National Library of Energy BETA

Sample records for technology holcolm station

  1. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflower’s Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  2. EA-1472: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety...

  3. Hydrogen Fueling Infrastructure Research and Station Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Webinar Slides Hydrogen Fueling ... Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and ...

  4. MHK Technologies/Jiangxia Tidal Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Jiangxia Tidal Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Jiangxia Tidal Power Station.jpg Technology Profile Primary...

  5. The Status of Renewable Hydrogen and Energy Station Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations The Status of Renewable Hydrogen and Energy Station Technologies and Policy ...

  6. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station Based on GEGR SCPO Technology (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived ...

  7. Technological advancements in NGV station design

    SciTech Connect (OSTI)

    Ledbetter, G.S.; Grimmer, J.E.; Ketcham, E.T.

    1995-12-31

    Hurricane Compressors` SPRINT System (patent pending) is designed to increase the rate of flow from compressed natural gas (CNG) fuel stations and provide greater utilization of stored CNG than is available from traditional compressor stations. Using a novel method of adapting compressor operation to changes in CNG storage system pressures, this advanced technology provides an alternative mechanism for fuel delivery when demand for fuel is high. Transfer of CNG may be made at higher rates of flow than would be possible either from a pressure depleted storage system or directly from the compressor.

  8. Technology evaluation for space station atmospheric leakage

    SciTech Connect (OSTI)

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  9. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  10. EA-1472: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation, Finnety County, Kansas

  11. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  12. New Technology Allows Early Closure of NNSA Monitoring Station, Saves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taxpayer Dollars | National Nuclear Security Administration New Technology Allows Early Closure of NNSA Monitoring Station, Saves Taxpayer Dollars October 22, 2012 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced that it has closed its Transparency Monitoring Office (TMO) in Novouralsk, Russia ahead of schedule. The early closure was made possible by the successful use of U.S.-designed unattended monitoring technology in Russia and will save U.S.

  13. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  14. NREL: Technology Deployment - Mobile App Puts Alternative Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations in the Palm of Your Hand Mobile App Puts Alternative Fueling Station Locations in the Palm of Your Hand News NREL Developed Mobile App for Alternative Fueling Station Locations Released Energy Department Launches Alternative Fueling Station Locator App Using the Enhanced Alternative Fueling Station Locator Alternative Fueling Stations Database Sponsors U.S. Department of Energy Related Stories Remote Shading Tool Has Potential to Reduce Solar Soft Costs by 17 Cents/Watt Contact

  15. The Status of Renewable Hydrogen and Energy Station Technologies and Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations | Department of Energy The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations This presentation by Tim Lipman on the status of renewable hydrogen and energy station technologies was prepared for the Public Fuel Cell Alliance and the Clean Energy States Alliance. PDF icon education_presentation_lipman.pdf More Documents & Publications Hydrogen

  16. The Status of Renewable Hydrogen and Energy Station Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Projects * Burlington, VT H2 Station * Minnesota Wind-to-H2 Project * Sierra Nevada Brewery In Chico, CA * New Jersey Residential H2 Project * Twenty-Five Projects Identified ...

  17. MHK Technologies/Ocean Powered Compressed Air Stations | Open...

    Open Energy Info (EERE)

    Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and...

  18. NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of

  19. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  20. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  1. Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  2. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  3. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  4. Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California

    Broader source: Energy.gov [DOE]

    Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you’re filling up, this same fuel-station just so happens to be providing power back...

  5. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  6. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  7. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect (OSTI)

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated cost of decommissioning a PWR is lowest for ENTOMB and highest for SAFSTOR • the estimated cost of decommissioning a BWR is lowest for OECON and highest for SAFSTOR. In all cases, SAFSTOR has the lowest occupational radiation dose and the highest cost.

  8. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Volume 1. Main report. Technical report, September 1977-October 1979

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWE.

  9. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  10. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  11. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  12. Boyd Station LLC | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Boyd Station LLC Place: Danville, Pennsylvania Product: A biodiesel technology testing facility in Danville, Pennsylvania. Coordinates: 38.081585,...

  13. Reference Designs for Hydrogen Fueling Stations Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  14. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  15. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4: Perform research on the Proton Exchange membrane

  16. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  17. LANSCE | Materials Test Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Office Contact Administrative nav background Materials Test Station dotline ... Materials Test Station: the Preferred Alternative When completed, the Materials Test ...

  18. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  19. Webinar: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  20. Chemical System Decontamination at PWR Power Stations Biblis A and B by Advanced System Decontamination by Oxidizing Chemistry (ASDOC-D) Process Technology - 13081

    SciTech Connect (OSTI)

    Loeb, Andreas; Runge, Hartmut; Stanke, Dieter; Bertholdt, Horst-Otto; Adams, Andreas; Impertro, Michael; Roesch, Josef

    2013-07-01

    For chemical decontamination of PWR primary systems the so called ASDOC-D process has been developed and qualified at the German PWR power station Biblis. In comparison to other chemical decontamination processes ASDOC-D offers a number of advantages: - ASDOC-D does not require separate process equipment but is completely operated and controlled by the nuclear site installations. Feeding of chemical concentrates into the primary system is done by means of the site's dosing systems. Process control is performed by standard site instrumentation and analytics. - ASDOC-D safely prevents any formation and precipitation of insoluble constituents - Since ASDOC-D is operated without external equipment there is no need for installation of such equipment in high radioactive radiation surrounding. The radioactive exposure rate during process implementation and process performance may therefore be neglected in comparison to other chemical decontamination processes. - ASDOC-D does not require auxiliary hose connections which usually bear high leakage risk. The above mentioned technical advantages of ASDOC-D together with its cost-effectiveness gave rise to Biblis Power station to agree on testing ASDOC-D at the volume control system of PWR Biblis unit A. By involving the licensing authorities as well as expert examiners into this test ASDOC-D received the official qualification for primary system decontamination in German PWR. As a main outcome of the achieved results NIS received contracts for full primary system decontamination of both units Biblis A and B (each 1.200 MW) by end of 2012. (authors)

  1. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  2. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  3. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  4. Suggestion of typical phases of in-vessel fuel-debris by thermodynamic calculation for decommissioning technology of Fukushima-Daiichi nuclear power station

    SciTech Connect (OSTI)

    Ikeuchi, Hirotomo; Yano, Kimihiko; Kaji, Naoya; Washiya, Tadahiro; Kondo, Yoshikazu; Noguchi, Yoshikazu

    2013-07-01

    For the decommissioning of the Fukushima-Daiichi Nuclear Power Station (1F), the characterization of fuel-debris in cores of Units 1-3 is necessary. In this study, typical phases of the in-vessel fuel-debris were estimated using a thermodynamic equilibrium (TDE) calculation. The FactSage program and NUCLEA database were applied to estimate the phase equilibria of debris. It was confirmed that the TDE calculation using the database can reproduce the phase separation behavior of debris observed in the Three Mile Island accident. In the TDE calculation of 1F, the oxygen potential [G(O{sub 2})] was assumed to be a variable. At low G(O{sub 2}) where metallic zirconium remains, (U,Zr)O{sub 2}, UO{sub 2}, and ZrO{sub 2} were found as oxides, and oxygen-dispersed Zr, Fe{sub 2}(Zr,U), and Fe{sub 3}UZr{sub 2} were found as metals. With an increase in zirconium oxidation, the mass of those metals, especially Fe{sub 3}UZr{sub 2}, decreased, but the other phases of metals hardly changed qualitatively. Consequently, (U,Zr)O{sub 2} is suggested as a typical phase of oxide, and Fe{sub 2}(Zr,U) is suggested as that of metal. However, a more detailed estimation is necessary to consider the distribution of Fe in the reactor pressure vessel through core-melt progression. (authors)

  5. Vehicle Technologies Office | Department of Energy

    Office of Environmental Management (EM)

    Office News from the Vehicles Technologies Office Read more Find a Charging or Alternative Fueling Station Find a Charging or Alternative Fueling Station Read more Compare...

  6. Refueling Stations | Open Energy Information

    Open Energy Info (EERE)

    Refueling Stations Jump to: navigation, search TODO: Add description List of Refueling Stations Incentives Retrieved from "http:en.openei.orgwindex.php?titleRefuelingStations...

  7. Pilgrim Station | Open Energy Information

    Open Energy Info (EERE)

    Station Jump to: navigation, search Name Pilgrim Station Facility Pilgrim Stage Station Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  8. Greening Gas Stations

    Energy Savers [EERE]

    eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Greening Gas Stations Prestene S. Garnenez Intern, Sandia National Laboratories Graduate Student, University of California, Los Angeles Department of Urban Planning eere.energy.gov It's Not Easy Being GREEN * What does it mean to be Green? * Can a Gas Station be Green? * How can a Gas Station be "Green"? * Image: inconvenientyouth.org eere.energy.gov What does it mean to be Green? * There are no "rules" for being

  9. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * APIMS - Atmospheric Pressure Ion Mobility Spectrometry Piezoelectric * QCM - Quartz Crystal Microbalance Optical * TDL - Tunable Diode Laser * ICOS - Internal Combustion ...

  10. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    SciTech Connect (OSTI)

    Pratt, Joseph; Terlip, Danny; Ainscough, Chris; Kurtz, Jennifer; Elgowainy, Amgad

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affecting the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.

  11. Vehicle Technologies Office Merit Review 2015: Alternative Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station Locator Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen ...

  12. Webinar October 13: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT). This presentation will discuss the process and findings of the work, recommended future research and development topics, and outline planned next steps for the H2FIRST Reference Station Design Task.

  13. Technology Market Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Technology & Market Solutions Place: Fairfax Station, Virginia Zip: 22039 Product: A consulting practice concentrating on technological,...

  14. Experimental Station 12-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12-2 is a PRT station, realized through third party funding from the Gordon and Betty Moore Foundation via the California Institute of Technology and available to general users...

  15. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy - Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available

  16. MRDIS Standalone Central Alarm Station

    Energy Science and Technology Software Center (OSTI)

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communicationsmore » or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.« less

  17. Supan Technologies | Open Energy Information

    Open Energy Info (EERE)

    Supan Technologies Place: Ontario, Canada Zip: K1C 2W6 Product: Manufactures chemical etching stations, wafer transfer equipment and turnkey PV cell and module production lines....

  18. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fueling Station Locator Alternative Fueling Station Locator Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count

  19. Hydrogen Station Compression, Storage, and Dispensing Technical Status and

    Office of Scientific and Technical Information (OSTI)

    Costs: Systems Integration (Technical Report) | SciTech Connect Technical Report: Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration Citation Details In-Document Search Title: Hydrogen Station Compression, Storage, and Dispensing Technical Status and Costs: Systems Integration At the request of the U.S. Department of Energy Fuel Cell Technologies Office (FCTO), the National Renewable Energy Laboratory commissioned an independent review of

  20. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  1. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  2. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  4. Hot Plate Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hot New Advances in Water Heating Technology Hot New Advances in Water Heating Technology April 18, 2013 - 1:15pm Addthis Learn how a cooperative R&D agreement with the Energy Department's Oak Ridge National Laboratory helped contributed to the success of GE's GeoSpring Hybrid Water Heater -- one of the most efficient electric heat pump water heaters on the market today. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Got Energy Efficiency

  5. Hanford Meteorological Station - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Station Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Hanford Meteorological Station Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The HMS is operated by Mission Support Alliance for the U.S. Department of Energy. The HMS provides a

  6. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Fueling Infrastructure Research and Station Technology Webinar Sponsor: Fuel Cell Technologies Office The Energy Department will present a live webinar entitled "An...

  7. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  8. Wachs Cutter Tooling Station (4495)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchase, build and install Wachs cutter tooling. The Wachs Cutter Tooling Station is similar to previously operated facility tooling and will utilize an existing hydraulic unit....

  9. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  10. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  11. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  12. Polk power station syngas cooling system

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-01-01

    Tampa Electric Company (TEC) is in the site development and construction phase of the new Polk Power Station Unit No. 1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) Technology. The unit will utilize Texaco`s oxygen-blown, entrained-flow coal gasification, along with combined cycle power generation, to produce nominal 260MW. Integral to the gasification process is the syngas cooling system. The design, integration, fabrication, transportation, and erection of this equipment have provided and continue to provide major challenges for this project.

  13. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  14. Franklin Heating Station | Open Energy Information

    Open Energy Info (EERE)

    search Name: Franklin Heating Station Place: Minnesota Phone Number: 5072893534 Facebook: https:www.facebook.compagesFranklin-Heating-Station116610418398578 References:...

  15. Ohaaki Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Ohaaki Geothermal Power Station Sector Geothermal energy Location Information Location 20km NE of Taupo, Waikato, New Zealand Coordinates...

  16. Fang Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Power Station General Information Name Fang Geothermal Power Station Sector Geothermal energy Location Information Coordinates 19.961842432467, 99.107366035005 Loading map......

  17. Mokai Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Mokai Geothermal Power Station Sector Geothermal energy Location Information Location Waikato, New Zealand Coordinates -38.530556,...

  18. Poihipi Power Station | Open Energy Information

    Open Energy Info (EERE)

    Poihipi Power Station General Information Name Poihipi Power Station Sector Geothermal energy Location Information Location Poihipi Road, Near Taupo, Waikato, New Zealand...

  19. Larderello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Larderello Geothermal Power Station Sector Geothermal energy Location Information Location Larderello, Pisa, Italy Coordinates 43.236, 10.8672...

  20. Krafla Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Krafla Geothermal Power Station Sector Geothermal energy Location Information Location Krafla Volcanoe, Iceland Coordinates 65.703861,...

  1. Reykjanes Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Reykjanes Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes, Iceland Coordinates 63.826389, -22.681944...

  2. Svartsengi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Svartsengi Geothermal Power Station Sector Geothermal energy Location Information Location Reykjanes Peninsula, Iceland Coordinates 63.878611,...

  3. Kawerau Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Kawerau Geothermal Power Station Sector Geothermal energy Location Information Location Bay of Plenty Region, New Zealand Coordinates...

  4. Early Station Costs Questionnaire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Early Station Costs Questionnaire Early Station Costs Questionnaire Presentation by Marc Melaina, National Renewable Energy Laboratory, at the Hydrogen Infrastructure Market ...

  5. Shimian Dagoutou Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Dagoutou Hydropower Station Jump to: navigation, search Name: Shimian Dagoutou Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product:...

  6. Liuyang Hedong Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Liuyang Hedong Hydropower Station Jump to: navigation, search Name: Liuyang Hedong Hydropower Station Place: Liuyang, Hunan Province, China Zip: 410305 Sector: Hydro Product:...

  7. Eryuan Huian Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Eryuan Huian Hydropower Station Jump to: navigation, search Name: Eryuan Huian Hydropower Station Place: Dali Bai Autonomous Prefecture, Yunnan Province, China Zip: 671200 Sector:...

