National Library of Energy BETA

Sample records for technology generation estimate

  1. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  2. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    SciTech Connect (OSTI)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-15

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  3. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY

  4. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  5. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  6. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as...

  7. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  8. Agent Technology: Enabling Next Generation Computing

    E-Print Network [OSTI]

    Luck, Michael

    Agent Technology: Enabling Next Generation Computing A Roadmap for Agent Based Computing MichaelTechnology:ARoadmapLuck,McBurney&PreistAgentLink #12;i AgentLink Roadmap Agent Technology: Enabling Next Generation Computing A Roadmap for Agent, Peter McBurney and Chris Preist Agent Technology: Enabling Next Generation Computing A Roadmap for Agent

  9. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  10. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  11. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop -...

  12. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  13. Cost trajectories of low carbon electricity generation technologies: A study of cost uncertainty

    E-Print Network [OSTI]

    Levi, Peter; Pollitt, Michael

    2015-08-03

    for three important electricity generation technologies for the UK; nuclear, offshore wind and coal with carbon capture and storage. The first analysis composes LCOE estimate trajectories from previous years' DECC estimates and presents them alongside...

  14. Entropy Generation Analysis of Desalination Technologies

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an ...

  15. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  16. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  17. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  18. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    - Carl Imhoff, PNNL More Documents & Publications Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations Estimating the...

  19. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Environmental Management (EM)

    Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and...

  20. INNOVATIVE CONCEPTS FOR ON-LINE SYNCHRONOUS GENERATOR PARAMETER ESTIMATION

    E-Print Network [OSTI]

    INNOVATIVE CONCEPTS FOR ON-LINE SYNCHRONOUS GENERATOR PARAMETER ESTIMATION by Elias Kyriakides FOR ON-LINE SYNCHRONOUS GENERATOR PARAMETER ESTIMATION by Elias Kyriakides has been approved December ABSTRACT A method to identify synchronous generator parameters from on-line measurements is presented

  1. On modeling pollution-generating technologies July 22, 2010 On modeling pollution-generating technologies.

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    On modeling pollution-generating technologies July 22, 2010 On modeling pollution modeling pollution-generating technologies July 22, 2010 Abstract We distinguish between intended with respect to inputs and intended outputs that cause pollution. We derive implications from the phenomenon

  2. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  3. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  4. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Presentations Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations On September 30 and October 1, 2014, the Department of Energy...

  5. Biomass Power Generation Market Capacity is Estimated to Reach...

    Open Energy Info (EERE)

    Biomass Power Generation Market Capacity is Estimated to Reach 122,331.6 MW by 2022 Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150)...

  6. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  7. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  8. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why Plan Treatment In the plan Technology & resource description (Very!) preliminary cost projections & Veatch. (2012) Cost and Performance Data for Power Generation Technologies. Prepared for National

  9. Estimating functions based on eigenfunctions of the generator.

    E-Print Network [OSTI]

    Sørensen, Michael

    Estimating functions based on eigenfunctions of the generator. Kessler and Sørensen (1999). dX t = b(X t )dt + #(X t )dW t , X 0 = x 0 Generator: The di#erential operator L = 1 2 # 2 (x) d 2 dx 2 + b is by Ito's formula a di#usion process with generator (L Y (f # u -1 ))(y) = (L X f)(u -1 (y

  10. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  11. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  12. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  13. UWB channel estimation using new generating TR transceivers

    DOE Patents [OSTI]

    Nekoogar, Faranak (San Ramon, CA); Dowla, Farid U. (Castro Valley, CA); Spiridon, Alex (Palo Alto, CA); Haugen, Peter C. (Livermore, CA); Benzel, Dave M. (Livermore, CA)

    2011-06-28

    The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.

  14. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  15. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  16. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect (OSTI)

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  17. Waste generation process modeling and analysis for fuel reprocessing technologies

    SciTech Connect (OSTI)

    Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

    2002-01-01

    Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

  18. Generation IV International Forum Updates Technology Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    strengthen future collaboration. As part of the decadal planning, the GIF technology roadmap was updated to reflect revised schedule projections for the deployment of advanced...

  19. Summary of New Generation Technologies and Resources

    SciTech Connect (OSTI)

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  20. Generation IV International Forum Updates Technology Roadmap...

    Energy Savers [EERE]

    also provided by members on the technical status of the Lead Fast Reactor and Sodium Fast Reactor (SFR) Generation IV concepts, development of SFR safety design criteria and...

  1. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  2. Heat Transfer Enhancement: Second Generation Technology 

    E-Print Network [OSTI]

    Bergles, A. E.; Webb, R. L.

    1984-01-01

    This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics...

  3. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  4. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  5. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14

    .twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However, the intermittent nature of output from wind turbines and solar panels... . This intermittency discount is not a market failure but simply reflects the value of electricity provided by different technologies. Building on this base case the paper assesses the impact of monopolist and strategic behaviour of conventional generation companies...

  6. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  7. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudor GardensTechnologies DGT Jump

  8. Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

    E-Print Network [OSTI]

    Gumerman, Etan; Marnay, Chris

    2004-01-01

    of International Learning on Technology Cost. In Issues ofbetween initial new technology cost estimates and actualthe revolutionary technologies have cost reductions beyond

  9. Generation technologies for a carbon-constrained world

    SciTech Connect (OSTI)

    Douglas, J.

    2006-07-01

    Planning future generation investments can be difficult in the context of today's high fuel costs and regulatory uncertainties. Of particular concern are sharp changes in the price of natural gas and the possibility of future mandatory limits on the atmospheric release of CO{sub 2}. Research on advanced coal, nuclear, natural gas and renewable energy technologies promises to substantially increase the deployment of low and non-carbon-emitting generation options over the next two decades. The article looks in turn at developments in these technologies. Prudent power provides are likely to invest in a number of these advanced technologies, weighing the advantages and risks of each option to build a strategically balanced generation portfolio. 12 figs.

  10. Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir

    E-Print Network [OSTI]

    Keller, Arturo A.

    Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society water use2 . ·Pumping ·Distribution ·Treatment 4% of the nation's electricity use goes towards moving

  11. Performance Analysis of Dynamic Web Page Generation Technologies \\Lambda

    E-Print Network [OSTI]

    Claypool, Mark

    Performance Analysis of Dynamic Web Page Generation Technologies \\Lambda Bhupesh Kothari and Mark on Web servers. Today's Web servers also process an increasing number of requests for dynamic pages, making server load even more critical. The performance of Web servers delivering static pages is well

  12. Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.

    SciTech Connect (OSTI)

    Wu, M.; Peng, J.

    2011-02-24

    Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

  13. Estimation of Synchronous Generator Parameters Using an Observer for Damper Currents and a Graphical User Interface

    E-Print Network [OSTI]

    Estimation of Synchronous Generator Parameters Using an Observer for Damper Currents@asu.edu ABSTRACT This paper presents a method to identify synchronous generator parameters from on-line data generator. #12;2 I. INTRODUCTION Synchronous generator parameter identification is a problem that has

  14. NREL Estimates Economically Viable U.S. Renewable Generation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation November 19, 2015 Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) are providing, for the first time, a method for measuring the...

  15. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  16. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  17. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    potential contribution of this “new” generation of clean recycled energy supply technologies to the power supply of the United States.

  18. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  19. A model for estimation of potential generation of waste electrical and electronic equipment in Brazil

    SciTech Connect (OSTI)

    Araujo, Marcelo Guimaraes; Magrini, Alessandra; Mahler, Claudio Fernando; Bilitewski, Bernd

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Literature of WEEE generation in developing countries is reviewed. Black-Right-Pointing-Pointer We analyse existing estimates of WEEE generation for Brazil. Black-Right-Pointing-Pointer We present a model for WEEE generation estimate. Black-Right-Pointing-Pointer WEEE generation of 3.77 kg/capita year for 2008 is estimated. Black-Right-Pointing-Pointer Use of constant lifetime should be avoided for non-mature market products. - Abstract: Sales of electrical and electronic equipment are increasing dramatically in developing countries. Usually, there are no reliable data about quantities of the waste generated. A new law for solid waste management was enacted in Brazil in 2010, and the infrastructure to treat this waste must be planned, considering the volumes of the different types of electrical and electronic equipment generated. This paper reviews the literature regarding estimation of waste electrical and electronic equipment (WEEE), focusing on developing countries, particularly in Latin America. It briefly describes the current WEEE system in Brazil and presents an updated estimate of generation of WEEE. Considering the limited available data in Brazil, a model for WEEE generation estimation is proposed in which different methods are used for mature and non-mature market products. The results showed that the most important variable is the equipment lifetime, which requires a thorough understanding of consumer behavior to estimate. Since Brazil is a rapidly expanding market, the 'boom' in waste generation is still to come. In the near future, better data will provide more reliable estimation of waste generation and a clearer interpretation of the lifetime variable throughout the years.

  20. Available Alarms in CDE for Next-Day Generation Estimates - March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Available-Alarms-in-CDE-for-Next-Day-Generation-Estimates---March-18,-2015 Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business...

  1. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies 

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01

    -sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure reliable long-term power for critical... source of emergency power available with new building-sited combined heat and power (CHP) electric generation technologies (see US Department of Energy, 2000 and 2002 for descriptions of these technologies). Instead of traditional emergency...

  2. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  3. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    Productivity trends in India's energy-intensive industries,estimates. However, in India, the energy trend is negativefor several energy-intensive industries in India and South

  4. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect (OSTI)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies? other relevant attributes based on data from actual production vehicles and from recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  5. Comparison of Vehicle Efficiency Technology Attributes and Synergy Estimates

    SciTech Connect (OSTI)

    Duleep, G.

    2011-02-01

    Analyzing the future fuel economy of light-duty vehicles (LDVs) requires detailed knowledge of the vehicle technologies available to improve LDV fuel economy. The National Highway Transportation Safety Administration (NHTSA) has been relying on technology data from a 2001 National Academy of Sciences (NAS) study (NAS 2001) on corporate average fuel economy (CAFE) standards, but the technology parameters were updated in the new proposed rulemaking (EPA and NHTSA 2009) to set CAFE and greenhouse gas standards for the 2011 to 2016 period. The update is based largely on an Environmental Protection Agency (EPA) analysis of technology attributes augmented by NHTSA data and contractor staff assessments. These technology cost and performance data were documented in the Draft Joint Technical Support Document (TSD) issued by EPA and NHTSA in September 2009 (EPA/NHTSA 2009). For these tasks, the Energy and Environmental Analysis (EEA) division of ICF International (ICF) examined each technology and technology package in the Draft TSD and assessed their costs and performance potential based on U.S. Department of Energy (DOE) program assessments. ICF also assessed the technologies, other relevant attributes based on data from actual production vehicles, and recently published technical articles in engineering journals. ICF examined technology synergy issues through an ICF in-house model that uses a discrete parameter approach.

  6. seari.mit.edu 2009 Massachusetts Institute of Technology 1 Better Early Estimation of Human Systems

    E-Print Network [OSTI]

    de Weck, Olivier L.

    WWII #12;seari.mit.edu © 2009 Massachusetts Institute of Technology 4 Why Measure SE/HSI Cost? Aircraft of Technology 9 Disconnect Between SE/PM Estimate and Life Cycle Cost "Life Cycle Cost of Surface Combatants.mit.edu © 2009 Massachusetts Institute of Technology 10 Comparison of System Life Cycle Costs Surface Combatants

  7. Analysis of Third-Generation HF ALE Technologies Eric E. Johnson

    E-Print Network [OSTI]

    Johnson, Eric E.

    Analysis of Third-Generation HF ALE Technologies Eric E. Johnson New Mexico State University · Higher throughput for short and long data messages · Better support for Internet protocols

  8. THIRD-GENERATION TECHNOLOGIES FOR HF RADIO NETWORKING Eric E. Johnson

    E-Print Network [OSTI]

    Johnson, Eric E.

    THIRD-GENERATION TECHNOLOGIES FOR HF RADIO NETWORKING Eric E. Johnson New Mexico State University for Internet protocols and applications This new generation of open standards is the result of ideas

  9. EK 408 Introduction to Clean Energy Generation and Storage Technologies

    E-Print Network [OSTI]

    Batteries Other storage technologies #12;7. Energy from the sun 2 weeks Solar radiation Solar collectors

  10. Estimating the Market Penetration of Residential Cool Storage Technology Using Economic Cost Modeling 

    E-Print Network [OSTI]

    Weijo, R. O.; and Brown, D. R.

    1988-01-01

    This study estimated the market penetration for residential cool storage technology using economic cost modeling. Residential cool storage units produce and store chill during off-peak periods of the day to be used during times of peak electric...

  11. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  12. Energy Generation by State and Technology (2009) - Datasets ...

    Open Energy Info (EERE)

    2009, reported in MWh. Also includes facility-level data (directly from EIA Form 923). Data and Resources Energy Generation by Fuel Source and State, 2009XLS Energy Generation by...

  13. Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in

    E-Print Network [OSTI]

    Wallace, Mark C.

