National Library of Energy BETA

Sample records for technology fuel-switching capability

  1. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  2. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  3. WAP Memorandum 011: Clarification on Fuel Switching

    Broader source: Energy.gov [DOE]

    As the WAP continually develops skilled and technically proficient program personnel at the state and local levels, the DOE has decided to revise its current policy related to fuel switching in eligible homes served by the Program. WAP Grantees are now provided two options regarding the decision-making process for fuel switching to occur, detailed in WAP Memo 011.

  4. Science, Technology, and Engineering Capability Reviews

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE » Capability Reviews Science, Technology, and Engineering Capability Reviews Measuring and continuously improving the quality of the Laboratory's science, technology, and engineering Contact Us Point of Contact Cathy Christoffersen Email Point of Contact Teresa Garcia Email Time-lapse images of supercritical CO2 displacing water in a shale fracture Time-lapse images of supercritical CO2 displacing water in a shale fracture Assessing the quality of the Lab's ST&E Los Alamos uses

  5. EM Leads with Advanced Simulation Capability Technology

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Since 2010, EM’s Office of Soil and Groundwater Remediation has initiated technology development programs such as the Advanced Simulation Capability for Environmental Management (ASCEM) and the Applied Field Research Initiatives to enhance characterization and remediation technologies and create cost savings.

  6. Industrial process fuel switching analysis. Topical report, September 1990-March 1991

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    The study was undertaken to develop accurate, up-to-date profiles of process heat energy consumption and assess the fuel switching capability from natural gas to No. 6 oil for the industrial sector. Energy profiles of drying, calcining, clay firing, petroleum refining, copper smelting, chemical fluid heating, steel heating, iron melting, iron smelting, and ferrous heat treating processes were developed. The natural gas capacity switchable to No. 6 residual oil was also determined. It was determined that 18% (262 trillion Btu) of the natural gas capacity was convertible to No. 6 oil in these processes. Fuel switching capability of No. 6 oil is on the decline in many of the industrial processes. This is due to: replacement of aging equipment capable to burning both natural gas and No. 6 oil, availability and cost effectiveness of natural gas utilization, and emission standards set by amendments to the Clean Air Act and other environmental regulations.

  7. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Profile Pages View profiles for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for. Profile Pages Search Capabilities| Employees Capabilities Sort Capabilities Accelerators and Electrodynamics Search High power linear accelerator science and technology Search Accelerator operations Search Accelerator controls Search Neutron science Search Proton

  8. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendations—leading to application of the best available technologies and development of new technologies—that will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  9. MHK Technologies/Deep water capable hydrokinetic turbine | Open...

    Open Energy Info (EERE)

    water capable hydrokinetic turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Hills Inc...

  10. CTH reference manual : composite capability and technologies.

    SciTech Connect (OSTI)

    Key, Christopher T.; Schumacher, Shane C.

    2009-02-01

    The composite material research and development performed over the last year has greatly enhanced the capabilities of CTH for non-isotropic materials. The enhancements provide the users and developers with greatly enhanced capabilities to address non-isotropic materials and their constitutive model development. The enhancements to CTH are intended to address various composite material applications such as armor systems, rocket motor cases, etc. A new method for inserting non-isotropic materials was developed using Diatom capabilities. This new insertion method makes it possible to add a layering capability to a shock physics hydrocode. This allows users to explicitly model each lamina of a composite without the overhead of modeling each lamina as a separate material to represent a laminate composite. This capability is designed for computational speed and modeling efficiency when studying composite material applications. In addition, the layering capability also allows a user to model interlaminar mechanisms. Finally, non-isotropic coupling methods have been investigated. The coupling methods are specific to shock physics where the Equation of State (EOS) is used with a nonisotropic constitutive model. This capability elastically corrects the EOS pressure (typically isotropic) for deviatoric pressure coupling for non-isotropic materials.

  11. Los Alamos to study future computing technology capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos to study future computing technology capabilities Los Alamos to study future computing technology capabilities Los Alamos will lead a collaboration within the Department of Energy and with select university partners to explore what the current capabilities and limits are to quantum annealing technology. November 20, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  12. Jefferson Lab technology, capabilities take center stage in construction of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portion of DOE's Spallation Neutron Source accelerator | Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator Medium beta cryomodule JLab staff prepare to load the medium β cryomodule onto a flatbed semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January 27, 2003 Jefferson Lab is once again

  13. Technologies and Research Capabilities | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Research ... Technologies and Research Capabilities We're furthering research and development of additive manufacturing in national security applications. Benefits of additive manufacturing include part consolidation, reduced waste, fabrication of challenging features and increased functionality through design; applications at this point are focused on tooling. Y-12 and Pantex are hotbeds for the advancement of science and technology. The scope of our research and development

  14. Linear Fresnel Technology added to System Advisor Model's Capabilities -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Linear Fresnel Technology added to System Advisor Model's Capabilities Now utilities can get detailed information on siting, performance and finances February 8, 2012 A promising Concentrating Solar Power (CSP) technology that uses a stationary receiver tube and an array of mirrors mounted near the ground can now be accessed within the System Advisor Model (SAM), which predicts annual energy production, hourly performance and return on investment. The U.S. Department of

  15. Capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE, used Swept Frequency Acoustic Interferometry technology to develop Sa re, the ... GE, used Swept Frequency Acoustic Interferometry technology to develop Sa re, the ...

  16. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine Hydrokinetic (MHK) Advanced Materials program has a new publication on the antifouling efficacy of

  17. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include: Airframe modeling Blast event shaping Detonation physics and chemistry Disruptive technologies Electromagnetic Energy (EME) coupling High-performance,...

  18. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Safety, Security & Resilience of Energy Infrastructure/Battery Testing/Capabilities Capabilities admin 2015-10-20T02:29:12+00:00 Facility Description Click to Open Factsheet 2012-3432P [181kb pdf] The Energy Storage Test Pad (ESTP) in conjunction with the Energy Storage Analysis Laboratory (ESAL) provides trusted, independent, third party testing and validation from the cell level up to 1+ MW AC electrical energy storage (EES) systems. In addition to long-term testing,

  19. Existing technology transfer report: analytical capabilities. Appendix B. Volume 3

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. This volume contains Appendix B with the following attachments: solvent separation procedure A; Wilsonville solvent separation procedure, distillation separation procedure; solvent separation modified Wilsonville Procedure W; statistical comparison of 3 solvent separation procedures; methods development for column chromatography, and application of gas chromatography to characterization of a hydrogen donor solvent; and high performance liquid chromatographic procedure.

  20. Development of High Temperature Capacitor Technology and Manufacturing Capability

    SciTech Connect (OSTI)

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: − Deeper oil exploration in higher temperature and pressure environments − Enabling power electronic and control equipment to operate in higher temperature environments − Enabling reduced cooling requirements of electronics − Increasing reliability and life of capacitors operating below rated temperature − Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: − FPE Film is difficult to handle and wind, resulting in poor yields − Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) − Encapsulation technologies must be improved to enable higher temperature operation − Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  1. Existing technology transfer report: analytical capabilities. Volume 1

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    The overall objective of the on-going analytical efforts was to develop in-house expertise and analytical capability for the analysis of coal and coal-derived products in support of SRC-I process technology. The approach taken and work accomplished involved: identification of test methods and associated equipment; review and implementation of analytical facility plan; evaluation of existing instrumentation; evaluation and purchase of new instruments; training of laboratory personnel; validation or development of analytical methods; development of standard product work-up methods; and development of analytical protocol for detailed characterization of SRC-I solid and liquid products. Expertise in analytical chemistry was developed by organizing historical knowledge and assimilating new knowledge as it became available from inside and outside research facilities and the chemical literature. The data were then used to define analytical methods, instrumentation, space, staff needed to create a functional coal analysis laboratory. This report summarizes the direction and progress of the analytical development efforts during the period 1974 to 1980. 2 references, 5 figures.

  2. Characterization and process technology capabilities for Hanford tank waste disposal

    SciTech Connect (OSTI)

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory`s (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory`s extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory`s radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations.

  3. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  4. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect (OSTI)

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  5. Fuel Cell Technologies Office Hydrogen Storage R&D Core Characterization Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office (FCTO) Hydrogen Storage R&D Core Characterization Capabilities An NREL-led National Laboratory Collaboration between NREL, LBNL, PNNL, and NIST NREL CORE CHARACTERIZATION CAPABILITIES The National Renewable Energy Laboratory (NREL) will offer specialized characterization for hydrogen storage materials through its DOE-FCTO core-capability validation laboratory. We offer PCT analysis of hydrogen storage materials to determine their gravimetric and volumetric

  6. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

    2005-04-01

    To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were

  7. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

    2002-08-31

    The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These

  8. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-07-01

    A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website

  9. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  10. TIGER -- A technology to improve the delivery capability of nuclear bombs and the survivability of the delivery aircraft

    SciTech Connect (OSTI)

    1980-12-31

    The TIGER (Terminal guided and Extended-Range) Program was initiated in 1972 to study improved delivery capabilities for stockpiled tactical nuclear bombs. The Southeast Asia conflict fostered the development of air-delivered standoff conventional weapons utilizing terminal guidance systems. SNL initiated the TIGER program to determine if current nuclear bombs could be provided with a similarly accurate standoff capabilities. These conventional weapon delivery techniques, while allowing highly accurate attack, generally require entering the target area at high altitude to establish line of sight to the target. In parallel with the TIGER program, system studies analyzed this concept and showed marked improvement in aircraft and weapon survivability with moderate standoff (10--20 km) if low level deliveries (60 m) could be accomplished. As a result of this work, the TIGER program was redirected in early 1974 to demonstrate a standoff bomb with good accuracy (90 m CEP) when delivered from low flying aircraft. This program redirection resulted in the selection of an inertial guidance system to replace the earlier terminal guidance systems. This program was called the Extended-Range Bomb (ERB). In May 1974, a joint Air Force/DOE study identified the desirability of having a single tactical weapon which could be employed against either fixed, preselected targets, or mobile battlefield targets. Studies conducted on the ERB system showed that the inertially guided weapon could fly not only the standoff mission but also a return-to-target mission against the mobile battlefield targets whose locations are not known accurately enough to use a standoff delivery. The ERB program evolved from these initial investigations into an exploratory program to develop the hardware and demonstrate the technology required to fly standoff and return-to-target trajectories. The application of this technology in the form of field retrofit kits to the B61 bomb is called TIGER II.

  11. Postdoc capability awareness AOT

    SciTech Connect (OSTI)

    Erickson, John L.

    2015-12-18

    This is a summary of the LANL accelerator operations and technology division prepared for the postdoc programmatic capability awareness workshop in engineering and applied sciences.

  12. Capabilities | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilities content top Capabilities Synopsis of NISAC Modeling Capabilities NISAC designed advanced modeling and simulation capabilities to analyze critical infrastructure vulnerabilities, interdependencies, and complexities. These analyses are used to aid our nation's decisionmakers in policy-making, assessments, mitigation planning, education, training, and real-time assistance to crisis response organizations. The domains in which we work are large, complex, dynamic, adaptive,

  13. Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Capabilities Research Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy, to supercomputing. thumbnail of Bioscience At Los Alamos, scientists and engineers are working to unlock many of the mechanisms found in nature to improve humanity's ability to battle diseases, create new forms of environmentally friendly and abundant

  14. Power Beamed Photon Sails: New Capabilities Resulting From Recent Maturation Of Key Solar Sail And High Power Laser Technologies

    SciTech Connect (OSTI)

    Montgomery, Edward E. IV

    2010-05-06

    This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current mission applications.

  15. Capabilities: Science Pillars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pillars Capabilities: Science Pillars The Lab's four Science Pillars harness our scientific capabilities for national security solutions. What are the Los Alamos National Laboratory's Science Pillars? The Laboratory has established the Science Pillars under four main themes to bring together the Laboratory's diverse array of scientific capabilities and expertise: Information, Science, and Technology Pillar Materials for the Future Pillar Nuclear and Particle Futures Pillar Science of Signatures

  16. Cybersecurity Capability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cybersecurity Capability Maturity Model (C2M2) Office of Electricity Delivery and Energy Reliability Cybersecurity Capability Maturity Model (C2M2) Frequently Asked Questions 1) What is the C2M2 model? The C2M2 is a voluntary evaluation process utilizing industry-accepted cybersecurity practices that can be used to measure the maturity of an organization's cybersecurity capabilities. The C2M2 is designed to measure both the sophistication and sustainment of a cyber security program. The model

  17. Experimental Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental capabilities Experimental Capabilities The National Ignition Facility is the premier high energy density science facility in the world, with laser energies 10 times greater than any other high-energy inertial confinement fusion (ICF) laser system. A major focus of NIF is a national effort to demonstrate ignition and thermonuclear burn in the laboratory. NIF also conducts a variety of experiments to study matter at the extremes, including studies of material properties,

  18. CAMS Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cams capabilities CAMS Capabilities HVEC 10 MV Model FN Tandem Of the three accelerators CAMS utilizes the largest is the HVEC 10 MV Model FN Tandem, which was obtained from the University of Washington and installed at LLNL in the mid-80s. During installation the accelerator's belt charging system was replaced with a NEC Pelletron, new Dowlish spiral-inclined beam tubes were installed, as were the gas-handling systems necessary for use of SF6 as the insulating tank gas. The FN accelerator is

  19. NREL: Transportation Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. NREL uses 100% of its considerable transportation research, development, and deployment (RD&D) capabilities to pursue sustainable solutions that deliver

  20. Catalysis Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Research Areas Facilities and Equipment Intellectual Property Publications Staff Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Research Areas Facilities and Equipment Intellectual Property

  1. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  2. Leveraging National Lab Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/13/2015 eere.energy.gov Fuel Cell Seminar & Energy Exposition Los Angeles, California November 11, 2014 Leveraging National Lab Capabilities Dr. Sunita Satyapal, Director Chris Ainscough, P.E., NREL Fuel Cell Technologies Office U.S. Department of Energy 2 | Fuel Cell Technologies Office Source: US DOE 2/13/2015 eere.energy.gov All-of-the-Above Energy Strategy "We've got to invest in a serious, sustained, all-of-the-above energy strategy that develops every resource available for the

  3. Metrology Measurement Capabilities

    SciTech Connect (OSTI)

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  4. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. On Building Inexpensive Network Capabilities

    SciTech Connect (OSTI)

    Shue, Craig A; Kalafut, Prof. Andrew; Allman, Mark; Taylor, Curtis R

    2011-01-01

    There are many deployed approaches for blocking unwanted traffic, either once it reaches the recipient's network, or closer to its point of origin. One of these schemes is based on the notion of traffic carrying capabilities that grant access to a network and/or end host. However, leveraging capabilities results in added complexity and additional steps in the communication process: Before communication starts a remote host must be vetted and given a capability to use in the subsequent communication. In this paper, we propose a lightweight mechanism that turns the answers provided by DNS name resolution---which Internet communication broadly depends on anyway---into capabilities. While not achieving an ideal capability system, we show the mechanism can be built from commodity technology and is therefore a pragmatic way to gain some of the key benefits of capabilities without requiring new infrastructure.

  6. Build Rocky Flats Environmental Technology site production prototype modular treatment system for stand alone core capability for residue unpack, sort, assay, repack

    SciTech Connect (OSTI)

    Hildner, R.A.; Zygmunt, S.J.

    1997-01-01

    This document describes a portable and modular suit of equipment that upfront and near-term accomplishes a sorting process that documents and removes Rocky Flats Environmental Technology Site (RFETS) residue and waste from site inventory.

  7. NREL: Water Power Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities NREL supports the development of marine and hydrokinetic technologies and hydropower R&D through the U.S. Department of Energy's Water Power Program. Our activities span a wide spectrum of disciplines, including fluid mechanics; dynamics, structures, and fatigue; power systems and electronics; resource assessment and mapping; economic analysis; and grid interconnection. Read more about NREL's water power R&D capabilities: Design Review and Analysis Device and Component

  8. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    SciTech Connect (OSTI)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNL and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.

  9. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  10. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  11. Chapter 9: Enabling Capabilities for Science and Energy | High-Performance Computing Capabilities and Allocations Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capabilities and Allocations User Facility Statistics Examples and Case Studies ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 High Performance Computing Capabilities and Resource Allocations Chapter 9: Enabling Capabilities for Science and Energy High Performance Computing Capabilities The Department of Energy (DOE) laboratories integrate high performance computing (HPC) capabilities into their energy, science, and national security missions.

  12. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect (OSTI)

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  13. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Capabilities Electronics Design and Fabrication High Performance Computing Mechanical Engineering Monte Carlo Simulations Capabilities Argonne's High Energy Physics division maintains a number of key capabilities to augment the research capacities of scientists at Argonne and throughout the high-energy

  14. Statement of Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Statement of Capabilities Statement of Capabilities World-class experts and capabilities countering all aspects of explosive threats, and aiming predominantly at enhanced detection capabilities. What is a SOC Letter? A nonbinding letter, a SOC is written by LACED to a requesting organization. The SOC describes a unique capability or service available from LACED on a non-exclusive basis. A SOC letter is not an endorsement of the requester and does not constitute a guarantee that LACED will

  15. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  16. NSTec Overview and Capabilities

    SciTech Connect (OSTI)

    Meidinger, A.

    2012-07-27

    This presentation describes the history of the Nevada National Security Site (Nevada Test Site) Contract as well as current capabilities.