  8. Tianlin Baxin Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Baxin Hydropower Station Jump to: navigation, search Name: Tianlin Baxin Hydropower Station Place: Baise, Guangxi Autonomous Region, China Zip: 533000 Sector: Hydro Product:...

  9. Shimian Danihe Hydropower Station | Open Energy Information

    Open Energy Info (EERE)

    Danihe Hydropower Station Jump to: navigation, search Name: Shimian Danihe Hydropower Station Place: Ya'an, Sichuan Province, China Zip: 625400 Sector: Hydro Product: China-based...

  10. Overview of Station Analysis Tools Developed in Support of H2USA

    Broader source: Energy.gov [DOE]

    Access the recording and download presentation slides from the Fuel Cell Technologies Office webinar "Overview of Station Analysis Tools Developed in Support of H2USA" held on May 12, 2015.

  11. EIS-0210: Tampa Electric Company-Polk Power Station (Adopted)

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency prepared this statement to fulfill its National Environmental Policy Act requirements with respect to the potential issuance of a permit to the Tampa Electric Company under the National Pollutant Discharge Elimination System for the 1,150-MW Polk Power Station, a new pollutant source. The U.S. Department of Energy served as a cooperating agency in the development of this document due to its potential role to provide cost-shared financial assistance for a 260-MW Integrated Gasification Combined Cycle unit at the Power Station under its Clean Coal Technology Demonstration Project, and adopted the document by August 1994.

  12. Workplace Charging Station Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Basics Workplace Charging Station Basics As your organization moves forward with workplace charging, it is important to understand the fundamental differences and similarities between the types of charging stations, commonly referred to as electric vehicle supply equipment (EVSE) units. Charging stations deliver electrical energy from an electricity source to a plug-in electric vehicle (PEV) battery. There are three primary types of charging stations: AC Level 1, AC Level 2 and DC fast

  13. NOAA PMEL Station Chemistry Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Quinn, Patricia

    2008-04-04

    Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-, and oxalate has been added to some stations. Samples also are analyzed for total mass by gravimetric analysis at 55 +/- 5% RH.

  14. Technology Validation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Fact Sheet Technology Validation Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts (September 2013). PDF icon Technology Validation More Documents & Publications Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA

  15. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  16. Biodiesel Filling Stations UK | Open Energy Information

    Open Energy Info (EERE)

    Filling Stations UK Jump to: navigation, search Name: Biodiesel Filling Stations UK Place: United Kingdom Product: A website providing a list of places in the UK where people can...

  17. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85),...

  18. EV Charging Stations Take Off Across America

    Broader source: Energy.gov [DOE]

    Finding a charging station is getting more convenient than ever thanks to companies like ChargePoint, which recently finished installing 4,600 charging stations across the United States.

  19. Elimination of direct current distribution systems from new generating stations

    SciTech Connect (OSTI)

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  20. Nesjavellir Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nesjavellir Geothermal Power Station Sector Geothermal energy Location Information Location Thingvellir, Iceland Coordinates 64.108164743246,...

  1. Archbald Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Archbald Power Station Biomass Facility Jump to: navigation, search Name Archbald Power Station Biomass Facility Facility Archbald Power Station Sector Biomass Facility Type...

  2. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  3. Elk City Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Station Biomass Facility Jump to: navigation, search Name Elk City Station Biomass Facility Facility Elk City Station Sector Biomass Facility Type Landfill Gas Location Douglas...

  4. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  5. Fact #920: April 11, 2016 Electric Charging Stations are the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station - Dataset Excel file and dataset for Electric Charging Stations are ...

  6. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,706 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  7. MHK Technologies/Float Wave Electric Power Station | Open Energy...

    Open Energy Info (EERE)

    space thus securing the best condition for effective wave energy taking off The experimental laboratory study of scaled FWEPS models has shown that the mechanical actuator...

  8. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  9. MHK Technologies/Vert Network Power Station | Open Energy Information

    Open Energy Info (EERE)

    which have to be specially designed for the marine environment and require specialist skills to maintain The marine based device is therefore made entirely from plastic carbon...

  10. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  11. Sei Vojany Station repowering reconstruction assessment feasibility study. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Six technologies are considered for application to the proposed Vojany Power Station EVO III. These technologies are: Conventional pulverized coal (PC) with SOx and NOx control; Atmospheric circulating fluidized bed (CFB); Atmospheric bubbling fluidized bed (BFB); Pressurized fluidized bed combustion combined cycle (PFBC-CC); Integrated coal gasification combined cycle (IGCC); and Gas fired combustion turbine combined cycle (CTCC).

  12. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  13. Timber Mountain Precipitation Monitoring Station

    SciTech Connect (OSTI)

    Lyles, Brad; McCurdy, Greg; Chapman, Jenny; Miller, Julianne

    2012-01-01

    A precipitation monitoring station was placed on the west flank of Timber Mountain during the year 2010. It is located in an isolated highland area near the western border of the Nevada National Security Site (NNSS), south of Pahute Mesa. The cost of the equipment, permitting, and installation was provided by the Environmental Monitoring Systems Initiative (EMSI) project. Data collection, analysis, and maintenance of the station during fiscal year 2011 was funded by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office Environmental Restoration, Soils Activity. The station is located near the western headwaters of Forty Mile Wash on the Nevada Test and Training Range (NTTR). Overland flows from precipitation events that occur in the Timber Mountain high elevation area cross several of the contaminated Soils project CAU (Corrective Action Unit) sites located in the Forty Mile Wash watershed. Rain-on-snow events in the early winter and spring around Timber Mountain have contributed to several significant flow events in Forty Mile Wash. The data from the new precipitation gauge at Timber Mountain will provide important information for determining runoff response to precipitation events in this area of the NNSS. Timber Mountain is also a groundwater recharge area, and estimation of recharge from precipitation was important for the EMSI project in determining groundwater flowpaths and designing effective groundwater monitoring for Yucca Mountain. Recharge estimation additionally provides benefit to the Underground Test Area Sub-project analysis of groundwater flow direction and velocity from nuclear test areas on Pahute Mesa. Additionally, this site provides data that has been used during wild fire events and provided a singular monitoring location of the extreme precipitation events during December 2010 (see data section for more details). This letter report provides a summary of the site location, equipment, and data collected in fiscal year 2011.

  14. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  15. SNL Issues Notice of Intent to Release a Request for Quotation for a Hydrogen Station Test Device

    Broader source: Energy.gov [DOE]

    In support of DOE's Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) project launched in April 2014, Sandia National Laboratories (SNL) has posted a notice of intent to issue a Request for Quotation for hydrogen station equipment performance testing device fabrication.

  16. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  17. Webinar May 12: Overview of Station Analysis Tools Developed in Support of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H2USA | Department of Energy May 12: Overview of Station Analysis Tools Developed in Support of H2USA Webinar May 12: Overview of Station Analysis Tools Developed in Support of H2USA May 7, 2015 - 10:05am Addthis The Fuel Cell Technologies Office will present a live webinar entitled "Overview of Station Analysis Tools Developed in Support of H2USA" on Tuesday, May 12, from 12 to 1 p.m. Eastern Daylight Time. This webinar will provide a basic introduction to two new models-the

  18. Rancia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  19. Travale 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Travale 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  20. Fact #920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station

  1. Tritium Instrument Demonstration Station (TIDS)

    Office of Environmental Management (EM)

    Cortés Concepción, Laura Tovo April 22, 2014 Tritium Focus Group Meeting SRNL-STI-2014-00172 What is the challenge? Tritium Facilities is critically reliant on dated analytical technologies Low-mass, high-resolution mass spectrometer issues: * Near end-of-life (30+ years old) * Spare parts not available from vendor * Vendor support is difficult or unavailable Need for alternative, accessible analytical technologies within DP for: * Complement current analytical methods * Greater ability to

  2. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  3. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Energy Savers [EERE]

    ELECTRIC VEHICLE RECHARGING STATIONS Several National Laboratory contractors have asked us whether Department of Energy ("Department" or "DOE") appropriated funds may be used to reimburse the lab contractors for the cost of installing electric vehicle recharging stations and to pay (whether by reimbursement or by DOE directly) electricity bill costs resulting from the use of such stations. As more fully discussed below, the labs have several options for installing electric

  4. GC GUIDANCE ON ELECTRIC VEHICLE RECHARGING STATIONS

    Broader source: Energy.gov [DOE]

    Several National Laboratory contractors have asked whether appropriated funds may be used to reimburse cost of installing electric vehicle recharging stations and to pay electricity bill costs...

  5. POST 10/Truck Inspection Station (Map 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Station (Map 3) Changes Effective January 11, 2010 Pajarito Corridor Deliveries: Drivers of commercial delivery trucks headed to the Pajarito Corridor (Pajarito Road bounded...

  6. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  7. Hellisheidi Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Hellisheidi Geothermal Power Station Sector Geothermal energy Location Information Location Hengill, Iceland Coordinates 64.037222, -21.400833...

  8. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design Task: Project Deliverable 2-2 On-Board Storage ...

  9. Schiller Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    National Map Retrieved from "http:en.openei.orgwindex.php?titleSchillerStationBiomassFacility&oldid398074" Feedback Contact needs updating Image needs updating...

  10. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect (OSTI)

    Rosenthal, A

    2011-08-19

    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners

  11. Experimental Stations by Number | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Station 2-3 X-ray X-ray absorption spectroscopy imaging 4500-24000 eV Sam Webb (650)-926-3734 Courtney Roach (650)-926-3104 Experimental Station 4-1 X-ray X-ray...

  12. Background noise spectra of global seismic stations

    SciTech Connect (OSTI)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  13. Validation of an Integrated Hydrogen Energy Station

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2012-10-26

    This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: • Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). • Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. • Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. • Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. • Maintain safety as the top priority in the system design and operation. • Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

  14. Burner balancing Salem Harbor Station

    SciTech Connect (OSTI)

    Sload, A.W.; Dube, R.J.

    1995-12-31

    The traditional method of burner balancing is first to determine the fuel distribution, then to measure the economizer outlet excess oxygen distribution and to adjust the burners accordingly. Fuel distribution is typically measured by clean and dirty air probing. Coal pipe flow can then be adjusted, if necessary, through the use of coal pipe orificing or by other means. Primary air flow must be adjusted to meet the design criteria of the burner. Once coal pipe flow is balanced to within the desired criteria, secondary air flow to individual burners can be changed by adjusting windbox dampers, burner registers, shrouds or other devices in the secondary air stream. This paper discusses problems encountered in measuring excess O{sub 2} at the economizer outlet. It is important to recognize that O{sub 2} measurements at the economizer outlet, by themselves, can be very misleading. If measurement problems are suspected or encountered, an alternate approach similar to that described should be considered. The alternate method is not only useful for burner balancing but also can be used to help in calibrating the plant excess O{sub 2} instruments and provide an on line means of cross-checking excess air measurements. Balanced burners operate closer to their design stoichiometry, providing better NO{sub x} reduction. For Salem Harbor Station, this means a significant saving in urea consumption.

  15. High speed imager test station

    DOE Patents [OSTI]

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.

    1995-01-01

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment.

  16. High speed imager test station

    DOE Patents [OSTI]

    Yates, G.J.; Albright, K.L.; Turko, B.T.

    1995-11-14

    A test station enables the performance of a solid state imager (herein called a focal plane array or FPA) to be determined at high image frame rates. A programmable waveform generator is adapted to generate clock pulses at determinable rates for clock light-induced charges from a FPA. The FPA is mounted on an imager header board for placing the imager in operable proximity to level shifters for receiving the clock pulses and outputting pulses effective to clock charge from the pixels forming the FPA. Each of the clock level shifters is driven by leading and trailing edge portions of the clock pulses to reduce power dissipation in the FPA. Analog circuits receive output charge pulses clocked from the FPA pixels. The analog circuits condition the charge pulses to cancel noise in the pulses and to determine and hold a peak value of the charge for digitizing. A high speed digitizer receives the peak signal value and outputs a digital representation of each one of the charge pulses. A video system then displays an image associated with the digital representation of the output charge pulses clocked from the FPA. In one embodiment, the FPA image is formatted to a standard video format for display on conventional video equipment. 12 figs.

  17. LNG to CNG refueling stations

    SciTech Connect (OSTI)

    Branson, J.D.

    1995-12-31

    While the fleet operator is concerned about the environment, he or she is going to make the choice based primarily on economics. Which fuel provides the lowest total operating cost? The calculation of this costing must include the price-per-gallon of the fuel delivered, as well as the tangible and intangible components of fuel delivery, such as downtime for vehicles during the refueling process, idle time for drivers during refueling, emissions costings resulting from compressor oil blow-by, inclusion of non-combustible constituents in the CNG, and energy consumption during the refueling process. Also, the upfront capital requirement of similar delivery capabilities must be compared. The use of LNG as the base resource for the delivered CNG, in conjunction with the utilization of a fully temperature-compressed LNG/CNG refueling system, eliminates many of the perceived shortfalls of CNG. An LNG/CNG refueling center designed to match the capabilities of the compressor-based station will have approximately the same initial capital requirement. However, because it derives its CNG sales product from the {minus}260 F LNG base product, thus availing itself of the natural physical properties of the cryogenic product, all other economic elements of the system favor the LNG/CNG product.

  18. Renewable Energy Optimization Report for Naval Station Newport

    SciTech Connect (OSTI)

    Robichaud, R.; Mosey, G.; Olis, D.

    2012-02-01

    In 2008, the U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage the development of renewable energy (RE) on potentially contaminated land and mine sites. As part of this effort, EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island. NREL's Renewable Energy Optimization (REO) tool was utilized to identify RE technologies that present the best opportunity for life-cycle cost-effective implementation while also serving to reduce energy-related carbon dioxide emissions and increase the percentage of RE used at NAVSTA Newport. The technologies included in REO are daylighting, wind, solar ventilation preheating (SVP), solar water heating, photovoltaics (PV), solar thermal (heating and electric), and biomass (gasification and cogeneration). The optimal mix of RE technologies depends on several factors including RE resources; technology cost and performance; state, utility, and federal incentives; and economic parameters (discount and inflation rates). Each of these factors was considered in this analysis. Technologies not included in REO that were investigated separately per NAVSTA Newport request include biofuels from algae, tidal power, and ground source heat pumps (GSHP).

  19. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Locator to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Locator on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Locator on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on

  20. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to

  1. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  2. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to

  3. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  4. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  5. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  6. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  7. Energy Jobs: Electric Vehicle Charging Station Installer | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electric Vehicle Charging Station Installer Energy Jobs: Electric Vehicle Charging Station Installer October 28, 2014 - 3:23pm Addthis As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo Courtesy of the Energy Department. As the demand for electric vehicles goes up, charging stations become more prevalent -- here an electric vehicle owner uses a local charging station. | Photo

  8. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural

  9. Bendersville Station-Aspers, Pennsylvania: Energy Resources ...

    Open Energy Info (EERE)

    OpenEI by expanding it. Bendersville Station-Aspers is a census-designated place in Adams County, Pennsylvania.1 References US Census Bureau 2005 Place to 2006 CBSA...