    Techniques and Technology Article Aerial Surveys for Estimating Wild Turkey Abundance in the Texas Aerial surveys have been used to estimate abundance of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys at 3 study sites in the Texas Rolling Plains

  14. Techniques and Technology Article Road-Based Surveys for Estimating Wild Turkey Density

    E-Print Network [OSTI]

    Wallace, Mark C.

    Techniques and Technology Article Road-Based Surveys for Estimating Wild Turkey Density-transect­based distance sampling has been used to estimate density of several wild bird species including wild turkeys (Meleagris gallopavo). We used inflatable turkey decoys during autumn (Aug­Nov) and winter (Dec­Mar) 2003

  15. Discretization error estimation and exact solution generation using the method of nearby problems.

    SciTech Connect (OSTI)

    Sinclair, Andrew J.; Raju, Anil; Kurzen, Matthew J.; Roy, Christopher John; Phillips, Tyrone S.

    2011-10-01

    The Method of Nearby Problems (MNP), a form of defect correction, is examined as a method for generating exact solutions to partial differential equations and as a discretization error estimator. For generating exact solutions, four-dimensional spline fitting procedures were developed and implemented into a MATLAB code for generating spline fits on structured domains with arbitrary levels of continuity between spline zones. For discretization error estimation, MNP/defect correction only requires a single additional numerical solution on the same grid (as compared to Richardson extrapolation which requires additional numerical solutions on systematically-refined grids). When used for error estimation, it was found that continuity between spline zones was not required. A number of cases were examined including 1D and 2D Burgers equation, the 2D compressible Euler equations, and the 2D incompressible Navier-Stokes equations. The discretization error estimation results compared favorably to Richardson extrapolation and had the advantage of only requiring a single grid to be generated.

  16. ESTIMATION OF OUTLET MASS FLOW FOR A MONO-TUBE CAVITY RECEIVER FOR DIRECT STEAM GENERATION

    E-Print Network [OSTI]

    arrays of parabolic dishes, where each collector contributes steam to a central steam-turbine power blockESTIMATION OF OUTLET MASS FLOW FOR A MONO-TUBE CAVITY RECEIVER FOR DIRECT STEAM GENERATION José This paper presents recent developments on a dynamic model for a mono-tube cavity receiver for direct steam

  17. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Lessons Learned from SOFCSOEC Development Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes...

  18. A Planning Tool for Estimating Waste Generated by a Radiological Incident and Subsequent Decontamination Efforts - 13569

    SciTech Connect (OSTI)

    Boe, Timothy [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States)] [Oak Ridge Institute for Science and Education, Research Triangle Park, NC 27711 (United States); Lemieux, Paul [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)] [U.S. Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Washington, DC 20460 (United States)] [U.S. Environmental Protection Agency, Washington, DC 20460 (United States); Hayes, Colin [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)] [Eastern Research Group, Inc, Morrisville, NC 26560 (United States)

    2013-07-01

    Management of debris and waste from a wide-area radiological incident would probably constitute a significant percentage of the total remediation cost and effort. The U.S. Environmental Protection Agency's (EPA's) Waste Estimation Support Tool (WEST) is a unique planning tool for estimating the potential volume and radioactivity levels of waste generated by a radiological incident and subsequent decontamination efforts. The WEST was developed to support planners and decision makers by generating a first-order estimate of the quantity and characteristics of waste resulting from a radiological incident. The tool then allows the user to evaluate the impact of various decontamination/demolition strategies on the waste types and volumes generated. WEST consists of a suite of standalone applications and Esri{sup R} ArcGIS{sup R} scripts for rapidly estimating waste inventories and levels of radioactivity generated from a radiological contamination incident as a function of user-defined decontamination and demolition approaches. WEST accepts Geographic Information System (GIS) shape-files defining contaminated areas and extent of contamination. Building stock information, including square footage, building counts, and building composition estimates are then generated using the Federal Emergency Management Agency's (FEMA's) Hazus{sup R}-MH software. WEST then identifies outdoor surfaces based on the application of pattern recognition to overhead aerial imagery. The results from the GIS calculations are then fed into a Microsoft Excel{sup R} 2007 spreadsheet with a custom graphical user interface where the user can examine the impact of various decontamination/demolition scenarios on the quantity, characteristics, and residual radioactivity of the resulting waste streams. (authors)

  19. Motion-to-Energy (M2Eâ?˘) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  20. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  1. Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  3. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  4. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  5. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  6. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  7. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  8. Estimating Alarm Thresholds for Process Monitoring Data under Different Assumptions about the Data Generating Mechanism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burr, Tom; Hamada, Michael S.; Howell, John; Skurikhin, Misha; Ticknor, Larry; Weaver, Brian

    2013-01-01

    Process monitoring (PM) for nuclear safeguards sometimes requires estimation of thresholds corresponding to small false alarm rates. Threshold estimation dates to the 1920s with the Shewhart control chart; however, because possible new roles for PM are being evaluated in nuclear safeguards, it is timely to consider modern model selection options in the context of threshold estimation. One of the possible new PM roles involves PM residuals, where a residual is defined as residual = data ? prediction. This paper reviews alarm threshold estimation, introduces model selection options, and considers a range of assumptions regarding the data-generating mechanism for PM residuals.more »Two PM examples from nuclear safeguards are included to motivate the need for alarm threshold estimation. The first example involves mixtures of probability distributions that arise in solution monitoring, which is a common type of PM. The second example involves periodic partial cleanout of in-process inventory, leading to challenging structure in the time series of PM residuals.« less

  9. General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

    E-Print Network [OSTI]

    General equilibrium, electricity generation technologies and the cost of carbon abatement Institute of Technology, USA a b s t r a c ta r t i c l e i n f o Article history: Received 25 February 2011: C61 C68 D58 Q43 Keywords: Carbon policy Energy modeling Electric power sector Bottom-up Top

  10. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  11. Combustion technology developments in power generation in response to environmental challenges

    E-Print Network [OSTI]

    Kammen, Daniel M.

    and clean coal-fired systems. The most promising of these include pulverized coal combustionCombustion technology developments in power generation in response to environmental challenges J.M. Bee´r* Department of Chemical Engineering, Room 66-548, Massachusetts Institute of Technology

  12. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  13. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK Technologies JumpDuck

  14. MHK Technologies/Gyroscopic wave power generation system | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCat WaveGyroWaveGen

  15. Abstract--Estimating the dynamic state variables of a synchronous generator has been a long standing research

    E-Print Network [OSTI]

    Venkatasubramanian, Mani V.

    Abstract-- Estimating the dynamic state variables of a synchronous generator has been a long approximately the state variables of a synchronous generator, purely from terminal measurements measurements. Here, we deal with the problem of computing the dynamic internal state of a synchronous generator

  16. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D ESurgeWECHydraulic Generators THG

  17. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  18. A precise numerical estimation of the magnetic field generated around recombination

    E-Print Network [OSTI]

    Fidler, Christian; Pitrou, Cyril

    2015-01-01

    We investigate the generation of magnetic fields from non-linear effects around recombination. As tight-coupling is gradually lost when approaching $z\\simeq 1100$, the velocity difference between photons and baryons starts to increase, leading to an increasing Compton drag of the photons on the electrons. The protons are then forced to follow the electrons due to the electric field created by the charge displacement; the same field, following Maxwell's laws, eventually induces a magnetic field on cosmological scales. Since scalar perturbations do not generate any magnetic field as they are curl-free, one has to resort to second-order perturbation theory to compute the magnetic field generated by this effect. We reinvestigate this problem numerically using the powerful second-order Boltzmann code SONG. We show that: i) all previous studies do not have a high enough angular resolution to reach a precise and consistent estimation of the magnetic field spectrum; ii) the magnetic field is generated up to $z\\simeq ...

  19. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  20. Estimation of the Alpha Factor Parameters for the Emergency Diesel Generators of Ulchin Unit 3

    SciTech Connect (OSTI)

    Dae Il Kang; Sang Hoon Han

    2006-07-01

    Up to the present, the generic values of the Common cause failure (CCF) event parameters have been used in most PSA projects for the Korean NPPs. However, the CCF analysis should be performed with plant specific information to meet Category II of the ASME PRA Standard. Therefore, we estimated the Alpha factor parameters of the emergency diesel generator (EDG) for Ulchin Unit 3 by using the International Common-Cause Failure data Exchange (ICDE) database. The ICDE database provides the member countries with only the information needed for an estimation of the CCF parameters. The Ulchin Unit A3, pressurized water reactor, has two onsite EDGs and one alternate AC (AAC) diesel generator. The onsite EDGs of Unit 3 and 4 and the AAC are manufactured by the same company, but they are designed differently. The estimation procedure of the Alpha factor used in this study follows the approach of the NUREG/CR-5485. Since we did not find any qualitative difference between the target systems (two EDGs of Ulchin Unit 3) and the original systems (ICDE database), the applicability factor of each CCF event in the ICDE database was assumed to be 1. For the case of three EDGs including the AAC, five CCF events for the EDGs in the ICDE database were identified to be screened out. However, the detailed information for the independent events in the ICDE database is not presented. Thus, we assumed that the applicability factors for the CCF events to be screened out were, to be conservative, 0.5 and those of the other CCF events were 1. The study results show that the estimated Alpha parameters by using the ICDE database are lower than the generic values of the NUREG/CR-5497. The EDG system unavailability of the 1 out of 3 success criterion except for the supporting systems was calculated as 2.76 E-3. Compared with the system unavailability estimated by using the data of NUREG/CR-5497, it is decreased by 31.2%. (authors)

  1. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  2. 756 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 2, MAY 2000 A New Framework for Estimation of Generator

    E-Print Network [OSTI]

    Venkatasubramanian, Mani V.

    . This is especially true for synchronous machines and their controls such as exciters, governors and limiters. In many, the estimation and periodic verification of the synchronous machine parameters and control parameters. Index Terms--Parameter estimation, synchronous generator model, simulation optimization method. I

  3. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M. [University of Mah, Trabzon (Turkey)

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  4. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  5. HPI Future SOC Lab: Call for Projects Next generation technology, such as multicore CPUs as well as increasing

    E-Print Network [OSTI]

    Weske, Mathias

    - Memory Computing Technology (SAP HANA). The SAP Business ByDesign systemHPI Future SOC Lab: Call for Projects Next generation technology, such as multicore, developers of service-oriented computing systems have to understand

  6. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  7. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  8. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  9. A novel technique that creates electricity using the sun and generation technology

    E-Print Network [OSTI]

    Bristol, University of

    unlimited, if the electricity is transported from the world's solar belts to areas of high demand. DiamondA novel technique that creates electricity using the sun and generation technology from space solar heat to produce electricity in devices called thermionic energy converters (TECs) for which

  10. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    SciTech Connect (OSTI)

    Khanna, Madhu

    2010-03-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  11. Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography

    E-Print Network [OSTI]

    Lebendiker, Mario

    SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

  12. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Khanna, Madhu

    2011-04-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  13. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  14. 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation

    E-Print Network [OSTI]

    Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy-2% to 60-70%; and third step is the employment of nuclear fusion. However, a report by Zhongguo Dianli Wang

  15. 654 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 3, MAY 2010 Model-Based Electrochemical Estimation and

    E-Print Network [OSTI]

    -Based Electrochemical Estimation and Constraint Management for Pulse Operation of Lithium Ion Batteries Kandler A. Smith Technologies, Graduate Automotive Technology Education Pro- gram. This work was performed at the Pennsylvania-mail: kandlers@hotmail.com; kandler_smith@nrel.gov). C. D. Rahn and C.-Y. Wang are with the Department

  16. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market analyses the global waste market, with particular reference to municipal solid waste (MSW). Key Note. Industrial waste generally has a greater tonnage than MSW, but its management is the responsibility

  17. 668 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 9, MAY 1, 2007 Photonic Generation of Microwave Signals Based

    E-Print Network [OSTI]

    Yao, Jianping

    668 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 9, MAY 1, 2007 Photonic Generation of Microwave, IEEE Abstract--A novel approach to generating microwave signals based on optical pulse shaping generation is developed. Experimental results agree well with the theoretical analysis. Index Terms--Microwave

  18. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  19. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  20. The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units

    E-Print Network [OSTI]

    Joskow, Paul L.

    1984-01-01

    This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

  1. Technology Trend of Ubiquitous Computing Infrastructure This article aims to estimate the level of present technology and a realistic possibility by defining the kernel

    E-Print Network [OSTI]

    Bahk, Saewoong

    I Technology Trend of Ubiquitous Computing Infrastructure This article aims to estimate the level experience of UCN project. Keywords: Ubiquitous computing Infra, Ubiquitous Intelligence, Ubiquitous Network to prepare for realization of ubiquitous society and examining the present trend. For this purpose, we

  2. Estimation of fracture compliance from tubewaves generated at a fracture intersecting a borehole

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    2011-01-01

    Understanding fracture compliance is important for characterizing fracture networks and for inferring fluid flow in the subsurface. In an attempt to estimate fracture compliance in the field, we developed a new model to ...

  3. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  4. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  5. Treatment technologies for hazardous ashes generated from possible incineration of navy waste. Technical note

    SciTech Connect (OSTI)

    Torres, T.