  17. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities To learn about CNM instruments and capabilities, please click on the group names in the left navigation bar. Access to capabilities, tools, and facilities is provided through a peer-reviewed proposal submission process. Although individual capabilities are managed by one of the specific groups, all of them can be used across the CNM scientific portfolio and requested in a user proposal. Before submitting a proposal for access, prospective users are encouraged to contact staff

  18. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  19. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science» Chemical Science» High-Energy-Density Plasmas, Fluids»

  20. NREL: Biomass Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass...

  1. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  2. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  3. Radiation and Health Technology Laboratory Capabilities

    SciTech Connect (OSTI)

    Goles, Ronald W.; Johnson, Michelle Lynn; Piper, Roman K.; Peters, Jerry D.; Murphy, Mark K.; Mercado, Mike S.; Bihl, Donald E.; Lynch, Timothy P.

    2003-07-15

    The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrument calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.

  4. Cybersecurity Capability Maturity Model - Frequently Asked Questions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (February 2014) | Department of Energy - Frequently Asked Questions (February 2014) Cybersecurity Capability Maturity Model - Frequently Asked Questions (February 2014) The Cybersecurity Capability Maturity Model (C2M2) program is intended to aid organizations of all types evaluate and make improvements to their cybersecurity programs. The model focuses on the implementation and management of cybersecurity practices associated with the information technology (IT) and operational technology

  5. SCE Evolving Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation resources, energy efficiency, energy storage, electric vehicles, and demand response technologies. - AB 327, Section 769. Distributed energy resource valuation - ...

  6. Sandia National Laboratories: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Alt text The PSL maintains measurement and calibration expertise in these areas: AC Electrical DC Electrical Electrical Flow and Humidity Acceleration and Shock Gas Leaks Length Mass and Force Mechanical Microwave Pressure Radiation Optics Temperature Vacuum

  7. Sandia National Laboratories: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Capabilities Directed Energy Laser Applications Integrated Military Systems (IMS) Capabilities What We Do Supporting Sandia's national security mission in both traditional and emerging areas Alt text Areas of Expertise Integrated Military Systems (IMS) supports Sandia's national security mission in both traditional and emerging areas. Drawing on over six decades of weapons work and expertise, IMS continues to develop and refine many elements of strike systems, targets, and missile defense

  8. Sierra/Fuego Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of Existing Sierra/Fuego Capabilities Related to Grid-to-Rod Fretting (GTRF) Salvador Rodriguez and Daniel Z. Turner Sandia National Laboratory June 30, 2011 CASL-U-2011-0023-000-a SANDIA REPORT SAND2011-XXXX Unlimited Release Printed June 30, 2011 Assessment of existing Sierra/Fuego capabilities related to grid-to-rod-fretting (GTRF) Salvador B. Rodriguez and Daniel Z. Turner Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia

  9. Advanced Simulation Capability

    Office of Environmental Management (EM)

    ... flow in heterogeneous systems over large spatial extents ... Technology and Innovation 13(2):175-199, 1949-8241. DOI: ... XIX International Conference on Computational Methods ...

  10. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  11. Electronic Mail Analysis Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    Establishes the pilot program to test the Department of Energy (DOE) Electronic Mail Analysis Capability (EMAC), which will be used to monitor and analyze outgoing and incoming electronic mail (e-mail) from the National Nuclear Security Administration (NNSA) and DOE laboratories that are engaged in nuclear weapons design or work involving special nuclear material. No cancellation.

  12. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  14. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  15. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  16. NETL Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    netl research capabilities NETL Research Scientist As the lead field center for the DOE Office of Fossil Energy's R&D program, NETL has established a strong onsite research program conducted by federal scientists and engineers. Onsite R&D is managed by NETL's Office of Research and Development (ORD) and makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of

  17. Chemical Sciences Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling and Simulation in the Chemical Sciences Capabilities Modeling and simulation help us transform chemical data into meaningful information: * Develop remote-sensors that detect nuclear materials * Perform large- or small-scaled process modeling * Simulate new chemicals with tailored properties for diverse applications * Analyze chemical reaction rates for complex modeling needs * Examine chemical-sciences data and modeling for nuclear forensics * Analyze high explosive data and perform

  18. Oil and Gas Technical Assistance Capabilities Forum | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE's National Energy Technology Laboratory (NETL) Oil and Gas program and overall capabilities related to program management, system analysis, and applied research in oil and gas. ...

  19. Trends in Microfabrication Capabilities & Device Architectures.

    SciTech Connect (OSTI)

    Bauer, Todd; Jones, Adam; Lentine, Anthony L.; Mudrick, John; Okandan, Murat; Rodrigues, Arun F.

    2015-06-01

    The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.

  20. OPSAID improvements and capabilities report.

    SciTech Connect (OSTI)

    Halbgewachs, Ronald D.; Chavez, Adrian R.

    2011-08-01

    Process Control System (PCS) and Industrial Control System (ICS) security is critical to our national security. But there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. Sandia National Laboratories has performed the research and development of the OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy Office of Electricity Delivery and Energy Reliability (DOE/OE), to address this issue. OPSAID is an open-source architecture for PCS/ICS security that provides a design basis for vendors to build add-on security devices for legacy systems, while providing a path forward for the development of inherently-secure PCS elements in the future. Using standardized hardware, a proof-of-concept prototype system was also developed. This report describes the improvements and capabilities that have been added to OPSAID since an initial report was released. Testing and validation of this architecture has been conducted in another project, Lemnos Interoperable Security Project, sponsored by DOE/OE and managed by the National Energy Technology Laboratory (NETL).

  1. National Laboratory Facilities and Capabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Facilities and Capabilities National Laboratory Facilities and Capabilities National Laboratory Facilities and Capabilities With unique instrumentation and equipment, state-of-the-art facilities, as well as on-site experts, the national laboratories offer a myriad of facilities and capabilities to advance your business and technology development. logo-argonne.png ARGONNE NATIONAL LABORATORY Lemont, IL Advanced Photon Source User Facility-Allows better understanding of

  2. Unique Capabilities | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unique Capabilities Whether it's finding new materials, processes, applications or the need for specialized analysis of existing materials, Ames Laboratory can utilize its unique capabilities to assist both the public and private sectors. Some of our unique capabilities include: Biofuels Novel Materials for Energy Research Photonic Systems Solid-State NMR Visual Engineering Rare Earth Metals Metals Processing Magnetic Materials Materials Preparation Center

  3. LANSCE | Lujan Center | Instruments | ASTERIX | Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Surfaces and Interfaces Scientific Mission: Magnetic order with length scales ranging from nanometers to microns is critically important in technological applications. Examples include: exchange bias (the shift of the magnetic hysteresis loop about zero applied field)-a phenomenon used to establish the magnetic reference state for magnetic sensors, tunnel junctions etc., and pinned magnetic domains critical to large coercivity required of permanent magnets. Scattering of polarized

  4. Trinity / NERSC-8 Capability Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trinity / NERSC-8 Capability Improvement Trinity / NERSC-8 Capability Improvement As stated in Section 3.5 of the Technical Requirements, The performance of the ASC and NERSC capability improvement code suites will be evaluated at acceptance and used as acceptance criteria. All performance tests must continue to meet acceptance criteria throughout the lifetime of the system. These spreadsheets are here to provide examples but do not have to be returned with RFP response and will be required of

  5. Reorganization bolsters nuclear nonproliferation capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reorganization bolsters nuclear nonproliferation capability Reorganization bolsters nuclear nonproliferation capability LANL has strengthened its capability in a key aspect of nuclear nonproliferation by combining two groups within its Global Security organization. June 27, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  6. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind ...

  7. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Chapter 9 - Enabling Capabilities for Science and Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science expands our understanding of the natural world and forms the foundation for future technology. Energy systems that meet our energy security, economic, and environmental objectives require a new generation of materials that may not be naturally available. However, creating these new materials requires a level of

  10. Cybersecurity Capability Maturity Model - Facilitator Guide (February 2014)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy - Facilitator Guide (February 2014) Cybersecurity Capability Maturity Model - Facilitator Guide (February 2014) The Cybersecurity Capability Maturity Model (C2M2) program is intended to aid organizations of all types evaluate and make improvements to their cybersecurity programs. The model focuses on the implementation and management of cybersecurity practices associated with the information technology (IT) and operational technology (OT) assets and the environments in

  11. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  12. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  13. Nanophotonics Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanophotonics Capabilities Transient absorption spectroscopy Laser excitation: 250-1200 nm Probe wavelength range: 300-1450 nm Delay times <100 fs-0.1 ms Time-resolved emission...

  14. ORISE Science Education Programs: Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science Education Programs Capabilities The Oak Ridge Institute for Science and Education (ORISE) connects the best and most diverse students and faculty members to programs closely aligned with the interests of a variety of research facilities, including those managed for the U.S. Department of Energy (DOE) and more than a dozen other federal agencies. Current ORISE science education program opportunities include: Undergraduate scholarships Graduate fellowships Postgraduate

  15. Russian research capabilities: Findings of site visits

    SciTech Connect (OSTI)

    Wester, D.W.

    1994-02-01

    In June 1993, a proposal was presented to the International Environmental Institute (IEI) in Kennewick, Washington, to establish cooperation and coordination to further pursue the interests of the United States of America and the Republic of Russia in the application and promotion of environmental technology; characterization, treatment, handling, isolation, and disposal of hazardous and radioactive materials; conversion of defense sites to other purposes; and technology transfer, cooperative programs, joint technology development and contractual research. In response to this proposal, IEI and Pacific Northwest Laboratory (PNL) jointly provided funding to send Dr. Dennis W. Wester on a fact-finding mission to Novosibirsk, Moscow, and St. Petersburg, Russia. The trip covered a period of eight weeks, six of which were spent in Novosibirsk and adjoining or related cities and one of which was spent in each of Moscow and St. Petersburg. The general objectives of the trip were to establish a basis for cooperation between IEI and the Russian Academy of Sciences (RAS) for future coordination of mutual interests and objectives such as technology acquisition, development, demonstration, application, and commercialization; use of capabilities and assets developed by the U.S. Department of Energy (DOE) and the RAS; and expediting of cooperative agreements, personnel exchanges, joint ventures and other contractual relationships. The particular objectives of this trip were to evaluate the capabilities of the RAS to satisfy the technology needs associated with the cleanup of the Hanford Site and similar sites in the U.S. and to evaluate the expediency of establishing an IEI presence in Russia.

  16. Ultrascale visualization capabilities for the ParaView/VTK framework

    Energy Science and Technology Software Center (OSTI)

    2009-06-09

    The software is a set of technologies developed by the SciDAC Institute for Ultrascale Visualization in order to address the visualization needs for petascale computing and beyond. These technologies include improved I/O performance, simulation co-processing, advanced rendering capabilities, and specialized visualization techniques developed for SciDAC applications.

  17. A Roadmap for NEAMS Capability Transfer

    SciTech Connect (OSTI)

    Bernholdt, David E

    2011-11-01

    The vision of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program is to bring truly predictive modeling and simulation (M&S) capabilities to the nuclear engineering community in order to enable a new approach to the design and analysis of nuclear energy systems. From its inception, the NEAMS program has always envisioned a broad user base for its software and scientific products, including researchers within the DOE complex, nuclear industry technology developers and vendors, and operators. However activities to date have focused almost exclusively on interactions with NEAMS sponsors, who are also near-term users of NEAMS technologies. The task of the NEAMS Capability Transfer (CT) program element for FY2011 is to develop a comprehensive plan to support the program's needs for user outreach and technology transfer. In order to obtain community input to this plan, a 'NEAMS Capability Transfer Roadmapping Workshop' was held 4-5 April 2011 in Chattanooga, TN, and is summarized in this report. The 30 workshop participants represented the NEAMS program, the DOE and industrial user communities, and several outside programs. The workshop included a series of presentations providing an overview of the NEAMS program and presentations on the user outreach and technology transfer experiences of (1) The Advanced Simulation and Computing (ASC) program, (2) The Standardized Computer Analysis for Licensing Evaluation (SCALE) project, and (3) The Consortium for Advanced Simulation of Light Water Reactors (CASL), followed by discussion sessions. Based on the workshop and other discussions throughout the year, we make a number of recommendations of key areas for the NEAMS program to develop the user outreach and technology transfer activities: (1) Engage not only DOE, but also industrial users sooner and more often; (2) Engage with the Nuclear Regulatory Commission to facilitate their understanding and acceptance of NEAMS approach to predictive M&S; (3) Place

  18. Research for new UAV capabilities

    SciTech Connect (OSTI)

    Canavan, G.H.; Leadabrand, R.

    1996-07-01

    This paper discusses research for new Unmanned Aerial Vehicles (UAV) capabilities. Findings indicate that UAV performance could be greatly enhanced by modest research. Improved sensors and communications enhance near term cost effectiveness. Improved engines, platforms, and stealth improve long term effectiveness.

  19. DOE’s Deep Capabilities and Wide Possibilities Highlighted at Executive Summit on Marine and Hydrokinetic Research and Development

    Broader source: Energy.gov [DOE]

    When it comes to marine and hydrokinetic technology development, the Department of Energy (DOE) offers deep capabilities and wide possibilities.

  20. IPower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Andersen, Indiana Zip: 46013 Product: iPower Technologies provides advanced technologies and systems integration capabilities for the distributed generation market....

  1. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  2. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of accelerator technology for energy and the ... opportunities to a new generation of Illinois engineers ... 900 degrees C in gas pressure (Ar + O2 mix) up to 100 bar. ...

  3. Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposition | Department of Energy Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy Exposition Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy Exposition Demystifying the National Labs presentation by Sunita Satyapal, Fuel Cell Technologies Office, and Chris Ainscough, National Renewable Energy Laboratory, as well as Business-to-Business Product Theater presentations by multiple National Labs. Presented at the 2014 Fuel Cell Seminar and Energy

  4. NGNP Component Test Capability Design Code of Record

    SciTech Connect (OSTI)

    S.L. Austad; D.S. Ferguson; L.E. Guillen; C.W. McKnight; P.J. Petersen

    2009-09-01

    The Next Generation Nuclear Plant Project is conducting a trade study to select a preferred approach for establishing a capability whereby NGNP technology development testing—through large-scale, integrated tests—can be performed for critical HTGR structures, systems, and components (SSCs). The mission of this capability includes enabling the validation of interfaces, interactions, and performance for critical systems and components prior to installation in the NGNP prototype.

  5. OLED Lighting Products: Capabilities, Challenges, Potential | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Products: Capabilities, Challenges, Potential OLED Lighting Products: Capabilities, Challenges, Potential A report that focuses on the potential for architectural OLED lighting - describing currently available OLED products as well as promised improvements, and addressing the technology and market hurdles that have thus far prevented wider use of OLEDs. OLED Lighting Products report (1.78 MB) More Documents & Publications OLED Lighting Products Webinar Presentation Slides OLED

  6. Application of the AT Research Capabilities: Investigation of Diesel Soot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation and of the Catalysts Degradation | Department of Energy the AT Research Capabilities: Investigation of Diesel Soot Oxidation and of the Catalysts Degradation Application of the AT Research Capabilities: Investigation of Diesel Soot Oxidation and of the Catalysts Degradation 2002 DEER Conference Presentation: Cummins Inc. 2002_deer_currier.pdf (295.65 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\FEERC Emissions CRADA: NOx Control

  7. Information Sciences and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    file systems Bioinformatics Infectious disease surveillance Climate change and energy security Smart grids Learn more about our Information Science and Technology capabilities

  8. Supervisory Information Technology Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be responsible for providing Information Technology (IT) infrastructure, capabilities and technical support to the Department of Energy (DOE),...

  9. Information Science & Technology Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ISTI Information Science & Technology Institute Providing connection to program management for capability needs, as well as IS&T integration and support for mission-critical...

  10. LANL capabilities towards bioenergy and biofuels programs

    SciTech Connect (OSTI)

    Olivares, Jose A; Park, Min S; Unkefer, Clifford J; Bradbury, Andrew M; Waldo, Geoffrey S

    2009-01-01

    LANL invented technology for increasing growth and productivity of photosysnthetic organisms, including algae and higher plants. The technology has been extensively tested at the greenhouse and field scale for crop plants. Initial bioreactor testing of its efficacy on algal growth has shown promising results. It increases algal growth rates even under optimwn nutrient supply and careful pH control with CO{sub 2} continuously available. The technology uses a small organic molecule, applied to the plant surfaces or added to the algal growth medium. CO{sub 2} concentration is necessary to optimize algal production in either ponds or reactors. LANL has successfully designed, built and demonstrated an effective, efficient technology using DOE funding. Such a system would be very valuable for capitalizing on local inexpensive sources of CO{sub 2} for algal production operations. Furthermore, our protein engineering team has a concept to produce highly stable carbonic anhydyrase (CA) enzyme, which could be very useful to assure maximum utilization of the CO{sub 2} supply. Stable CA could be used either imnlobilized on solid supports or engineered into the algal strain. The current technologies for harvesting the algae and obtaining the lipids do not meet the needs for rapid, low cost separations for high volumes of material. LANL has obtained proof of concept for the high volume flowing stream concentration of algae, algal lysis and separation of the lipid, protein and water fractions, using acoustic platforms. This capability is targeted toward developing biosynthetics, chiral syntheses, high throughput protein expression and purification, organic chemistry, recognition ligands, and stable isotopes geared toward Bioenergy applications. Areas of expertise include stable isotope chemistry, biomaterials, polymers, biopolymers, organocatalysis, advanced characterization methods, and chemistry of model compounds. The ultimate realization of the ability to design and

  11. Stable Isotope Enrichment Capabilities at ORNL

    SciTech Connect (OSTI)

    Egle, Brian; Aaron, W Scott; Hart, Kevin J

    2013-01-01

    The Oak Ridge National Laboratory (ORNL) and the US Department of Energy Nuclear Physics Program have built a high-resolution Electromagnetic Isotope Separator (EMIS) as a prototype for reestablishing a US based enrichment capability for stable isotopes. ORNL has over 60 years of experience providing enriched stable isotopes and related technical services to the international accelerator target community, as well as medical, research, industrial, national security, and other communities. ORNL is investigating the combined use of electromagnetic and gas centrifuge isotope separation technologies to provide research quantities (milligram to several kilograms) of enriched stable isotopes. In preparation for implementing a larger scale production facility, a 10 mA high-resolution EMIS prototype has been built and tested. Initial testing of the device has simultaneously collected greater than 98% enriched samples of all the molybdenum isotopes from natural abundance feedstock.