  10. Orlando Plugs into Electric Vehicle Charging Stations

    Broader source: Energy.gov [DOE]

    Imagine spending the day at a theme park in Orlando. After hours of rides, games and fun, you head back to your rental car, which is plugged in at an electric vehicle (EV) charging station in the parking lot.

  11. Vehicle Technologies Office: Alternative Fuels Research and Deployment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Alternative Fuels Research and Deployment Vehicle Technologies Office: Alternative Fuels Research and Deployment Refuse trucks in Oyster Bay, Long Island, filling up at a natural gas station. These trucks were part of a project supported by the Vehicle Technologies Office through Clean Cities. Refuse trucks in Oyster Bay, Long Island, filling up at a natural gas station. These trucks were part of a project supported by the Vehicle

  12. Solar and Infrared Radiation Station (SIRS) Handbook

    SciTech Connect (OSTI)

    Stoffel, T

    2005-07-01

    The Solar Infrared Radiation Station (SIRS) provides continuous measurements of broadband shortwave (solar) and longwave (atmospheric or infrared) irradiances for downwelling and upwelling components. The following six irradiance measurements are collected from a network of stations to help determine the total radiative flux exchange within the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility: Direct normal shortwave (solar beam) Diffuse horizontal shortwave (sky) Global horizontal shortwave (total hemispheric) Upwelling shortwave (reflected) Downwelling longwave (atmospheric infrared) Upwelling longwave (surface infrared)

  13. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  14. EA-1996: Glass Buttes Radio Station, Lake County, Oregon | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Glass Buttes Radio Station, Lake County, Oregon EA-1996: Glass Buttes Radio Station, Lake County, Oregon SUMMARY The Bureau of Land Management (BLM), with DOE's Bonneville Power...

  15. Jingning County Baihe II Station Hydropower Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Baihe II Station Hydropower Co Ltd Jump to: navigation, search Name: Jingning County Baihe II Station Hydropower Co. Ltd. Place: Hangzhou, Zhejiang Province, China Zip: 310002...

  16. Sangzhi Zhongyuan Hydroelectric Power Station | Open Energy Informatio...

    Open Energy Info (EERE)

    Zhongyuan Hydroelectric Power Station Jump to: navigation, search Name: Sangzhi Zhongyuan Hydroelectric Power Station Place: Zhangjiajie, Hunan Province, China Zip: 427100 Sector:...

  17. More California Gas Stations Can Provide Hydrogen than Previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says - ... Twitter Google + Vimeo GovDelivery SlideShare More California Gas Stations Can Provide ...

  18. DOE - Office of Legacy Management -- Naval Ordnance Test Station...

    Office of Legacy Management (LM)

    Test Station - CA 06 FUSRAP Considered Sites Site: NAVAL ORDNANCE TEST STATION (CA.06) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: ...

  19. Experiences from Ethanol Buses and Fuel Station Report - La Spezia...

    Open Energy Info (EERE)

    Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report...

  20. Puge County Gongdefang Hydropower Station Investment and Development...

    Open Energy Info (EERE)

    Puge County Gongdefang Hydropower Station Investment and Development Co Ltd Jump to: navigation, search Name: Puge County Gongdefang Hydropower Station Investment and Development...

  1. Penrose Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Penrose Power Station Biomass Facility Facility Penrose Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  2. Toyon Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Toyon Power Station Biomass Facility Facility Toyon Power Station Sector Biomass Facility Type Landfill Gas Location Los Angeles County,...

  3. DOE - Office of Legacy Management -- Moab AEC Ore Buying Station...

    Office of Legacy Management (LM)

    Moab AEC Ore Buying Station - UT 06 FUSRAP Considered Sites Site: Moab AEC Ore Buying Station (UT.06 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: ...

  4. Development Wells At Fallon Naval Air Station Area (Sabin, Et...

    Open Energy Info (EERE)

    Fallon Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station...

  5. Selva 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Selva 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Le Prata Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Le Prata Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. La Leccia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name La Leccia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  8. Nuova Lago Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Nuova Lago Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Genesee Power Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Jump to: navigation, search Name Genesee Power Station Biomass Facility Facility Genesee Power Station Sector Biomass Owner CMSFortistar Location Flint, Michigan...

  10. Development of a Renewable Hydrogen Energy Station | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Renewable Hydrogen Energy Station Development of a Renewable Hydrogen Energy Station Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon ...

  11. License Amendment Request for Storing Exelon Sister Nuclear Stations...

    Office of Scientific and Technical Information (OSTI)

    License Amendment Request for Storing Exelon Sister Nuclear Stations Class BC LLRW in the ... Title: License Amendment Request for Storing Exelon Sister Nuclear Stations Class BC LLRW ...

  12. EECBG Success Story: Police Station Triples Solar Power - and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Police Station Triples Solar Power - and Savings EECBG Success Story: Police Station Triples Solar Power - and Savings July 19, 2010 - 11:00am Addthis North Community Police ...

  13. Carboli 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  14. Cornia 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Cornia 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  15. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  16. Carboli 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Carboli 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  17. Bagnore 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Bagnore 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  18. EUHYFIS Hydrogen Filling Station Consortium | Open Energy Information

    Open Energy Info (EERE)

    EUHYFIS Hydrogen Filling Station Consortium Jump to: navigation, search Name: EUHYFIS (Hydrogen Filling Station Consortium) Place: Oldenburg, Germany Zip: 26123 Sector: Hydro,...

  19. Utilities respond to nuclear station blackout rule

    SciTech Connect (OSTI)

    Rubin, A.M.; Beasley, B.; Tenera, L.P

    1990-02-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC).

  20. Station blackout transients in the semiscale facility

    SciTech Connect (OSTI)

    Chapman, J.C.

    1985-12-01

    The test results of station blackout transients conducted in the Semiscale MOD-2B facility are discussed in this report. The Semiscale MOD-2B facility simulates a pressurized water reactor (PWR) power plant. The experiments were initiated from conditions typical of PWR plant operating conditions (primary pressure of 15.2 MPa (2205 psi) and cold leg fluid temperature of 550 K (530F)). Five station blackout experiments were conducted, Three tests in the Power Loss (PL) Test Series and the two Primary Boil-off (PBO) Tests. The responses of these tests were analyzed and compared. However, only one test response (S-PL-2) is presented and discussed in detail. The S-PL-2 experiment is characterized by examining the responses of the primary and secondary pressures and fluid temperatures, the pressurizer liquid level, the primary fluid distribution, and the core thermal behavior. The mechanisms driving the S-PL-2 responses, the main elements of the station blackout transient, the influences of initial and boundary conditions and other transient that may appear similar to a station blackout are also discussed. Information pertinent to station blackout nuclear safety issues is presented in the report. 13 refs., 44 figs.

  1. Perspective on occupational radiation exposures at a hypothetical fusion power station

    SciTech Connect (OSTI)

    Easterly, C.E.; Cannon, J.B.

    1983-01-01

    If current technology were used, several major sources of potential occupational radiation exposure at fusion power stations would be quite similar to those at current light water reactor power stations. Based upon this similarity, crude estimates of doses received from various maintenance operations at fusion power reactors are made. The dose estimates reinforce the need for concurrent development of sophisticated remote maintenance devices and low-activation materials for fusion reactors. It is concluded that minimization of occupational doses can be best achieved by developing an overall maintenance strategy that combines the best features of remote techniques and low activation materials as opposed to developing one or the other exclusively.

  2. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  3. November 10, 2004: First hydrogen refueling station opens in Washington,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DC. | Department of Energy 0, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004: First hydrogen refueling station opens in Washington, DC. November 10, 2004 Secretary Abraham joins representatives of Shell and General Motors in the opening of the nation's first integrated gasoline/hydrogen refueling station in Washington, D.C. The station will be used to refuel General Motors' fuel

  4. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  5. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  6. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle

  7. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  8. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  9. Pump station for radioactive waste water

    DOE Patents [OSTI]

    Whitton, John P.; Klos, Dean M.; Carrara, Danny T.; Minno, John J.

    2003-11-18

    A pump station for transferring radioactive particle containing waste water, includes: (a.) an enclosed sump having a vertically elongated right frusto conical wall surface and a bottom surface and (b.) a submersible volute centrifugal pump having a horizontally rotating impeller and a volute exterior surface. The sump interior surface, the bottom surface and the volute exterior surface are made of stainless steel having a 30 Ra or finer surface finish. A 15 Ra finish has been found to be most cost effective. The pump station is used for transferring waste water, without accumulation of radioactive fines.

  10. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine; Muna, Alice Baca; Groth, Katrina M.

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  11. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  12. Summary of monitoring station component evaluation project 2009-2011.

    SciTech Connect (OSTI)

    Hart, Darren M.

    2012-02-01

    Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

  13. Proceedings of the international workshop on spallation materials technology

    SciTech Connect (OSTI)

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  14. Technical Design Report, Second Target Station

    SciTech Connect (OSTI)

    Galambos, John D.; Anderson, David E.; Bechtol, D.; Bethea, Katie L.; Brown, N.; Carden, W. F.; Chae, Steven M.; Clark, A.; Counce, Deborah M.; Craft, K.; Crofford, Mark T.; Collins, Richard M.; Cousineau, Sarah M.; Curry, Douglas E.; Cutler, Roy I.; Dayton, Michael J.; Dean, Robert A.; Deibele, Craig E.; Doleans, Marc; Dye, T.; Eason, Bob H.; Eckroth, James A.; Fincrock, C.; Fritts, S.; Gallmeier, Franz X.; Gawne, Ken R.; Hartman, Steven M.; Herwig, Kenneth W.; Hess, S.; Holmes, Jeffrey A.; Horak, Charlie M.; Howell, Matthew P.; Iverson, Erik B.; Jacobs, Lorelei L.; Jones, Larry C.; Johnson, B.; Johnson, S.; Kasemir, Kay; Kim, Sang-Ho; Laughon, Gregory J.; Lu, W.; Mahoney, Kelly L.; Mammosser, John; McManamy, T.; Michilini, M.; Middendorf, Mark E.; O'Neal, Ed; Nemec, B.; Peters, Roy Cecil; Plum, Michael A.; Reagan, G.; Remec, Igor; Rennich, Mark J.; Riemer, Bernie; Saethre, Robert B.; Schubert, James Phillip; Shishlo, Andrei P.; Smith, C. Craig; Strong, William Herb; Tallant, Kathie M.; Tennant, David Alan; Thibadeau, Barbara M.; Trumble, S.; Trotter, Steven M.; Wang, Z.; Webb, Steven B.; Williams, Derrick C.; White, Karen S.; Zhao, Jinkui

    2015-01-01

    The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target systems, instrument hall, instruments and civil construction aspects.

  15. Data Authentication Demonstration for Radionuclide Stations

    SciTech Connect (OSTI)

    Harris, Mark; Herrington, Pres; Miley, Harry; Ellis, J. Edward; McKinnon, David; St. Pierre, Devon

    1999-08-03

    Data authentication is required for certification of sensor stations in the International Monitoring System (IMS). Authentication capability has been previously demonstrated for continuous waveform stations (seismic and infrasound). This paper addresses data surety for the radionuclide stations in the IMS, in particular the Radionuclide Aerosol Sampler/Analyzer (RASA) system developed by Pacific Northwest National Laboratory (PNNL). Radionuclide stations communicate data by electronic mail using formats defined in IMS 1.0, Formats and Protocols for Messages. An open message authentication standard exists, called S/MIME (Secure/Multipurpose Internet Mail Extensions), which has been proposed for use with all IMS radionuclide station message communications. This standard specifies adding a digital signature and public key certificate as a MIME attachment to the e-mail message. It is advantageous because it allows authentication to be added to all IMS 1.0 messages in a standard format and is commercially supported in e-mail software. For command and control, the RASA system uses a networked Graphical User Interface (GUI) based upon Common Object Request Broker Architecture (CORBA) communications, which requires special authentication procedures. The authors have modified the RASA system to meet CTBTO authentication guidelines, using a FORTEZZA card for authentication functions. They demonstrated signing radionuclide data messages at the RASA, then sending, receiving, and verifying the messages at a data center. They demonstrated authenticating command messages and responses from the data center GUI to the RASA. Also, the particular authentication system command to change the private/public key pair and retrieve the new public key was demonstrated. This work shows that data surety meeting IMS guidelines may be immediately applied to IMS radionuclide systems.

  16. In-Air Station - Facilities - Radiation Effects Facility / Cyclotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute / Texas A&M University In-Air Station Full view of in-air station. Our in-air station is located at the end of our dedicated beam-line. The station consist of a rotating platform and a removable target mounting fixture. most users to our facility prefer the in-air station over the vacuum chamber due to its easy access for set-up and target changes. Target Mounting In-Air target mounting frame. The mounting fixture for the in-air station has the same dimensions as the vacuum

  17. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    SciTech Connect (OSTI)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)

  18. Hydrogen Station Cost Estimates: Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Station Cost Estimates Comparing Hydrogen Station Cost Calculator Results with other Recent Estimates M. Melaina and M. Penev National Renewable Energy Laboratory Technical Report NREL/TP-5400-56412 September 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at

  19. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  20. BIOMASS COGASIFICATION AT POLK POWER STATION

    SciTech Connect (OSTI)

    John McDaniel

    2002-05-01

    Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

  1. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  2. Massachusetts Nuclear Profile - Pilgrim Nuclear Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Pilgrim Nuclear Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer cpacity factor (percent)","Type","Commercial operation date","License expiration date" 1,685,"5,918",98.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,685,"5,918",98.7

  3. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,178","9,197",89.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  4. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,164","10,337",101.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Illinois Nuclear Profile - Clinton Power Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Clinton Power Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,065","8,612",92.3,"BWR","application/vnd.ms-excel","application/vnd.ms-

  6. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  7. Xcel Energy Comanche Station: Pueblo, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2007-06-20

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  8. Experimental Station 8-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    500 mA compatible. Stations 8-1a and 8-1b cannot be used simultaneously. This experimental station is NOT open to users. Status Closed Supported Techniques Photoemission...

  9. Experimental Station 13-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 BL13-2 has stations designed for surface and solid state experiments (SSE). The SSE station has an electron spectrometer (SES-R3000, VG-Scienta) for photoemission spectroscopy...

  10. Nuclear Rocket Development Station at the Nevada Test Site |...

    Office of Environmental Management (EM)

    Nuclear Rocket Development Station at the Nevada Test Site Nuclear Rocket Development Station at the Nevada Test Site During the 1950s, the United States launched a nuclear rocket ...