    1990-10-01

    The Navy recognizes that thermal treatment of Navy hazardous wastes (HW) should, under the terms of the Resource Conservation and Recovery Act of 1976, be avoided. Combustion waste disposal may nonetheless become unavoidable in certain cases, even after all possible process enhancements that avoid HW production are implemented. Even then, some toxic constituents that may be present in the waste will not be destroyed by incineration and will persist in the ash residue produced by incineration. Such incinerator ashes will have to be disposed of in HW landfills. The Navy is thus evaluating methods of treatment of such ash to remove or immobilize the toxic constituents that persist following incineration in order to render the waste treatment residue nonhazardous. Appropriate technology identified in this work can be applied to ash produced by HW combuster operated by the Navy, if any, or be required for ash produced by commercial generators handling Navy HWs.

  6. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  7. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network

    E-Print Network [OSTI]

    Aasi, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavagliŕ, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endröczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M A; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gáspár, M E; Gelencser, G; Gemme, G; Genin, E; Gennai, A; Gergely, L Á; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gupta, R; Gustafson, E K; Gustafson, R; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haster, C -J; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Keitel, D; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P

    2013-01-01

    Compact binary systems with neutron stars or black holes are one of the most promising sources for ground-based gravitational wave detectors. Gravitational radiation encodes rich information about source physics; thus parameter estimation and model selection are crucial analysis steps for any detection candidate events. Detailed models of the anticipated waveforms enable inference on several parameters, such as component masses, spins, sky location and distance that are essential for new astrophysical studies of these sources. However, accurate measurements of these parameters and discrimination of models describing the underlying physics are complicated by artifacts in the data, uncertainties in the waveform models and in the calibration of the detectors. Here we report such measurements on a selection of simulated signals added either in hardware or software to the data collected by the two LIGO instruments and the Virgo detector during their most recent joint science run, including a "blind injection" wher...

  10. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  11. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  12. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K. G.; Tretyakov, A. A.; Sorokin, Yu. P.; Bondin, V. V.; Manakova, L. F.; Jardine, L. J.

    2002-02-26

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on a production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration in Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration or calcination, alkali sintering, and dissolution of sintered products in nitric acid. Insoluble residues are then mixed with vitrifying components and Pu sludges, vitrified, and sent for storage and disposal. Implementation of the intergovernmental agreement between Russia and the United States (US) regarding the utilization of 34 tons of weapons plutonium will also require treatment of Pu containing MOX fabrication wastes at the MCC radiochemical production plant.

  13. Estimate of the Sources of Plutonium-Containing Wastes Generated from MOX Fuel Production in Russia

    SciTech Connect (OSTI)

    Kudinov, K.G.; Tretyakov, A.A.; Sorokin, Y.P.; Bondin, V.V.; Manakova, L.F.; Jardine, L.J.

    2001-12-01

    In Russia, mixed oxide (MOX) fuel is produced in a pilot facility ''Paket'' at ''MAYAK'' Production Association. The Mining-Chemical Combine (MCC) has developed plans to design and build a dedicated industrial-scale plant to produce MOX fuel and fuel assemblies (FA) for VVER-1000 water reactors and the BN-600 fast-breeder reactor, which is pending an official Russian Federation (RF) site-selection decision. The design output of the plant is based on production capacity of 2.75 tons of weapons plutonium per year to produce the resulting fuel assemblies: 1.25 tons for the BN-600 reactor FAs and the remaining 1.5 tons for VVER-1000 FAs. It is likely the quantity of BN-600 FAs will be reduced in actual practice. The process of nuclear disarmament frees a significant amount of weapons plutonium for other uses, which, if unutilized, represents a constant general threat. In France, Great Britain, Belgium, Russia, and Japan, reactor-grade plutonium is used in MOX-fuel production. Making MOX-fuel for CANDU (Canada) and pressurized water reactors (PWR) (Europe) is under consideration Russia. If this latter production is added, as many as 5 tons of Pu per year might be processed into new FAs in Russia. Many years of work and experience are represented in the estimates of MOX fuel production wastes derived in this report. Prior engineering studies and sludge treatment investigations and comparisons have determined how best to treat Pu sludges and MOX fuel wastes. Based upon analyses of the production processes established by these efforts, we can estimate that there will be approximately 1200 kg of residual wastes subject to immobilization per MT of plutonium processed, of which approximately 6 to 7 kg is Pu in the residuals per MT of Pu processed. The wastes are various and complicated in composition. Because organic wastes constitute both the major portion of total waste and of the Pu to be immobilized, the recommended treatment of MOX-fuel production waste is incineration or calcination, alkali sintering, and dissolution of sintered products in nitric acid. Insoluble residues are then mixed with vitrifying components and Pu sludges, vitrified, and sent for storage and disposal.

  14. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

  15. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  16. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  17. Appendix G: Building Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  18. Appendix H: Industrial Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  19. Appendix D: Solar Energy Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  20. Appendix B: Hydrogen, Fuel Cells, and Infrastructure Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  1. Appendix F: FreedomCAR and Vehicle Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  2. Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology 

    E-Print Network [OSTI]

    Clutter, David John

    1992-01-01

    REDT could potentially benefit in two ways. 1) An additional data analysis technique could help to further clarify an estimate improving its quality. 2) An additional analysis technique could provide additional information necessary for creating new...

  3. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  4. Life Estimation of PWR Steam Generator U-Tubes Subjected to Foreign Object-Induced Fretting Wear

    SciTech Connect (OSTI)

    Jo, Jong Chull; Jhung, Myung Jo; Kim, Woong Sik; Kim, Hho Jung

    2005-10-15

    This paper presents an approach to the remaining life prediction of steam generator (SG) U-tubes, which are intact initially, subjected to fretting-wear degradation due to the interaction between a vibrating tube and a foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions are obtained from a three-dimensional SG flow calculation using the ATHOS3 code. Modal analyses are performed for the finite element models of U-tubes to get the natural frequency, corresponding mode shape, and participation factor. The wear rate of a U-tube caused by a foreign object is calculated using the Archard formula, and the remaining life of the tube is predicted. Also discussed in this study are the effects of the tube modal characteristics, external flow velocity, and tube internal pressure on the estimated results of the remaining life of the tube.

  5. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  6. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  7. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  8. Next Generation Radioisotope Generators | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology...

  9. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    electricity from biogas and they have the same rate of electrical generationbiogas can be used as a supplemental energy source for thermal energy loads and the generation of electricity.generation of electricity. Anaerobic digestion destroys pathogens and this method is used to generate biogas

  10. ESTIMATING THE IMPACT OF DEMOGRAPHICS AND AUTOMOTIVE TECHNOLOGIES ON GREENHOUSE GAS

    E-Print Network [OSTI]

    Hellinga, Bruce

    of Transportation Engineers to be held May 12-15, 2002 in Ottawa Ontario #12;1 Estimating the Impact of Demographics that this level of market penetration can be achieved within the next decade and therefore, it appears highly The transportation sector consumes 30% of all energy used in Canada, with the vast majority of this energy derived

  11. Vehicle Technologies Office Merit Review 2015: Next Generation SCR-Dosing System Investigation

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  12. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    of biomass integrated-gasifier/gas turbine combined cyclefarms to large integrated gasifiers at petroleum refineries.BLGCC). The black liquor gasifier technology will produce a

  13. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  14. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  15. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  16. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  17. Entrepreneurial Tech-Ed. : using technology to fuel income generation education in rural Ghana/

    E-Print Network [OSTI]

    Rossman, Breanna Faye

    2014-01-01

    This thesis investigates how decentralization of development occurs through merging small-scale technology hubs into the rural West African fabric by integrating with the secondary school system. This model redefines the ...

  18. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  19. ESTIMATION OF EXTREME FLOODS IN THE RIVER RHINE BASIN BY COMBINING PRECIPITATION-RUNOFF MODELLING AND A RAINFALL GENERATOR

    E-Print Network [OSTI]

    Beersma, Jules

    AND A RAINFALL GENERATOR Mailin Eberle 1 , Hendrik Buiteveld 2 , Jules Beersma 3 , Peter Krahe 1 , Klaus Wilke 1 of discharge generation. A stochastic rainfall generator based on nearest neighbour resampling has been. The largest simulated flood event based on generated precipitation is 20% larger than the 1993 flood event

  20. General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

    E-Print Network [OSTI]

    Lanz, Bruno, 1980-

    Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

  1. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  2. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  3. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric options is an important step in formulating a cohesive strategy to abate U.S. greenhouse gas (GHG

  4. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01

    the defUlition given above. It can be a corporate strategic tool in the newly competitive electric business. It can be part of an offensive strategy to capture new retail markets. It can be used to optimize support of a capacity-stretched distribution... system. It can be used defensively to retain existing customers. Example strategies include: Meet existing customers' growing local peak demands without adding long-payback T&D upgrades and/or new central station generation investments. Serve new...

  5. Fiber Bragg Grating Sensor as Valuable Technological Platform for New Generation of Superconducting Magnets

    E-Print Network [OSTI]

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Viret, P; Giordano, M; Breglio, G

    2014-01-01

    New generation of superconducting magnets for high energy applications designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of reliable sensors able to monitor the mechanical stresses affecting the winding from fabrication to operation in magnetic field of 13 T. This work deals with the embedding of Fiber Bragg Grating sensors in a short model Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering perspectives for the replacement of standard strain gauges.

  6. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  7. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  8. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  9. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    SciTech Connect (OSTI)

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  10. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  11. Power spectrum estimates of high frequency noise generated by high impedance arcing faults on distribution systems / by Thomas James Talley 

    E-Print Network [OSTI]

    Talley, Thomas James

    1979-01-01

    , where several of the staged fault tests were conducted, indicated that a 600:5 CT would be used in each phase and neutral of the line under test. The 60 Hz fault current availability at the test site was calculated to be approximately 2100 amps... CT secondary current Pk amps Pk 10kHz value expected 600:5 20/120 = . 1667 amps 1. 414 x . 1667a = . 235pk 0. 235 ? : 100 (40 db) = Z. 35ma Current/voltage transformer Z. 35ma ? : 10 = . 000235v 0. 235mv Thus the maximum estimated signal...

  12. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  14. Appendix F: GPRA05 Geothermal Technologies Program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). Estimating the GPRA benefits involves projecting the market share for these technologies based on their economic and environmental characteristics.

  15. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  16. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation could

  17. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  18. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  19. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  20. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

  1. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    SciTech Connect (OSTI)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

  2. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  3. 882 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 11, JUNE 1, 2008 Photonic Generation of Chirped Microwave Pulses

    E-Print Network [OSTI]

    Yao, Jianping

    Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings Chao Wang, Student Member, IEEE, and Jianping Yao, Senior Member, IEEE Abstract--A novel approach to generating linearly chirped microwave or decreased free spectral range is generated. A chirped microwave pulse with the pulse shape identical

  4. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15, 2014 3573 Generation of Linearly Chirped Microwave

    E-Print Network [OSTI]

    Yao, Jianping

    Chirped Microwave Waveform With an Increased Time-Bandwidth Product Based on a Tunable Optoelectronic, Fellow, OSA Abstract--Photonic generation of a linearly chirped microwave waveform with an increased time to the tunable OEO to generate a frequency-tunable microwave signal and the other is intensity

  5. 660 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 3, MARCH 2005 Optical Generation of Linearly Chirped Microwave

    E-Print Network [OSTI]

    Horowitz, Moshe

    Chirped Microwave Pulses Using Fiber Bragg Gratings Avi Zeitouny, Sander Stepanov, Oren Levinson, and Moshe Horowitz Abstract--We demonstrate a new method to generate broad spectrum chirped microwave pulses to generate pulses with a linear frequency chirp. The bandwidth of the microwave pulses can be significantly

  6. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 10, MAY 15, 2010 715 Optical Arbitrary Waveform Generation-Based

    E-Print Network [OSTI]

    Kolner, Brian H.

    -bit 40-Gb/s label in nonreturn-to-zero and return-to- zero on­off keying formats indicate Generation-Based Packet Generation and All-Optical Separation for Optical-Label Switching Tingting He--This letter introduces a versatile modulation-format transparent optical-label switching (OLS) transmitter

  7. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 7, JULY 2006 2663 Broadband Arbitrary Waveform Generation Based on

    E-Print Network [OSTI]

    Fischer, Baruch

    Generation Based on Microwave Frequency Upshifting in Optical Fibers José Azańa, Member, IEEE, Naum K. Berger, Boris Levit, and Baruch Fischer Abstract--An interesting method for broadband arbitrary waveform generation is based on the frequency upshifting of a narrowband microwave signal. In this technique

  8. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume II. Final report, Appendix A: selected DSG technologies and their general control requirements

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

  9. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 11, NOVEMBER 2006 4263 PLC-Based Pulse-Train Generators

    E-Print Network [OSTI]

    Purdue University

    JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 11, NOVEMBER 2006 4263 PLC-Based Pulse to the fab- rication of optical devices [1]­[3]. PLC-based fabrication is frequently employed in a wide range the range of applications utilizing PLC- based devices is enormous, the focus of this paper

  10. Distributed generation

    SciTech Connect (OSTI)

    Ness, E.

    1999-09-02

    Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.