  12. Jefferson Lab technology, capabilities take center stage in constructi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... On the flatbed (top to bottom): Jeff Saunders, Manny Nevarez, Jeff Campbell and Ken ... Saunders and Hannah are SNS employees from Oak Ridge. Nevarez, Campbell, Worland and ...

  13. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  14. Los Alamos to study future computing technology capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "The highest return we can expect on any investment this early in the evolution of a game-changing idea such as quantum annealing computing is to facilitate exploration by a...

  15. Designation Memo: Federal Technical Capability Panel Chairperson...

    Energy Savers [EERE]

    Federal Technical Capability Panel Chairperson Designation Memo: Federal Technical Capability Panel Chairperson May 4, 2007, the Deputy Secretary memorandum designating Karen ...

  16. Atmospheric Ionization Mass Spectrometry Capabilities at Sandia...

    Office of Scientific and Technical Information (OSTI)

    Mass Spectrometry Capabilities at Sandia National Labs. Citation Details In-Document Search Title: Atmospheric Ionization Mass Spectrometry Capabilities at Sandia National Labs. ...

  17. OLED Lighting Products: Capabilities, Challenges, Potential

    Energy Savers [EERE]

    Products: Capabilities, Challenges, Potential May 2016 Prepared for: Solid-State Lighting ... Pacific Northwest National Laboratory PNNL-SA-25479 OLED Lighting Products: Capabilities, ...

  18. NERSC Enhances PDSF, Genepool Computing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Capabilities NERSC Enhances PDSF, Genepool Computing Capabilities Linux cluster expansion speeds data access and analysis January 3, 2014 Christmas came early for...

  19. Fuel switching from wood to LPG can benefit the environment

    SciTech Connect (OSTI)

    Nautiyal, Sunil Kaechele, Harald

    2008-11-15

    The Himalaya in India is one of the world's biodiversity hotspots. Various scientific studies have reported and proven that many factors are responsible for the tremendous decline of the Himalayan forests. Extraction of wood biomass from the forests for fuel is one of the factors, as rural households rely entirely on this for their domestic energy. Efforts continue for both conservation and development of the Himalayan forests and landscape. It has been reported that people are still looking for more viable solutions that could help them to improve their lifestyle as well as facilitate ecosystem conservation and preservation of existing biodiversity. In this direction, we have documented the potential of the introduction of liquefied petroleum gas (LPG), which is one of the solutions that have been offered to the local people as a substitute for woodfuel to help meet their domestic energy demand. The results of the current study found dramatic change in per capita woodfuel consumption in the last two decades in the villages where people are using LPG. The outcome showed that woodfuel consumption had been about 475 kg per capita per year in the region, but after introduction of LPG, this was reduced to 285 kg per capita per year in 1990-1995, and was further reduced to 46 kg per capita per year in 2000-2005. Besides improving the living conditions of the local people, this transformation has had great environmental consequences. Empirical evidence shows that this new paradigm shift is having positive external effects on the surrounding forests. Consequently, we have observed a high density of tree saplings and seedlings in adjacent forests, which serves as an assessment indicator of forest health. With the help of the current study, we propose that when thinking about a top-down approach to conservation, better solutions, which are often ignored, should be offered to local people.

  20. Project Development and Finance: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Capabilities overview of NREL's Project Finance and Development Group within the Deployment and Market Transformation Directorate.

  1. Fossil Energy Oil and Natural Gas Capabilities for Tribes Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attend this webinar to hear from U.S. Department of Energy Fossil Energy Program staff about the Program’s oil and gas portfolio, technologies, and research capabilities that may be of interest to Tribes and tribal energy resource development organizations.

  2. Unmanned and Unattended Response Capability for Homeland Defense

    SciTech Connect (OSTI)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologies supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.

  3. NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING

    SciTech Connect (OSTI)

    Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

    2011-04-18

    action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It

  4. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  5. Core capabilities and technical enhancement, FY-98 annual report

    SciTech Connect (OSTI)

    Miller, D.L.

    1999-04-01

    The Core Capability and Technical Enhancement (CCTE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Department of Energy's Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CCTE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CCTE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  6. Core Capabilities and Technical Enhancement -- FY-98 Annual Report

    SciTech Connect (OSTI)

    Miller, David Lynn

    1999-04-01

    The Core Capability and Technical Enhancement (CC&TE) Program, a part of the Verification, Validation, and Engineering Assessment Program, was implemented to enhance and augment the technical capabilities of the Idaho National Engineering and Environmental Laboratory (INEEL). The purpose for strengthening the technical capabilities of the INEEL is to provide the technical base to serve effectively as the Environmental Management Laboratory for the Office of Environmental Management (EM). An analysis of EM's science and technology needs as well as the technology investments currently being made by EM across the complex was used to formulate a portfolio of research activities designed to address EM's needs without overlapping work being done elsewhere. An additional purpose is to enhance and maintain the technical capabilities and research infrastructure at the INEEL. This is a progress report for fiscal year 1998 for the five CC&TE research investment areas: (a) transport aspects of selective mass transport agents, (b) chemistry of environmental surfaces, (c) materials dynamics, (d) characterization science, and (e) computational simulation of mechanical and chemical systems. In addition to the five purely technical research areas, this report deals with the science and technology foundations element of the CC&TE from the standpoint of program management and complex-wide issues. This report also provides details of ongoing and future work in all six areas.

  7. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells ...

  8. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories Materials Characterization ...

  9. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the ...

  10. Technology Readiness Assessment Guide - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4A, Technology Readiness Assessment Guide by Ruben Sanchez Functional areas: Technical Capability The Guide assists individuals and teams involved in conducting Technology...

  11. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Programs and Capabilities Experimental and Theoretical Programs Electromagnetic Technology at Sandia National Laboratories HEDP & ICF Simulation Codes ALEGRA Spect3D--A...

  12. Sandia National Laboratories: Working with Sandia: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gain access to Sandia's research facilities, capabilities, and resources. CRF Sandia Science & Technology Park Become part of Albuquerque's science and technology community,...

  13. Oil spill response capabilities in the United States

    SciTech Connect (OSTI)

    Westermeyer, W.E. )

    1991-02-01

    The Exxon Valdez incident has been a catalyst for the US to reexamine its technology and policies for fighting oil spills. Many organizations are now at work on the problems highlighted by this sill, including federal and state agencies and the oil industry. It is hoped that the attention generated by the Exxon Valdez will result in fewer spills and a greatly improved capability to fight the ones that will still occur. Cleaning up a discharge of millions of gallons of oil at sea under even moderate environmental conditions is an extraordinary problem. Current national capabilities to respond effectively to such an accident are marginal at best. Response technologies must and will improve, but in addition and perhaps more importantly, many improvements can be made in the way the country has organized itself to fight major spills. Nonetheless, prevention is still the best medicine.

  14. Advanced Simulation Capability for Environmental Management (ASCEM) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National

  15. ORISE: Capabilities in Scientific Peer Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Link Best Practices in Peer Review Assure Quality, Value, Objectivity (PDF, 330KB) Journal of the National Grants Management Association Oak Ridge Institute for Science Education Capabilities in Scientific Peer Review ORISE Provides Extensive Capabilities in Managing Competitive Scientific Peer Reviews The Oak Ridge Institute for Science and Education (ORISE) manages scientific peer reviews for the U.S. Department of Energy (DOE) and other government agencies. Our capabilities span the

  16. National Criticality Experiments Research Center (NCERC) capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCERC capabilities National Criticality Experiments Research Center (NCERC) capabilities WHEN: Feb 20, 2015 6:00 PM - 8:00 PM WHERE: Courtyard by Marriott Santa Fe, NM CONTACT: Evelyn Mullen 505-665-7576 CATEGORY: Science INTERNAL: Calendar Login Event Description This talk will provide an overview of the capabilities and machines of NCERC followed by a description of the process of restarting Godiva in a new location as presented at the 2014 ANS Winter Meeting. Los Alamos National Laboratory

  17. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  18. Evolution of a Unique Systems Engineering Capability

    SciTech Connect (OSTI)

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  19. Electricity Subsector Cybersecurity Capability Maturity Model...

    Office of Environmental Management (EM)

    and prioritize their actions and investments to improve cybersecurity, combines ... 2013 - Wednesday, June 5, 2013 Oil and Natural Gas Subsector Cybersecurity Capability ...

  20. Federal Technical Capability Panel Conference Call Minutes -...

    Energy Savers [EERE]

    Federal Technical Capability Panel Conference Call Minutes January 20, 2016 Karen Boardman, Chair, not in attendance. Participating in DOE HQ Conference Call. Dave Chaney, Deputy ...

  1. Stiff DAE integrator with sensitivity analysis capabilities

    Energy Science and Technology Software Center (OSTI)

    2007-11-26

    IDAS is a general purpose (serial and parallel) solver for differential equation (ODE) systems with senstivity analysis capabilities. It provides both forward and adjoint sensitivity analysis options.

  2. "Multiscale Capabilities for Exploring Transport Phenomena in...

    Office of Scientific and Technical Information (OSTI)

    in Batteries": Ab Initio Calculations on Defective LiFePO4 Citation Details In-Document Search Title: "Multiscale Capabilities for Exploring Transport Phenomena in Batteries": Ab ...

  3. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Materials Laboratory (HTML) User Program Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories ...

  4. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success Stories 2012 DOE ...

  5. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML User Program Success ...

  6. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTML: SurfaceSub-surface dislocation density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: Surface...

  7. ORISE: Helping Strengthen Emergency Response Capabilities for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ridge Institute for Science and Education (ORISE) helps strengthen government agencies' emergency response capabilities through a variety of exercises, from tabletop training to...

  8. NREL: Process Development and Integration Laboratory - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most of these research and development (R&D) capabilities are associated with specific cluster tools for modular deposition, processing, and characterization techniques. The...

  9. Advanced simulation capability for environmental management ...

    Office of Scientific and Technical Information (OSTI)

    environmental management (ASCEM): An overview of initial results Citation Details In-Document Search Title: Advanced simulation capability for environmental management (ASCEM): An ...

  10. NREL: Energy Systems Integration Facility - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research capabilities include: Systems integration Prototype and component development Manufacturing and material diagnostics High-performance computing and analytics. Photo of...

  11. Nanobio Interfaces Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanobio Interfaces Capabilities Synthesis Synthesis of metal oxide, semiconducting, metallic, and magnetic nanoparticles Self-assembly of monodisperse nanoparticles into two- and...

  12. Electronic & Magnetic Materials & Devices Capabilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic & Magnetic Materials & Devices Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450...

  13. The Cielo Petascale Capability Supercomputer: Providing Large...

    Office of Scientific and Technical Information (OSTI)

    Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel 1 ; Doerfler, Douglas W. 1 + Show ...

  14. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. PDF icon lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and...

  15. Electricity Subsector Cybersecurity Capability Maturity Model...

    Broader source: Energy.gov (indexed) [DOE]

    The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1, which allows electric utilities and grid operators to assess their cybersecurity...

  16. Integrated Data Analysis to expand measurement capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis to expand measurement capability Whitepaper submitted to DOE Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences Primary topic: F (Data management, ...

  17. Cybersecurity Capability Maturity Model - Frequently Asked Questions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Cybersecurity Capability Maturity Model (C2M2) program is intended to aid organizations of all types evaluate and make improvements to their cybersecurity programs. The model ...

  18. Cybersecurity Capability Maturity Model - Facilitator Guide ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Cybersecurity Capability Maturity Model (C2M2) program is intended to aid organizations of all types evaluate and make improvements to their cybersecurity programs. The model ...

  19. ADVANCED SIMULATION CAPABILITY FOR ENVIRONMENTAL MANAGEMENT

    Office of Scientific and Technical Information (OSTI)

    Key words: Environmental management; Simulation; Model; ... (GS-3, GS-4). 5. Develop predictive capabilities to ... to queue systems that control access Usability ...

  20. ASCEM Software Capabilities and Performance Assessment Deployments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASCEM Software Capabilities and Performance Assessment Deployments Greg Flach ASCEM Site Applications Team Performance & Risk Assessment Community of Practice Technical Exchange ...

  1. advanced radiographic capability | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    advanced radiographic capability ARC will make tiny "movies" of thermonuclear and stockpile experiments The National Ignition Facility's (NIF) performed the first programmatic experiments with Advanced Radiographic Capability (ARC) on December 1-3, 2015. ARC, a petawatt-class laser with peak power that will exceed a quadrillion watts, is designed to produce brighter, more penetrating, higher-energy

  2. Hydrogen Storage R&D Core Characterization Capabilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy R&D Core Characterization Capabilities Hydrogen Storage R&D Core Characterization Capabilities This fact sheet summarizes the hydrogen storage R&D core characterization capabilities of the National Renewable Energy Laboratory (NREL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and the National Institute for Standards and Technology (NIST) Center for Neutron Research. These labs are part of an NREL-led national laboratory

  3. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  4. Chapter 9: Enabling Capabilities for Science and Energy | A Comparison of Research Funding Modalities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Modalities High-Performance Computing Capabilities and Allocations User Facility Statistics Examples and Case Studies ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 A Comparison of Research Center Funding Modalities Chapter 9: Enabling Capabilities for Science and Energy A Comparison of Multi-disciplinary, Multi-scale Research Center Funding Modalities Three Department of Energy (DOE) research center modalities-the Energy Frontier

  5. Information Technology | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology The Information Technology Division uses cutting-edge technology to provide high-quality services and capabilities that enable the lab to pursue its research mission in support of the nation's scientific agenda. Leading the division is the chief information officer. The CIO is responsible for providing information from the labs information technology systems to Jefferson Lab management, the overall IT vision, the information architecture for computing and IT, and oversight

  6. Materials Capability Review Los Alamos National Laboratory April 29-May 2, 2012

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2012-04-20

    Los Alamos National Laboratory (LANL) uses Capability Reviews to assess the quality and institutional integration of science, technology and engineering (STE) and to advise Laboratory Management on the current and future health of LANL STE. The capabilities are deliberately chosen to be crosscutting over the Laboratory and therefore will include experimental, theoretical and simulation disciplines from multiple line organizations. Capability Reviews are designed to provide a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. The principal product of the Capability Review is the report that includes the review committee's assessments, recommendations, and recommendations for STE.

  7. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV....

  8. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes...

  9. PCI Capability Development and Challenge Problem Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BISON Fuel Performance Code: Capability Overview and V&V Status and Plans Rich Williamson, ... Assurance - V&V Status and Plans for LWR fuel - PCMI and RIA Benchmarks - Uncertainty ...

  10. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain

  11. Sandia National Laboratories: Research: Bioscience Enabling Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabling Capabilities Leveraging biology and engineering for new solutions Sandia's ability to form and optimize multidisciplinary teams is a key enabler behind many of our high-impact solutions to the nation's most pressing security challenges. In keeping with this tradition, Sandia bioscientists work closely with experts in other science and engineering fields to enlarge capabilities for biological exploration. Drawing on their combined knowledge and ideas, teams work to translate their

  12. IBM Probes Material Capabilities at the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBM Probes Material Capabilities at the ALS IBM Probes Material Capabilities at the ALS Print Wednesday, 12 February 2014 11:05 Vanadium dioxide, one of the few known materials that acts like an insulator at low temperatures but like a metal at warmer temperatures, is a somewhat futuristic material that could yield faster and much more energy-efficient electronic devices. Researchers from IBM's forward-thinking Spintronic Science and Applications Center (SpinAps) recently used the ALS to gain

  13. Audit Report - Office of Secure Transportation Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Secure Transportation Capabilities OAS-M-12-05 June 2012 Department of Energy Washington, DC 20585 June 29, 2012 UN MEMORANDUM FOR THE ASSISTANT DEPUTY ADMINISTRATOR, OFFICE OF SECURE TRANSPORTATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Secure Transportation Capabilities" BACKGROUND The National Nuclear Security Administration's Office of Secure Transportation (OST) is

  14. Facility Interface Capability Assessment (FICA) project report

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

  15. NERSC Enhances PDSF, Genepool Computing Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhances PDSF, Genepool Computing Capabilities NERSC Enhances PDSF, Genepool Computing Capabilities Linux cluster expansion speeds data access and analysis January 3, 2014 Christmas came early for users of the Parallel Distributed Systems Facility (PDSF) and Genepool systems at Department of Energy's National Energy Research Scientific Computer Center (NERSC). Throughout November members of NERSC's Computational Systems Group were busy expanding the Linux computing resources that support PDSF's

  16. Theory and Modeling Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory and Modeling Capabilities Theory and multiscale computer simulations provide the interpretive and predictive framework to understand fundamental processes and to aid in the design of functional nanoscale systems. Our primary facility is a high-performance computing cluster accommodating parallel computer-intensive applications. Capabilities Carbon High-Performance Computing Cluster (3000 cores, 30 GPUs, ~30 TeraFLOPS) Development tools (GNU and Intel compilers and math libraries) Density

  17. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  18. Innovative Microwave Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search Innovative Microwave Technology Hybrid microwave technology capable of performing functions that traditional microwave systems could not achieve. Savannah River National Laboratory New Hybrid Microwave Technology New Hybrid Microwave Technology Success Story Details Partner Location Agreement Type Publication Date Hadron Technologies, Inc. Offices in Tennessee and Colorado License October 22, 2013 Summary Hadron Technologies, Inc. has signed

  19. Chapter 9 - Enabling Capabilities for Science and Energy | Department...

    Energy Savers [EERE]

    9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Chapter 9 - Enabling Capabilities for Science and Energy Basic science ...