  11. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents ...

  12. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 9, 2014 - 2:20pm Addthis University students can join the...

  13. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 10, 2014 - 12:00am Addthis The Energy Department posted a blog...

  14. Regional Consumer Hydrogen Demand and Optimal Hydrogen Refueling Station Siting

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2008-04-01

    Using a GIS approach to spatially analyze key attributes affecting hydrogen market transformation, this study proposes hypothetical hydrogen refueling station locations in select subregions to demonstrate a method for determining station locations based on geographic criteria.

  15. Saving Energy and Money at 24/7 Fire Stations

    Broader source: Energy.gov [DOE]

    Given constant use and the importance of fire stations to surrounding communities, the Indiana Office of Energy Development awarded funds from the Energy Efficiency and Conservation Block Grant to improve energy efficiency at some local fire stations.

  16. Antenna unit and radio base station therewith

    DOE Patents [OSTI]

    Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru

    2007-04-10

    Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.

  17. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  18. Energy Department Launches Alternative Fueling Station Locator App

    Broader source: Energy.gov [DOE]

    The Energy Department launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles.

  19. Nuova Molinetto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Molinetto Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  20. Monteverdi 1 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 1 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Nuova Radicondoli Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Radicondoli Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  2. Nuova Castelnuovo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Castelnuovo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  3. Monteverdi 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Monteverdi 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Nuova Gabbro Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Gabbro Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Nuova Serrazzano Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Serrazzano Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  6. Nuova Monterotondo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Monterotondo Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  7. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  8. San Martino Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name San Martino Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Geoscience Australia Continuous Global Positioning System (CGPS) Station

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Technical Report) | SciTech Connect Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report Citation Details In-Document Search Title: Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its

  10. Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Fleets, Turns into Profit Center Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center to someone by E-mail Share Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Facebook Tweet about Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Twitter Bookmark Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local

  11. List of Refueling Stations Incentives | Open Energy Information

    Open Energy Info (EERE)

    Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate...

  12. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  13. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  14. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  15. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  16. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  17. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  18. Tampa Electric Company`s Polk Power Station Integrated Gasification Combined Cycle Project

    SciTech Connect (OSTI)

    Jenkins, S.D.; Shafer, J.R.

    1994-12-31

    Tampa Electric Company (TEC) is in the construction phase for the new Polk Power Station, Unit {number_sign}1. This will be the first unit at a new site and will use Integrated Gasification Combined Cycle (IGCC) technology for power generation. The unit will utilize oxygen-blown entrained-flow coal gasification, along with combined cycle technology, to provide nominal net 26OMW of generation. As part of the environmental features of this process, the sulfur species in the coal will be recovered as a commercial grade sulfuric acid by-product. The sulfur will be removed from the synthesis gas utilizing a cold gas clean-up system (CGCU).

  19. License Amendment Request for Storing Exelon Sister Nuclear Stations Class

    Office of Scientific and Technical Information (OSTI)

    B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 (Conference) | SciTech Connect License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 Citation Details In-Document Search Title: License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620 Exelon Nuclear (Exelon) designed and constructed

  20. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    More Biodiesel Case Studies | All Case Studies Publications 2014 Vehicle Technologies Market Report Biodiesel Handling and Use Guide, Fourth Edition More Biodiesel Publications | ...

  1. Validation of an Integrated Hydrogen Energy Station

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  2. Chautauqua notebook: appropriate technology on radio

    SciTech Connect (OSTI)

    Renz, B.

    1981-01-01

    Experiences in establishing and maintaining a regional call-in information-exchange radio show (Chautauqua) on energy conservation, appropriate technology, renewable energy sources, and self-reliance are discussed. Information is presented on: appropriate technology; the Chautauquaa concept; topics discussed; research performed; guests; interviewing tips; types of listeners; program features; where to find help; promotion and publicity; the technical and engineering aspects; the budget and funding; and station policies. (MCW)

  3. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,867,"7,727",101.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" 3,867,"6,866",90.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  4. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  5. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,097","9,241",96.2,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,097","9,241",96.2

  6. Microsoft PowerPoint - [4] HVDC Technology Workshop Arlington April 2013 RevC [Compatibility Mode]

    Energy Savers [EERE]

    Neil Kirby Panel Session : State of HVDC Technologies US DOE Grid Tech Applications for High-Voltage Direct Current Transmission Technologies GRID Neil Kirby Arlington, VA April 22 nd , 2013 Agenda * HVDC Technologies * World View * Key Projects * Development Work P 2 HVDC Transmission Back to Back - Asynchronous interconnection of adjacent networks - DC Circuit is short - within the same building/station - 2 Converters in 1 Station Point to Point - Long Distance Transmission by Overhead Line or

  7. Lambda Station: On-demand flow based routing for data intensive Grid applications over multitopology networks

    SciTech Connect (OSTI)

    Bobyshev, A.; Crawford, M.; DeMar, P.; Grigaliunas, V.; Grigoriev, M.; Moibenko, A.; Petravick, D.; Rechenmacher, R.; Newman, H.; Bunn, J.; Van Lingen, F.; Nae, D.; Ravot, S.; Steenberg, C.; Su, X.; Thomas, M.; Xia, Y.; /Caltech

    2006-08-01

    Lambda Station is an ongoing project of Fermi National Accelerator Laboratory and the California Institute of Technology. The goal of this project is to design, develop and deploy network services for path selection, admission control and flow based forwarding of traffic among data-intensive Grid applications such as are used in High Energy Physics and other communities. Lambda Station deals with the last-mile problem in local area networks, connecting production clusters through a rich array of wide area networks. Selective forwarding of traffic is controlled dynamically at the demand of applications. This paper introduces the motivation of this project, design principles and current status. Integration of Lambda Station client API with the essential Grid middleware such as the dCache/SRM Storage Resource Manager is also described. Finally, the results of applying Lambda Station services to development and production clusters at Fermilab and Caltech over advanced networks such as DOE's UltraScience Net and NSF's UltraLight is covered.

  8. Recovery sequences for a station blackout accident at the Grand Gulf Nuclear Station

    SciTech Connect (OSTI)

    Carbajo, J.J. [Martin Marietta Energy Systems, Oak Ridge, TN (United States)

    1995-12-31

    Recovery sequences for a low-pressure, short term, station blackout severe accident at the Grand Gulf power plant have been investigated using the computer code MELCOR, version 1.8.3 PN. This paper investigates the effect of reflood timing and mass flow rate on accident recovery.

  9. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D.; Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N.

    1996-02-01

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  10. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  11. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  12. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  13. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  14. Resilient design of recharging station networks for electric transportation vehicles

    SciTech Connect (OSTI)

    Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

    2011-08-01

    As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

  15. Exploration Technologies Technology Needs Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACKNOWLEDGMENTS This report was sponsored by the U.S. Department of Energy's Geothermal Technologies Program and prepared by Energetics Incorporated under the guidance of Hildigunnur (Hidda) Thorsteinsson, Technology Development Manager of the Exploration Technologies Subprogram, and Tim Reinhardt, Technology Development Manager of the Low-Temperature, Coproduced, and Geopressured Geothermal Subprogram. Amanda I. Greene of Energetics Incorporated was the lead author and designer of the

  16. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  17. Robust bearing estimation for 3-component stations

    SciTech Connect (OSTI)

    CLAASSEN,JOHN P.

    2000-02-01

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the inherent information in the arrival at every step of the process to achieve near-optimal results. In particular the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, and finally to apply bias corrections when calibration information is available to yield a single final estimate. The algorithm was applied to a small but challenging set of events in a seismically active region. It demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted from these findings.

  18. Robust Bearing Estimation for 3-Component Stations

    SciTech Connect (OSTI)

    Claassen, John P.

    1999-06-03

    A robust bearing estimation process for 3-component stations has been developed and explored. The method, called SEEC for Search, Estimate, Evaluate and Correct, intelligently exploits the in- herent information in the arrival at every step of the process to achieve near-optimal results. In particular, the approach uses a consistent framework to define the optimal time-frequency windows on which to make estimates, to make the bearing estimates themselves, to construct metrics helpful in choosing the better estimates or admitting that the bearing is immeasurable, andjinally to apply bias corrections when calibration information is available to yield a single final estimate. The method was applied to a small but challenging set of events in a seismically active region. The method demonstrated remarkable utility by providing better estimates and insights than previously available. Various monitoring implications are noted fiom these findings.

  19. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  20. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  1. 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating ...

  2. Brunswick Station, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Brunswick Station, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.89624, -69.931446 Show Map Loading map... "minzoom":false,"mapping...

  3. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...

  4. Alternative Fueling Station Locator - Mobile | Open Energy Information

    Open Energy Info (EERE)

    version of the Alternative Fueling Station Locator, part of the Department of Energy's Alternative Fuels and Advanced Vehicles Datacenter, allows users to search for alternative...

  5. UC Davis Models: Geospatial Station Network Design Tool and Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    perspective of the network, individual station owners, and consumers. Platform, Requirements & Availability Microsoft Excel-based hydrogen infrastructure rollout spreadsheet model

  6. U.S. Naval Station, Guantanamo Bay, Cuba

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the U.S. Naval Station at Guantanamo Bay, Cuba.

  7. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory...

  8. College Station Utilities- Residential Energy Back II Rebate Program

    Broader source: Energy.gov [DOE]

    College Station Utilities offers an incentive for residential customers to install energy efficient HVAC equipment through the Energy Back II Program. Rebates only apply for replacements in...

  9. WWTP Power Generation Station Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892, -121.7195459 Show Map Loading map......

  10. Lagoni Rossi 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Lagoni Rossi 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  11. Piancastagnaio 5 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 5 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  12. Piancastagnaio 3 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 3 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  13. Cerro Prieto Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Cerro Prieto Geothermal Power Station Sector Geothermal energy Location Information Coordinates 32.4194445584, -115.30637090094 Loading map......

  14. Piancastagnaio 2 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 2 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  15. Piancastagnaio 4 Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Piancastagnaio 4 Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Mount Amiata...

  16. 20,000 and Counting: Alternative Fueling and Charging Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    up-to-date information on fueling stations for biodiesel, compressed natural gas, electricity, E85 (up to 85% ethanol), hydrogen, liquefied natural gas, and propane. The...

  17. Fact #920: April 11, 2016 Electric Charging Stations are the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The other fuel types (biodiesel, liquefied natural gas (LNG) and hydrogen) altogether have ... Graph showing alternative fueling stations by futel type (E85, CNG, Biodiesel, Hydrogen, ...

  18. Kaneohe Station, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kaneohe Station, Hawaii: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 21.44882, -157.760696 Show Map Loading map... "minzoom":false,"mapping...

  19. Experimental Station 14-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 NA Status In Design Supported Techniques White Light Station Main Scientific Disciplines Structural Molecular Biology Beam Line Specifications Source Bending Magnet Energy Range ...

  20. Fact #717: March 5, 2012 Availability of Electric Charging Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Midwest have also shown remarkable growth. By January 2012, there were just 9 states without any electric charging stations, primarily in the northern regions of the country. ...

  1. Re: Potomac River Generating Station Department of Energy Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Advanced Notice of Power Outages. Comments on Department of Energy's Emergency Order To Resume Limited Operation at Mirant's Potomac River Generating Station and Proposed ...

  2. Rongjiang County Sanjunyan Small Hydropower Station | Open Energy...

    Open Energy Info (EERE)

    Station Place: Guizhou Province, China Zip: 557200 Sector: Hydro Product: China-based small hydro project developer. References: Rongjiang County Sanjunyan Small Hydropower...

  3. Microgrid V2G Charging Station Interconnection Testing (Presentation)

    SciTech Connect (OSTI)

    Simpson, M.

    2013-07-01

    This presentation by Mike Simpson of the National Renewable Energy Laboratory (NREL) describes NREL's microgrid vehicle-to-grid charging station interconnection testing.

  4. Hellisheidi Geothermal Power Station - South Iceland | Open Energy...

    Open Energy Info (EERE)

    - South Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hellisheidi Geothermal Power Station - South Iceland Published...

  5. Trona Injection Tests: Mirant Potomac River Station, Unit 1,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Potomac River Generating Station in Alexandria, Virginia Update 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit ...

  6. Help Design the Hydrogen Fueling Station of Tomorrow

    Broader source: Energy.gov [DOE]

    University students can join the Energy Department-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station.

  7. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    competitive prices-to fuel FCEVs. PDF icon Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis More Documents & Publications Hawaii Renewable Hydrogen Program ...

  8. Analysis on Current Status of the Gas Filling Station Networks...

    Open Energy Info (EERE)

    Name: Analysis on Current Status of the Gas Filling Station Networks Website Focus Area: Natural Gas Topics: Potentials & Scenarios Website: www.gashighway.net...

  9. MHK ISDB/Instruments/Automatic Weather Station AWS 2700 | Open...

    Open Energy Info (EERE)

    Weather Station AWS 2700 < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  10. Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pdc - The Worldwide Leader in Hydrogen Refueling Station Compression Pdc - The Worldwide ... Report CX-100223 Categorical Exclusion Determination Air Products Hydrogen Energy Systems

  11. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Broader source: Energy.gov [DOE]

    This feasibility report assesses the technical and economic feasibility of deploying a hydrogen fueling station at the Fort Armstrong site in Honolulu.

  12. Antu County 303 Hydropower Station Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co., Ltd. Place: Jilin Province, China Zip: 133613 Sector: Hydro Product: China-based small hydro CDM project developer. References: Antu County 303 Hydropower Station Co.,...

  13. Experimental Station 7-3 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy Main Scientific Disciplines Biomedical Sciences Structural Molecular Biology Beam Line Specifications Source 20-pole, 2-Tesla wiggler, 0.8 mrad beam, Side station...

  14. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  15. Tampa Electric Company, Polk Power Station Unit No. 1, preliminary public design report

    SciTech Connect (OSTI)

    1994-06-01

    This preliminary Public Design Report (PDR) provides design information about Tampa Electric Company`s Polk Power Station Unit No. 1, which will demonstrate in a commercial 250 MW unit the benefits of the integration of oxygen-blown, entrained-flow coal gasification with advanced combined cycle technology. This project is partially funded by the US Department of Energy (DOE) under Round III of its Clean Coal Technology (CCT) Program under the provisions of Cooperative Agreement between DOE and Tampa Electric Company, novated on March 5,1992. The project is highlighted by the inclusion of a new hot gas cleanup system. DOE`s project management is based at its Morgantown Energy Technology Center (METC) in West Virginia. This report is preliminary, and the information contained herein is subject to revision. Definitive information will be available in the final PDR, which will be published at the completion of detailed engineering.

  16. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  17. Project X Energy Station Workshop Report. Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

    SciTech Connect (OSTI)

    Asner, David M.; Hurh, Patrick; Brady Raap, Michaele C.; Gohar, Yoursy; Peterson, Mary E.; Pithcer, Eric; Riemer, Bernie; Senor, David J.; Wootan, David W.