  11. Science Centric -Science, health and technology, breaking news [PDA version] New tool for next-generation cancer treatments using nanodiamonds

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    for next-generation cancer treatments using nanodiamonds Science Centric | 19 May 2009 15:50 GMT A research different ways: in one mode, the probe acts like a fountain pen, wherein drug-coated nanodiamonds serve and nanoparticles,' says Espinosa. Using the Nanofountain Probe, the group injected tiny doses of nanodiamonds

  12. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 25, NO. 10, MAY 15, 2013 899 Photonic Generation of a Phase-Coded Microwave

    E-Print Network [OSTI]

    Yao, Jianping

    -Coded Microwave Waveform With Ultrawide Frequency Tunable Range Liang Gao, Student Member, IEEE, Xiangfei Chen-coded microwave waveform with ultrawide frequency tunable range using two polarization modulators (Pol signal with a switching voltage of V to PolM1, a phase-coded microwave waveform is generated. The key

  13. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15 2014 3637 Photonic Generation of Microwave Waveforms Based

    E-Print Network [OSTI]

    Yao, Jianping

    of Microwave Waveforms Based on a Polarization Modulator in a Sagnac Loop Weilin Liu, Student Member, IEEE, and Jianping Yao, Fellow, IEEE, Fellow, OSA Abstract--An optical microwave waveform generator using a polarization modulator (PolM) in a Sagnac loop is proposed and experimentally demonstrated. Microwave waveforms

  14. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...

  15. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  16. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  17. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  18. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

  19. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  20. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  1. Natural Fracture Characterization by Source Mechanism Estimation and Semi-Stochastic Generation of Discrete Fracture Networks Using Microseismic and Core Data 

    E-Print Network [OSTI]

    Sotelo Gamboa, Edith

    2014-11-12

    The overall goal of this study is to generate discrete fracture networks using microseismic and core data from a natural fractured reservoir that has been hydraulically stimulated. To improve fracture characterization, a ...

  2. Distributed Estimation Distributed Estimation

    E-Print Network [OSTI]

    Gupta, Vijay

    with a Star Topology 2 2.1 Static Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Combining Estimators . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Static Sensor Fusion for Star Topology;Distributed Estimation 3 Non-Ideal Networks with Star Topology 10 3.1 Sensor Fusion in Presence of Message

  3. Estimating Methods

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Based on the project's scope, the purpose of the estimate, and the availability of estimating resources, the estimator can choose one or a combination of techniques when estimating an activity or project. Estimating methods, estimating indirect and direct costs, and other estimating considerations are discussed in this chapter.

  4. Estimating Specialty Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Specialty costs are those nonstandard, unusual costs that are not typically estimated. Costs for research and development (R&D) projects involving new technologies, costs associated with future regulations, and specialty equipment costs are examples of specialty costs. This chapter discusses those factors that are significant contributors to project specialty costs and methods of estimating costs for specialty projects.

  5. : Helmholtz machine estimation .

    E-Print Network [OSTI]

    : Helmholtz machine density estimation . . : . . . (supervised learning) , (active learning) (query learning) [1, 3]. . (unsupervised learning), . , [5]. . Helmholtz machine , . Helmholtz machine : Helmholtz machine [2] . Helmholtz machine (generative network) (recognition network) . , , . Helmholtz machine (self

  6. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  8. Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy Considerations At Microsoft, we see information technology (IT) as a key tool to help address the daunting en-

    E-Print Network [OSTI]

    Narasayya, Vivek

    Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy in energy conservation and integration of more renewable and zero-carbon energy sources into our economy. Microsoft envisions a clean energy ecosystem where information technology: · Empowers people

  9. 1614 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 4, MAY 2014 The State of Charge Estimation of Lithium-Ion

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries Based on a Proportional-Integral Observer Jun Xu, Student Member, IEEE--With the development of electric drive vehicles (EDVs), the state-of-charge (SOC) estimation for lithium-ion (Li of lithium-ion batteries in EDVs. The structure of the proposed PI observer is analyzed, and the con

  10. Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick {sup 9}Be target and estimation of neutron yields

    SciTech Connect (OSTI)

    Paul, Sabyasachi; Sahoo, G. S.; Tripathy, S. P. E-mail: tripathy@barc.gov.in; Sunil, C.; Bandyopadhyay, T.; Sharma, S. C.; Ramjilal,; Ninawe, N. G.; Gupta, A. K.

    2014-06-15

    A systematic study on the measurement of neutron spectra emitted from the interaction of protons of various energies with a thick beryllium target has been carried out. The measurements were carried out in the forward direction (at 0° with respect to the direction of protons) using CR-39 detectors. The doses were estimated using the in-house image analyzing program autoTRAK-n, which works on the principle of luminosity variation in and around the track boundaries. A total of six different proton energies starting from 4 MeV to 24 MeV with an energy gap of 4 MeV were chosen for the study of the neutron yields and the estimation of doses. Nearly, 92% of the recoil tracks developed after chemical etching were circular in nature, but the size distributions of the recoil tracks were not found to be linearly dependent on the projectile energy. The neutron yield and dose values were found to be increasing linearly with increasing projectile energies. The response of CR-39 detector was also investigated at different beam currents at two different proton energies. A linear increase of neutron yield with beam current was observed.

  11. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    E-Print Network [OSTI]

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-01-01

    systems, estimates of energy consumption intensities of various building types are typically obtained from the Natural Gas Cogeneration

  12. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE)

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

  13. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    SciTech Connect (OSTI)

    Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

    2014-09-01

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

  14. Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

    E-Print Network [OSTI]

    Narayanan, H.

    Indian Institute of Technology Bombay INDIAN INSTITUTE OF TECHNOLOGY BOMBAY INVITATION Description of work Estimated cost (1) (2) (3) 1 Construction of Institutional/Residential buildings, external development, HVAC, Elevators etc. for Indian Institute of Technology Bombay, at the campus

  15. Processing and analysis techniques involving in-vessel material generation

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  16. Processing and analysis techniques involving in-vessel material generation

    DOE Patents [OSTI]

    Schabron, John F. (Laramie, WY); Rovani, Jr., Joseph F. (Laramie, WY)

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  17. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    which uses solar energy to generate electricity." Like otherwhich uses solar energy to generate electricity” qualifiesenergy technologies, solar PV creates the most jobs per unit of electricity

  18. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  19. 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D data volume (n5). Horizon

    E-Print Network [OSTI]

    Nicoli, Monica

    Abstract 3-D seismic surveys generate 5-D data volume. In order to estimate the horizons for interpretation and further processing, the traveltime picking needs to be performed on n-D subsets of this 5-D to support the interpreters in the estimation of the events by preserving their depth continuity. The HP

  20. On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski

    E-Print Network [OSTI]

    Hammerton, James

    On Estimating the Scale of National Deep Web Denis Shestakov and Tapio Salakoski Turku Centre. With the advances in web technologies, more and more in- formation on the Web is contained in dynamically-generated web pages. Among several types of web "dynamism" the most important one is the case when web pages

  1. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  2. Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  3. 1020 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013 State of Charge Estimation of Lithium-Ion Batteries

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Estimation of Lithium-Ion Batteries in Electric Drive Vehicles Using Extended Kalman Filtering Zheng Chen. Index Terms--Extended Kalman filter (EKF), hardware-in- the-loop, lithium-ion battery, nonlinear battery], a modeling approach for the scale-up of a lithium- ion polymer battery (LIPB) is reported. A comparison

  4. Technology development productivity : case studies in technology transition

    E-Print Network [OSTI]

    Taplett, Amanda Kingston

    2007-01-01

    Development of new technology is critical to the growth and success of technology-driven companies. New technology is generated in a number of ways, one of the most important being the company's own internal research and ...

  5. Theory and technology for computational narrative : an approach to generative and interactive narrative with bases in algebraic semiotics and cognitive linguistics

    E-Print Network [OSTI]

    Harrell, Douglas Alan

    2007-01-01

    is that conceptual blending (the generative component) andstructural blending (the media composition component) can bein the blending literature and explicitly designs components

  6. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  7. An Estimate of the Cost of Electricity from Light Water Reactors and Fossil Plants with Carbon Capture and Sequestration

    SciTech Connect (OSTI)

    Simon, A J

    2009-08-21

    As envisioned in this report, LIFE technology lends itself to large, centralized, baseload (or 'always on') electrical generation. Should LIFE plants be built, they will have to compete in the electricity market with other generation technologies. We consider the economics of technologies with similar operating characteristics: significant economies of scale, limited capacity for turndown, zero dependence on intermittent resources and ability to meet environmental constraints. The five generation technologies examined here are: (1) Light Water Reactors (LWR); (2) Coal; (3) Coal with Carbon Capture and Sequestration (CCS); (4) Natural Gas; and (5) Natural Gas with Carbon Capture and Sequestration. We use MIT's cost estimation methodology (Du and Parsons, 2009) to determine the cost of electricity at which each of these technologies is viable.

  8. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01

    in which solar PV generation technologies will be developedsolar PV, biomass and waste power generation technologies.Technology Advance (Mihsunuial CO* emission reduction Solar energy (PV,

  9. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  10. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  11. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee February 27, 2014 Steven Simmons and Gillian Charles Upcoming Symposium 9:15 am Natural Gas Peaking Technologies Technology Trends Proposed reference plant Costing, Economies of Scale, Normalizations Reference Plants 12:30 pm Discussion of Next GRAC Meetings

  12. Summary and Presentations from "Estimating the Benefits and Costs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary and Presentations from "Estimating the Benefits and Costs of Distributed Energy Technologies" Workshop Now Available Summary and Presentations from "Estimating the Benefits...

  13. GENERATION, ESTIMATION AND TRACKING OF FACES

    E-Print Network [OSTI]

    DeCarlo, Doug

    with the model. Our face models respect the measurements of populations described by face anthropometry studies

  14. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh...

  15. U.S. Department of Energy Geothermal Electricity Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spreadsheet model developed by the Geothermal Technologies Program to assess power generation costs and the potential for technology improvements to impact those generation...

  16. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  17. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  19. Diophantine Generation,

    E-Print Network [OSTI]

    Shlapentokh, Alexandra

    Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

  20. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  1. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating the performance and...

  2. Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

    2012-04-01

    This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

  3. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Environmental Management (EM)

    2: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next...

  4. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  5. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  6. CALCULATION OF DEMONSTRATION BULK VITRIFICATION SYSTEM MELTER INLEAKAGE AND OFF-GAS GENERATION RATE

    SciTech Connect (OSTI)

    MAY TH

    2008-04-16

    The River Protection Project (RPP) mission is to safely store, retrieve, treat, immobilize, and dispose of the Hanford Site tank waste. The Demonstration Bulk Vitrification System (DBVS) is a research and development project whose objective is to demonstrate the suitability of Bulk Vitrification treatment technology waste form for disposing of low-activity waste from the Tank Farms. The objective of this calculation is to determine the DBVS melter inleakage and off-gas generation rate based on full scale testing data from 38D. This calculation estimates the DBVS melter in leakage and gas generation rate based on test data. Inleakage is estimated before the melt was initiated, at one point during the melt, and at the end of the melt. Maximum gas generation rate is also estimated.

  7. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  8. Innovative Self- Generating Projects 

    E-Print Network [OSTI]

    Kelly, L.

    2013-01-01

    ? All rights reserved. Case Studies on Canadian Customer Generation Projects Innovative Self-Generation Projects Liam Kelly, M.A.Sc, CMVP Energy Engineer Willis Energy Services A CLEAResult company ESL-IE-13-05-06 Proceedings of the Thrity...-05-06 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 ? 2013 CLEAResult ? All rights reserved. Overcoming Challenges ? Look for innovative opportunities ? Leverage available incentives ? Quantify other...

  9. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity, US Data. 6. Distributed Generation: Standby Generation and Cogeneration Ozz Energy Solutions, Inc. February 28 th , 2005. For more information about...

  10. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  11. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  12. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  13. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  14. Quadrennial Technology Review 2015

    Broader source: Energy.gov (indexed) [DOE]

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  15. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee May 28, 2014 Steve Simmons Gillian Charles #12;2 9:30 AM plants 10:45 AM Break 11:00 AM Peaking Technologies Continued... 11:30 AM Combined Cycle Combustion Turbine and Utility Scale Solar PV Reference plant updates Levelized cost of energy 12:00 PM Lunch

  16. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    of wind and conventional energy technologies, transmission,wind versus the displaced conventional energy technologies,wind energy I. I NTRODUCTION Generating electricity from wind technology

  17. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI...

  18. Next Generation Library Systems Convenient, Connected, User-Centric, Ubiquitous

    E-Print Network [OSTI]

    Myers, Lawrence C.

    & Engineering Library; Digital Library Technologies Group 5 Barb Sagraves, Head Next Generation Library Systems Convenient, Connected, User-Centric, Ubiquitous Next Generation Library Taskforce

  19. PACCAR/Hi-Z Thermoelectric Generator Project | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PACCARHi-Z Thermoelectric Generator Project PACCARHi-Z Thermoelectric Generator Project 2002 DEER Conference Presentation: Hi-Z Technology, Inc. 2002deerbergstrand.pdf More...