  20. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect (OSTI)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  1. Enhancing Staging Capabilities at the Device Assembly Facility

    SciTech Connect (OSTI)

    Kanning, R. A.; Long, R. G.; Garcia, B. O.; Williams, V. D.

    2013-06-08

    The radioactive material limits allowed by the Documented Safety Analysis (DSA) at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) can support larger quantities than the floor space will accommodate. In order to maximize the full staging bunker capability, National Security Technologies, LLC, (NSTec) is developing a plan to take advantage of these high inventory limits and evaluate staging options such as shelves, racks, and mezzanines. This plan will investigate cost and evaluate U.S. Department of Energy (DOE) complex-wide alternatives used at other sites (Highly Enriched Uranium Manufacturing Facility, Pantex, Los Alamos National Laboratory, Sandia National Laboratories, etc.) that addressed similar situations.

  2. Materials Capability Review Los Alamos National Laboratory May 4-7, 2009

    SciTech Connect (OSTI)

    Taylor, Antoniette J

    2009-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g ., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors. LANL has defined fourteen STE capabilities. Table 1

  3. Facility Interface Capability Assessment (FICA) summary report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. ); Pope, R.B. )

    1992-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from the commercial facilities. In support of the development of the CRWMS, OCRWM sponsored the Facility Interface Capability Assessment (FICA) project. The objective of this project was to assess the capability of each commercial facility to handle various spent nuclear fuel shipping casks. The purpose of this report is to summarize the results of the facility assessments completed within the FICA project. The project was conducted in two phases. During Phase I, the data items required to complete the facility assessments were identified and the data base for the project was created. During Phase II, visits were made to 122 facilities on 76 sites to collect data and information, the data base was updated, and assessments of the cask-handling capabilities at each facility were performed.

  4. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  5. Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration

    SciTech Connect (OSTI)

    Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

    2012-09-28

    In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for

  6. PCI Capability Development and Challenge Problem Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-000 PCI Capability Development and Challenge Problem Progress Joe Rashid 1 , Brian D. Wirth 2 , Rich Williamson 3 1 ANATECH Corp 2 University of Tennessee 3 Idaho National Laboratory 2 CASL-U-2016-1086-000 Outline * State of the art of PCI & Fuel Performance Codes (FPCs) * FPCs compatibility with Utilities needs - what are the gaps? Can BISON close these gaps? * PCI Capability Development: BISON progress to-date * BISON as a Phase-2 product - will it fulfill its promise? 3

  7. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  8. Chapter 9: Enabling Capabilities for Science and Energy | Examples and Case Studies Supplemental Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Examples and Case Studies Chapter 9: Enabling Capabilities for Science and Energy Introduction Basic science expands our understanding of the natural world and provides the foundational knowledge upon which the energy technologies of the future are based. In some instances, a scientific discovery can obviate technical hurdles to broader implementation of existing technologies; in others, it can be the catalyst for a completely new suite of technologies. The scientific discoveries described in

  9. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This ...

  10. Combined Heat and Power Systems (CHP): Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    D&MT Capabilities fact sheet that describes the NREL capabilities related to combined heat and power (CHP).

  11. Predictive Capability Maturity Model for computational modeling and simulation.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  12. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  13. Plutonium Oxide Process Capability Work Plan

    SciTech Connect (OSTI)

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  14. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  15. Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Energy Storage Industrial & Manufacturing Processes Licensable Software Life Sciences Materials Transportation Fact Sheets and Forms Licensable Technologies Argonne's researchers have developed a wide and diverse range of technologies that have worldwide impact in a variety of fields. Argonne grants licenses for lab-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage

  16. The Los Alamos universe: Using multimedia to promote laboratory capabilities

    SciTech Connect (OSTI)

    Kindel, J.

    2000-03-01

    This project consists of a multimedia presentation that explains the technological capabilities of Los Alamos National Laboratory. It takes the form of a human-computer interface built around the metaphor of the universe. The project is intended promote Laboratory capabilities to a wide audience. Multimedia is simply a means of communicating information through a diverse set of tools--be they text, sound, animation, video, etc. Likewise, Los Alamos National Laboratory is a collection of diverse technologies, projects, and people. Given the ample material available at the Laboratory, there are tangible benefits to be gained by communicating across media. This paper consists of three parts. The first section provides some basic information about the Laboratory, its mission, and its needs. The second section introduces this multimedia presentation and the metaphor it is based on along with some basic concepts of color and user interaction used in the building of this project. The final section covers construction of the project, pitfalls, and future improvements.

  17. FEMP Offers New Training Series on Renewable Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the grid. By completing the series, participants will learn to: Understand geographicclimate considerations, renewable energy technology capabilities and constraints, and...

  18. Microgrid Sizing Capability v 1.0

    SciTech Connect (OSTI)

    2015-11-20

    The MSC is an optimization model, written in Python, that is used to make an initial determination of the types and quantities of electric power generation and energy storage technologies that should be purchased when developing a microgrid. In addition to determining which technologies to purchase, the model determines the optimal policies for operating the microgrid. The model selects the purchases and operating polices in a manner that minimizes annual energy costs (operating costs plus annualized capital costs), while ensuring that that the purchased technologies are paid back within a reasonable timeframe.

  19. Microgrid Sizing Capability v 1.0

    Energy Science and Technology Software Center (OSTI)

    2015-11-20

    The MSC is an optimization model, written in Python, that is used to make an initial determination of the types and quantities of electric power generation and energy storage technologies that should be purchased when developing a microgrid. In addition to determining which technologies to purchase, the model determines the optimal policies for operating the microgrid. The model selects the purchases and operating polices in a manner that minimizes annual energy costs (operating costs plusmore » annualized capital costs), while ensuring that that the purchased technologies are paid back within a reasonable timeframe.« less

  20. Materials capability review Los Alamos National Laboratory, May 3-6, 2010

    SciTech Connect (OSTI)

    Taylor, Antoinette

    2010-01-01

    The 2010 'Capability Review' process at LANL significantly differs from the Division reviews of prior years. The Capabilities being reviewed (some 4-8 per year) are deliberately chosen to be crosscutting over the Laboratory, and therefore will include not only several experimental, theoretical and simulation disciplines, but also contributions from multiple line organizations. This approach is consistent with the new Laboratory organizational structure, focusing on agile and integrated capabilities applied to present national security missions, and also nurtured to be available for rapid application to future missions. The overall intent is that the Committee assess the quality of the science, engineering, and technology identified in the agenda, and advise the LANS Board of Governors and Laboratory management. Specifically, the Committees will: (1) Assess the quality of science, technology and engineering within the Capability in the areas defined in the agenda. Identify issues to develop or enhance the core competencies within this capability. (2) Evaluate the integration of this capability across the Laboratory organizations that are listed in the agenda in terms of joint programs, projects, proposals, and/or publications. Describe the integration of this capability in the wider scientific community using the recognition as a leader within the community, ability to set research agendas, and attraction and retention of staff. (3) Assess the quality and relevance of this capability's science, technology and engineering contributions to current and emerging Laboratory programs, including Nuclear Weapons, Threat Reduction/Homeland Security, and Energy Security. (4) Advise the Laboratory Director/Principal Associate Director for Science, Technology and Engineering on the health of the Capability including the current and future (5 year) science, technology and engineering staff needs, mix of research and development activities, program opportunities, environment for

  1. Leak detection capability in CANDU reactors

    SciTech Connect (OSTI)

    Azer, N.; Barber, D.H.; Boucher, P.J.

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  2. Sandia National Laboratories: Other Facilities and Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Facilities and Capabilities High Voltage Breakdown Testing We can perform high voltage standoff testing with DC and pulsed voltages. DC testing can be conducted up to 200 kV. Pulsed voltage from 140 - 400 kV can be attained, with a typical lightning waveform - unipolar, 1.2 microsecond risetime and 50 microsecond pulse width. Testing is conducted in humidity-controlled chambers. Breakdown voltage and current can be measured. Small TEM Cell We have a small transverse electromagnetic (TEM)

  3. Nanofabrication and Devices Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanofabrication and Devices Capabilities The CNM's ability to fabricate complex nanostructures and devices is based on the advanced tool set housed within the Nanofabrication & Devices Group's clean room. The bay-and-chase configured clean room spans over 11,500 sq. ft. and contains a remarkable depth and breadth of nanofabrication equipment. The clean room staff have over 100 combined years of experience in fabrication, processing, and MEMS design, development, and manufacturing. See below

  4. Recombinant organisms capable of fermenting cellobiose

    DOE Patents [OSTI]

    Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.

    2000-01-01

    This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

  5. Sandia National Laboratories: Programs & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs & Capabilities EM Program Areas Broadband EM response (EMR), electromagnetic pulse (EMP), electrostatic discharge (ESD), and Lightning System response to hostile (X-ray) environments, such as system-generated EM pulse (SGEMP) Lightning environment assessment of facilities and processes Pulsed Power model and analysis High voltage breakdown and arcing Terawatt beams and power flow analysis Antenna evaluation Development of validated, high physical-fidelity EM modeling and simulation

  6. Integrated Data Analysis to expand measurement capability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Analysis to expand measurement capability Whitepaper submitted to DOE Workshop on Integrated Simulations for Magnetic Fusion Energy Sciences Primary topic: F (Data management, analysis, and assimilation) Secondary topic: C (Whole device modeling, especially validation) Oral presentation requested if time available D. J. Den Hartog, M. E. Galante, L. M. Reusch, M. D. Nornberg, and the MST Team University of Wisconsin-Madison, djdenhar@wisc.edu, April 2015 Challenge: Data produced by large

  7. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel Cell Capabilities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (NREL) Hydrogen and Fuel Cell Capabilities Overview 2014 Fuel Cell Seminar and Energy Exposition National Lab Showcase Keith Wipke, NREL Fuel Cell and Hydrogen Technologies Program Manager November 11, 2014 2 NREL Overview o Founded in 1977 o Location: Golden, Colorado o ~1,750 full-time staff o Full spectrum of RD&D, from basic science to deployment o Unique research and testing capabilities across multiple scales o Systems approach o Strong history of partnering with industry

  8. The Role of Surface Chemistry on the Cycling and Rate Capability of Lithium

    Broader source: Energy.gov (indexed) [DOE]

    Positive Electrode Materials | Department of Energy 9 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es_21_shaohorn.pdf (2.81 MB) More Documents & Publications The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode Materials The Role of Surface Chemistry and Bulk Properties on the Cycling and Rate Capability of Lithium Positive Electrode

  9. MHK Technologies/NAREC | Open Energy Information

    Open Energy Info (EERE)

    Resource Click here Wave Technology Description The in house engineering and prototype testing capabilities of Narec are assisting wave and tidal stream marine developers...

  10. Assessment of U.S. Manufacturing Capability for Next-Generation Wind Turbine Drivetrains

    SciTech Connect (OSTI)

    Cotrell, J.; Stelhy, T.

    2013-09-01

    Robust U.S. wind turbine manufacturing capabilities and supply chains are important for the United States to reduce the cost of electricity generated from wind turbines. These capabilities and supply chains are also critical to the invention and commercialization of new wind turbine technologies while providing high-quality jobs. The development of advanced drivetrain technologies for windturbine applications is advancing the state of the art for drivetrain design by producing higher capacity and operating reliability than conventional drivetrains. Advanced drivetrain technologies such as medium-speed and direct-drive generators, silicon-carbide (SiC) IGBT-based power electronics, and high torque density speed increasers require different manufacturing and supply chaincapabilities that present both risks and opportunities for U.S. wind turbine manufacturers and the wind industry as a whole. The primary objective of this project is to assess how advanced drivetrain technologies and trends will impact U.S. wind turbine manufacturing and its supply chains. The U.S. Department of Energy and other industry participants will use the information from this study toidentify domestic manufacturing gaps, barriers, and opportunities for developing U.S. wind turbine manufacturing capabilities and supply chains for next-generation drivetrain technologies. This report also includes recommendations for prioritizing technology areas for possible investments by public, private, or nonprofit entities that will reduce the cost of wind-generated electricity. Suchinvestments foster opportunities to invent and commercialize new wind turbine technologies, and provide high-quality jobs in the United States.

  11. Electron Microscopy Center Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Capabilities ACAT: Argonne Chromatic Aberration-corrected TEM This FEI Titan 80-300 ST has a CEOS Cc/Cs corrector on the imaging side of the column to correct both spherical and chromatic aberrations. The Cc/Cs corrector also provides greatly-improved resolution and signal for energy filtered imaging and EELS. FEI Tecnai F20ST TEM/STEM This premier analytical transmission electron microscope (AEM) has specialized accessories including an energy-dispersive x-ray

  12. Synthetic aperture radar capabilities in development

    SciTech Connect (OSTI)

    Miller, M.

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  13. Disaster Resiliency and Recovery: Capabilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The National Renewable Energy Laboratory (NREL) is the nation's leader in energy efficient and renewable energy technologies, practices, and strategies. For the last 15 years, NREL has provided expertise, tools, and innovations to private industry; federal, state, and local governments; non-profit organizations; and communities during the planning, recovery, and rebuilding stages after disaster strikes.

  14. Low background screening capability in the UK

    SciTech Connect (OSTI)

    Ghag, Chamkaur

    2015-08-17

    Low background rare event searches in underground laboratories seeking observation of direct dark matter interactions or neutrino-less double beta decay have the potential to profoundly advance our understanding of the physical universe. Successful results from these experiments depend critically on construction from extremely radiologically clean materials and accurate knowledge of subsequent low levels of expected background. The experiments must conduct comprehensive screening campaigns to reduce radioactivity from detector components, and these measurements also inform detailed characterisation and quantification of background sources and their impact, necessary to assign statistical significance to any potential discovery. To provide requisite sensitivity for material screening and characterisation in the UK to support our rare event search activities, we have re-developed our infrastructure to add ultra-low background capability across a range of complementary techniques that collectively allow complete radioactivity measurements. Ultra-low background HPGe and BEGe detectors have been installed at the Boulby Underground Laboratory, itself undergoing substantial facility re-furbishment, to provide high sensitivity gamma spectroscopy in particular for measuring the uranium and thorium decay series products. Dedicated low-activity mass spectrometry instrumentation has been developed at UCL for part per trillion level contaminant identification to complement underground screening with direct U and Th measurements, and meet throughput demands. Finally, radon emanation screening at UCL measures radon background inaccessible to gamma or mass spectrometry techniques. With this new capability the UK is delivering half of the radioactivity screening for the LZ dark matter search experiment.

  15. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  16. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April ...

  17. Deployment and Overview of RAVEN capabilities for (Technical...

    Office of Scientific and Technical Information (OSTI)

    Deployment and Overview of RAVEN capabilities for Citation Details In-Document Search Title: Deployment and Overview of RAVEN capabilities for Since the Beginning of 2012 Idaho ...

  18. Verification of J-integral capability in Sierra Mechanics. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Verification of J-integral capability in Sierra Mechanics. Citation Details In-Document Search Title: Verification of J-integral capability in Sierra Mechanics. You are...

  19. Nuclear reaction and decay data evaluation capabilities at LANL...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nuclear reaction and decay data evaluation capabilities at LANL Citation Details In-Document Search Title: Nuclear reaction and decay data evaluation capabilities at ...

  20. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In ...

  1. Nuclear reaction and decay data evaluation capabilities at LANL...

    Office of Scientific and Technical Information (OSTI)

    Nuclear reaction and decay data evaluation capabilities at LANL Citation Details In-Document Search Title: Nuclear reaction and decay data evaluation capabilities at LANL You ...

  2. Capabilities A.M. Jokisaari and K. Thornton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Hyrax Capabilities A.M. Jokisaari and K. Thornton University of Michigan ... CASL-MPO Deliverable: Demonstration of Hyrax Capabilities A. M. Jokisaari, ...

  3. Survey of Biomass Resource Assessments and Assessment Capabilities...

    Open Energy Info (EERE)

    Biomass Resource Assessments and Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment Capabilities in...

  4. ORISE: Capabilities in National Security and Emergency Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities ORISE Emergency Management Capabilities In preparation for a natural or man-made disaster, the Oak Ridge Institute for Science and Education (ORISE) provides national...

  5. FTCP Quarterly Report on Federal Technical Capability, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3, 2011 FTCP Quarterly Report on Federal Technical Capability, February 23, 2011 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on ...

  6. FTCP Quarterly Report on Federal Technical Capability, June 8...

    Office of Environmental Management (EM)

    8, 2010 FTCP Quarterly Report on Federal Technical Capability, June 8, 2010 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the ...

  7. FTCP Quarterly Report on Federal Technical Capability, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22, 2010 FTCP Quarterly Report on Federal Technical Capability, March 22, 2010 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the ...

  8. FTCP Quarterly Report on Federal Technical Capability, August...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 FTCP Quarterly Report on Federal Technical Capability, August 16, 2010 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status ...

  9. FTCP Quarterly Report on Federal Technical Capability, November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10, 2011 FTCP Quarterly Report on Federal Technical Capability, November 10, 2011 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on ...

  10. FTCP Quarterly Report on Federal Technical Capability, August...

    Broader source: Energy.gov (indexed) [DOE]

    24-2011 (1.12 MB) More Documents & Publications FTCP Quarterly Report on Federal Technical Capability, August 16, 2010 FTCP Quarterly Report on Federal Technical Capability, ...

  11. FTCP Quarterly Report on Federal Technical Capability, November...

    Broader source: Energy.gov (indexed) [DOE]

    9-2010 (205.7 KB) More Documents & Publications FTCP Quarterly Report on Federal Technical Capability, August 16, 2010 FTCP Quarterly Report on Federal Technical Capability, June ...