    2013-06-14

    Project X Energy Station Workshop Report Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

  18. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  19. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  20. Vehicle Technologies Office: Resources for Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Vehicle Technologies Office: Resources for Consumers As technologies supported by the Vehicle Technologies Office (VTO) come on to the market, regular drivers will benefit from lower fuel costs and less time spent at the gas station. Through FuelEconomy.gov and the Alternative Fuels Data Center, VTO provides a variety of resources to help drivers choose the most efficient vehicle that meets their needs and get the most out of the vehicle they have now. Green Racing highlights the

  1. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  2. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  5. Severe Accident Test Station Activity Report

    SciTech Connect (OSTI)

    Pint, Bruce A.; Terrani, Kurt A.

    2015-06-01

    Enhancing safety margins in light water reactor (LWR) severe accidents is currently the focus of a number of international R&D programs. The current UO2/Zr-based alloy fuel system is particularly susceptible since the Zr-based cladding experiences rapid oxidation kinetics in steam at elevated temperatures. Therefore, alternative cladding materials that offer slower oxidation kinetics and a smaller enthalpy of oxidation can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident. In the U.S. program, the high temperature steam oxidation performance of accident tolerant fuel (ATF) cladding solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012. This report summarizes the capabilities of the SATS and provides an overview of the oxidation kinetics of several candidate cladding materials. A suggested baseline for evaluating ATF candidates is a two order of magnitude reduction in the steam oxidation resistance above 1000C compared to Zr-based alloys. The ATF candidates are categorized based on the protective external oxide or scale that forms during exposure to steam at high temperature: chromia, alumina, and silica. Comparisons are made to literature and SATS data for Zr-based alloys and other less-protective materials.

  6. Conceptual design of a submerged power station

    SciTech Connect (OSTI)

    Herring, J.S. )

    1992-01-01

    Providing safe and sustainable energy to the world's increasing population will be one of the major challenges of the 21st century. Idaho National Engineering Laboratory is developing the concept of a submerged power stations (SPS). The reactor is located in the forward part of the vessel, while the turbine and generator are in the midsection, and the control and crew quarters are located at the opposite end of the vessel. The current design of the SPS has a 22.5-m o.d., is 146 m long, and has a total mass, including seawater in the annular region between the hulls, of 47,000 t. The SPS would be operated in 20 to 100 m of water at a distance of 10 to 30 km from the shore and would generate 300 to 600 MW(electric) transmitted to shore by undersea cables. The SPS has the advantages of centralized fabrication and maintenance. The author believes that the SPS has significant safety and environmental advantages.

  7. Irradiation Environment of the Materials Test Station

    SciTech Connect (OSTI)

    Pitcher, Eric John

    2012-06-21

    Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

  8. Innovations in subsea technology. [Poseidon

    SciTech Connect (OSTI)

    Booth, D.

    1986-02-01

    The progress of subsea production technology has been punctuated from the beginning by notable achievements which stand out like billboards along a winding highway. At each twist and turn another successful innovation heaves into view, soon to be forgotten as its advantages are absorbed into the industry. This article traces those advances from 1960 to the present time. Particular attention is given to the Poseidon underwater production system. Its success relies on the pumping and transport of hydrocarbons and water in multiphase flow through a submarine pipeline from a totally submerged production system. Power for the pump is by submarine cable laid from the shore. Thus, processing would become a land-based operation, and platforms would be a thing of the past. Poseidon will comprise: A group of subsea completions; Flow lines linking the wells to the subsea station; A subsea station built on modular lines; A multiphase submarine export line; Remote control from shore for all subsea functions; A dedicated onshore power station; A submarine power cable. According to the sponsors of Poseidon, the technical cost per barrel will be two to three times less than conventional platforms. The system is also relatively weather insensitive. Operational limits are currently seen as 130 miles from shore and 1,300 ft water depth.

  9. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  10. Solar-Assisted Electric Vehicle Charging Station Interim Report

    SciTech Connect (OSTI)

    Lapsa, Melissa Voss; Durfee, Norman; Maxey, L Curt; Overbey, Randall M

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has been awarded $6.8 million in the Department of Energy (DOE) American Recovery and Reinvestment Act (ARRA) funds as part of an overall $114.8 million ECOtality grant with matching funds from regional partners to install 125 solar-assisted Electric Vehicle (EV) charging stations across Knoxville, Nashville, Chattanooga, and Memphis. Significant progress has been made toward completing the scope with the installation of 25 solar-assisted charging stations at ORNL; six stations at Electric Power Research Institute (EPRI); and 27 stations at Nissan's Smyrna and Franklin sites, with three more stations under construction at Nissan's new lithium-ion battery plant. Additionally, the procurement process for contracting the installation of 34 stations at Knoxville, the University of Tennessee Knoxville (UTK), and Nashville sites is underway with completion of installation scheduled for early 2012. Progress is also being made on finalizing sites and beginning installations of 30 stations in Nashville, Chattanooga, and Memphis by EPRI and Tennessee Valley Authority (TVA). The solar-assisted EV charging station project has made great strides in fiscal year 2011. A total of 58 solar-assisted EV parking spaces have been commissioned in East and Middle Tennessee, and progress on installing the remaining 67 spaces is well underway. The contract for the 34 stations planned for Knoxville, UTK, and Nashville should be underway in October with completion scheduled for the end of March 2012; the remaining three Nissan stations are under construction and scheduled to be complete in November; and the EPRI/TVA stations for Chattanooga, Vanderbilt, and Memphis are underway and should be complete by the end of March 2012. As additional Nissan LEAFs are being delivered, usage of the charging stations has increased substantially. The project is on course to complete all 125 solar-assisted EV charging stations in time to collect meaningful data by the end of government fiscal year 2012. Lessons learned from the sites completed thus far are being incorporated and are proving to be invaluable in completion of the remaining sites.

  11. EM-Sponsored Field Station Thrives as Classroom for Students...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scott, an industrial technology and technology education major, and Taurean Houston, a mechanical engineering technology major, turned a back corner of the room into a project...

  12. Severe Accident Test Station Design Document

    SciTech Connect (OSTI)

    Snead, Mary A.; Yan, Yong; Howell, Michael; Keiser, James R.; Terrani, Kurt A.

    2015-09-01

    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phase of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  13. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  14. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  15. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year. Because the number

  16. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  17. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    SciTech Connect (OSTI)

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  18. H2FIRST Reference Station Design Task: Project Deliverable 2-2 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and

  19. Experimental Station 2-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beam line 2-2 is a bending magnet end-station beam line dedicated to in-situ X-ray absorption spectroscopy, Quick-EXAFS, and EXAFS measurements of samples with absorption edges...

  20. Experimental Station 5-4 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy (ARPES) in the photon energy range of 7 - 40 eV. The dedicated experimental end station is equipped with a SCIENTA R4000 electron spectrometer. This system is...

  1. Experimental Station 10-2B | Stanford Synchrotron Radiation Lightsourc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B Beamline 10-2 is a wiggler end-station beamline. The 10-2 front hutch is dedicated for rapidcontinuous-scanning x-ray fluorescence imaging. The 10-2 back hutch is equiped with a...

  2. Experimental Station 10-2a | Stanford Synchrotron Radiation Lightsourc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Beam line 10-2 is a wiggler end-station that splits time between the front hutch (BL10-2a), which is instrumented for X-ray absorption spectroscopy imaging, and the rear hutch...

  3. Experimental Station 6-2C | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    C Beamline 6-2 is a wiggler end-station beamline dedicated for advanced x-ray spectroscopy and transmission x-ray microscopy. The 6-2 middle hutch is equipped with a 40-crystal...

  4. Experimental Station 13-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 13-1 is a side-station of an elliptical undulator beamline that is dedicated for scanning transmission x-ray spectro microscopy of magnetic materials. The endstation is...

  5. Experimental Station 1-5 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -5 Beamline 1-5 is a bend magnet end station dedicated primarily to small angle x-ray scattering (SAXS), with the capability to perform wide angle x-ray scattering experiments as...

  6. Experimental Station 10-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 10-1 is a wiggler side-station beamline for X-ray Absorption Spectroscopy and core-level Photoelectron Spectroscopy. It has a generic chamber for primarily ex-situ...

  7. Experimental Station 11-3 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Beamline 11-3 is a wiggler side-station beamline dedicated for Wide Angle Scattering. 11-3 is equipped with MAR 345 image plate. Status Open Supported Techniques X-ray...

  8. Washington DC's First Electric Vehicle Charging Station | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The charger itself, with its pedestal style, simple connector, and credit card reader, fit in perfectly with the curb-side parking meters and nearby bike sharing station. Plugging ...

  9. DOE - Office of Legacy Management -- Norfolk Naval Station -...

    Office of Legacy Management (LM)

    FUSRAP Also see Documents Related to NORFOLK NAVAL STATION VA.05-1 - DOE Memorandum; Williams to File; Subject: Elimination of Sites from FUSRAP; December 23, 1993 VA.05-2 -...

  10. Webinar October 13: Reference Designs for Hydrogen Fueling Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Daylight Time (EDT). The goal of the H2FIRST Reference Station Design Task is to accelerate acceptance of near-term hydrogen infrastructure build-out by exploring the ...

  11. Experimental Station 4-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beam line 4-2 is a small-angle scatteringdiffraction station dedicated to structural biology studies primarily on non-crystalline systems. The instrument covers the range of...

  12. Experimental Station 2-1 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 BL2-1 is a dedicated thin filmpowder diffraction and reflectivity station. It is equipped with a Huber 2-circle goniometer and a high-resolution crystal-analyzer detector. There...

  13. 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Elm Road Generating Station","Coal","Wisconsin Electric Power Co",1268 2,"Point Beach ...

  14. 1,"Mystic Generating Station","Natural gas","Constellation Mystic...

    U.S. Energy Information Administration (EIA) Indexed Site

    (MW)" 1,"Mystic Generating Station","Natural gas","Constellation Mystic Power LLC",1997.2 2,"Brayton Point","Coal","Brayton Point Energy LLC",1505 3,"Northfield Mountain","Pumped ...

  15. Port Jefferson Station, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Port Jefferson Station is a census-designated place in Suffolk County, New York.1...

  16. ARM - PI Product - NOAA PMEL Station Chemistry Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PMEL Station Chemistry Data Submicron and supermicron samples are analyzed by ion chromatography for Cl-, NO3-, SO4-2, Na+, NH4+, K+, Mg2+, and Ca+2. The analysis of MSA-, Br-,...

  17. Quantum key distribution using card, base station and trusted authority

    DOE Patents [OSTI]

    Nordholt, Jane Elizabeth; Hughes, Richard John; Newell, Raymond Thorson; Peterson, Charles Glen; Rosenberg, Danna; McCabe, Kevin Peter; Tyagi, Kush T; Dallman, Nicholas

    2015-04-07

    Techniques and tools for quantum key distribution ("QKD") between a quantum communication ("QC") card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trusted authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.

  18. Determination of station blackout frequency-duration relationships

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.; Balakrishna, S.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to the essential and nonessential electrical buses in a nuclear power plant. This generally involves the loss of redundant off-site power sources and the failure of two or more emergency diesel generators (EDGs). The US Nuclear Regulatory Commission (NRC) has proposed requiring all commercial reactors to have the capability of coping with a station blackout of a specified duration. The NRC has also proposed 4 or 8 h as acceptable durations, depending on plant susceptibility to the occurrence of station blackout events. Analyses were performed to determine expected station blackout frequencies representative of a majority of domestic nuclear power plants. A methodology based on that developed by the NRC was used. Representative industry data for loss of off-site power (LOOP) events and EDG reliability were used in the analyses.

  19. Huntington Station, New York: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Huntington Station is a census-designated place in Suffolk County, New York.1 Registered...

  20. Re: Potomac River Generating Station Department of Energy, Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of each of the two 230 kV circuits serving the downtown area of the District of Columbia. ... Concerning Planned Outages of the 230 kV circuits Re: Potomac River Generating Station ...

  1. Re: Potomac River Generating Station Department of Energy, Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for transmission outages for the 230 kV circuits Re: Potomac River Generating Station ... Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Docket No. ...

  2. Re: Potomac River Generating Station Department of Energy Case...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: ...

  3. Police Station Triples Solar Power – and Savings

    Broader source: Energy.gov [DOE]

    The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs.

  4. Experimental Station 2-3 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy as well as micro diffraction of biological, material, and geological samples. ...

  5. Experimental Station 14-3b | Stanford Synchrotron Radiation Lightsourc...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam line 14-3 is a bending magnet side station dedicated to X-ray imaging and micro X-ray absorption spectroscopy of biological, biomedical, materials, and geological samples. ...

  6. National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border Pipeline Company's Compressor Station #7, North Dakota

    SciTech Connect (OSTI)

    Sweetzer, Richard; Leslie, Neil

    2008-02-01

    A field research test and verification project was conducted at the recovered energy generation plant at Northern Border Pipeline Company Compressor Station #7 (CS#7) near St. Anthony. Recovered energy generation plant equipment was supplied and installed by ORMAT Technologies, Inc. Basin Electric is purchasing the electricity under a purchase power agreement with an ORMAT subsidiary, which owns and operates the plant.

  7. Large Optic Drying Station: Summary of Dryer Certification Tests

    SciTech Connect (OSTI)

    Barbee, T W; Ayers, S L; Ayers, M J

    2009-08-28

    The purpose of this document is to outline the methodology used to baseline and maintain the cleanliness status of the newly built and installed Large Optic Cleaning Station (LOCS). The station has currently been in use for eleven months; and after many cleaning studies and implementation of resulting improvements appears to be cleaning optics to a level that is acceptable for the fabrication of Nano-Laminates.

  8. Finding the Right Filling Station for Alternative Vehicles Now Easier

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding the Right Filling Station for Alternative Vehicles Now Easier For more information contact: e:mail: Public Affairs Golden, Colo., May 5, 1999 — A new online interactive computer program is taking the guesswork out of finding the fuel needed by the thousands of alternative vehicles on the road today in the United States. The program, called the Alternative Fuel Refueling Station Locator, was developed by the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC). The AFDC

  9. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  10. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  11. Where the Rubber Meets the Road-- the Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    To use the Alternative Fuel Station Locator, travelers with alternative fuel vehicles just enter their address alternative fuel station locator mobile and pick their fuel.

  12. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California ...

  13. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  14. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  16. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  17. Exploration Technologies Technology Needs Assessment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Innovative Exploration Technologies Needs Assessment Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Hydrothermal Exploration Data Gap ...