  20. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

  1. Pseudorandom sequences constructed by the power generator

    E-Print Network [OSTI]

    Katalin, Gyarmati

    Pseudorandom sequences constructed by the power generator Katalin Gyarmati # Abstract We study the pseudorandom properties of the power generator (which includes as special cases the RSA generator and the Blum- Blum-Shub generator). In order to estimate the pseudorandom mea- sures character sums with exponential

  2. Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector

    E-Print Network [OSTI]

    Knittel, Christopher R

    2009-01-01

    engine power/weight technology costs is correlated withto Vehicle-Speci?c Technology Costs I estimate threefor Proxies of Technology Costs Base Cobb-Douglas Model

  3. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    selected to achieve a cost-optimal generation mix over a 20-Conventional Generation Technology Cost and Performancethe future cost and performance of conventional generation

  4. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  5. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  6. Environmental control technology for biomass flash pyrolysis

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Seward, W.H.

    1980-01-01

    The rapid commercialization of biomass gasification and pyrolysis technologies will raise questions concerning the environmental impacts of these systems and the associated costs for appropriate control technologies. This study concentrates on characterizing the effluent emissions and control technologies for a dual fluid-bed pyrolysis unit run by Arizona State University, Tempe, Arizona. The ASU system produces a raw product gas that is passed through a catalytic liquefaction system to produce a fuel comparable to No. 2 fuel oil. Argonne National Laboratory is conducting a program that will survey several biomass systems to standardize the sampling techniques, prioritize standard analyses and develop a data base so that environmental issues later may be addressed before they limit or impede the commercialization of biomass gasification and pyrolysis technologies. Emissions will be related to both the current and anticipated emissions standards to generate material balances and set design parameters for effluent treatment systems. This will permit an estimate to be made of the capital and operating costs associated with these technologies.

  7. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  8. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  9. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    truss design Larger aperture (15% ) 2x as long (100 meters) Lower tolerance pieces (lower cost) Alignment jig required for assembly Inadequate torsion stiffness Cost...

  10. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  11. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  12. Quadrennial Technology Review's Alternative Generation Workshop Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOE HydrogenDepartment ofNG-1Department

  13. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchidxOsCompOstOther

  14. Power Generation Technologies | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono

  15. OpenEI Community - Power Generation Technologies

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaenAdministration'sWorkshop at GRChttp

  16. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The FirstEnergyDepartment of

  17. Articles about Next-Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, Inc | Department ofMarketing,1 Articles about1681 Articles

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    of Energy  Computational Needs for Next Generation Electric Generation Electric Grid   HyungSeon   Oh  National Energy generation  communication requirements, technologies, and architecture for the electric power  grid”, IEEE   Power and Energy 

  19. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  20. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response

    E-Print Network [OSTI]

    Mario Stip?evi?; Rupert Ursin

    2015-06-09

    Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.

  1. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Energy Savers [EERE]

    heat pump technology to develop a new generation of water heaters. This thin film, thermoelectric technology has the potential to significantly reduce the electrical...

  2. Small Business Innovation Research and Small Business Technology...

    Broader source: Energy.gov (indexed) [DOE]

    to any technology developed and are encouraged to commercialize the technology. Hydropower Topic: Innovative Very Low-head and Instream Current Water Power Turbine-Generator...

  3. Fracture compliance estimation using borehole tube waves

    E-Print Network [OSTI]

    Bakku, Sudhish Kumar

    We tested two models, one for tube-wave generation and the other for tube-wave attenuation at a fracture intersecting a borehole that can be used to estimate fracture compliance, fracture aperture, and lateral extent. In ...

  4. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    E-Print Network [OSTI]

    Xu, T.

    2011-01-01

    froth flotation technology, plastics of similar densitiescost estimates for plastics separations technologies vary in2000), the technology to recover plastics from car residues

  5. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    estimate the needed technologies and costs for achieving aexamples due to higher technology costs. To be published inwe find that at current technology costs, the nursing home

  6. Conventional Hydropower Technologies, Wind And Water Power Program...

    Broader source: Energy.gov (indexed) [DOE]

    US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. Conventional...

  7. Status of Hydrogen Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The current status in terms of weight, volume, and cost of various hydrogen storage technologies is shown below. These values are estimates from storage system developers and the R&D community...

  8. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    IEEE Dynamic Performance of Wind Power Generation Workingof the impacts of wind generation on power system frequencywith Increased Wind Generation 9. Siemens Power Technologies

  9. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  10. Imaging Science and Technology

    E-Print Network [OSTI]

    Funt, Brian

    and Technology. For information on reprints or reproduction contact Donna Smith Production Editor The Journal be specified as equal energy white. Color constancy can be divided into two subproblems: (1) estimate the color the chromaticity of the scene illumination based on the statistical properties of binarized color or chromaticity

  11. Short run effects of a price on carbon dioxide emissions from U.S. electric generators

    SciTech Connect (OSTI)

    Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

    2008-05-01

    The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

  12. New venture commercialization of clean energy technologies

    E-Print Network [OSTI]

    Miller, David S. (David Seth)

    2007-01-01

    Clean energy technologies lower harmful emissions associated with the generation and use of power (e.g. CO2) and many of these technologies have been shown to be cost effective and to provide significant benefits to adopters. ...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  14. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  15. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC Solid-State...

  16. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  17. FTTH Look Ahead -Technologies & Architectures Cedric F. Lam

    E-Print Network [OSTI]

    Cortes, Corinna

    FTTH Look Ahead - Technologies & Architectures Cedric F. Lam Google Inc., 1600 Amphitheatre Pkwy of various FTTH architecture options. Cedric F. Lam Network Architect, Google FTTH Look Ahead - Technologies Architectures & Challenges ­ Technology options ­ Network design considerations and challenges ­ Next generation

  18. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time the electric power industry and educating the next generation of power engineers. More information about PSERC will fundamentally alter the traditional generation technology mix. This will place a greater value on technologies

  19. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  20. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  1. Nuclear Energy Governance and the Politics of Social Justice: Technology, Public Goods, and Redistribution in Russia and France

    E-Print Network [OSTI]

    Grigoriadis, Theocharis N

    2009-01-01

    Atomic Energy Agency. Nuclear Technology Review 2008. Vienna1: Generations of Nuclear Technology Time 53 1945-1965 -the expansion of their nuclear technology potential. 3 The

  2. DEVELOPMENT OF A METHODOLOGY TO ASSESS PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J.; Kalenchuk, D.

    2004-10-06

    Enhanced proliferation resistance and physical protection (PR&PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR&PP. This methodology will permit an objective PR&PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR&PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures.

  3. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY)

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  4. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  5. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  6. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...

  7. How EIA Estimates Natural Gas Production

    Reports and Publications (EIA)

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  8. Modeling Photon Generation Problem Presenter

    E-Print Network [OSTI]

    Edwards, David A.

    on Mathematical Problems in Industry June 13­17, 2011 New Jersey Institute of Technology #12;Section 1 generation in quantum experiments, involve one or more pump fields at relatively large amplitude interacting linear form of the CMEs in the undepleted-pump regime, where the CMEs can formally be solved to yield

  9. NISTIR 6045 Method for Estimating the Energy Efficiency Ratio of

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    NISTIR 6045 Method for Estimating the Energy Efficiency Ratio of Mixed System Air Conditioners and Technology #12;NISTIR 6045 Method for Estimating the Energy Efficiency Ratio of Mixed System Air Conditioners combination, an empirically based calculation procedure may be used for estimating a unit's Energy Efficiency

  10. Energy 101: Fuel Cell Technology

    ScienceCinema (OSTI)

    None

    2014-06-06

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  11. Energy 101: Fuel Cell Technology

    SciTech Connect (OSTI)

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  12. Comparison of large central and small decentralized power generation in India

    SciTech Connect (OSTI)

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  13. Updated Capital Cost Estimates for Utility Scale Electricity

    E-Print Network [OSTI]

    that will serve future demand for electricity. These parameters also help to determine how new capacity competesUpdated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii

  14. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  15. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  16. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  17. Hardware model of a shipboard generator

    E-Print Network [OSTI]

    Elkins, Gregory L. (Gregory Lewis)

    2009-01-01

    A hardware model of the Gas Turbine Generator (GTG) in use on the US Navy's DDG-51 Class Destroyer is constructed for use as a lab apparatus at the Massachusetts Institute of Technology's Laboratory for Electromagnetic and ...

  18. Next-generation information systems for genomics 

    E-Print Network [OSTI]

    Mungall, Christopher

    2011-06-27

    The advent of next-generation sequencing technologies is transforming biology by enabling individual researchers to sequence the genomes of individual organisms or cells on a massive scale. In order to realize the ...

  19. NUMBER: 1626 TITLE: Information Technology Management

    E-Print Network [OSTI]

    cost of more than $100,000 but less than $1 million. E. University Advisory Council on Technology (UACT technology project estimated to cost $1 million or more or deemed to be mission-critical. VI. Designated1626 - 1 NUMBER: 1626 TITLE: Information Technology Management APPROVED: September 9, 2005 I

  20. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: � Identified the conditions and requirements for MHK generators. � Defined a methodology for sizing and rating MHK systems. � Selected an MHK generator topology and form factor. � Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. � Investigated MHK generator manufacturing requirements. � Reviewed cost implications and financial viability. � Completed final reporting and deliverables

  1. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  2. Solar Fundamentals Volume 1: Technology

    Broader source: Energy.gov [DOE]

    This report is one component of a multi-part series publication to assist in educating th'se seeking to become more familiar with the solar industry. This volume introduces solar technologies, explaining each technology’s applications, the components that make up a photovoltaic system, and how they can be used to optimize energy generation. This report explains solar insolation and how it impacts energy generation in illustrating where solar energy is a viable option. A final section highlights important considerations in solar project siting to maximize system production and avoid unexpected project development challenges.

  3. Sandia technology & entrepreneurs improve Lasik

    ScienceCinema (OSTI)

    Neal, Dan; Turner, Tim

    2014-02-26

    Former Sandian Dan Neal started his company, WaveFront Sciences, based on wavefront sensing metrology technologies licensed from Sandia National Laboratories and by taking advantage of its Entrepreneurial Separation to Transfer Technology (ESTT) program. Abbott Medical Optics since acquired WaveFront and estimates that one million patients have improved the quality of their vision thanks to its products. ESTT is a valuable tool which allows Sandia to transfer technology to the private sector and Sandia employees to leave the Labs in order to start up new technology companies or help expand existing companies.

  4. Energy Department Invests $60 Million to Train Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation of leaders in America's nuclear industry as well as support new and advanced nuclear technologies from reactor materials to innovative sensors and instruments to more...

  5. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable...

  6. Sandia's research spans generation, storage, and load management at

    E-Print Network [OSTI]

    kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilities technology integration, microgrid communications, enhanced efficiency, load control, and specialized tests

  7. A Monte Carlo Approach To Generator Portfolio Planning And Carbon...

    Open Energy Info (EERE)

    providing positive net annual energy generation. These technologies may include demand response, vehicle-to-grid systems, and large-scale energy storage. Authors Elaine...

  8. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    team hopes to employ innovative approaches to developing the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional...

  9. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and...

  10. Plasma generators, reactor systems and related methods - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit the Technology Transfer and Commercialization Office Website Abstract: A plasma generator, reactor and associated systems and methods are provided in accordance with the...

  11. Adaptive Control of Third Harmonic Generation via Genetic Algorithm 

    E-Print Network [OSTI]

    Hua, Xia

    2010-10-12

    with selection, to improve the population as the evolution progresses from generation to generation. Femtosecond laser pulse tailoring, with the use of a pulse shaper, has become an important technology which enables applications in femtochemistry, micromachining...

  12. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  13. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  14. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  15. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    electric energies from photovoltaic, wind, wood, biofuels and hydroelectrics to create a utility scale energy generation andgeneration and storage technologies is important for increasing the share of renewable energy sources and wider use of the plug-in electricgeneration and storage technologies are important for increas- ing the share of renewable energy sources and wider use of the plug-in electric

  16. Visual Tool for Generative Programming Pavel Grigorenko

    E-Print Network [OSTI]

    Grigorenko, Pavel

    of Cybernetics Tallinn University of Technology Akadeemia tee 21 12618 Tallinn, Estonia +372 6204212 ando@cs.ioc.ee Enn Tyugu Institute of Cybernetics Tallinn University of Technology Akadeemia tee 21 12618 TallinnVisual Tool for Generative Programming Pavel Grigorenko Institute of Cybernetics Tallinn University

  17. Complaint Behaviors of the Millennial Generation 

    E-Print Network [OSTI]

    Philmon, Brittany Diane

    2011-02-22

    providing the opportunity for complaints to go directly to the service provider before negative word-of-mouth is distributed through emails, blogs, social networks, etc. (Mattila and Wirtz, 2004; Tyrrell and Woods, 2004). Technology Adoption Although... Customer satisfaction and word-of-mouth ........................................... 1 Generations and technology use ........................................................... 3 Organization of research...