  12. LANL Space Environment Capability (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: LANL Space Environment Capability Citation Details In-Document Search Title: LANL Space Environment Capability Authors: Larsen, Brian Arthur 1 + Show Author ...

  13. DOE Efforts in Preparing and Improving First Response Capabilities...

    Office of Environmental Management (EM)

    Efforts in Preparing and Improving First Response Capabilities and Performance through Drills and Exercises DOE Efforts in Preparing and Improving First Response Capabilities and...

  14. Bubble Radiation Detection: Current and Future Capability (Technical...

    Office of Scientific and Technical Information (OSTI)

    Bubble Radiation Detection: Current and Future Capability Citation Details In-Document Search Title: Bubble Radiation Detection: Current and Future Capability Despite a number of ...

  15. Local Energy Alliance Program Adds Green Appraisal Capabilities...

    Energy Savers [EERE]

    Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy ...

  16. Cell-Free System for Combinatorial Discovery of Enzymes Capable of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transforming Biomass for Biofuels - Energy Innovation Portal Cell-Free System for Combinatorial Discovery of Enzymes Capable of Transforming Biomass for Biofuels Inventors: Brian Fox, Nathaniel Elsen Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource. However, the process of converting biomass

  17. Advanced composites enhance coiled tubing capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.; Williams, J.G.

    1994-04-01

    From early coiled tubing (CT) use to recent operations, most concerns have been about tube damage from past service and remaining safe working life. Composite CT (CCT) is designed and constructed to exhibit unique anisotropic characteristics relative to steel or alternative isotropic materials that expand burst, collapse, tensile and compressive load performance capabilities. In 1988, Conoco Inc. began a development effort focused on using high-performance composite materials to meet numerous challenges associated with current and future oil and gas exploration and development. At that time, Conoco initiated a project to explore composite materials use for high-pressure, long-length, non-corroding tubulars with primary application as onshore water injection lines. In 1989, Conoco awarded a contract to AMAT a/s in Sandefjord, Norway to develop spoolable composite pipe for small diameter subsea lines. Concurrent with ongoing spoolable composite subsea lines, Conoco also began to explore high-performance CCT development in 1989.

  18. Turbine vane with high temperature capable skins

    DOE Patents [OSTI]

    Morrison, Jay A.

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  19. Working with SRNL - Technology Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16/2016 SEARCH SRNL GO SRNL Home Technology Partnerships Working with SRNL Technology Partnerships Work for Others and Cooperative Research and Development Agreements SRNL is pleased to provide a variety of business arrangements whereby our technologies or capabilities can be utilized to benefit the general public. We welcome opportunities to bring new technologies to the marketplace by closely working with industry, universities, or state and local government agencies. With its wide spectrum of

  20. RELAP-7 Beta Release: Summary of Capabilities

    SciTech Connect (OSTI)

    Martineau, Richard C.; Zhang, Hongbin; Zhao, Haihua

    2014-12-01

    RELAP-7 is a nuclear systems safety analysis code being developed at the Idaho National Laboratory (INL). Building upon the decades of software development at the INL, we began the development of RELAP-7 in 2011 to support the Risk Informed Safety Margins Characterization (RISMC) Pathway. As part of this development, the first lines of RELAP-7 code were committed to the software revision control repository on November 7th, 2011. The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical methods, and physical models in order to provide capabilities needed for the RISMC methodology and to support nuclear power safety analysis. RELAP-7 is built using the INL’s modern scientific software development framework, MOOSE (Multi-physics Object Oriented Simulation Environment). MOOSE provides improved numerical calculations (including higher-order integration in both space and time, yielding converged second-order accuracy). The RELAP-7 code structure is based on multiple physical component models such as pipes, junctions, pumps, etc. Each component can have options for different fluid models such as single- and two-phase flow. This component-based and physics-based software architecture allows RELAP-7 to adopt different physical models for different applications. A relatively new two-phase hydrodynamic model, termed the ''7-Equation model'' for two phasic pressures, velocities, energies, and volumetric fraction, is incorporated into RELAP-7 for liquid-gas (water-steam) flows. This new model allows second-order integration because it is well-posed, which will reduce the numerical error associated with traditional systems analysis codes. In this paper, we provide a RELAP-7 capability list describing analysis features, range of applicability, and reactor components that will be available for the December 15th, 2014 beta release of the software.

  1. Nuclear Data Needs and Capabilities for Applications

    SciTech Connect (OSTI)

    Brown, D.

    2015-05-27

    In July 2014, DOE NP carried out a review of the US Nuclear Data Program. This led to several recommendations, including that the USNDP should “devise effective and transparent mechanisms to solicit input and feedback from all stakeholders on nuclear data needs and priorities.” The review also recommended that USNDP pursue experimental activities of relevance to nuclear data; the revised 2014 Mission Statement accordingly states that the USNDP uses “targeted experimental studies” to address gaps in nuclear data. In support of these recommendations, DOE NP requested that USNDP personnel organize a Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA). This Workshop was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goal of the NDNCA Workshop was to compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for the required measurements. The first two days of the workshop consisted of 25 plenary talks by speakers from 16 different institutions, on nuclear energy (NE), national security (NS), isotope production (IP), and industrial applications (IA). There were also shorter “capabilities” talks that described the experimental facilities and instrumentation available for the measurement of nuclear data. This was followed by a third day of topic-specific “breakout” sessions and a final closeout session. The agenda and copies of these talks are available online at http://bang.berkeley.edu/events/NDNCA/agenda. The importance of nuclear data to both basic and applied nuclear science was reflected in the fact that while the impetus for the workshop arose from the 2014 USNDP review, joint sponsorship for the workshop was provided by the Nuclear Science and Security Consortium, a UC-Berkeley based organization funded by the National Nuclear Security Administration (NNSA).

  2. Facility Interface Capability Assessment (FICA) user manual

    SciTech Connect (OSTI)

    Pope, R.B.; MacDonald, R.R.; Massaglia, J.L.; Williamson, D.A.; Viebrock, J.M.; Mote, N.

    1995-09-01

    The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is describe the FICA computer software and to provide the FICA user with a guide on how to use the FICA system. The FICA computer software consists of two executable programs: the FICA Reactor Report program and the FICA Summary Report program (written in the Ca-Clipper version 5.2 development system). The complete FICA software system is contained on either a 3.5 in. (double density) or a 5.25 in. (high density) diskette and consists of the two FICA programs and all the database files (generated using dBASE III). The FICA programs are provided as ``stand alone`` systems and neither the Ca-Clipper compiler nor dBASE III is required to run the FICA programs. The steps for installing the FICA software system and executing the FICA programs are described in this report. Instructions are given on how to install the FICA software system onto the hard drive of the PC and how to execute the FICA programs from the FICA subdirectory on the hard drive. Both FICA programs are menu driven with the up-arrow and down-arrow keys used to move the cursor to the desired selection.

  3. Final Technical Report: Development of Post‐Installation Monitoring Capabilities

    SciTech Connect (OSTI)

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large‐scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under‐developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6‐meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger‐scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with

  4. 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Enable geothermal wellbore monitoring through the development of SiC based electronics and ceramic packaging capable of sustained operation at temperatures up to 300˚C and 10 km depth. Demonstrate the technology with a temperature sensor system.

  5. Building Technologies Office (BTO) Sensors and Controls Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors and Controls Technologies Emerging Technologies R&D Program Marina Sofos, Ph.D. marina.sofos@ee.doe.gov 2 BTO Emerging Technologies R&D Goals As a result of ET sponsored research, cost effective technologies will be introduced into the marketplace by 2020 that will be capable of reducing a building's energy use by 25% relative to 2010 cost effective technologies, and 35% by 2030. Technology-specific targets relative to the 2030 primary energy consumption projected by the 2010

  6. Overview of AREVA Logistics Business Unit Capabilities and Expertise |

    Office of Environmental Management (EM)

    Department of Energy AREVA Logistics Business Unit Capabilities and Expertise Overview of AREVA Logistics Business Unit Capabilities and Expertise Overview of AREVA Logistics Business Unit capabilities and Expertise Overview of Transnuclear Inc Transportation Capabilities in the United States Questions Overview of AREVA Logistics Business Unit Capabilities and Expertise (941.29 KB) More Documents & Publications TEC Working Group Topic Groups Rail Key Documents Planning Subgroup

  7. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  8. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, Roy Clifford; Jones, Cecil Roy

    1998-01-01

    A refueling machine having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images.

  9. Refueling machine with relative positioning capability

    DOE Patents [OSTI]

    Challberg, R.C.; Jones, C.R.

    1998-12-15

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  10. Continuous chain bit with downhole cycling capability

    DOE Patents [OSTI]

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  11. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect (OSTI)

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  12. Crosscutting Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Technology Development Crosscutting Technology Development The NEET Crosscutting Technology Development (CTD) activity provides R&D support to various reactor and fuel cycle technologies, both existing and under development. These include several areas that crosscut multiple nuclear technologies CTD aims to: Work with other NE R&D programs to identify critical capabilities and common technology needs. Encourage and lead coordinated research and development activities to

  13. REDUCTIONS WITHOUT REGRET: DEFINING THE NEEDED CAPABILITIES

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-10

    This is the second of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper begins with a discussion of the current nuclear force and the plans and procurement programs for the modernization of that force. Current weapon systems and warheads were conceived and built decades ago, and procurement programs have begun for the modernization or replacement of major elements of the nuclear force: the heavy bomber, the air-launched cruise missile, the ICBMs, and the ballistic-missile submarines. In addition, the Nuclear Weapons Council has approved a new framework for nuclear-warhead life extension � not fully fleshed out yet � that aims to reduce the current number of nuclear explosives from seven to five, the so-called �3+2� vision. This vision includes three interoperable warheads for both ICBMs and SLBMs (thus eliminating one backup weapon) and two warheads for aircraft delivery (one gravity bomb and one cruise-missile, eliminating a second backup gravity bomb). This paper also includes a discussion of the current and near-term nuclear-deterrence mission, both global and regional, and offers some observations on future of the strategic deterrence mission and the challenges of regional and extended nuclear deterrence.

  14. Mobile Munitions Assessment System Field Capabilities

    SciTech Connect (OSTI)

    A. M. Snyder; D. A. Verrill; K. D. Watts

    1999-05-27

    The US has developed, stored, tested, and conducted disposal operations on various forms of chemical munitions for several decades. The remnants of these activities have resulted in the presence of suspect CWM at more than 200 sites in the US, the District of Columbia, and the US Virgin Islands. An advanced Mobile Munitions Assessment System (Phase II MMAS) has been designed, fabricated, assembled, and tested by the Idaho National Engineering and Environmental Laboratory under contract to the US Army's Project Manager for Non-Stockpile Chemical Materiel for use in the assessment and characterization of ''non-stockpile'' chemical warfare materiel (CWM). The Phase II MMAS meets the immediate need to augment response equipment currently used by the US Army with a system that includes state-of-the-art assessment equipment and advanced sensors. The Phase II MMAS will be used for response to known storage and remediation sites. This system is designed to identify the munition type; evaluate the condition of the CWM; evaluate the environmental conditions in the vicinity of the CWM; determine if fuzes, bursters, or safety and arming devices are in place; identify the chemical fill; provide other data (e.g., meteorological data) necessary for assessing the risk associated with handling, transporting, and disposing of CWM; and record the data on a dedicated computer system. The Phase II MMAS is capable of over-the-road travel and air transport to any site for conducting rigorous assessments of suspect CWM. The Phase II MMAS utilizes a specially-designed commercial motor home to provide a means to transport an interactive network of non-intrusive characterization and assessment equipment. The assessment equipment includes radiography systems, a gamma densitometer system, a Portable Isotopic Neutron Spectroscopy (PINS) system, a Secondary Ion Mass Spectroscopy (SIMS) system, air monitoring equipment (i.e., M-90s and a field ion spectroscopy system), and a phase determination

  15. FY04 Engineering Technology Reports Technology Base

    SciTech Connect (OSTI)

    Sharpe, R M

    2005-01-27

    Lawrence Livermore National Laboratory's Engineering Directorate has two primary discretionary avenues for its investment in technologies: the Laboratory Directed Research and Development (LDRD) program and the ''Tech Base'' program. This volume summarizes progress on the projects funded for technology-base efforts in FY2004. The Engineering Technical Reports exemplify Engineering's more than 50-year history of researching and developing (LDRD), and reducing to practice (technology-base) the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and technical resources. This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Tech Base projects effect the natural transition to reduction-to-practice of scientific or engineering methods that are well understood and established. They represent discipline-oriented, core competency activities that are multi-programmatic in application, nature, and scope. The objectives of technology-base funding include: (1) the development and enhancement of tools and processes to provide Engineering support capability, such as code maintenance and improved fabrication methods; (2) support of Engineering science and technology infrastructure, such as the installation or integration of a new capability; (3) support for technical and administrative leadership through our technology Centers; and (4) the initial scoping and

  16. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Office of Environmental Management (EM)

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural ...

  17. Catalysis Center for Energy Innovation KEY ACCOMPLISHMENTS AND CORE CAPABILITIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KEY ACCOMPLISHMENTS AND CORE CAPABILITIES CCEI 1 TABLE OF CONTENTS Introduction and Overview of Discoveries and Breakthroughs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Core Capabilities: Multiscale Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Solution-phase Chemistry with Accelerated Molecular Dynamics Methods . . . . . . . . . . . . . . . . . .

  18. Demonstration of the Recent Additions in Modeling Capabilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of the Recent Additions in Modeling Capabilities for the WEC-Sim Wave Energy ... DEMONSTRATION OF THE RECENT ADDITIONS IN MODELING CAPABILITIES FOR THE WEC-SIM WAVE ENERGY ...

  19. Federal Technical Capability Policy for Defense Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-10

    The policy regarding the Federal Technical Capability Program, which provides for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities.

  20. CYBERSECURITY CAPABILITY MATURITY MODEL (C2M2)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CYBERSECURITY CAPABILITY MATURITY MODEL (C2M2) Version 1.1 February 2014 Cybersecurity Capability Maturity Model Version 1.1 i TABLE OF CONTENTS Acknowledgments ........................................................................................................................................ iii 1. Introduction .............................................................................................................................................. 1 1.1 Intended Audience

  1. Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (February 2014) | Department of Energy Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1, which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements from existing

  2. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2006-05-30

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  3. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.

    2007-09-25

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  4. Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (February 2014) | Department of Energy Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) Electricity Subsector Cybersecurity Capability Maturity Model v. 1.1. (February 2014) The Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1, which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements from existing

  5. AlliedSignal capability maturity model assessment & improvement processes

    SciTech Connect (OSTI)

    Kuhn, C.

    1997-11-01

    This report contains viewgraphs on AlliedSignal capability maturity model assessment and improvement processes for software.

  6. Validating DOE's Office of Science "capability" computing needs.

    SciTech Connect (OSTI)

    Mattern, Peter L.; Camp, William J.; Leland, Robert W.; Barsis, Edwin Howard

    2004-07-01

    A study was undertaken to validate the 'capability' computing needs of DOE's Office of Science. More than seventy members of the community provided information about algorithmic scaling laws, so that the impact of having access to Petascale capability computers could be assessed. We have concluded that the Office of Science community has described credible needs for Petascale capability computing.

  7. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    SciTech Connect (OSTI)

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and new predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named tebow, was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.

  8. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and newmore » predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.« less

  9. Performance upgrades to the MCNP6 burnup capability for large scale depletion calculations

    SciTech Connect (OSTI)

    Fensin, M. L.; Galloway, J. D.; James, M. R.

    2015-04-11

    The first MCNP based inline Monte Carlo depletion capability was officially released from the Radiation Safety Information and Computational Center as MCNPX 2.6.0. With the merger of MCNPX and MCNP5, MCNP6 combined the capability of both simulation tools, as well as providing new advanced technology, in a single radiation transport code. The new MCNP6 depletion capability was first showcased at the International Congress for Advancements in Nuclear Power Plants (ICAPP) meeting in 2012. At that conference the new capabilities addressed included the combined distributive and shared memory parallel architecture for the burnup capability, improved memory management, physics enhancements, and new predictability as compared to the H.B Robinson Benchmark. At Los Alamos National Laboratory, a special purpose cluster named “tebow,” was constructed such to maximize available RAM per CPU, as well as leveraging swap space with solid state hard drives, to allow larger scale depletion calculations (allowing for significantly more burnable regions than previously examined). As the MCNP6 burnup capability was scaled to larger numbers of burnable regions, a noticeable slowdown was realized.This paper details two specific computational performance strategies for improving calculation speedup: (1) retrieving cross sections during transport; and (2) tallying mechanisms specific to burnup in MCNP. To combat this slowdown new performance upgrades were developed and integrated into MCNP6 1.2.

  10. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more ...

  11. Quantifying the heat switching capability of a thermionic diode

    SciTech Connect (OSTI)

    Snyder, A.M.; Verrill, D.A.

    1995-12-01

    The Integrated Solar Upper Stage (ISUS) Advanced Technology Demonstrator (ATD) program, recently initiated by the US Air Force Phillips Laboratory (USAF PL), will demonstrate the feasibility of a combined solar power and propulsion upper stage. The solar bimodal design approach will use thermal energy storage to reduce engine mass and concentrator area. However, in order to store enough energy over an orbit period there must be minimal heat lost with a system that is designed to remove heat for energy conversion. A unique feature of thermionics is their ability to reduce heat flow by reducing or eliminating the electron cooling. However, demonstration and quantification of this capability is needed. This paper presents the results to date of the Receiver Diode Integration Test, one of two critical experiments of the ISUS ATD program being performed by the Idaho National Engineering Laboratory (INEL). Results of the demonstration testing of thermionic heat pipe modules (THPMs) to operate as heat switches in conjunction with the solar receiver cavity are presented as are the performance limits and operational constraints of a combined receiver/diode subsystem.