  18. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-03-01

    The Gulf of Mexico Hydrates Research Consortium was established in 1999 to assemble leaders in gas hydrates research. The group is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently received increased attention and the group of researchers working on the station has expanded to include several microbial biologists. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in this relatively new research arena. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments are planned for fall 2005 and center about the use of the vessel M/V Ocean Quest and its two manned submersibles. The subs will be used to effect bottom surveys, emplace sensors and sea floor experiments and make connections between sensor data loggers and the integrated data power unit (IDP). Station/observatory completion is anticipated for 2007 following the construction, testing and deployment of the horizontal line arrays, not yet funded. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  19. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect (OSTI)

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  20. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  1. Characterizing toxic emissions from a coal-fired power plant demonstrating the AFGD ICCT Project and a plant utilizing a dry scrubber/baghouse system: Bailly Station Units 7 and 8 and AFGD ICCT Project. Final report. Final report

    SciTech Connect (OSTI)

    Dismukes, E.B.

    1994-10-20

    This report describes results of assessment of the risk of emissions of hazardous air pollutants at one of the electric power stations, Bailly Station, which is also the site of a Clean Coal Technology project demonstrating the Pure Air Advanced Flue Gas Desulfurization process (wet limestone). This station represents the configuration of no NO{sub x} reduction, particulate control with electrostatic precipitators, and SO{sub 2} control with a wet scrubber. The test was conducted September 3--6, 1993. Sixteen trace metals were determined along with 5 major metals. Other inorganic substances and organic compounds were also determined.

  2. California Regulations on Renewble Hydrogen and Low Carbon Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Regulations on Renewble Hydrogen and Low Carbon Technologies California Regulations on Renewble Hydrogen and Low Carbon Technologies Presentation at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_achtelik.pdf More Documents & Publications Transportation and Stationary Power Integration Workshop: A California Perspective Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations State of the

  3. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  4. Littoral processes: US Coast Guard Station, Fort Point, San Francisco

    SciTech Connect (OSTI)

    Ecker, R.M.; Whelan, G.

    1983-10-01

    The US Coast Guard Station, Fort Point is located three-quarters of a nautical mile southeast of the Golden Gate Strait, the entrance to San Francisco Bay. The existing storm wave conditions at Fort Point Station pier make it extremely dangerous for the SAR crews to get on and off the Motor Life Boats at times requiring the vessels to be moored at the San Francisco Yacht Harbor about 1.5 miles east of the Fort Point Station. To mitigate these harsh working conditions the US Coast Guard is considering the feasibility of constructing suitable all-weather moorings for the three Motor Life Boats at the Fort Point Station to enable unimpeded SAR operations, to provide safe working conditions for Coast Guard small boat crews, and to improve small boat maintenance conditions at Fort Point Station. The purpose of this report is to identify, analyze and evaluate physical environmental factors that could affect all-weather moorings siting, configuration and entrance location, as well as potential post construction alterations to littoral conditions and processes. This report includes a description of the site, description of pertinent littoral processes, evaluation of how these processes could affect construction of all-weather moorings, and discussion of design considerations, as well as mitigation measures to minimize potential adverse effects to the physical environment. 19 references, 27 figures, 26 tables.

  5. Loss of pressurizer water level during station blackout

    SciTech Connect (OSTI)

    Griggs, D.P.; Riggs, B.K.

    1986-01-01

    Station blackout is the loss of all alternating current (ac) power to both the essential and nonessential electrical buses in a nuclear power plant. The US Nuclear Regulatory Commission (NRC) has proposed a requirement that all plants be capable of maintaining adequate core cooling during station blackout events lasting a specified duration. The NRC has also suggested acceptable specified durations of four or eight hours, depending on individual plant susceptibility to blackout events. In a pressurized water reactor (PWR), the occurrence of a station blackout event results in the functional loss of many plant components, including main feedwater, reactor coolant pumps, the emergency core cooling system, and pressurizer heaters and spray. Nevertheless, PWRs have the capability of removing decay heat for some period of time using steam-driven auxiliary feedwater pumps and the natural-circulation capability of the primary system. The purpose of this investigation is to determine the early response of a PWR to station blackout conditions. In particular, the effect of primary coolant shrinkage and inventory loss on pressurizer level is examined to gain insight into the operational and analytical issues associated with the proposed station blackout coping requirement.

  6. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    1993-09-01

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  7. ARM: Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Laura Riihimaki

    Broadband Radiometer Station (BRS) broadband shortwave and longwave 1-min radiation data with Dutton correction

  8. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  9. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  10. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  11. Design of photovoltaic central power station concentrator array

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    A design for a photovoltaic central power station using tracking concentrators has been developed. The 100 MW plant is assumed to be located adjacent to the Saguaro Power Station of Arizona Public Service. The design assumes an advanced Martin Marietta two-axis tracking fresnel lens concentrator. The concentrators are arrayed in 5 MW subfields, each with its own power conditioning unit. The photovoltaic plant output is connected to the existing 115 kV switchyard. The site specific design allows detailed cost estimates for engineering, site preparation, and installation. Collector and power conditioning costs have been treated parametrically.

  12. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  13. Source terms released into the environment for a station blackout severe accident at the Peach Bottom Atomic Power Station

    SciTech Connect (OSTI)

    Carbajo, J.J.

    1995-07-01

    This study calculates source terms released into the environment at the Peach Bottom Atomic Power Station after containment failure during a postulated low-pressure, short-term station blackout severe accident. The severe accident analysis code MELCOR, version 1.8.1, was used in these calculations. Source terms were calculated for three different containment failure modes. The largest environmental releases occur for early containment failure at the drywell liner in contact with the cavity by liner melt-through. This containment failure mode is very likely to occur when the cavity is dry during this postulated severe accident sequence.

  14. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  15. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  16. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  17. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  18. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  19. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  20. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  1. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally; (7) Design, construction, and successful deployment of an in situ pore-water sampling device; (8) Improvements to the original Raman spectrometer (methane sensor); (9) Laboratory demonstration of the impact of bacterially-produced surfactants' rates of hydrate formation; (10) Construction and sea floor emplacement and testing--with both watergun and ship noise sources--of the prototypal vertical line array (VLA); (11) Initiation of studies of spatial controls on hydrates; (12) Compilation and analyses of seismic data, including mapping of surface anomalies; (13) Additional field verification (bottom samples recovered), in support of the site selection effort; (14) Collection and preliminary analyses of gas hydrates from new sites that exhibit variant structures; (15) Initial shear wave tests carried out in shallow water; (16) Isolation of microbes for potential medicinal products development; (17) Preliminary modeling of occurrences of gas hydrates.

  2. Proceedings of the Flat-Plate Solar Array Project Research Forum on the design of flat-plate photovoltaic arrays for central stations

    SciTech Connect (OSTI)

    1983-01-01

    The Flat-Plate Solar Array Project, managed by the Jet Propulsion Laboratory for the US Department of Energy, has focused on advancing technologies relevant to the design and construction of megawatt-level central-station systems. Photovoltaic modules and arrays for flat-plate central-station or other large-scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost-effective configurations. The Central Station Research Forum addressed design, qualification and maintenance issues related to central-station arrays derived from the engineering and operating experiences of early applications and parallel laboratory research activities. Technical issues were examined from the viewpoint of the utility engineer, architect-engineer and laboratory researcher. The forum included presentations on optimum source-circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements and array operation and maintenance. The Research Forum focused on current capabilities as well as design difficulties requiring additional technological thrusts and/or continued research emphasis. Session topic summaries highlighting major points during group discussions, identifying promising technical approaches or areas of future research, are presented.

  3. Energy Technology Solutions

    Broader source: Energy.gov [DOE]

    Public-private partnerships transforming industry and list of commercialized technologies, knowledge-based results, and promising technologies

  4. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  5. A Big Step Increase in the EM Technology Development (TD) Program - Closing

    Energy Savers [EERE]

    | Department of Energy A Big Step Increase in the EM Technology Development (TD) Program - Closing A Big Step Increase in the EM Technology Development (TD) Program - Closing Presentation from the 2015 DOE National Cleanup Workshop by Rod Rimando, Senior Technical Adviser, DOE-EM. PDF icon A Big Step Increase in the EM Technology Development (TD) Program - Closing More Documents & Publications NSU Norfolk State University Nuclear Rocket Development Station at the Nevada Test Site

  6. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  7. Commissioning and operation of the CEBAF end station refrigeration system

    SciTech Connect (OSTI)

    Arenius, D.; Bevins, B.; Chronis, W.C.; Ganni, V.; Kashy, D.; Keesee, M.; Wilson, J. Jr.

    1996-08-01

    The CEBAF End Station Helium Refrigerator (ESR) System provides refrigeration at 80 K, 20 K and 4.5 K to three End Station experimental halls. The facility consists of a two stage helium screw compressor system, 4.5 K refrigerator, cryogen distribution valve box, and transfer lines to the individual experimental halls. The 4.5 K cold box and compressors were originally part of the ESCAR 1,500 W, 4 K refrigeration system at Lawrence Berkeley Laboratory which was first commissioned fin 1977. The compressors, 4.5 K cold box, and control system design were modified to adapt the plant for the requirements of the CEBAF experimental halls. Additional subsystems of cryogen distribution, transfer lines, warm gas management, and computer control interface were added. This paper describes the major plant subsystems, modifications, operational experiences and performance.

  8. Design and operating experience of the Holcomb Station dry scrubber

    SciTech Connect (OSTI)

    Emerson, R.D.

    1985-01-01

    The Holcomb Station dry flue gas desulfurization system has been operational since May, 1983. The lime based system, consisting of three spray drying absorbers and two baghouses, has met all regulatory compliance requirements and contractual guarantee values. Some serious operational problems were encountered during the startup of this system. This paper discusses these problems and subsequent solutions along with testing experience to-date. The availability of this system for the first quarter of 1985 was 99.51 percent.

  9. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,630,"5,294",95.9,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  10. New Jersey Nuclear Profile - PSEG Salem Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Salem Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,174","8,777",85.3,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  11. New Truck Stop Electrification Station Maps Help Truckers Reduce Idling -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL New Truck Stop Electrification Station Maps Help Truckers Reduce Idling April 21, 2006 Golden, Colo. - A new internet-based mapping program is helping truckers find truck stops with idle reduction facilities-on-site systems that can substantially cut fuel use while reducing air emissions. Idle reduction systems hold great promise for the approximately 500,000 long-haul trucks with sleeper cabs currently operating in the United States. Estimates show idle reduction

  12. California Nuclear Profile - San Onofre Nuclear Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    San Onofre Nuclear Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,070","6,989",74.6,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  13. Illinois Nuclear Profile - LaSalle Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    LaSalle Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,118","9,207",94.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  14. More California Gas Stations Can Provide Hydrogen than Previously Thought,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Study Says California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  15. Re: Potomac River Generating Station Department of Energy Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: PEPCO is providing you with information regarding the planned transmission maintenance outage | Department of Energy PEPCO is providing you with information regarding the planned transmission maintenance outage Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: PEPCO is providing you with information regarding the planned transmission maintenance outage Docket No. EO-05-01. Order No. 202-07-02: Per your request, Potomac Electric Power Company

  16. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  17. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  18. Nevada Power: Clark Station; Las Vegas, Nevada (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    2006-03-27

    A partnership with the University of Nevada and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  19. Lowry Range Solar Station: Arapahoe County, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Yoder, M.; Andreas, A.

    2008-05-30

    A partnership with industry and U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to collect solar data to support future solar power generation in the United States. The measurement station monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment to provide scientists with a complete picture of the solar power possibilities.

  20. Fact #816: February 10, 2014 Natural Gas Refueling Stations Grow Over the Last Ten Years

    Broader source: Energy.gov [DOE]

    In 2003 there were 1,097 natural gas refueling stations nationwide. By 2013, that number increased by about 25% to a total of 1,374 natural gas refueling stations. In 2003, there were six states...

  1. Fact #717: March 5, 2012 Availability of Electric Charging Stations Has Increased Dramatically in Recent Years

    Broader source: Energy.gov [DOE]

    At the end of September 2009, there were just 465 electric vehicle charging stations nationwide. By the end of January 2012, the number of charging stations had grown to 6,033. California has...

  2. Fact #874: May 25, 2015 Number of Electric Stations and Electric Charging Units Increasing

    Broader source: Energy.gov [DOE]

    There are more electric stations than any other alternative fuel (10,710 stations). The number of charging units is of particular importance for electric vehicles due to the length of time it takes...

  3. Fact #782: June 3, 2013 Number of Refueling Stations Continues to Shrink

    Broader source: Energy.gov [DOE]

    In 1993 there were more than 200,000 refueling stations on our nation's roadways. The number of stations has been decreasing almost every year since then. By 2012, there were just over 150,000...

  4. Tri-Generation Success Story: World's First Tri-Gen EnergyStation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley This Fuel Cell ...

  5. Fact #832: August 4, 2014 Over Half of the Refueling Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel A 2014 survey of ...

  6. NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net ...

  7. Analysis of clear hour solar irradiation for seven Canadian stations

    SciTech Connect (OSTI)

    Garrison, J.; Sahami, K.

    1995-12-31

    Hourly global and diffuse irradiation and corresponding surface meteorological data have been analyzed for the seven Canadian stations at Edmonton, Goose Bay, Montreal, Port Hardy, Resolute, Toronto, and Winnipeg. The variation of the most probable clear hour values of clearness index k{sub t}, diffuse index k{sub d}, direct beam index k{sub b}, and Angstrom turbidity coefficient {beta} with solar elevation, atmospheric precipitable water, and snow depth are obtained. Values of these quantities are presented which are consistent with the attenuation and scattering of solar radiation by the atmosphere which is expected. The most probable values of {beta} tend to be lower than the average values of {beta} recently reported by Gueymard. The data indicate a drift in the calibration of the instruments used for measurements of the irradiation data for the stations at Goose Bay and Resolute. The data for the other five stations indicate that the instrument calibration is maintained over the years of the data. 4 refs., 8 figs., 5 tabs.

  8. Locating PHEV exchange stations in V2G

    SciTech Connect (OSTI)

    Pan, Feng; Bent, Russell; Berscheid, Alan; Izraelevitz, David

    2010-01-01

    Plug-in hybrid electric vehicle (PREV) is an environment friendly modem transportation method and has been rapidly penetrate the transportation system. Renewable energy is another contributor to clean power but the associated intermittence increases the uncertainty in power generation. As a foreseen benefit of a vchicle-to-grid (V2G) system, PREV supporting infrastructures like battery exchange stations can provide battery service to PREV customers as well as being plugged into a power grid as energy sources and stabilizer. The locations of exchange stations are important for these two objectives under constraints from both ,transportation system and power grid. To model this location problem and to understand and analyze the benefit of a V2G system, we develop a two-stage stochastic program to optimally locate the stations prior to the realizations of battery demands, loads, and generation capacity of renewable power sources. Based on this model, we use two data sets to construct the V2G systems and test the benefit and the performance of these systems.