  18. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  19. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  20. MTCI advanced coal technologies

    SciTech Connect (OSTI)

    Mansour, M.N.; Chandran, R.R. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1994-12-31

    MTCI is pursuing the development and commercialization of several advanced combustion and gasification systems based on pulse combustion technology. The systems include indirectly heated thermochemical reactor, atmospheric pressure pulse combustor, pulsed atmospheric fluidized bed combustor, direct coal-fired gas turbine pulse combustor island, and advanced concept second-generation pressurized fluidized bed combustor island. Although the systems in toto are capable of processing lignite, subbituminous, bituminous, and anthracite coals in an efficient, economical and environmentally acceptable manner, each system is considered ideal for certain coal types. Brief descriptions of the systems, applications, selected test results and technology status are presented.

  1. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  2. Check Estimates and Independent Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Check estimates and independent cost estimates (ICEs) are tools that can be used to validate a cost estimate. Estimate validation entails an objective review of the estimate to ensure that estimate criteria and requirements have been met and well documented, defensible estimate has been developed. This chapter describes check estimates and their procedures and various types of independent cost estimates.

  3. *Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., a

    E-Print Network [OSTI]

    Mease, Kenneth D.

    in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first District while operated on renewable biogas derived from the wastewater treatment process. For more/solar - liquid truck... On-site Hydrogen from photovoltaic electrolysis Hydrogen from Tri-Generation* - Biogas

  4. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    of generating systems. These include steam cycles, combined steam- and gas-turbine cycles (systems where the hot a steam turbine), and a number of advanced technology processes such as fuel cells (i.e., systems having exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive

  5. Ten Questions Concerning Generative Computer Art

    E-Print Network [OSTI]

    McCormack, Jon

    Ten Questions Concerning Generative Computer Art Jon McCormack, Oliver Bown, Alan Dorin, Jonathan), Centre for Electronic Media Art, Faculty of Information Technology, Monash University, Caulfield East, Australia, Email: Jonathan McCabe (generative artist), Faculty of Arts and Design

  6. Internal/External Split Field Generator

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2010-02-03

    These technologies are designs and methods that boost the efficiency of electric generators by decoupling the magnetic polarity of the driving mechanism while increasing the operational frequency of the machine. Both are unique, low cost methods to develop a generator with a higher power density....

  7. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  8. Granulometric characterization of sediments transported by surface runoff generated by moving storms 

    E-Print Network [OSTI]

    de Lima, J. L. M. P.; Souza, C. C. S.; Singh, V. P.

    2008-12-16

    transported by surface runoff generated by moving storms J. L. M. P. de Lima1,2, C. S. Souza2, and V. P. Singh3 1Department of Civil Engineering, Faculty of Science and Technology ? Campus 2, University of Coimbra, 3030-788 Coimbra, Portugal 2Institute...- tion of wind on runoff. Failure to consider the movement of rainfall (i.e., the combined action of wind and rain) can result in under- or over-estimation of peak discharge (e.g., Jensen, 1984; Singh, 1998; de Lima and Singh, 2002, 2003). The im...

  9. Design and Control of a Floating Wave-Energy Converter Utilizing a Permanent Magnet Linear Generator

    E-Print Network [OSTI]

    Tom, Nathan Michael

    2013-01-01

    electrical generator technology for wave energy converters,”seen, clean technologies, such as ocean wave energy, presentwave energy point absorber,” Proceedings of the IFAC Conference on Control Methodologies and Technology

  10. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...

  11. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...

  12. How predictable is technological progress?

    E-Print Network [OSTI]

    Farmer, J Doyne

    2015-01-01

    Recently it has become clear that many technologies follow a generalized version of Moore's law, i.e. costs tend to drop exponentially, at different rates that depend on the technology. Here we formulate Moore's law as a time series model and apply it to historical data on 53 technologies. Under the simple assumption of a correlated geometric random walk we derive a closed form expression approximating the distribution of forecast errors as a function of time. Based on hind-casting experiments we show that it is possible to collapse the forecast errors for many different technologies at many time horizons onto the same universal distribution. As a practical demonstration we make distributional forecasts at different time horizons for solar photovoltaic modules, and show how our method can be used to estimate the probability that a given technology will outperform another technology at a given point in the future.

  13. Yes, your ideas and our technologies can contribute to economic, social and environmental progress. Alstom is a global leader in the world of power generation, power transmission and rail infrastructure and sets the

    E-Print Network [OSTI]

    Giger, Christine

    train and the high- est capacity automated metro in the world, provides turnkey integrated power plant and sets the benchmark for innovative and environmentally friendly technologies. Alstom builds the fastest career account on our new e-recruitment system which allows you to upload your CV, match your profile

  14. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  15. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  16. Indonesia Power Generation Capacity is Estimated to Reach 90...

    Open Energy Info (EERE)

    overview of these companies, followed by their financial overview, business strategies, technical performance analysis, operational standards, and awards and achievements. The...

  17. Simplified Approach for Estimating Impacts of Electricity Generation...

    Open Energy Info (EERE)

    Forestry Topics: Co-benefits assessment, - Environmental and Biodiversity, - Health Resource Type: Softwaremodeling tools ComplexityEase of Use: Advanced Website:...

  18. Simplified Approach for Estimating Impacts of Electricity Generation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation,ShowSikesSilvanSimbol(SIMPACTS)

  19. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales Type:Feet)3FullUpdated

  20. BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL

    E-Print Network [OSTI]

    Berger, Jim

    BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL DUE TO TECHNOLOGY IMPROVEMENTS by Richard W. Andrews comments. 4 #12; 1. INTRODUCTION 1.1 Background and Overview In 1975 the Energy Policy and Conservation Act average fuel economy (CAFE) standard. This legislation separates each manufacturer's production

  1. Distributed Sensing and Estimation Under Communication Constraints

    E-Print Network [OSTI]

    Mostofi, Yasamin

    . Murray University of New Mexico California Institute of Technology Abstract-- In this paper we consider the impact of imperfect communication links on distributed sensing and estimation in mobile networks. First a wide range of applications such as environmental monitoring, surveillance and security, smart homes

  2. Energy prices and the adoption of energy-saving technology

    E-Print Network [OSTI]

    Linn, Joshua

    2006-01-01

    This paper investigates the link between factor prices, technology and factor demands. I estimate the effect of price-induced technology adoption on energy demand in the U.S. manufacturing sector, using plant data from the ...

  3. Yes, your ideas and our technologies can contribute to economic, social and environmental progress. Alstom is a global leader in the world of power generation and rail infrastructure and sets the benchmark for innovative and environmentally

    E-Print Network [OSTI]

    . Alstom is a global leader in the world of power generation and rail infrastructure and sets the benchmark capacity automated metros in the world, and provides integrated power plant solutions and associated services for a wide variety of energy sources, including wind, solar, hydro, geothermal, ocean (wave), gas

  4. Anthony V. Cugini Director, National Energy Technology Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be the result of the combined application of horizontal drilling and large-volume hydraulic fracturing technologies. EIA's 2012 Annual Energy Outlook estimates that 482...

  5. Technology Assessment

    Office of Environmental Management (EM)

    capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...

  6. Types of Cost Estimates

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter describes the estimates required on government-managed projects for both general construction and environmental management.

  7. Protogrammetry and Remote sensing Semester Project. DSM to DTM generation -1 -5/29/2008

    E-Print Network [OSTI]

    Giger, Christine

    Protogrammetry and Remote sensing Semester Project. DSM to DTM generation - 1 - 5 of Technology Zurich #12;Protogrammetry and Remote sensing Semester Project. DSM to DTM generation - 2 - 5.............................................................................................13 3 GENERATION OF DSM WITH IMAGE MATCHING

  8. Customer adoption of small-scale on-site power generation

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Hamachi, Kristina S.; Rubio, F. Javier

    2001-01-01

    of Small-Scale On-Site Power Generation Afzal S. Siddiqui,technologies will tilt power generation economics in favourquality. This pattern of power generation and consumption is

  9. Generators, Recursion, and Fractals 1 Generators

    E-Print Network [OSTI]

    Verschelde, Jan

    Generators, Recursion, and Fractals 1 Generators computing a list of Fibonacci numbers defining a generator with yield putting yield in the function fib 2 Recursive Functions computing factorials, 24 April 2015 Intro to Computer Science (MCS 260) generators and recursion L-41 24 April 2015 1 / 36

  10. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  11. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  12. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore »of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.« less

  13. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  14. Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

    2006-01-01

    many of the distributed and renewable energy technologiesESCOs). The Renewable Energy and Distributed Generation TaskDelhi). e. Renewable Energy and Distributed Generation (DG)

  15. sustainable technologies

    E-Print Network [OSTI]

    Zhang, Junshan

    : · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific

  16. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOE Patents [OSTI]

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  17. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    1975, p. 48. "Clean Energy from Coal Technology," Office ofClean Ways to Burn Coal Estimated Busbar Power Costs for Coal-Electric TechnologiesClean Fuels from Coal," Cochran, N. P. , Office of Science and Technology,

  18. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  19. InspIrIng generatIons through Knowledge and dIscovery

    E-Print Network [OSTI]

    Miller, Scott

    nature of the cosmos, using next-generation technologies to explore our own solar system, meteorites and unparal- leled in its holdings ­ converge with the tremendous innovation that technology makes possible. Our potential to reshape the Institution is limitless. To ensure that we seize the moment and build

  20. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  1. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  2. INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY

    E-Print Network [OSTI]

    Columbia University

    1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) ­ Will guarantee performance and Operation and Maintenance ­ Serves solid waste

  3. IFE Target Fabrication, Delivery, and Cost Estimates

    E-Print Network [OSTI]

    Foam Shell Generation Seal Coat Formation CO2 Drying High-Z Sputter CoatingDT Filling DT Layering" for IFE - Large effort for NIC fosters efficiency (e.g., foam shells) 2. The recent IFE target technology (ZFE) · Foam capsule with overcoat HIF Distributed Radiator SNL Dynamic Hohlraum · Advanced

  4. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  5. Control relevant modeling and nonlinear state estimation applied to

    E-Print Network [OSTI]

    Foss, Bjarne A.

    Control relevant modeling and nonlinear state estimation applied to SOFC-GT power systems #12;ii #12;iii Rambabu Kandepu Control relevant modeling and nonlin- ear state estimation applied to SOFC- GT of the most promising fuel cell technologies is the Solid Oxide Fuel Cell (SOFC), due to its solid state

  6. Identification and Tracking of Parameters for a Large Synchronous Generator

    E-Print Network [OSTI]

    Identification and Tracking of Parameters for a Large Synchronous Generator Final Project Report and Tracking of Parameters for a Large Synchronous Generator Final Project Report G. T. Heydt, Project Leader for a Large Synchronous Generator 1. Introduction The power system state estimation problem ha

  7. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  8. CALIFORNIA INSTITUTE OF TECHNOLOGY CAPITAL CONSTRUCTION POLICY

    E-Print Network [OSTI]

    Goddard III, William A.

    CALIFORNIA INSTITUTE OF TECHNOLOGY CAPITAL CONSTRUCTION POLICY 12/3/03 Page 1 of 5 SUMMARY guidelines related to the funding and the estimating of costs. It also formalizes the review and approval construction project or major renovation with a project cost estimated to be $3 million or greater should

  9. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  10. Energy conservation potential of surface modification technologies

    SciTech Connect (OSTI)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  11. Chlorofluorocarbon leak detection technology

    SciTech Connect (OSTI)

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  12. Using Utility Load Data to Estimate Demand for Space Cooling and Potential for Shiftable Loads

    SciTech Connect (OSTI)

    Denholm, P.; Ong, S.; Booten, C.

    2012-05-01

    This paper describes a simple method to estimate hourly cooling demand from historical utility load data. It compares total hourly demand to demand on cool days and compares these estimates of total cooling demand to previous regional and national estimates. Load profiles generated from this method may be used to estimate the potential for aggregated demand response or load shifting via cold storage.

  13. Agilent 33210A 10 MHz Function/Arbitrary Waveform Generator

    E-Print Network [OSTI]

    California at San Diego, University of

    Agilent 33210A 10 MHz Function/Arbitrary Waveform Generator Data Sheet · 10 MHz Sine and Square Waveform Generator · AM, FM, and PWM modulation types · Linear & logarithmic sweeps and burst operation at an affordable price The Agilent Technologies 33210A Function/Arbitrary Waveform Generator is the latest addition

  14. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive...

  15. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  16. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...

  17. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  18. A simple method to estimate interwell autocorrelation

    SciTech Connect (OSTI)

    Pizarro, J.O.S.; Lake, L.W.

    1997-08-01

    The estimation of autocorrelation in the lateral or interwell direction is important when performing reservoir characterization studies using stochastic modeling. This paper presents a new method to estimate the interwell autocorrelation based on parameters, such as the vertical range and the variance, that can be estimated with commonly available data. We used synthetic fields that were generated from stochastic simulations to provide data to construct the estimation charts. These charts relate the ratio of areal to vertical variance and the autocorrelation range (expressed variously) in two directions. Three different semivariogram models were considered: spherical, exponential and truncated fractal. The overall procedure is demonstrated using field data. We find that the approach gives the most self-consistent results when it is applied to previously identified facies. Moreover, the autocorrelation trends follow the depositional pattern of the reservoir, which gives confidence in the validity of the approach.