  12. Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ONG-C2M2) | Department of Energy Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) was established as a result of the Administration's efforts to improve electricity subsector cybersecurity capabilities, and to

  13. Technology Transfer Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

  14. Variable-Speed Wind Power Plant Operating With Reserve Power Capability: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Gevorgian, V.; Muljadi, E.; Ela, E.

    2013-10-01

    As the level of wind penetration increases, wind turbine technology must move from merely generating power from wind to taking a role in supporting the bulk power system. Wind turbines should have the capability to provide inertial response and primary frequency (governor) response. Wind turbine generators with this capability can support the frequency stability of the grid. To provide governorresponse, wind turbines should be able to generate less power than the available wind power and hold the rest in reserves, ready to be accessed as needed. In this paper, we explore several ways to control wind turbine output to enable reserve-holding capability. The focus of this paper is on doubly-fed induction generator (also known as Type 3) and full-converter (also known as Type 4) windturbines.

  15. Introductory materials for committee members: 1) instructions for the Los Alamos National Laboratory fiscal year 2010 capability reviews 2) NPAC strategic capability planning 3) Summary self-assessment for the nuclear and particle physics, astrophysics an

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    Los Alamos National Laboratory (LANL) uses external peer review to measure and continuously improve the quality of its science, technology and engineering (STE). LANL uses capability reviews to assess the STE quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. STE capabilities are define to cut across directorates providing a more holistic view of the STE quality, integration to achieve mission requirements, and mission relevance. The scope of these capabilities necessitate that there will be significant overlap in technical areas covered by capability reviews (e.g., materials research and weapons science and engineering). In addition, LANL staff may be reviewed in different capability reviews because of their varied assignments and expertise. LANL plans to perform a complete review of the Laboratory's STE capabilities (hence staff) in a three-year cycle. The principal product of an external review is a report that includes the review committee's assessments, commendations, and recommendations for STE. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). This report will be used by Laboratory Management for STE assessment and planning. The report is also provided to the Department of Energy (DOE) as part of LANL's Annual Performance Plan and to the Los Alamos National Security (LANS) LLC's Science and Technology Committee (STC) as part of its responsibilities to the LANS Board of Governors.

  16. Managing corporate capabilities:theory and industry approaches.

    SciTech Connect (OSTI)

    Slavin, Adam M.

    2007-02-01

    This study characterizes theoretical and industry approaches to organizational capabilities management and ascertains whether there is a distinct ''best practice'' in this regard. We consider both physical capabilities, such as technical disciplines and infrastructure, and non-physical capabilities such as corporate culture and organizational procedures. We examine Resource-Based Theory (RBT), which is the predominant organizational management theory focused on capabilities. RBT seeks to explain the effect of capabilities on competitiveness, and thus provide a basis for investment/divestment decisions. We then analyze industry approaches described to us in interviews with representatives from Goodyear, 3M, Intel, Ford, NASA, Lockheed Martin, and Boeing. We found diversity amongst the industry capability management approaches. Although all organizations manage capabilities and consider them to some degree in their strategies, no two approaches that we observed were identical. Furthermore, we observed that theory is not a strong driver in this regard. No organization used the term ''Resource-Based Theory'', nor did any organization mention any other guiding theory or practice from the organizational management literature when explaining their capabilities management approaches. As such, we concluded that there is no single best practice for capabilities management. Nevertheless, we believe that RBT and the diverse industry experiences described herein can provide useful insights to support development of capabilities management approaches.

  17. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  18. NNSA research and capabilities shed light on the human brain | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) and capabilities shed light on the human brain Thursday, June 23, 2016 - 3:57pm From a brain-inspired supercomputer for physics simulations to materials science from the structure of cow eyes, NNSA's laboratories are adept at linking biology with technology to benefit both fields of study. In June, which is Alzheimer's and Brain Awareness Month, Americans reflect on the nation's sixth leading cause of death-dementia. Research at NNSA's laboratories

  19. Semiconductor Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting ReSeaRch & development at Sandia national laboRatoRieS The bridge to a new way of lighting the world ssls.sandia.gov Initiates decades-long investment into compound semiconductor science and technology, eventually establishing its Center for Compound Semiconductor Science and Technology 1 9 7 7 Begins investing in gallium nitride (GaN) materials, physics, and device capabilities 1 9 9 5 Launches its Grand Challenge Laboratory Directed Research and Development Project, "A

  20. NREL Controllable Grid Interface for Testing of Renewable Energy Technologies

    SciTech Connect (OSTI)

    Gevorgian, Vahan; Wallen, Robb; McDade, Mark; Shirazi, Mari; Lundstrom, Blake

    2015-11-05

    This presentation provides a high-level overview of NREL's multi-megawatt testing facilities and capabilities for the grid integration of renewable technologies.

  1. Application of the AT Research Capabilities: Investigation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2002deercurrier.pdf More Documents & Publications Degradation Mechanisms of Urea Selective Catalytic Reduction Technology Vehicle Technologies Office Merit Review 2015: ...

  2. Progress on ARRA-funded Facility & Capability Upgrades for the...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Battery Safety Testing Vehicle Technologies Office Merit Review 2014: Battery Safety Testing Vehicle ...

  3. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Laboratory the ENERGY lab Wellbore Integrity Assurance with NETL's Safe-Cementing Research CONTENTS 04 06 08 10 12 14 A View from the Top Federal Research Capabilities Researchers Projects Contact Us Wellbore cement integrity is paramount to safe, successful oil and natural gas drilling. Cement acts as the primary barrier between the wellbore and the environment. An unstable cement can compromise wellbore control, and research indicates that poor cement integrity is a primary factor

  4. Science, Technology, and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE Science, Technology, and Engineering Delivering mission success and innovative solutions to national security problems through the agile, rapid application of our transformational scientific capabilities Bird's eye view of a hot cell where the isotopes are separated and purified The quest for an imaging radioisotope READ MORE Molecular clocks in human cells Molecular clocks control mutation rate in human cells READ MORE Glen Wurden in the stellarator's vacuum vessel during camera

  5. Clark Atlanta Universities (CAU) Energy Related Research Capabilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped Clark Atlanta University. Clark Atlanta Universities (CAU) Energy Related Research Capabilities (1.62 MB) More Documents & Publications 2008-2009 Winter Fuels Outlook Conference Ronald Reagan Building and International Trade Center HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE

  6. Review of Requirements and Capabilities for Analyzing and Responding to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Design Basis Events, August 2011 | Department of Energy Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events, August 2011 Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events, August 2011 August 2011 Review of Requirements and Capabilities for Analyzing and Responding to Beyond Design Basis Events The U.S. Department of Energy (DOE) has established a rigorous nuclear safety regulatory

  7. FTCP Quarterly Report on Federal Technical Capability, July 29, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quarterly Report on Federal Technical Capability, July 29, 2016 FTCP Quarterly Report on Federal Technical Capability, July 29, 2016 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls. Quarterly Report on Federal

  8. Lab Equipment & Capability | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Equipment & Capability Lab Equipment & Capability Here you will find a list of the equipment and capabilities currently installed in PARC labs. This list will be updated as more information becomes available. Bocian Group: Laboratory: D. F. Bocian has ~2500 sq. ft. of laboratory space including both wet labs and instrument labs. These labs contain ~10 pentium-based PCs for routine computing applications. Laser Raman Facility-A complete laser Raman facility is available for the

  9. FTCP Quarterly Report on Federal Technical Capability, May 11, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1, 2016 FTCP Quarterly Report on Federal Technical Capability, May 11, 2016 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls. Quarterly Report on Federal Technical Capability 5-11-2016 (334.32 KB) More Documents &

  10. Webinar: OLED Lighting Products-Capabilities, Challenges, Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webinar: OLED Lighting Products-Capabilities, Challenges, Potential Webinar: OLED Lighting Products-Capabilities, Challenges, Potential During this July 28, 2016 webinar, Naomi Miller and Felipe Leon of Pacific Northwest National Laboratory presented highlights from a new market study on OLED lighting entitled OLED Lighting Products: Capabilities, Challenges, Potential. Focusing on the potential for architectural OLED lighting, the report describes the current state of

  11. Minicomputer Capabilities Related to Meteorological Aspects of Emergency Response

    SciTech Connect (OSTI)

    Rarnsdell, J. V.; Athey, G. F.; Ballinger, M. Y.

    1982-02-01

    The purpose of this report is to provide the NRC staff involved in reviewing licensee emergency response plans with background information on the capabilities of minicomputer systems that are related to the collection and dissemination of meteorological infonmation. The treatment of meteorological information by organizations with existing emergency response capabilities is described, and the capabilities, reliability and availability of minicomputers and minicomputer systems are discussed.

  12. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

    Office of Scientific and Technical Information (OSTI)

    Measurements (Journal Article) | SciTech Connect Journal Article: Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements Citation Details In-Document Search Title: Comparison of LHC and ILC Capabilities for Higgs Boson Coupling Measurements I estimate the accuracies on Higgs boson coupling constants that experiments at the Large Hadron Collider and the International Linear Collider are capable of reaching over the long term. Authors: Peskin, Michael E. ; /SLAC

  13. Improving Department of Energy Capabilities for Mitigating Beyond Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basis Events | Department of Energy Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April 2013 OE-1: 2013-01 Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events The purpose of this Operating Experience (OE) document is to: provide results from U.S. Department of Energy (DOE), including the National Nuclear Security Administration,

  14. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    SciTech Connect (OSTI)

    Cynthia D. Gentillon

    2011-09-01

    Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.

  15. Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (February 2014) | Department of Energy Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) is a derivative of the Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1. The ES-C2M2 was developed in support of a White House initiative led by the Department of

  16. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    for In Situ Heating of Oil Shale Citation Details In-Document Search Title: Development of Numerical Simulation Capabilities for In Situ Heating of Oil Shale Authors: Hoda, ...

  17. Enhancements to Generic Disposal System Modeling Capabilities Rev2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Contributions are described for the development of an enhanced generic disposal system modeling and analysis capability that takes advantage of high-performance computing (HPC) environments to...

  18. Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar...

    Energy Savers [EERE]

    Presented at the 2014 Fuel Cell Seminar and Energy Exposition, November 11, 2014, in Los Angeles, California. Leveraging National Lab Capabilities (1.96 MB) Brookhaven National ...

  19. Computational Performance of Ultra-High-Resolution Capability...

    Office of Scientific and Technical Information (OSTI)

    Computational Performance of Ultra-High-Resolution Capability in the Community Earth System Model Citation Details In-Document Search Title: Computational Performance of ...

  20. Comparison of LHC and ILC Capabilities for Higgs Boson Coupling

    Office of Scientific and Technical Information (OSTI)

    LHC and ILC Capabilities for Higgs Boson Coupling Measurements Peskin, Michael E.; SLAC 43 PARTICLE ACCELERATORS; ACCURACY; BOSONS; COUPLING CONSTANTS; DECOUPLING; FERMIONS;...

  1. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Office of Scientific and Technical Information (OSTI)

    Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation...

  2. Development of Numerical Simulation Capabilities for In Situ...

    Office of Scientific and Technical Information (OSTI)

    Numerical Simulation Capabilities for In Situ Heating of Oil Shale Hoda, Nazish ExxonMobil Upstream Research Company, Houston, TX, USA; Fang, Chen ExxonMobil Upstream Research...

  3. Chapter 9: Enabling Capabilities for Science and Energy | A Comparison...

    Energy Savers [EERE]

    Chapter 9: Enabling Capabilities for Science and Energy A Comparison of ... collaborations that enable the energy science research that forms the foundation for ...

  4. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping...

  5. NREL: Biomass Research - Capabilities in Biomass Process and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four ... A team of NREL researchers uses biomass process and sustainability analyses to bridge the ...

  6. Development of covariance capabilities in EMPIRE code (Conference...

    Office of Scientific and Technical Information (OSTI)

    The nuclear reaction code EMPIRE has been extended to provide evaluation capabilities for neutron cross section covariances in the thermal, resolved resonance, unresolved resonance ...

  7. Topography-based Flood Planning and Optimization Capability Developmen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Report: Topography-based Flood Planning and Optimization Capability Development Report Citation Details In-Document Search Title: Topography-based Flood Planning and ...

  8. Leveraging National Lab Capabilities in Fuel Cells and Electrochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells and Electrochemical Systems-Phoenix, Arizona Leveraging National Lab Capabilities in Fuel Cells and Electrochemical Systems-Phoenix, Arizona August 26, 2015 - 1:45pm ...

  9. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping ...

  10. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY ... Radioisotope Generator (ASRG), the next generation space power generator. ...

  11. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  12. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and marketing capabilities; and (5) motivation for pursuing this opportunity. ... INTELLECTUAL PROPERTY Software EPBD Computational Framework, Copyright No. C15053, a set ...

  13. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-07-10

    The training of a new project team member was completed (Task 2.1). The Software Requirements Document was written (Task 2.3). It was determined that the CAPE-OPEN interfaces are sufficient for the communication between Fluent and V21 Controller (Task 2.4). The AspenPlus-Fluent prototype on allyl/triacetone alcohol production was further developed to assist the GUI and software design tasks. The prototype was also used to analyze the sensitivity of a process simulation result with respect to a parameter in a CFD model embedded in the process simulation. Thus the integration of process simulation and CFD provides additional process insights and enables the engineer to optimize overall process performance (e.g., product purity and yield) with respect to important CFD design and operation parameters (e.g., CSTR shaft speed). A top-level design of the V21 Controller was developed and discussed. A draft version of the Software Design Document was written (Task 2.5/2.6). A preliminary software development plan was outlined. At first the V21 Controller will be developed and tested in two parts--a part that communicates with Fluent and a part that communicates with Aspen Plus. Then the two parts will be combined and tested with the allyl/triacetone alcohol flow sheet simulation. Much progress was made in writing the code for the two parts (Task 2.7). A requirement for pre-configured models was identified and added to the software requirements document (Task 2.9). Alstom Power's INDVU code was ported to the PC platform and calibrated. Aspen Plus model of the RP&L unit was improved to reflect the latest information received on the unit. Thus the preparation for linking INDVU code with the Aspen Plus model of RP&L unit is complete (Task 2.14). A report describing Demo Case 1 was written and submitted to DOE for review and approval (Task 3.1). The first Advisory Board meeting was held at the Fluent Users Group Meeting on June 6th. At the Advisory Board meeting, the project was reviewed, a demonstration was made, and verbal feedback was received. Meeting minutes have been issued (Task 5.0). Global-CAPE-OPEN organization was contacted for obtaining draft specifications in CORBA that are needed for writing the interfaces between V21 Controller and Fluent. Efforts are underway to establish collaboration with Norsk Hydro, who is leading a Global CAPE-OPEN project on linking CFD and process simulation models. Because of the similarity between that project and the present project, the two project teams can learn much from each other (Task 7.0).

  14. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-12-31

    A software design review meeting was conducted (Task 2.0). A CFD Viewer was developed, to allow the process analyst to view CFD results from the process simulator (Task 2.14). Work on developing a CO wrapper for the INDVU code was continued (Task 2.15). The model-edit GUI was modified to allow the user to specify a solution strategy. Enhancements were made to the solution strategy implementation (Task 2.16). Testing of the integrated software was continued and several bug fixes and enhancements were made: ability to expose CFD parameters to the process analyst and support for velocity and pressure inlet boundary conditions (Task 2.21). Work on preparing the release version progressed: Version 0.3 of V21 Controller was released, a global configuration dialog was implemented, and a code review process was initiated (Task 2.24). The calibration of the tube bank CFD model for the RP&L case was completed. While integrating the tube bank CFD model into the flow sheet model, several development requirements were identified and communicated to the developers. The requirements of porting V21 Controller and Configuration Wizard to FLUENT 6.1, turning off the transfer of temperature dependent properties, exposing CFD parameters in Aspen Plus and supporting velocity boundary conditions have been implemented (Task 4.1). An initial grid for the HRSG component has been prepared (Task 4.2). A web-based advisory board meeting was conducted on December 18, 2003 (Task 5.0). Project personnel attended and gave presentations at the Aspen World Conference, October 28-30, 2002; AIChE Annual Meeting, November 8, 2002; and the Vision 21 Simulation meeting at Iowa State University, November 19-20, 2002 (Task 7.0).

  15. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Maxwell Osawe; Madhava Syamlal; Krishna Thotapalli; Stephen Zitney

    2003-07-30

    This is the eleventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40954. The goal of the project is to develop and demonstrate a software framework to enable virtual simulation of Vision 21 plants. During the last quarter much progress was made in software development. The CO wrapper for the integration of Alstom Power proprietary code INDVU was upgraded to CO V1.0.0 and was successfully integrated with an Aspen Plus flowsheet. The V21-Controller and the Fluent CO wrapper were upgraded to CO V.1.0.0, and the testing and debugging of the upgraded V21-Controller was completed. Two Aspen Plus analysis tools (sensitivity analysis and optimization) were successfully tested in an integrated simulation. Extensive testing of the integrated software was continued. A list of suggested enhancements was given to the software development team. Work on software documentation was started. Work on preparing the release version progressed: Several enhancements were made in the V21-Controller and the Fluent Configuration Wizard GUIs. Work to add persistence functionality to the V21-Controller was started. During the last quarter good progress was made in software demonstration. Demo Case 1 simulations were completed. This case, a conventional steam cycle with a CFD model representing the boiler module, was successfully demonstrated at 9 distinct load points from 33 MW to 19 MW. Much progress was made with Demo Case 2. Work on adding a CO wrapper to the HRSGSIM code was completed, and integrated simulations with the HRSGSIM code were conducted. The CFD heat exchanger model for Demo Case 2 was calibrated with HRSGSIM results. An Advisory Board meeting was held in Manchester, NH on May 6 during the Fluent Users Group Meeting. The preparation of the project final report was started.