  9. Case Study - The Challenge: Saving Energy at a Sewage Lift Station Through

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump System Modifications | Department of Energy Saving Energy at a Sewage Lift Station Through Pump System Modifications Case Study - The Challenge: Saving Energy at a Sewage Lift Station Through Pump System Modifications This case study explores how the City of Milford, Connecticut saved energy at the Welches Point sewage lift station. By adding a small booster pump to the sewage pumping system, the city reduced the station's annual energy consumption by 36,096 kWh, or more than 15

  10. SNL Issues a Request for Quotation for a Hydrogen Station Test Device

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories (SNL) has issued a Request for Quotation (RFQ) for hydrogen station equipment performance testing device fabrication.

  11. Geothermal energy at Long Beach Naval Shipyard and Naval Station and at Seal Beach Naval Weapons Station, California. Final report

    SciTech Connect (OSTI)

    Higgins, C.T.; Chapman, R.H.

    1984-01-01

    The purpose of this project was to determine and evaluate sources of geothermal energy at two military bases in southern California, the Long Beach Naval Shipyard and Naval Station and the Seal Beach Naval Weapons Station. One part of the project focused on the natural geothermal characteristics beneath the naval bases. Another part focused on the geothermal energy produced by oilfield operations on and adjacent to each base. Results of the study are presented here for the US Department of the Navy to use in its program to reduce its reliance on petrolem by the development of different sources of energy. The study was accomplished under a cooperative agreement between the US Department of Energy's San Francisco Operations Office and the Department of the Navy's Naval Weapons Center, China Lake, California, for joint research and development of geothermal energy at military installations.

  12. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Tom McGee; Carol Lutken; Elizabeth Stidham

    2006-06-01

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The Consortium is administered by the Center for Marine Resources and Environmental Technology, CMRET, at the University of Mississippi. The primary objective of the group is to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2007, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the marine environment, including sea water and sea-floor sediments, on a more-or-less continuous basis over an extended period of time. In 2005, biological monitoring, as a means of assessing environmental health was added to the mission of the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has now achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, had to be postponed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort was made to locate and retain the services of a suitable vessel and submersibles or Remotely Operated Vehicles (ROVs) following the storms and the loss of the contracted vessel, the M/V Ocean Quest and its two submersibles, but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA).

  13. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  14. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  15. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  16. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  17. Investigation of Nanoscience Technologies: Final Report

    SciTech Connect (OSTI)

    BURNS, ALAN R.; MICHALSKE, TERRY A.

    2001-11-01

    The intention of this project was to collaborate with Harvard University in the general area of nanoscale structures, biomolecular materials and their application in support of Sandia's MEMS technology. The expertise at Harvard was crucial in fostering these fundamentally interdisciplinary developments. Areas that were of interest included: (1) nanofabrication that exploits traditional methods (from Si technology) and developing new methods; (2) self-assembly of organic and inorganic systems; (3) assembly and dynamics of membranes and microfluidics; (4) study of the hierarchy of scales in assembly; (5) innovative imaging methods; and (6) hard (engineering)/soft (biological) interfaces. Specifically, we decided to work with Harvard to design and construct an experimental test station to measure molecular transport through single nanopores. The pore may be of natural origin, such as a self-assembled bacterial protein in a lipid bilayer, or an artificial structure in silicon or silicon nitride.

  18. Distributed Generation Study/Dakota Station (Minnegasco) | Open...

    Open Energy Info (EERE)

    Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System...

  19. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  20. Uncertainty with New Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with New Technology As the U.S. electricity grid experiences the effects of aging infrastructure, a push toward renewable technologies and increasing demands for energy, new technologies may be necessary to economically meet future grid demands. However, adopting new technology is difficult when decision makers do not understand the new technology and do not know how it comtpares to alternatives. Energy storage technologies show great promise for improving the grid's operations. However, as a

  1. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  2. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  3. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  4. New Jersey Nuclear Profile - PSEG Hope Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    PSEG Hope Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,161","9,439",92.8,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,161","9,439",92.8

  5. Insights from Hydrogen Refueling Station Manufacturing Competitiveness Analysis

    SciTech Connect (OSTI)

    Mayyas, Ahmad

    2015-12-18

    In work for the Clean Energy Manufacturing Analysis Center (CEMAC), NREL is currently collaborating with Great Lakes Wind Network in conducting a comprehensive hydrogen refueling stations manufacturing competitiveness and supply chain analyses. In this project, CEMAC will be looking at several metrics that will facilitate understanding of the interactions between and within the HRS supply chain, such metrics include innovation potential, intellectual properties, learning curves, related industries and clustering, existing supply chains, ease of doing business, and regulations and safety. This presentation to Fuel Cell Seminar and Energy Exposition 2015 highlights initial findings from CEMAC's analysis.

  6. Experimental Station 11-2 | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beam line 11-2 is a high-flux XAS station dedicated to molecular biogeochemical and interface sciences. It is optimized for challenging XAS measurements on dilute or radioactive samples, single crystals, and interfaces. To support these experiments, BL11-2 is equipped with collimating and focusing optics, a "double double" Si(220) LN2-cooled monochromator, and a 100-element solid state Ge detector array. Additional instrumentation includes LHe and LN2 cryostats, a grazing incidence

  7. Re: Potomac River Generating Station Department of Energy Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Advanced Notice of Power Outages. | Department of Energy Advanced Notice of Power Outages. Re: Potomac River Generating Station Department of Energy Case No. EO-05-01: Advanced Notice of Power Outages. Docket No. EO-05-01. Order No. 202-05-03: Potomac Electric Power Company ("Pepco"), on behalf of itself and PJM Interconnection, L.L.C. ("PJM"), is providing you with information regarding the planned transmission outages that are scheduled for the upcoming

  8. Re: Potomac River Generating Station Department of Energy, Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Potomac Electric Power Company (PEPCO) Concerning Planned Outages of the 230 kV circuits | Department of Energy EO-05-01: Pursuant to the United States Department of Energy ("DOE") Order No. 202-05-3, issued December 20, 2005 ("DOE Potomac River Order") Pepco hereby files this revised notice of the planned outage of the 230 kV circuits serving the Potomac River Substation, and through that station, the District of Columbia. PDF icon Department of Energy Order

  9. Re: Potomac River Generating Station Department of Energy, Case No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits | Department of Energy evised plan for transmission outages for the 230 kV circuits Re: Potomac River Generating Station Department of Energy, Case No. EO-05-01: Potomac Electric Power Company (PEPCO) evised plan for transmission outages for the 230 kV circuits Docket No. EO-05-01. Order No. 202-07-02: Potomac Electric Power Company ("Pepco") is providing you with the

  10. Machinery monitoring system installed at nuclear power station

    SciTech Connect (OSTI)

    Piety, K.; Hamrick, L.; McCurdy, A.

    1981-10-01

    The Grand Gulf Nuclear Station under construction in Mississippi will have a computer-based system to monitor 300 process variables and 200 vibration signals in each of the two units. The system's functions include monitoring support, startup/shutdown, surveillance, and diagnostics. The tasks associated with machinery monitoring are broken down into the initial plant design, construction and startup testing, and power-operation phases. The value of this monitoring is discussed and summarized in a table showing the impact of component failure on plant availability. 4 figures, 3 tables. (DCK)

  11. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  12. CBI Technology Impact Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBI Technology Impact Framework 2014 Building Technologies Office Peer Review Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, ...

  13. Promising Technologies List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...

  14. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  15. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... BYPASS 19 First National Technology First National Technology Center Center System Performance Specifications Fault Clearing Without Grid: 10-15 X Rated Current Overload: 150% ...

  16. NREL: Technology Transfer - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you may have about NREL's technology transfer opportunities. Partnering with NREL Anne Miller, 303-384-7353 Licensing NREL Technologies Eric Payne, 303-275-3166 Printable Version...

  17. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  18. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge ...

  19. Science & Technology - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology Science & Technology - 2015 October HAPLS Completes Phase 1 Energy-Ramping Campaign Shaping NIF's Beams for Direct-Drive Experiments September A Pioneering Betatron...

  20. Technology Selection Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies, including Technical Advisory Groups and the Energy Efficiency Technology Roadmap. Technical Advisory Groups E3T engages stakeholders of electric power industries in...

  1. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  2. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Building Technologies Program Jerry Dion Acting Program Manager Building Technologies Program State Energy Advisory Board Meeting October 17, 2007 The investment ...

  3. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  4. Vehicle Technologies Office News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 9, 2015 This electric vehicle charging station at the Charles Hotel in Cambridge, Massachusetts, was one of the first charging stations in the state. Massachusetts...

  5. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  6. GT Solar Technologies formerly GT Equipment Technologies | Open...

    Open Energy Info (EERE)

    Technologies formerly GT Equipment Technologies Jump to: navigation, search Name: GT Solar Technologies (formerly GT Equipment Technologies) Place: Merrimack, New Hampshire...

  7. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office FY 2016 Budget At-A-Glance Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data Vehicle Technologies Office FY 2017 Budget ...

  8. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies ...

  9. 2010 DOE EERE Vehicle Technologies Program Merit Review … Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results PDF icon 2010amr08.pdf ...

  10. Blue Spark Technologies formerly Thin Battery Technologies Inc...

    Open Energy Info (EERE)

    Spark Technologies formerly Thin Battery Technologies Inc Jump to: navigation, search Name: Blue Spark Technologies (formerly Thin Battery Technologies Inc.) Place: Westlake, Ohio...

  11. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY ...

  12. Technology Readiness Assessment (TRA)/Technology Maturation Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This ...

  13. Sun Materials Technology aka Shanyang Technology | Open Energy...

    Open Energy Info (EERE)

    Technology aka Shanyang Technology Jump to: navigation, search Name: Sun Materials Technology (aka Shanyang Technology) Place: Yilan County, Taiwan Product: A US-Taiwan JV company...

  14. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  15. Thermohydraulic and Safety Analysis for CARR Under Station Blackout Accident

    SciTech Connect (OSTI)

    Wenxi Tian; Suizheng Qiu; Guanghui Su; Dounan Jia [Xi'an Jiaotong University, 28 Xianning Road, Xi'an 710049 (China); Xingmin Liu - China Institute of Atomic Energy

    2006-07-01

    A thermohydraulic and safety analysis code (TSACC) has been developed using Fortran 90 language to evaluate the transient thermohydraulic behaviors and safety characteristics of the China Advanced Research Reactor(CARR) under Station Blackout Accident(SBA). For the development of TSACC, a series of corresponding mathematical and physical models were considered. Point reactor neutron kinetics model was adopted for solving reactor power. All possible flow and heat transfer conditions under station blackout accident were considered and the optional models were supplied. The usual Finite Difference Method (FDM) was abandoned and a new model was adopted to evaluate the temperature field of core plate type fuel element. A new simple and convenient equation was proposed for the resolution of the transient behaviors of the main pump instead of the complicated four-quadrant model. Gear method and Adams method were adopted alternately for a better solution to the stiff differential equations describing the dynamic behaviors of the CARR. The computational result of TSACC showed the enough safety margin of CARR under SBA. For the purpose of Verification and Validation (V and V), the simulated results of TSACC were compared with those of Relap5/Mdo3. The V and V result indicated a good agreement between the results by the two codes. Because of the adoption of modular programming techniques, this analysis code is expected to be applied to other reactors by easily modifying the corresponding function modules. (authors)

  16. A prototype station for ARIANNA: a detector for cosmic neutrinos

    SciTech Connect (OSTI)

    Gerhardt, L.; Klein, S.; Stezelberger, T.; Barwick, S.; Dookayka, K.; Hanson, J.; Nichol, R.

    2010-05-27

    The Antarctic Ross Iceshelf Antenna Neutrino Array (ARIANNA) is a proposed detector for ultra-high energy astrophysical neutrinos. It will detect coherent radio Cherenkov emission from the particle showers produced by neutrinos with energies above about 1017 eV. ARIANNA will be built on the Ross Ice Shelf just off the coast of Antarctica, where it will eventually cover about 900 km2 in surface area. There, the ice-water interface below the shelf reflects radio waves, giving ARIANNA sensitivity to downward going neutrinos and improving its sensitivity to horizontally incident neutrinos. ARIANNA detector stations will each contain 4-8 antennas which search for brief pulses of 50 MHz to 1 GHz radio emission from neutrino interactions. We describe a prototype station for ARIANNA which was deployed in Moore's Bay on the Ross Ice Shelf in December 2009, discuss the design and deployment, and present some initial figures on performance. The ice shelf thickness was measured to be 572 +- 6 m at the deployment site.

  17. NREL: Technology Transfer - Commercialization Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-3051. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements...

  18. Tracers and Exploration Technologies

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

  19. Hydrogen delivery technology roadmap

    SciTech Connect (OSTI)

    None, None

    2005-11-15

    Document describing plan for research into and development of hydrogen delivery technology for transportation applications.

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary...

  1. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The unique technology allows operators to optimize the processing to improve material yield, decrease energy use, and improve safety systems. Specialty metals, such as titanium or ...

  2. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including the cost of sensor and lighting Reduce ... * Smart shadings * Highly insulated windows * Windows attachment 8 Building Envelope R&D Priorities Technology 2025 ...

  3. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), ... The R&D is also aimed at better understanding and improving ...

  4. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cutting-edge automotive technologies under development. Research is focused on developing power electronics (PE), ... The R&D is also aimed at better understanding and improving ...

  5. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14

  6. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Technology for Safer,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Safer, Cleaner Corrosion-Protecting Metal Coatings Licensed by Pittsburgh Start-Up Success Story Corrosion-related issues cost the U.S. economy $276 billion a year. The Energy Department's National Energy Technology Laboratory (NETL) teamed up with Carnegie Mellon University (CMU) to create a revolutionary, cost-effective technology to reduce that impact-work that resulted in the creation of a new CMU/NETL spin-off that signed a licensing agreement with the laboratory in June. The

  7. TECHNOLOGY TRANSFER COORDINATORS

    Broader source: Energy.gov [DOE]

    Mark Hartney, Director of the Office of Strategic Planning, SLAC, discussed technology transfer at SLAC. Bob Hwang, Director, Transportation Energy Center, Combustion Research Facility, SNL presented on technology transfer at SNL. Elsie Quaite-Randall, Chief Technology Transfer Officer, Innovation and Partnerships Office, LBNL, presented on technology transfer at LBNL. Richard A. Rankin, Director, Industrial Partnerships Office and Economic Development Office (Interim), LLNL, presented on technology transfer at LLNL.

  8. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  9. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    SciTech Connect (OSTI)

    Mastoridis, Themistoklis; /Stanford U., Elect. Eng. Dept. /SLAC

    2011-03-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.

