MWD downhole drilling measurements, and Diamant Boart Stratabit with their PD-11 series bits, to see what could be gained by the close cooperation of these three parties in drilling a typical offshore well. The result was a well drilled on target and under budget, and a new record bit run.

  18. Directional drilling used in Mississippi River crossing

    SciTech Connect (OSTI)

    Fuess, G.T.

    1988-05-02T23:59:59.000Z

    Tennessee Gas Pipeline Co. recently completed its longest large-diameter directional bore and pulled nearly 3,000 feet of 20-in. replacement pipe under the Southwest Pass of the Mississippi River. The replacement was necessary to allow for planned widening and deepening of Southwest Pass. This article explains why conventional dredging methods were not possible. It then explains how the directional drilling was done. Given favorable soil conditions such as found along much of the Gulf Coast, the speed of installation, environmental consideration of dredging eliminated, and the cost-competitive posture Tennessee found among the directional drilling contractors, Tennessee plans to utilize this technique increasingly in the future.

  19. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  20. Analysis of drill stem test data

    E-Print Network [OSTI]

    Zak, Albin Joseph

    1956-01-01T23:59:59.000Z

    LI8RARY A s IN CNLLEGE OF TEXAS ANALYSIS OF DRILL STEM TEST DATA A THESIS By ALBIN J. ZAK, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1956 Major Subject: Petroleum Engineering ANALYSIS OF DRILL STEM TEST DATA A THESIS ALBIN J. ZAK, JR. Approved as to style and content by; h irman of Committee Head of Department TABLE OF CONTENTS Page I. ABSTRAC...