  16. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-01-23

    To complete project planning, various project groups conducted several meetings and teleconferences. As a result a draft project management plan was written and circulated. The plan will be finalized in a project kick off meeting to be held on January 16, 2001 in Lebanon, NH, which will be attended by all project participants (Task 1.0). Various project personnel have been trained in the use of Fluent and Aspen Plus, which completes all the training tasks except for Aspen Plus and IDL training for Alstom Power (Task 2.1). A preliminary version of User Requirements Document (preURD) was written. This document will be sent to key users of Aspen Plus and FLUENT and their responses will be collected in January (Task 2.3). A prototype of Fluent integration with Aspen Plus was constructed for understanding the required software design. The development of a general architecture for the integrated software suite has been started (Task 2.6). Invitation letters for participation in an Advisory Board were sent out to several Vision 21 contractors. Their responses will be used to form an Advisory Board in January (Task 5.0). Fluent has awarded subcontracts to Alstom Power, CERC, and Aspen Tech and negotiations with Intergraph are underway. Aspen Plus and FLUENT were installed on a computer at CERC. The design of a project web site was completed, and the site setup was started (Task 7.0).

  17. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2001-10-20

    DOE Vision 21 project requirements for the support of Global CAPE-OPEN Reaction Kinetics interfaces in Aspen Plus 12 was written (Task 2.4). The software design document was written and posted on the project web site. Intergraph started work on a proof of concept demo of the physical domain software (Task 2.6). The COM-side (Aspen Plus) and CORBA-side (Fluent) pieces of the Vision 21 controller code were written and independently verified. The two pieces of the code were then combined. Debugging of the combined code is underway (Task 2.7). Papers on fuel cell processes were read in preparation for developing an example based on a fuel cell process (Task 2.8). The INDVU code has been used to replace the boiler component in the Aspen Plus flowsheet of the RP&L power plant. The INDVU code receives information from Aspen Plus and iterates on the split backpass LTSH bypass and excess air quantities until the stipulated superheat outlet temperature is satisfied. The combined INDVU-Aspen Plus model has been run for several load conditions (Task 2.14). Work on identifying a second demonstration case involving an advanced power cycle has been started (Task 3.2). Plans for the second Advisory Board meeting in November were made (Task 5.0). Intergraph subcontract was signed and work on a physical domain software demo was started. A second teleconference with Norsk Hydro was conducted to discuss Global CAPE-OPEN standards and issues related to COM-CORBA Bridge (Task 7.0).

  18. DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS

    SciTech Connect (OSTI)

    Madhava Syamlal, Ph.D.

    2002-04-01

    A software review meeting was held at Fluent Inc. in Lebanon, NH on January 31-February 1, 2002. The team reviewed the current status of the software and its compliance with the software requirements (Task 2). Work on a fuel cell based power-plant flow sheet that incorporates a reformer CFD model was started. This test case includes more features (multiple ports, temperature dependent properties) than the mixing tank test case developed earlier and will be used for the further testing of the software (Task 2). The software development plan was finalized (Task 2.7). The design and implementation of a CFD database was commenced. The CFD database would store various models that a process analyst can use in the flowsheet model (Task 2.8). The COM-CORBA Bridge was upgraded to use the recently published version 0.9.3 CAPE-OPEN specifications. Work on transferring reaction kinetics data from Aspen Plus to Fluent was started (Task 2.11). The requirements for extending CAPE-OPEN interfaces in Aspen Plus to transfer temperature dependent properties to Fluent was written and communicated to the Aspen Tech developer of CAPE-OPEN interfaces (Task 2.12). A prototype of low-order model based on the Multiple Regression technique was written. A low-order model is required to speed up the calculations with the integrated model (Task 2.19). The Berkshire Power (Agawam, MA) combined-cycle power plant was selected as the Demonstration Case 2 (Task 3.2). A CFD model of the furnace in Demonstration Case 1 was developed. The furnace model will be incorporated into the flowsheet model already developed for this case (Task 4.1). A new hire joined the Fluent development team for this project. The project management plan was revised based on the software development plan. A presentation on the project status was made at the Clearwater Conference, March 4-7, 2002. The final manuscript for ESCAPE-12 conference was submitted (Task 7.0).

  19. Coiled tubing operations and services. Part 3; Tube technology and capabilities

    SciTech Connect (OSTI)

    Sas-Jaworsky, A.I.I. )

    1992-01-01

    This article offers an overview of developments in commercial coiled tubing for oil wells including continuous coiled pipe manufacturing and production. Pipe behavior under various stresses and forces encountered during typical workover operations is addressed.

  20. Existing technology transfer report: analytical capabilities. Volume 2. Appendix A. [Methods and procedures for analysis

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    This volume contains 10 attachments entitled: Monthly progress reports; Method CHN-4 (Carbon, Hydrogen and Nitrogen analysis by Perkin-Elmer elemental analyses); Method Oxygen-6 (oxygen analyzer); Method Nitrogen-8 (Low level nitrogen analysis by Perkin-Elmer 240 elemental analyzer); Method Sulfur-10 (sulfur analysis by oxidative microcoulometry); Method TGA-3 (thermogravimetric analysis of coal liquefaction products and process solvents); Method DSC-5 (Determination of glass transition temperature by differential scanning calorimetry); Method GC-1 (gas chromatography of Fischer-Tropsch products); Method GC-2 (gas chromatography of distillate products from coal liquefaction); Analytical Method No. 1160 (estimation of OH, NH, NH/sub 2/, concentration in methylene chloride soluble materials from SRC liquids); x-ray diffraction method for determining the orientation tendency in calcined coke; and evaluation of mass spectrometers.

  1. Fuel switching in the electricity sector under the EU ETS: Review and prospective

    SciTech Connect (OSTI)

    Delarue, E.; Voorspools, K.; D'haeseleer, W.

    2008-06-15

    The European Union has implemented the European Union emission trading scheme (EU ETS) as an instrument to facilitate greenhouse gas (GHG) emission abatement stipulated in the Kyoto protocol. Empirical data show that in the early stages of the EU ETS, the value of a ton of CO{sub 2} has already led to emission abatement through switching from coal to gas in the European electric power sector. In the second part of this paper, an electricity generation simulation model is used to perform simulations on the switching behavior in both the first and the second trading periods of the EU ETS. In 2005, the reduction in GHG emissions in the electric power sector due to EU ETS is estimated close to 88 Mton. For the second trading period, a European Union allowance (EUA) price dependent GHG reduction curve has been determined. The obtained switching potential turns out to be significant, up to 300 Mton/year, at sufficiently high EUA prices.

  2. Exploration Technologies Technology Needs Assessment

    Broader source: Energy.gov [DOE]

    The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

  3. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  4. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    SciTech Connect (OSTI)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam; Hoffman, William

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode I loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.

  5. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  6. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  7. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  8. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  9. Integrating Information, Science, and Technology for Prediction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Information, Science, and Technology for Prediction Integrating Information, Science, and Technology for Prediction (IS&T) The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion John Sarrao Email IS&T banner Integrating Information, Science, and Technology for Prediction Overview The Integrating Information, Science, and Technology for Prediction (IS&T) pillar addresses: emerging challenges in national

  10. NREL Technologies Win National Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 17, 1997—Technologies developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have been selected to receive two 1997 R&D 100 Awards by Research and Development Magazine. The annual awards recognize the years 100 most important, unique and useful innovations. The magazine recognized PV Optics as one of the most important technological advances of 1997. PV Optics is the first computer program capable of accurately analyzing light trapping

  11. Emerging Technologies Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Program supports R&D of technologies and systems that are capable of substantially reducing building primary energy use, and accelerates their introduction into the marketplace. External Influences: DOE budget, Spin-off products, Legislation, Market incentives, Private sector R&D, Energy prices, Legislation / Regulation Sub- Programs Objectives Activities / Partners Key Outputs Short Term Outcome Mid-Term Outcome Long Term Outcome Support R&D of high efficiency

  12. Cybersecurity Capability Maturity Model (February 2014) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy (February 2014) Cybersecurity Capability Maturity Model (February 2014) The Cybersecurity Capability Maturity Model (C2M2) was derived from the Electricity Subsector Cybersecurity Capability Maturity Model (ES-C2M2) Version 1.1 by removing sector-specific references and terminology. The ES-C2M2 was developed in support of a White House initiative led by the Department of Energy (DOE), in partnership with the Department of Homeland Security (DHS), and in collaboration with private- and

  13. Specific Manufacturing Capability Project presented with special thank-you

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    note Specific Manufacturing Capability Project presented with special thank-you note From left, DOE-ID's Ray Furstenau, INL's Riley Chase, SMC's Joel Duling, Army's Ltc. Evans and Mike Martell, and DOE-ID's Jim Malmo stand with the flag recently presented in recognition of work performed by the Specific Manufacturing Capability project. A thank-you note in the form of a United States flag was presented by the U.S. Army to employees at the Specific Manufacturing Capability (SMC) project at

  14. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  15. AVTA: GE Smart Grid Capable AC Level 2 Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  16. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  17. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  18. Information technology resources assessment

    SciTech Connect (OSTI)

    Loken, S.C.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  19. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  20. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a ...

  1. Computational physics and applied mathematics capability review June 8-10, 2010

    SciTech Connect (OSTI)

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the Laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled multi-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CPAM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections), as follows. Theme 1: Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the Laboratory. Theme 2: Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial

  2. COLLOQUIUM: Functional Capabilities and Design of the ITER EC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Functional Capabilities and Design of the ITER EC H&CD System Dr. Mark Henderson ITER Organization A 24MW Electron Cyclotron (EC) system ...

  3. Soft x-ray capabilities for investigating the strongly correlated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft x-ray capabilities for investigating the strongly correlated electron materials Friday, September 14, 2012 - 1:00pm SLAC, Bldg. 137, Room 226 Jun-Sik Lee Seminar One of the...

  4. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    The Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (ONG-C2M2) is a ... Oil and Natural Gas Subsector C2M2 v1.1 (February 2014) (1.82 MB) More Documents & ...

  5. Tribal Leader Forum: Oil and Gas Technical Assistance Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy Office of Indian Energy is hosting a Tribal Leader Forum on oil and gas technical assistance capabilities on Aug. 18, 2015, at the Magnolia Hotel in Denver, Colorado.

  6. ALCF to demonstrate engine modeling capabilities at 2016 VERIFI...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to demonstrate engine modeling capabilities at 2016 VERIFI workshop Author: Laura Wolf June 23, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version The Virtual ...

  7. Advanced Post-Irradiation Examination Capabilities Alternatives Analysis Report

    SciTech Connect (OSTI)

    Jeff Bryan; Bill Landman; Porter Hill

    2012-12-01

    An alternatives analysis was performed for the Advanced Post-Irradiation Capabilities (APIEC) project in accordance with the U.S. Department of Energy (DOE) Order DOE O 413.3B, “Program and Project Management for the Acquisition of Capital Assets”. The Alternatives Analysis considered six major alternatives: ? No Action ? Modify Existing DOE Facilities – capabilities distributed among multiple locations ? Modify Existing DOE Facilities – capabilities consolidated at a few locations ? Construct New Facility ? Commercial Partnership ? International Partnerships Based on the alternatives analysis documented herein, it is recommended to DOE that the advanced post-irradiation examination capabilities be provided by a new facility constructed at the Materials and Fuels Complex at the Idaho National Laboratory.

  8. Working with SRNL - Our Facilities - Atmospheric Technologies Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Technologies Center Working with SRNL Our Facilities - Atmospheric Technologies Center The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. Meteorological monitoring through this facility includes the collection, archival, and application of SRS meteorological data, and the technology to predict the transport and consequence of accidental hazardous material release to

  9. Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Rigorous HDD Emissions Capabilities of Shell GTL Fuel Rigorous HDD Emissions Capabilities of Shell GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_cherillo.pdf (161.16 KB) More Documents & Publications Verification of Shell GTL Fuel as CARB Alternative Diesel Assessment of Environmental Impacts of Shell GTL Fuel An Evaluation of Shell GTL Diesel

  10. Local Energy Alliance Program Adds Green Appraisal Capabilities to its

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Services | Department of Energy Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Local Energy Alliance Program Adds Green Appraisal Capabilities to its Energy Efficiency Services Photo of Cynthia Adams sitting by the water. Charlottesville, Virginia homeowners interested in selling their home, refinancing, or applying for a secured line of credit have a new tool to increase their home value by accounting for home energy

  11. Management & Operating Subcontract Reporting Capability (MOSRC) Downloads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management & Operating Subcontract Reporting Capability (MOSRC) Downloads Management & Operating Subcontract Reporting Capability (MOSRC) Downloads FY2015 MO Small Business Subcontracting Summary Report (13.31 KB) MOSRC Field Definitions (86.31 KB) FY2015 MO Small Business Subcontracting Report_Public.xlsx (183.75 KB) More Documents & Publications Service Contract Inventory Federal Reporting Recipient Information Federal Reporting Recipient Information

  12. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT

    Office of Scientific and Technical Information (OSTI)

    THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE (Conference) | SciTech Connect Conference: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE Citation Details In-Document Search Title: ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE The Idaho National

  13. Quantum & Energy Materials Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum & Energy Materials Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Glovebox system for organic photovoltaics device fabrication Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV)

  14. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function. Scientists typically expect that a protein has a singular structure (with some conformational variation), and that when an experimental structure is solved, it can used to understand the known biological function(s) of the protein. Recently, researchers used beamline capabilities at the ALS to demonstrate that a

  15. The Cielo Petascale Capability Supercomputer: Providing Large-Scale

    Office of Scientific and Technical Information (OSTI)

    Computing for Stockpile Stewardship (Conference) | SciTech Connect Conference: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Citation Details In-Document Search Title: The Cielo Petascale Capability Supercomputer: Providing Large-Scale Computing for Stockpile Stewardship Authors: Vigil, Benny Manuel [1] ; Doerfler, Douglas W. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-11 OSTI Identifier:

  16. Federal Technical Capability Program (FTCP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Technical Capability Program (FTCP) Federal Technical Capability Program (FTCP) Vision For DOE to be a technically proficient enterprise, with federal technical personnel overseeing Defense Nuclear Facilities in a manner that enables and enhances the DOE mission in a technically defensible fashion, while being recognized as preeminent in federal technical leadership and competency. Missions and Functions The Department of Energy is committed to developing and maintaining a technically

  17. Sandia National Laboratories Test Capabilities Revitalization Phase 2

    National Nuclear Security Administration (NNSA)

    Project Completed On Time, Under Budget | National Nuclear Security Administration | (NNSA) Sandia National Laboratories Test Capabilities Revitalization Phase 2 Project Completed On Time, Under Budget March 24, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration's (NNSA) Test Capabilities Revitalization Phase 2 (TCR 2) project was recently completed on schedule and $4 million under the original budget. Completion of the project, located at Sandia National Laboratories in

  18. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like ALS Capabilities Reveal How Like Can Attract Like Print Wednesday, 26 March 2014 00:00 A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can

  19. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function. Scientists typically expect that a protein has a singular structure (with some conformational variation), and that when an experimental structure is solved, it can used to understand the known biological function(s) of the protein. Recently, researchers used beamline capabilities at the ALS to demonstrate that a

  20. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function. Scientists typically expect that a protein has a singular structure (with some conformational variation), and that when an experimental structure is solved, it can used to understand the known biological function(s) of the protein. Recently, researchers used beamline capabilities at the ALS to demonstrate that a

  1. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus Print A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function. Scientists typically expect that a protein has a singular structure (with some conformational variation), and that when an experimental structure is solved, it can used to understand the known biological function(s) of the protein. Recently, researchers used beamline capabilities at the ALS to demonstrate that a

  2. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal Multiple Functions of Ebola Virus ALS Capabilities Reveal Multiple Functions of Ebola Virus Print Friday, 13 June 2014 10:25 A central dogma of molecular biology is that a protein's sequence dictates its fold, and the fold dictates its function. Scientists typically expect that a protein has a singular structure (with some conformational variation), and that when an experimental structure is solved, it can used to understand the known biological function(s) of the

  3. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  4. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  5. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  6. Post Irradiation Capabilities at the Idaho National Laboratory

    SciTech Connect (OSTI)

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  7. Development of a Fiber Laser Welding Capability for the W76, MC4702 Firing Set

    SciTech Connect (OSTI)

    Samayoa, Jose

    2010-05-12

    Development work to implement a new welding system for a Firing Set is presented. The new system is significant because it represents the first use of fiber laser welding technology at the KCP. The work used Six-Sigma tools for weld characterization and to define process performance. Determinations of workable weld parameters and comparison to existing equipment were completed. Replication of existing waveforms was done utilizing an Arbitrary Pulse Generator (APG), which was used to modulate the fiber lasers exclusive continuous wave (CW) output. Fiber laser weld process capability for a Firing Set is demonstrated.

  8. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  9. Technology Deployment Annual Report 2009

    SciTech Connect (OSTI)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  10. NREL: Geothermal Technologies - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your

  11. Recent Emulsion Technologies

    SciTech Connect (OSTI)

    Ariga, A.

    2011-10-06

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  12. Presto 4.20 user's guide : addendum for shock capabilities.

    SciTech Connect (OSTI)

    Spencer, Benjamin Whiting

    2011-06-01

    This is an addendum to the Presto 4.20 User's Guide to document additional capabilities that are available for use in the Presto{_}ITAR code that are not available for use in the standard version of Presto. Presto{_}ITAR is an enhanced version of Presto that provides capabilities that make it regulated under the U.S. Department of State's International Traffic in Arms Regulations (ITAR) export-control rules. This code is part of the Vivace product, and is only distributed to entities that comply with ITAR regulations. The enhancements primarily focus on material models that include an energy-dependent pressure response, appropriate for very large deformations and strain rates. Since this is an addendum to the standard Presto User's Guide, please refer to that document first for general descriptions of code capability and use. This addendum documents material models and element features that support energy-dependent material models.