  10. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  11. Ridge station eases Florida's waste-disposal problems

    SciTech Connect (OSTI)

    Swanekamp, R.

    1994-10-01

    Two results of Florida's continuing population growth are (1) a critical need for electricity, and (2) a solid-waste disposal crisis. During a recent winter cold snap, electric demand in one service territory surged 25% over generating capacity and 10% over net system capability. Rolling blackouts ensued. At the same time, Florida's fragile wetlands environment is suffering from years of unfettered development. Groundwater sources are contaminated, landfill space is scarce, and illegal tire dumps blight the landscape. The recently constructed Ridge generating station in Polk County, Fla. is addressing both the state's electrical and environmental needs. Ridge, which entered commercial operation in May, burns a unique mix of urban woodwaste and scrap tires to provide 45 MW of critically needed electricity while keeping large quantities of solid waste out of landfills. When pipeline construction at an adjacent landfill is completed, the facility also will burn the methane gases produced when garbage decomposes.

  12. The materials test station: a fast spectrum irradiation facility

    SciTech Connect (OSTI)

    Pitcher, Eric J.

    2007-07-01

    The Materials Test Station is a fast-neutron spectrum irradiation facility under design at the Los Alamos National Laboratory in support of the United States Department of Energy's Global Nuclear Energy Partnership. The facility will be capable of rodlets-scale irradiations of candidate fuel forms being developed to power the next generation of fast reactors. Driven by a powerful proton beam, the fuel irradiation region exhibits a neutron spectrum similar to that seen in a fast reactor, with a peak neutron flux of 1.6 x 10{sup 15} n.cm{sup -2}.s{sup -1}. Site preparation and construction are estimated to take four years, with a cost range of $60 M to $90 M. (author)

  13. Low-Cost Methane Liquefaction Plant and Vehicle Refueling Station

    SciTech Connect (OSTI)

    B. Wilding; D. Bramwell

    1999-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is currently negotiating a collaborative effort with Pacific Gas and Electric (PG&E) that will advance the use of liquefied natural gas (LNG) as a vehicle fuel. We plan to develop and demonstrate a small-scale methane liquefaction plant (production of 5,000 to 10,000 gallons per day) and a low-cost ($150,000) LNG refueling station to supply fuel to LNG-powered transit buses and other heavy-duty vehicles. INEEL will perform the research and development work. PG&E will deploy the new facilities commercially in two demonstration projects, one in northern California, and one in southern California.

  14. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  15. Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations

    SciTech Connect (OSTI)

    Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

    2010-12-01

    The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

  16. The network architecture and site test of DCIS in Lungmen nuclear power station

    SciTech Connect (OSTI)

    Lee, C. K.

    2006-07-01

    The Lungmen Nuclear Power Station (LMNPS) is located in North-Eastern Seashore of Taiwan. LMNPP has two units. Each unit generates 1350 Megawatts. It is the first ABWR Plant in Taiwan and is under-construction now. Due to contractual arrangement, there are seven large I and C suppliers/designers, which are GE NUMAC, DRS, Invensys, GEIS, Hitachi, MHI, and Stone and Webster company. The Distributed Control and Information System (DCIS) in Lungmen are fully integrated with the state-of-the-art computer and network technology. General Electric is the leading designer for integration of DCIS. This paper presents Network Architecture and the Site Test of DCIS. The network architectures are follows. GE NUMAC System adopts the point to point architecture, DRS System adopts Ring type architecture with SCRAMNET protocol, Inevnsys system adopts IGiga Byte Backbone mesh network with Rapid Spanning Tree Protocol, GEIS adopts Ethernet network with EGD protocol, Hitachi adopts ring type network with proprietary protocol. MHI adopt Ethernet network with UDP. The data-links are used for connection between different suppliers. The DCIS architecture supports the plant automation, the alarm prioritization and alarm suppression, and uniform MMI screen for entire plant. The Test Program regarding the integration of different network architectures and Initial DCIS architecture Setup for 161KV Energization will be discussed. Test tool for improving site test schedule, and lessons learned from FAT will be discussed too. And conclusions are at the end of this paper. (authors)

  17. Regulations, Codes, and Standards (RCS) Template for California Hydrogen Dispensing Stations

    SciTech Connect (OSTI)

    Rivkin, C.; Blake, C.; Burgess, R.; Buttner, W.; Post, M.

    2012-11-01

    This report explains the Regulations, Codes, and Standards (RCS) requirements for hydrogen dispensing stations in the State of California. The reports shows the basic components of a hydrogen dispensing station in a simple schematic drawing; the permits and approvals that would typically be required for the construction and operation of a hydrogen dispensing station; and a basic permit that might be employed by an Authority Having Jurisdiction (AHJ).

  18. Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 23, 2005, Summary Report | Department of Energy Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Trona Injection Tests: Mirant Potomac River Station, Unit 1, November 12 to December 23, 2005, Summary Report Docket No. EO-05-01: Trona injection tests were conducted at Mirant's Potomac River Station on Unit 1 between November 12 and December 23, 2005. The purpose of these tests was to determine the capability of dry

  19. NREL report shows E85 gives gas stations a competitive edge - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL report shows E85 gives gas stations a competitive edge Quantity of E85 sold most important factor in profitability July 18, 2008 A study released by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) can help gas station owners and Clean Cities stakeholders determine whether adding E85 to their product mix can increase profitability. Competition in the fueling station business continues to intensify, particularly as grocery stores and discount clubs

  20. Technical Design Report, Second Target Station (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect SciTech Connect Search Results Technical Report: Technical Design Report, Second Target Station Citation Details In-Document Search Title: Technical Design Report, Second Target Station The Second Target Station (STS) is a proposed upgrade for SNS. It includes a doubling of the accelerator power and an additional instrument hall. The new instrument hall will receive a 467 kW 10 Hz beam. The parameters and preliminary design aspects of the STS are presented for the accelerator, target

  1. Potential failure of steam generator tubes following a station blackout

    SciTech Connect (OSTI)

    Ward, L.W.; Palmrose, D.E.

    1994-12-31

    The U.S. Nuclear Regulatory Commission is considering changes to pressurized water reactor (PWR) requirements relating to steam generator tube plugging and repair criteria, including leakage monitoring. The proposed changes are known as the alternate tube plugging criteria (APC) and are intended to permit PWRs to operate with through-wall cracks in steam generator tubes subject to meeting a specified limit on predicted primary to secondary leakage under accident conditions. To assess the consequences of the alternate plugging criteria, analyses were performed for a station blackout sequence in which the reactor core melts while the reactor coolant system (RCS) remains at high pressure. Evaluations were conducted to investigate the potential for tube failure with and without secondary system depressurization. The excessive heat coupled with the high-pressure differentials across the steam generator tubes could result in creep rupture failure of the tubes during a severe accident, which could lead to a radiological release directly to the environment. In order to assess the safety significance of the APC, it is important to identify the level of steam generator tube leakage that can occur without challenging the previous study conclusions that steam generator creep failure will not occur prior to a surge line or hot-leg failure. To assess the effect of leakage on steam generator tube integrity during a core melt sequence with the RCS at high pressure and the secondary side of the steam generators pressurized and depressurized, an analysis was performed for a core melt event resulting from an unmitigated station blackout to identify the total steamenerator and tube leakage flow rates that could induce tube ruptures prior to other RCS boudary faliures that could depressurize the RCS.

  2. SUPPORT OF GULF OF MEXICO HYDRATE RESEARCH CONSORTIUM: ACTIVITIES TO SUPPORT ESTABLISHMENT OF A SEA FLOOR MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    Paul Higley; J. Robert Woolsey; Ralph Goodman; Vernon Asper; Boris Mizaikoff; Angela Davis; Bob A. Hardage; Jeffrey Chanton; Rudy Rogers

    2006-05-18

    The Gulf of Mexico Hydrates Research Consortium (GOM-HRC) was established in 1999 to assemble leaders in gas hydrates research. The primary objective of the group has been to design and emplace a remote monitoring station or sea floor observatory (MS/SFO) on the sea floor in the northern Gulf of Mexico by the year 2005, in an area where gas hydrates are known to be present at, or just below, the sea floor. This mission, although unavoidably delayed by hurricanes and other disturbances, necessitates assembling a station that will monitor physical and chemical parameters of the sea water and sea floor sediments on a more-or-less continuous basis over an extended period of time. Development of the station has always included the possibility of expanding its capabilities to include biological monitoring, as a means of assessing environmental health. This possibility has recently achieved reality via the National Institute for Undersea Science and Technology's (NIUST) solicitation for proposals for research to be conducted at the MS/SFO. Establishment of the Consortium has succeeded in fulfilling the critical need to coordinate activities, avoid redundancies and communicate effectively among researchers in the arena of gas hydrates research. Complementary expertise, both scientific and technical, has been assembled to promote innovative research methods and construct necessary instrumentation. The observatory has achieved a microbial dimension in addition to the geophysical and geochemical components it had already included. Initial components of the observatory, a probe that collects pore-fluid samples and another that records sea floor temperatures, were deployed in Mississippi Canyon 118 in May of 2005. Follow-up deployments, planned for fall 2005, have had to be postponed and the use of the vessel M/V Ocean Quest and its two manned submersibles sacrificed due to the catastrophic effects of Hurricane Katrina (and later, Rita) on the Gulf Coast. Every effort is being made to locate and retain the services of a replacement vessel and submersibles or Remotely Operated Vehicles (ROVs) but these efforts have been fruitless due to the demand for these resources in the tremendous recovery effort being made in the Gulf area. Station/observatory completion, anticipated for 2007, will likely be delayed by at least one year. The seafloor monitoring station/observatory is funded approximately equally by three federal Agencies: Minerals Management Services (MMS) of the Department of the Interior (DOI), National Energy Technology Laboratory (NETL) of the Department of Energy (DOE), and the National Institute for Undersea Science and Technology (NIUST), an agency of the National Oceanographic and Atmospheric Administration (NOAA). Subcontractors with FY03 funding fulfilled their technical reporting requirements in the previous report (41628R10). Only unresolved matching funds issues remain and will be addressed in the report of the University of Mississippi's Office of Research and Sponsored Programs.

  3. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  4. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Broader source: Energy.gov [DOE]

    This document establishes the California Fuel Cell Partnership’s current consensus vision of next steps for vehicles and hydrogen stations in California.

  5. Bush Hydrogen Vision "Fueled" By California Station Opening | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Vision "Fueled" By California Station Opening Bush Hydrogen Vision "Fueled" By California Station Opening February 18, 2005 - 10:26am Addthis CHINO, CALIF. - In a major step toward achieving President George W. Bush's vision for a hydrogen economy, Assistant Secretary of Energy David Garman today joined representatives of ChevronTexaco, Hyundai-Kia and UTC Fuel Cells at the opening of a hydrogen fueling station in Chino, CA. The station is a major part of

  6. Tri-Generation Success Story: World's First Tri-Gen Energy Station...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    station uses anaerobically digested biogas from the municipal wastewater treatment ... Gas or Biogas H 2 is produced at anode Gas Cleanup Fuel Exhaust Electricity Hydrogen Air ...

  7. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    access to a free app that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, E85, propane, and hydrogen. The National Renewable...

  8. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station

    Broader source: Energy.gov [DOE]

    EERE supported the development of the world's first tri-generation station combined heat and power system that produces hydrogen in addition to heat and electricity.

  9. Electric Vehicle Charging Stations, Coming Soon to a City Near You

    Broader source: Energy.gov [DOE]

    From concerns about the availability of charging stations, to enthusiasm for the growing market, there's a demand for information about Electric Vehicles.

  10. Alternative Fuels Data Center: Kern County Schools Expands CNG Station for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bus Fleet and Public Use Kern County Schools Expands CNG Station for Bus Fleet and Public Use to someone by E-mail Share Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Facebook Tweet about Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Twitter Bookmark Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Google Bookmark Alternative

  11. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  12. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 4 of 2013.

  13. Next Generation Hydrogen Station Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Ainscough, C.; Post, M.; Saur, G.; Peters, M.

    2013-11-01

    This report includes 18 composite data products (CDPs) produced for next generation hydrogen stations, with data through quarter 2 of 2013.

  14. MHK ISDB/Instruments/AIRMAR 100WX Weather Station | Open Energy...

    Open Energy Info (EERE)

    100WX Weather Station < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  15. MHK ISDB/Instruments/AIRMAR 110WX Weather Station | Open Energy...

    Open Energy Info (EERE)

    110WX Weather Station < MHK ISDB Jump to: navigation, search MHK Instrumentation & Sensor Database Menu Home Search Add Instrument Add Sensor Add Company Community FAQ Help...

  16. Soviet satellite communications science and technology

    SciTech Connect (OSTI)

    Birch, J.N.; Campanella, S.J.; Gordon, G.D.; McElroy, D.R.; Pritchard, W.L.; Stamminger, R.

    1991-08-01

    This is a report by six US scientists and engineers concerning the current state of the art and projections of future Soviet satellite communications technologies. The panel members are experts in satellite stabilization, spacecraft environments, space power generation, launch systems, spacecraft communications sciences and technologies, onboard processing, ground stations, and other technologies that impact communications. The panel assessed the Soviet ability to support high-data-rate space missions at 128 Mbps by evaluating current and projected Soviet satellite communications technologies. A variety of space missions were considered, including Earth-to-Earth communications via satellites in geostationary or highly elliptical orbits, those missions that require space-to-Earth communications via a direct path and those missions that require space-to-Earth communications via a relay satellite. Soviet satellite communications capability, in most cases, is 10 years behind that of the United States and other industrialized nations. However, based upon an analysis of communications links needed to support these missions using current Soviet capabilities, it is well within the current Soviet technology to support certain space missions outlined above at rates of 128 Mbps or higher, although published literature clearly shows that the Soviet Union has not exceeded 60 Mbps in its current space system. These analyses are necessary but not sufficient to determine mission data rates, and other technologies such as onboard processing and storage could limit the mission data rate well below that which could actually be supported via the communications links. Presently, the Soviet Union appears to be content with data rates in the low-Earth-orbit relay via geostationary mode of 12 Mbps. This limit is a direct result of power amplifier limits, spacecraft antenna size, and the utilization of K{sub u}-band frequencies. 91 refs., 16 figs., 15 tabs.

  17. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  18. License Amendment Request for Storing Exelon Sister Nuclear Stations Class B/C LLRW in the LaSalle Station Interim Radwaste Storage Facility - 13620

    SciTech Connect (OSTI)

    Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.

    2013-07-01

    Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time was Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)

  19. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  20. SSL Technology Development Workshop

    Broader source: Energy.gov [DOE]

    Rapid advances make it easy to forget that SSL technology is still at a relatively early stage of development, and much of its potential remains untapped. The 10th annual DOE SSL Technology...