  19. Emerging Technologies Program Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Emerging Technologies Program Overview - 2013 BTO...

  20. Department of Energy Quadrennial Technology Review Clean Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Slide 1 Quadrennial Technology Review's Alternative Generation Workshop Slides IEA-GIA ExCo - National Geothermal Data System and Online Tools...

  1. Vehicle Technologies Office Merit Review 2015: A Commercially...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Merit Review 2015: High Energy, Long Cycle Life Lithium-ion Batteries for EV Applications Silicon Nanostructure-based Technology for Next Generation Energy Storage...

  2. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  3. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014:...

  4. Recommendations for Technologies for Microgrids on the Big Island

    E-Print Network [OSTI]

    Institute School of Ocean and Earth Science and Technology August 2009 i #12;ii Acknowledgement increased penetration of electricity generation using as-available renewable energy, primarily wind

  5. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire...

    Office of Environmental Management (EM)

    Generation Energy Storage Presentation given by Amprius, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  6. Emerging Industrial Innovations for New Energy Efficient Technologies 

    E-Print Network [OSTI]

    Laitner, J. A.

    2007-01-01

    of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, “on demand” manufacturing capabilities, or new plastics that double...

  7. Distributed Road Grade Estimation

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Distributed Road Grade Estimation for Heavy Duty Vehicles PER SAH LHOLM Doctoral Thesis in Automatic Control Stockholm, Sweden 2011 #12;Distributed Road Grade Estimation for Heavy Duty Vehicles PER state-of-charge control decrease the energy consumption of vehicles and increase the safety

  8. WIND AND HYDROPOWER TECHNOLOGIES December 2009

    E-Print Network [OSTI]

    Post, Wilfred M.

    to terrestrial ecosystems and organisms that are common to other electricity-generating technologies (e of environmental effects that may occur and describes how monitoring and adaptive management principles might

  9. Networking and Information Technology Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

  10. Imperial College OF SCIENCE, TECHNOLOGY AND MEDICINE

    E-Print Network [OSTI]

    Policy and Technology. The cover image shows the fuel channel labyrinth for a solid polymer fuel cell to a battery, but a battery which is constantly being recharged with fresh reactants. As well as offering generation, transportation, and battery replaceme

  11. Synchronous Machine Parameter Estimation Using Orthogonal Series Expansion

    E-Print Network [OSTI]

    Synchronous Machine Parameter Estimation Using Orthogonal Series Expansion J. Rico G. T. Heydt A an alternative to estimate armature circuit parameters of large utility generators using real time operating data of digital fault recorder data to identify synchronous machine parameters. 1. INTRODUCTION The use orthogonal

  12. SARC Power Estimation Methodology Daniele Ludovici and Georgi N. Gaydadjiev

    E-Print Network [OSTI]

    . Accurate estimation of power dis- sipation is very important during micro-architectural de- sign of every power consumption of the SARC architecture. SARC project is targeting next generation scalable com is one of the main challenges of this project. Therefore, adequate methodology to estimate it is needed

  13. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  14. Estimating carbon dioxide emissions factors for the California electric power sector

    E-Print Network [OSTI]

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-01-01

    U.S. EPA. 2000. Carbon Dioxide Emissions from the Generationfor Estimating Carbon Dioxide Emissions from Combustion ofUS EPA), 2000. “Carbon Dioxide Emissions from the Generation

  15. Building unbiased estimators from non-Gaussian likelihoods with application to shear estimation

    SciTech Connect (OSTI)

    Madhavacheril, Mathew S.; Sehgal, Neelima; McDonald, Patrick; Slosar, Anže E-mail: pvmcdonald@lbl.gov E-mail: anze@bnl.gov

    2015-01-01

    We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next we apply the approach to estimation of shear lensing, closely following the work of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong's estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors ?g/g for shears up to |g|=0.2.

  16. Building unbiased estimators from non-gaussian likelihoods with application to shear estimation

    SciTech Connect (OSTI)

    Madhavacheril, Mathew S.; Slosar, Anze; McDonald, Patrick; Sehgal, Neelima

    2015-01-01

    We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next we apply the approach to estimation of shear lensing, closely following the work of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong’s estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors ?g/g for shears up to |g| = 0.2.

  17. Building unbiased estimators from non-gaussian likelihoods with application to shear estimation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Madhavacheril, Mathew S.; McDonald, Patrick; Sehgal, Neelima; Slosar, Anze

    2015-01-15

    We develop a general framework for generating estimators of a given quantity which are unbiased to a given order in the difference between the true value of the underlying quantity and the fiducial position in theory space around which we expand the likelihood. We apply this formalism to rederive the optimal quadratic estimator and show how the replacement of the second derivative matrix with the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial model is independent of data). Next we apply the approach to estimation of shear lensing, closely following the workmore »of Bernstein and Armstrong (2014). Our first order estimator reduces to their estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear and the easy calculation of correlation functions or power spectra using standard methods. Both our first-order estimator and Bernstein and Armstrong’s estimator exhibit a bias which is quadratic in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein and Armstrong, unbiased to 0.1% in relative shear errors ?g/g for shears up to |g| = 0.2.« less

  18. Quantum enhanced estimation of a multi-dimensional field

    E-Print Network [OSTI]

    Tillmann Baumgratz; Animesh Datta

    2015-07-10

    We present a framework for the quantum enhanced estimation of multiple parameters corresponding to non-commuting unitary generators. Our formalism provides a recipe for the simultaneous estimation of all three components of a magnetic field. We propose a probe state that surpasses the precision of estimating the three components individually and discuss measurements that come close to attaining the quantum limit. Our study also reveals that too much quantum entanglement may be detrimental to attaining the Heisenberg scaling in quantum metrology.

  19. 2007 gasification technologies conference papers

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    Sessions covered: gasification industry roundtable; the gasification market in China; gasification for power generation; the gasification challenge: carbon capture and use storage; industrial and polygeneration applications; gasification advantage in refinery applications; addressing plant performance; reliability and availability; gasification's contribution to supplementing gaseous and liquid fuels supplies; biomass gasification for fuel and power markets; and advances in technology-research and development

  20. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  1. Next-Generation Solar Collectors for CSP

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  2. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  3. Second-generation-heliostat optimization studies. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to define and quantify cost reductions in the Martin Marietta Denver Aerospace Second Generation Heliostat resulting from design and cost optimization. These cost reductions were based on optimizing the heliostat performance vs. cost and engineering design, and reviewing the design specification in selected technological areas with a goal of removing nonrealistic requirements and eliminating or minimizing overdesign. Specific technological areas investigated were: (1) designing the heliostat for survival strength rather than stiffness and reducing the operational wind requirements as dictated by this design approach; (2) reducing the pointing accuracy and/or beam quality required for some fraction or all of the heliostat field; (3) modifying the operational temperature range; (4) relaxing the rate at which the heliostat must move in the slew mode; (5) using alternate beam safety strategies; (6) analyzing actual wind data for selected sites in the southwest United States vs. the heliostat design specification survival wind requirements; (7) estimating heliostat damage for winds in excess of the design specification over a 30 year period; (8) evaluating the impact of designing the heliostat for higher wind loads; and (9) investigating the applicability to heliostat design of the standard engineering practices for designing buildings.

  4. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01

    components of a steam-generating plant to re?ect changes incost reduction of new generating plants prior to the 1970splants may reach 46.4% (HHV) when the estimated worldwide installed coal-?red generating

  5. Non-pollutingAutomobiles IEEE transactions on Vehicular TechnologY, VOL 43, No 4, Nov 94

    E-Print Network [OSTI]

    Szabados, Barna

    salt heat storage A high speed flywheel with a small permanent magnet motor/generator has more. A flywheel/motor/generator system for automobiles becomes now practical, because of the technological) does cause pollution during its generation. However the centrally generated pollutants can

  6. Copyright 2008 IEEE. Reprinted from J. Rose, and I. Hiskens. Estimating Wind Turbine Parameters and Quantifying Their Effects on Dynamic Behavior.

    E-Print Network [OSTI]

    turbine dynamics, parameter estimation, trajectory sensitivity. I. INTRODUCTION WIND generation has of wind turbine generators (WTGs) on power system dynamic performance is becoming increasingly importantCopyright © 2008 IEEE. Reprinted from J. Rose, and I. Hiskens. Estimating Wind Turbine Parameters

  7. Recent Emulsion Technologies

    SciTech Connect (OSTI)

    Ariga, A.

    2011-10-06

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  8. A Two-Stage Kalman Filter Approach for Robust and Real-Time Power System State Estimation

    SciTech Connect (OSTI)

    Zhang, Jinghe; Welch, Greg; Bishop, Gary; Huang, Zhenyu

    2014-04-01

    As electricity demand continues to grow and renewable energy increases its penetration in the power grid, realtime state estimation becomes essential for system monitoring and control. Recent development in phasor technology makes it possible with high-speed time-synchronized data provided by Phasor Measurement Units (PMU). In this paper we present a two-stage Kalman filter approach to estimate the static state of voltage magnitudes and phase angles, as well as the dynamic state of generator rotor angles and speeds. Kalman filters achieve optimal performance only when the system noise characteristics have known statistical properties (zero-mean, Gaussian, and spectrally white). However in practice the process and measurement noise models are usually difficult to obtain. Thus we have developed the Adaptive Kalman Filter with Inflatable Noise Variances (AKF with InNoVa), an algorithm that can efficiently identify and reduce the impact of incorrect system modeling and/or erroneous measurements. In stage one, we estimate the static state from raw PMU measurements using the AKF with InNoVa; then in stage two, the estimated static state is fed into an extended Kalman filter to estimate the dynamic state. Simulations demonstrate its robustness to sudden changes of system dynamics and erroneous measurements.

  9. Comparative health and safety assessment of alternative future electrical-generation systems

    SciTech Connect (OSTI)

    Habegger, L.J.; Gasper, J.R.; Brown, C.D.

    1980-01-01

    The report is an analysis of health and safety risks of seven alternative electrical generation systems, all of which have potential for commercial availability in the post-2000 timeframe. The systems are compared on the basis of expected public and occupational deaths and lost workdays per year associated with 1000 MWe average unit generation. Risks and their uncertainties are estimated for all phases of the energy production cycle, including fuel and raw material extraction and processing, direct and indirect component manufacture, on-site construction, and system operation and maintenance. Also discussed is the potential significance of related major health and safety issues that remain largely unquantifiable. The technologies include: the SPS; a low-Btu coal gasification system with an open-cycle gas turbine combined with a steam topping cycle (CG/CC); a light water fission reactor system without fuel reprocessing (LWR); a liquid metal fast breeder fission reactor system (LMFBR); a central station terrestrial photovoltaic system (CTPV); and a first generation fusion system with magnetic confinement. For comparison with the baseload technologies, risk from a decentralized roof-top photovoltaic system with 6 kWe peak capacity and battery storage (DTPV) was also evaluated.

  10. System Verification Through Reliability, Availability, Maintainability (RAM) Analysis & Technology Readiness Levels (TRLs)

    SciTech Connect (OSTI)

    Emmanuel Ohene Opare, Jr.; Charles V. Park

    2011-06-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heat for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.

  11. Estimating vehicle height using homographic projections

    DOE Patents [OSTI]

    Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter

    2013-07-16

    Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.

  12. Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2007-09-15

    The U.S. Department of Energy (DOE) estimates that in the coming decades the United States' natural gas (NG) demand for electricity generation will increase. Estimates also suggest that NG supply will increasingly come from imported liquefied natural gas (LNG). Additional supplies of NG could come domestically from the production of synthetic natural gas (SNG) via coal gasification-methanation. The objective of this study is to compare greenhouse gas (GHG), SOx, and NOx life-cycle emissions of electricity generated with NG/LNG/SNG and coal. This life-cycle comparison of air emissions from different fuels can help us better understand the advantages and disadvantages of using coal versus globally sourced NG for electricity generation. Our estimates suggest that with the current fleet of power plants, a mix of domestic NG, LNG, and SNG would have lower GHG emissions than coal. If advanced technologies with carbon capture and sequestration (CCS) are used, however, coal and a mix of domestic NG, LNG, and SNG would have very similar life-cycle GHG emissions. For SOx and NOx we find there are significant emissions in the upstream stages of the NG/LNG life-cycles, which contribute to a larger range in SOx and NOx emissions for NG/LNG than for coal and SNG. 38 refs., 3 figs., 2 tabs.

  13. A SURVEY OF STATE-LEVEL COST ESTIMATES OF RENEWABLES PORTFOLIO STANDARDS

    E-Print Network [OSTI]

    Barbose, Galen

    2014-01-01

    Energy Efficiency and Renewable Energy (Solar TechnologiesRPS costs, per unit of renewable energy generation, rangedFlores-Espino National Renewable Energy Laboratory 15013

  14. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  15. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  16. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect (OSTI)

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  17. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  18. Engineering &Technology

    E-Print Network [OSTI]

    Southampton, University of

    Software Technologies Deloitte Dialog Semiconductor ECM Selection EDT-Year in Industry EMC Corporation to join our organisation and be based in our Ferndown, Dorset, location within our product electronics have application, design and manufacturing facilities in Canada, America, Europe and China. We

  19. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  20. Pyroprocessing Technologies

    E-Print Network [OSTI]

    Kemner, Ken

    of pyrochemical processes for the recycle of oxide, carbide and other advanced fuels and laid the foundationPyroprocessing Technologies RECYCLING USED NUCLEAR FUEL FOR A SUSTAINABLE ENERGY FUTURE #12;32 Storing Used Nuclear Fuel is a Real Waste Nuclear power is the most environmentally friendly way

  1. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect (OSTI)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  2. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  3. Vacuum Technology

    SciTech Connect (OSTI)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  4. Cost Estimating Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-09

    This Guide provides uniform guidance and best practices that describe the methods and procedures that could be used in all programs and projects at DOE for preparing cost estimates. No cancellations.

  5. Estimation of food consumption

    SciTech Connect (OSTI)

    Callaway, J.M. Jr.

    1992-04-01

    The research reported in this document was conducted as a part of the Hanford Environmental Dose Reconstruction (HEDR) Project. The objective of the HEDR Project is to estimate the radiation doses that people could have received from operations at the Hanford Site. Information required to estimate these doses includes estimates of the amounts of potentially contaminated foods that individuals in the region consumed during the study period. In that general framework, the objective of the Food Consumption Task was to develop a capability to provide information about the parameters of the distribution(s) of daily food consumption for representative groups in the population for selected years during the study period. This report describes the methods and data used to estimate food consumption and presents the results developed for Phase I of the HEDR Project.

  6. Science &Technology Facilities Council

    E-Print Network [OSTI]

    Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac

  7. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  8. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 1980–1997 Energy price bias (standard error)

  9. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    change, while the pulp and paper industry displays negativeKorean industries – cement, fertilizer, pulp and paper, andindustries – aluminum, cement, fertilizer, glass, pulp and paper,

  10. Estimating energy-augmenting technological change in developing country industries

    E-Print Network [OSTI]

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-01-01

    while the pulp and paper industry displays negative rates ofenergy-intensive industries – paper and allied products,Korean industries – cement, fertilizer, pulp and paper, and

  11. Estimating the Benefits and Costs of Distributed Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing FacilityJanuarydeclares

  12. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartment ofServices3ErnestCorporate Board |Salt

  13. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartment ofServices3ErnestCorporate Board

  14. An Approach to Technology Risk Management Ricardo Valerdi

    E-Print Network [OSTI]

    de Weck, Olivier L.

    in parametric cost estimation models. Introduction The rapid change of Information Technology has madeAn Approach to Technology Risk Management Ricardo Valerdi USC Center for Software Engineering 941 W Symposium MIT, Cambridge, MA, March 29-31, 2004 ABSTRACT NASA's Technology Readiness Levels (TRL) approach

  15. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  16. Estimation of economic parameters of U.S. hydropower resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Hunt, Richard T.; Reeves, Kelly S.; Carroll, Greg R.

    2003-06-01

    Tools for estimating the cost of developing and operating and maintaining hydropower resources in the form of regression curves were developed based on historical plant data. Development costs that were addressed included: licensing, construction, and five types of environmental mitigation. It was found that the data for each type of cost correlated well with plant capacity. A tool for estimating the annual and monthly electric generation of hydropower resources was also developed. Additional tools were developed to estimate the cost of upgrading a turbine or a generator. The development and operation and maintenance cost estimating tools, and the generation estimating tool were applied to 2,155 U.S. hydropower sites representing a total potential capacity of 43,036 MW. The sites included totally undeveloped sites, dams without a hydroelectric plant, and hydroelectric plants that could be expanded to achieve greater capacity. Site characteristics and estimated costs and generation for each site were assembled in a database in Excel format that is also included within the EERE Library under the title, “Estimation of Economic Parameters of U.S. Hydropower Resources - INL Hydropower Resource Economics Database.”

  17. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  18. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  19. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  20. Estimate of the Potential Amount of Low-Level Waste from the Fukushima Prefecture - 12370

    SciTech Connect (OSTI)

    Hill, Carolyn; Olson, Eric A.J.; Elmer, John [S.M. Stoller Corporation, Broomfield, Colorado 80021 (United States)

    2012-07-01

    The amount of waste generated by the cleanup of the Fukushima Prefecture (Fukushima-ken) following the releases from the Fukushima Daiichi nuclear power plant accident (March 2011) is dependent on many factors, including: - Contamination amounts; - Cleanup levels determined for the radioisotopes contaminating the area; - Future land use expectations and human exposure scenarios; - Groundwater contamination considerations; - Costs and availability of storage areas, and eventually disposal areas for the waste; and - Decontamination and volume reduction techniques and technologies used. For the purposes of estimating these waste volumes, Fukushima-ken is segregated into zones of similar contamination level and expected future use. Techniques for selecting the appropriate cleanup methods for each area are shown in a decision tree format. This approach is broadly applied to the 20 km evacuation zone and the total amounts and types of waste are estimated; waste resulting from cleanup efforts outside of the evacuation zone is not considered. Some of the limits of future use and potential zones where residents must be excluded within the prefecture are also described. The size and design of the proposed intermediate storage facility is also discussed and the current situation, cleanup, waste handling, and waste storage issues in Japan are described. The method for estimating waste amounts outlined above illustrates the large amount of waste that could potentially be generated by remediation of the 20 km evacuation zone (619 km{sup 2} total) if the currently proposed cleanup goals are uniformly applied. The Japanese environment ministry estimated in early October that the 1 mSv/year exposure goal would make the government responsible for decontaminating about 8,000 km{sup 2} within Fukushima-ken and roughly 4,900 km{sup 2} in areas outside the prefecture. The described waste volume estimation method also does not give any consideration to areas with localized hot spots. Land use and area dose rate estimates for the 20 km evacuation zone indicate there are large areas where doses to the public can be mitigated through methods other than removal and disposal of soil and other wastes. Several additional options for waste reduction can also be considered, including: - Recycling/reusing or disposing of as municipal waste material that can be unconditionally cleared; - Establishing additional precautionary (e.g., liners) and monitoring requirements for municipal landfills to dispose of some conditionally-cleared material; and - Using slightly-contaminated material in construction of reclamations, banks and roads. Waste estimates for cleanup will continue to evolve as decontamination plans are drafted and finalized. (authors)

  1. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  2. Thermoacoustic co-generation unit. Final report

    SciTech Connect (OSTI)

    Swift, G.W.; Corey, J.

    1997-12-09

    The combination of a thermoacoustic engine with a STAR alternator promises to comprise a simple, reliable combustion-powered electric generator. In this CRADA, the authors married these two technologies for the first time, to learn what technical issues arise in the combination. The results are encouraging, but the work is not yet complete.

  3. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    anaerobic treatment technologies, based on methane production, economical. The costs of wastewater treatment, and a calculation is made on the potential for electricity recovery. Assuming a town of 100,000 people generate 16.4 Ł 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  4. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  5. THE ROLE OF TECHNOLOGY IN INTERFUEL SUBSTITUTION: A COMBINED CROSS-SECTION AND

    E-Print Network [OSTI]

    Steininger, Karl W.

    activities. We use cross section data in each activity for appliance technologies (heating/cooling, steam by appliance technology in a panel estimation with fixed effects for activities and a uniform effect technologies by inserting parameters from the panel estimation. In this `disaggregated' model the impact

  6. Next Generation Inverter

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Portal Technology

    E-Print Network [OSTI]

    Warner, Beth Forrest

    2002-03-27

    Portal Technology Beth Forrest Warner Director, KU Digital Library Initiatives bwarner@ku.edu PUAD 839 March 27, 2002 Defining the issue… Today’s government agencies at all levels should note that the citizens they serve are “little concerned... their citizens’ perspectives. Instead of launching online services on a department-by-department basis, they are aggregating services across departments, accessible through a common portal.” (Janet Caldow, “The Quest for Electronic Government: A Defining...

  8. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  9. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    1999-02-01

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  10. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  11. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  12. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  13. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  14. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  15. Resources and capabilities in high-tech enterpreneurship : a study of two generations of Chinese startups

    E-Print Network [OSTI]

    Xu, Lin, 1964 May 1-

    2002-01-01

    By examining the origin and growth dynamics of two generations of high-tech startups in China's information technology sectors, this study presents empirical research on how Chinese technology startup companies, despite ...

  16. Design and Control of a Floating Wave-Energy Converter Utilizing a Permanent Magnet Linear Generator

    E-Print Network [OSTI]

    Tom, Nathan Michael

    2013-01-01

    electrical generator technology for wave energy converters,”wave energy point absorber,” Proceedings of the IFAC Conference on Control Methodologies and Technologyseen, clean technologies, such as ocean wave energy, present

  17. Power Generation From Waste Heat Using Organic Rankine Cycle Systems 

    E-Print Network [OSTI]

    Prasad, A.

    1980-01-01

    Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

  18. User-generated censorship : manipulating the maps of social media

    E-Print Network [OSTI]

    Peterson, Christopher E., S.M. Massachusetts Institute of Technology

    2013-01-01

    The last decade has seen the rise of new technologies for making information more broadly available and accessible. Variously called 'user-generated content,' 'social media,''social news,' 'crowd-curation,' and so on, these ...

  19. MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES *

    E-Print Network [OSTI]

    Bowker, Geoffrey C.

    MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES * Alaina G and industrial dollars are invested in establishing academic-industry alliances and building infrastructures and technology in distributed, multidisciplinary scientific teams in the National Computational Science Alliance

  20. Generation of museum web pages: The intelligent labelling explorer. 

    E-Print Network [OSTI]

    Hitzeman, Janet; Mellish, Chris; Oberlander, Jon

    1997-01-01

    The first phase of the Intelligent Labelling Explorer project has built the ILEX-1.1 system, which uses artificial intelligence technology to generate descriptions of objects displayed in a museum gallery. Each description ...

  1. Generation of Web Service Descriptions and Web Service

    E-Print Network [OSTI]

    Generation of Web Service Descriptions and Web Service Module Implementation for Concept University of Science and Technology Software Systems Institute (STS) #12;Abstract Nowadays web services in order to initiate the communication. A web services endpoint communication interface utilizes

  2. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  3. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  4. Estimated increases in the cost of electricity under three acid-rain control bills

    SciTech Connect (OSTI)

    Hillsman, E.L. (Oak Ridge National Lab., TN (United States)); Alvic, D.R. (Tennessee Univ., Knoxville, TN (United States))

    1991-01-01

    Several bills were introduced in the past two Congresses to reduce emissions of sulfur dioxide and nitrogen oxides from electric power plants. The effects of these bills on electricity costs depend on features of the bills, on the mix of generating capacity owned by different electric utilities, on the technologies available for complying with the legislation, and on the time horizon used to calculate the costs. A system of computer software has been developed to make utility-specific estimates of the effects of different legislation on electricity costs. This paper presents sample results from a larger analysis of six pieces of legislation. These results suggest that the emissions trading systems proposed in some legislation, and adopted in the Clean Air Act Amendments of 1991, may have less effect than expected on the cost of complying with the legislation. 5 refs., 2 figs., 2 tabs.

  5. Thermodynamic estimation: Ionic materials

    SciTech Connect (OSTI)

    Glasser, Leslie, E-mail: l.glasser@curtin.edu.au

    2013-10-15

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy, lattice energy, enthalpy, Gibbs energy values are available.

  6. Estimating the economic cost of sea-level rise Masahiro Sugiyama

    E-Print Network [OSTI]

    Estimating the economic cost of sea-level rise by Masahiro Sugiyama Bachelor of Science in Earth Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology February 2007 ©2007 Massachusetts Institute of Technology. All rights

  7. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  8. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    generator portfolio, as well as computing resources that would make it prohibitive for estimating the capacity contribution from wind power

  9. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged

  10. Information Technology and Libraries

    E-Print Network [OSTI]

    Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley

    2011-01-01

    Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |

  11. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  12. Coal-fired generation staging a comeback. 2nd ed.

    SciTech Connect (OSTI)

    NONE

    2007-07-01

    The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

  13. Mainstreaming New Renewable Energy Technologies

    E-Print Network [OSTI]

    Neuhoff, Karsten; Sellers, Rick

    , education, and communication, can significantly enhance energy access (Johansson et al., 2004b). 1 7 7.1 Short-term weather forecasts The electricity system requires a permanent match be tween demand and supply. It must keep sufficient generation... , (Wene, Clas O tto) Experience Curves for Energy Technology Policy, Paris, 2000. 5 In some off-grid applications, P.V. is already cost competitive with conventional technologies. The off-grid market is growing at 16% per year (1992-2002) but is too...

  14. Sandia Energy - A Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |Education STEMA Green Technology Home

  15. New wave generation

    E-Print Network [OSTI]

    Mercier, Matthieu J.

    We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This ...

  16. features Utility Generator

    E-Print Network [OSTI]

    Chang, Shih-Fu

    #12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive

  17. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  19. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and Fuels VehiclesTechnologies

  20. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...