  13. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    SciTech Connect (OSTI)

    Cynthia D. Gentillon

    2010-09-01

    Projects for the Very High Temperature Reactor Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The Very High Temperature Reactor Technology Development Office has established the NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory to ensure that very high temperature reactor data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities.

  14. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four ...

  15. EERE National Lab Initiatives and Capabilities for Advanced Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Institute Mission: Develop and demonstrate innovative technologies that will, within 10 years, make advanced fiber-reinforced polymer composites at 50% Lower Cost 75% ...

  16. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  17. Optical Design Capabilities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  18. PHISICS multi-group transport neutronic capabilities for RELAP5

    SciTech Connect (OSTI)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G.

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  19. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOE Patents [OSTI]

    Nyman, May D.; Hobbs, David T.

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  20. X-Ray Microscopy Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy Capabilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample

  1. Lithium-based Technologies | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based technologies and capabilities. There is no other U.S. site, government or commercial, that comes close to the breadth of Y-12's lithium expertise and capabilities. The Y-12 National Security Complex supplies lithium, in unclassified forms, to customers worldwide through the DOE Office of Science, Isotope Business

  2. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  3. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  4. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  5. Advanced fuel assembly characterization capabilities based on gamma tomography at the Halden boiling water reactor

    SciTech Connect (OSTI)

    Holcombe, S.; Eitrheim, K.; Svaerd, S. J.; Hallstadius, L.; Willman, C.

    2012-07-01

    Characterization of individual fuel rods using gamma spectroscopy is a standard part of the Post Irradiation Examinations performed on experimental fuel at the Halden Boiling Water Reactor. However, due to handling and radiological safety concerns, these measurements are presently carried out only at the end of life of the fuel, and not earlier than several days or weeks after its removal from the reactor core. In order to enhance the fuel characterization capabilities at the Halden facilities, a gamma tomography measurement system is now being constructed, capable of characterizing fuel assemblies on a rod-by-rod basis in a more timely and efficient manner. Gamma tomography for measuring nuclear fuel is based on gamma spectroscopy measurements and tomographic reconstruction techniques. The technique, previously demonstrated on irradiated commercial fuel assemblies, is capable of determining rod-by-rod information without the need to dismantle the fuel. The new gamma tomography system will be stationed close to the Halden reactor in order to limit the need for fuel transport, and it will significantly reduce the time required to perform fuel characterization measurements. Furthermore, it will allow rod-by-rod fuel characterization to occur between irradiation cycles, thus allowing for measurement of experimental fuel repeatedly during its irradiation lifetime. The development of the gamma tomography measurement system is a joint project between the Inst. for Energy Technology - OECD Halden Reactor Project, Westinghouse (Sweden), and Uppsala Univ.. (authors)

  6. Intent, Capability and Opportunity: A Holistic Approach to Addressing Proliferation as a Risk Management Issue

    SciTech Connect (OSTI)

    Amanda Rynes; Trond Bjornard

    2011-07-01

    Currently, proliferation risk assessment models are designed to evaluate only a portion of the overall risk, focusing exclusively on either technological or social factors to determine the extent of a threat. Many of these models are intended to act as a means of predicting proliferation potential rather than assessing the system as a whole, ignoring the ability to enhance mitigating factors and manage, rather just establish the presence of, the threat. While the information garnered through these forms of analysis is necessary, it remains incomplete. By incorporating political, social, economic and technical capabilities as well as human factors such as intent into a single, multi-faceted risk management model, proliferation risk can be evaluated more effectively. Framing this information around how to improve and expand the Regime already in place and establishing where there are gaps in the system allows for a more complete approach to risk management, mitigation and resource allocation. The research conducted here seeks to combine all three elements (intent, capability and opportunity) in a comprehensive evaluation which incorporates an assessment of state-level variables, possible proliferation pathways and technical capability. Each portion of the analysis is carried out independently then combined to illustrate the full scope of a State's nuclear infrastructure while showing areas of weakness in the institutional framework.

  7. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  8. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  9. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  10. FTCP Quarterly Report on Federal Technical Capability, November 20, 2012

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  11. FTCP Quarterly Report on Federal Technical Capability, May 30, 2012

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  12. Entirely passive heat pipe apparatus capable of operating against gravity

    DOE Patents [OSTI]

    Koenig, Daniel R.

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  13. CHARACTERIZATION OF THE ADVANCED RADIOGRAPHIC CAPABILITY FRONT END ON NIF

    SciTech Connect (OSTI)

    Haefner, C; Heebner, J; Dawson, J; Fochs, S; Shverdin, M; Crane, J K; Kanz, V K; Halpin, J; Phan, H; Sigurdsson, R; Brewer, W; Britten, J; Brunton, G; Clark, W; Messerly, M J; Nissen, J D; Nguyen, H; Shaw, B; Hackel, R; Hermann, M; Tietbohl, G; Siders, C W; Barty, C J

    2009-07-15

    We have characterized the Advanced Radiographic Capability injection laser system and demonstrated that it meets performance requirements for upcoming National Ignition Facility fusion experiments. Pulse compression was achieved with a scaled down replica of the meter-scale grating ARC compressor and sub-ps pulse duration was demonstrated at the Joule-level.

  14. FTCP Quarterly Report on Federal Technical Capability, August 16, 2013

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  15. FTCP Quarterly Report on Federal Technical Capability, December 7, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  16. FTCP Quarterly Report on Federal Technical Capability, April 3, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  17. FTCP Quarterly Report on Federal Technical Capability, September 2, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  18. FTCP Quarterly Report on Federal Technical Capability, August 8, 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  19. FTCP Quarterly Report on Federal Technical Capability, May 29, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  20. FTCP Quarterly Report on Federal Technical Capability, August 18, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  1. FTCP Quarterly Report on Federal Technical Capability, March 2, 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  2. FTCP Quarterly Report on Federal Technical Capability, June 5, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  3. FTCP Quarterly Report on Federal Technical Capability, May 18, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  4. FTCP Quarterly Report on Federal Technical Capability, December 15, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  5. FTCP Quarterly Report on Federal Technical Capability, February 20, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  6. FTCP Quarterly Report on Federal Technical Capability, November 20, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  7. FTCP Quarterly Report on Federal Technical Capability, March 6, 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  8. FTCP Quarterly Report on Federal Technical Capability, February 24, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  9. FTCP Quarterly Report on Federal Technical Capability, July 3, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  10. SIGMA Release v1.2 - Capabilities, Enhancements and Fixes

    SciTech Connect (OSTI)

    Mahadevan, Vijay; Grindeanu, Iulian R.; Ray, Navamita; Jain, Rajeev; Wu, Danqing

    2015-09-30

    In this report, we present details on SIGMA toolkit along with its component structure, capabilities, and feature additions in FY15, release cycles, and continuous integration process. These software processes along with updated documentation are imperative to successfully integrate and utilize in several applications including the SHARP coupled analysis toolkit for reactor core systems funded under the NEAMS DOE-NE program.

  11. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  12. Evaluation of Smart Gun Technologies preliminary report

    SciTech Connect (OSTI)

    Weiss, D.R.

    1996-01-01

    The Smart Gun Technology Project has a goal to eliminate the capability of an unauthorized user from firing a law enforcement officer`s firearm by implementing {open_quote}smart{close_quote} technologies. Smart technologies are those that can in some manner identify an officer. This report will identify, describe, and grade various technologies as compared to the requirements that were obtained from officers. This report does not make a final recommendation for a smart gun technology, nor does it give the complete design of a smart gun system.

  13. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  14. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  15. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  16. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect (OSTI)

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D.

    2012-02-20

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the

  17. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  18. ATLAS Enhanced Capabilities and Questions | Department of Energy

    Energy Savers [EERE]

    | Department of Energy 30 Million in Funding for Window Efficiency Technologies ARPA-E Announces $30 Million in Funding for Window Efficiency Technologies October 7, 2015 - 3:09pm Addthis ARPA-E Announces $30 Million in Funding for Window Efficiency Technologies News Media Contact: (202) 586-4940 The U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) today announced up to $30 million in funding for a new program focused on improving the energy efficiency of

  19. Webinar: OLED Lighting Products—Capabilities, Challenges, Potential

    Broader source: Energy.gov [DOE]

    Organic light-emitting diodes are a solid-state technology that is entering the architectural lighting marketplace and experiencing some of the same issues that LEDs encountered a few years ago....

  20. ALS Capabilities Reveal Multiple Functions of Ebola Virus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Society for the Promotion of Science, and the Japan Ministry of Education, Culture, Sports, Science, and Technology. Operation of the ALS is supported by the U.S. Department of...

  1. The Savannah River Technology Center, a leader in sensor technology

    SciTech Connect (OSTI)

    Stewart, W.C.

    1993-12-01

    This publication highlights the capabilities and achievements of the Savannah River Technology Center in the field of sensor technology. Sensors are developed to provide solutions for environmental and chemical analysis. Most of their sensor systems are based upon fiber optics. Fiber optic probes function in three main modes: as a reflected light probe, from opaque samples; as a transreflectance probe, which sample light reflected back from samples which can pass light; and a flow cell, which monitors light transmitted through a path which passes the process stream being tested. The sensor group has developed fiber optic based temperature probes, has combined fiber optics with sol-gel technology to monitor process streams using chemical indicators, has done development work on slip stream on-line sampling of chemical process streams, has developed software to aid in the analysis of chemical solutions, and has applied this technology in a wide range of emerging areas.

  2. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  3. Semi-solid electrodes having high rate capability

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  4. Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review

    SciTech Connect (OSTI)

    Redondo, Antonio

    2010-01-01

    The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

  5. Development of a fourth generation predictive capability maturity model.

    SciTech Connect (OSTI)

    Hills, Richard Guy; Witkowski, Walter R.; Urbina, Angel; Rider, William J.; Trucano, Timothy Guy

    2013-09-01

    The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize and communicate completeness of the approaches used for computational model definition, verification, validation, and uncertainty quantification associated for an intended application. The primary application of this tool at Sandia National Laboratories (SNL) has been for physics-based computational simulations in support of nuclear weapons applications. The two main goals of a PCMM evaluation are 1) the communication of computational simulation capability, accurately and transparently, and 2) the development of input for effective planning. As a result of the increasing importance of computational simulation to SNL's mission, the PCMM has evolved through multiple generations with the goal to provide more clarity, rigor, and completeness in its application. This report describes the approach used to develop the fourth generation of the PCMM.

  6. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect (OSTI)

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  7. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  8. Ukraine: Independent nuclear weapons capability rising. Master's thesis

    SciTech Connect (OSTI)

    Dewing, M.J.

    1993-06-01

    This thesis argues that Ukraine will move from possession of CIS-controlled nuclear weapons to the development of an independent nuclear capability. It attempts to show how the factors driving Ukraine towards remaining a nuclear state outweigh the factors acting in restraint. This thesis describes the contents of the Ukrainian arsenal, reviews its current material condition and investigates the likelihood that Ukraine can directly control it. This thesis also shows why Ukraine's most likely course in developing and independent nuclear weapons capability will be to retain its 46 SS-24 ICBMs. United States, Ukraine, Russia, Strategic weapons, National strategy, Nuclear strategy, Arms control, Strategic stability, Nuclear weapons Strategic command and control, International relations.

  9. IP address management : augmenting Sandia's capabilities through open source tools.

    SciTech Connect (OSTI)

    Nayar, R. Daniel

    2005-08-01

    Internet Protocol (IP) address management is an increasingly growing concern at Sandia National Laboratories (SNL) and the networking community as a whole. The current state of the available IP addresses indicates that they are nearly exhausted. Currently SNL doesn't have the justification to obtain more IP address space from Internet Assigned Numbers Authority (IANA). There must exist a local entity to manage and allocate IP assignments efficiently. Ongoing efforts at Sandia have been in the form of a multifunctional database application notably known as Network Information System (NWIS). NWIS is a database responsible for a multitude of network administrative services including IP address management. This study will explore the feasibility of augmenting NWIS's IP management capabilities utilizing open source tools. Modifications of existing capabilities to better allocate available IP address space are studied.

  10. NREL Battery Testing Capabilities Get a Boost - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Testing Capabilities Get a Boost February 5, 2010 Photo of a Test engineer standing next to a camera showing a thermal image of a battery being tested. Enlarge image Engineer Dirk Long uses thermal imaging equipment to capture a battery's infrared fingerprint to diagnose its behavior. NREL soon will be ramping up testing as the battery industry uses stimulus funding to enhance batteries used in advanced vehicles. Credit: Pat Corkery Batteries are the heart of today's advanced electric

  11. Quality Assurance Program Application for the Component Test Capability

    SciTech Connect (OSTI)

    Stephanin L. Austad

    2009-06-01

    This paper documents the application of quality requirements to Component Test Capability (CTC) Project activities for each CTC alternative. Four alternatives are considered for quality program application: do nothing, vendor testing, existing testing facility modification, and Component Test Facility. It also describes the advantages and disadvantages of using the existing Next Generation Nuclear Plant Quality Program Plan with CTC modifications versus a stand-alone CTC Quality Program Plan.

  12. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  13. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  14. Federal Technical Capability Panel Conference Call Minutes - July 20, 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Technical Capability Panel Conference Call Minutes July 20, 2016 Karen Boardman, Chair, not in attendance. On travel. Mike Mikolanis, Deputy Chair, opened the meeting and welcomed everyone. PLEASE NOTE: FTCP F2F MEETING SCHEDULED FOR NOVEMBER 29-30, 2016. ACTION: Please send agenda topics to Jeannie Lozoya by August 31, 2016 Jeanette Yarrington provided an update on the following FTCP activities: NV Reaccreditation Update Jeanette reported that the NV Reaccreditation Board will meet on

  15. High-Throughput Experimental Approach Capabilities | Materials Science |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL High-Throughput Experimental Approach Capabilities An image of a triangular diagram with cobalt oxide at the top vertex, zinc oxide at the lower left vertex, and nickel oxide at the lower right vertex. Colored section in upper half indicates conductivity of materials at constant oxygen partial pressure and temperature. Highest conductivity is represented by yellow and is for materials in the upper right sector. NREL's high-throughput experimental approach is based on the extensive set

  16. T AMS ARAC (Atmospheric Release Advisory Capability) NEST RAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T AMS ARAC (Atmospheric Release Advisory Capability) NEST RAP . . INTRODUCTION ARAC ARAC he Department of Energy's (DOE) National Nuclear Security Administration (NNSA) has the world's leading scientists, engineers and technicians from over 50 years of managing the nation's nuclear weapons program. When the need arises, DOE is prepared to respond immediately to any type of radiological accident or incident anywhere in the world with the following seven radiological emergency response assets.

  17. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    SciTech Connect (OSTI)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  18. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  19. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  20. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  1. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  2. ALS Capabilities Reveal How Like Can Attract Like

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Capabilities Reveal How Like Can Attract Like Print A Berkeley Lab research team working at the ALS has observed an unusual pairing that seems to go against a universal scientific truth-that opposite charges attract and like charges repel. Led by Berkeley Lab chemist Richard Saykally and theorist David Prendergast, researchers demonstrated that, when hydrated in water, positively charged ions (cations) can actually pair up with one another. A New Law of Water Affinities Late 19th century

  3. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  4. Capabilities required to conduct the LLNL plutonium mission

    SciTech Connect (OSTI)

    Kass, J.; Bish, W.; Copeland, A.; West, J.; Sack, S.; Myers, B.

    1991-09-10

    This report outlines the LLNL plutonium related mission anticipated over the next decade and defines the capabilities required to meet that mission wherever the Plutonium Facility is located. If plutonium work is relocated to a place where the facility is shared, then some capabilities can be commonly used by the sharing parties. However, it is essential that LLNL independently control about 20000 sq ft of net lab space, filled with LLNL controlled equipment, and staffed by LLNL employees. It is estimated that the cost to construct this facility should range from $140M to $200M. Purchase and installation of equipment to replace that already in Bldg 332 along with additional equipment identified as being needed to meet the mission for the next ten to fifteen years, is estimated to cost $118M. About $29M of the equipment could be shared. The Hardened Engineering Test Building (HETB) with its additional 8000 sq ft of unique test capability must also be replaced. The fully equipped replacement cost is estimated to be about $10M. About 40000 sq ft of setup and support space are needed along with office and related facilities for a 130 person resident staff. The setup space is estimated to cost $8M. The annual cost of a 130 person resident staff (100 programmatic and 30 facility operation) is estimated to be $20M.

  5. Integration of facility modeling capabilities for nuclear nonproliferation analysis

    SciTech Connect (OSTI)

    Garcia, Humberto; Burr, Tom; Coles, Garill A; Edmunds, Thomas A.; Garrett, Alfred; Gorensek, Maximilian; Hamm, Luther; Krebs, John; Kress, Reid L; Lamberti, Vincent; Schoenwald, David; Tzanos, Constantine P; Ward, Richard C

    2012-01-01

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  6. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  7. Network Communication as a Service-Oriented Capability

    SciTech Connect (OSTI)

    Johnston, William; Johnston, William; Metzger, Joe; Collins, Michael; Burrescia, Joseph; Dart, Eli; Gagliardi, Jim; Guok, Chin; Oberman, Kevin; O'Conner, Mike

    2008-01-08

    In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modeling and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.

  8. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    SciTech Connect (OSTI)

    West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

    2013-08-08

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

  9. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-06-30

    To enhance the measurement capability of EICs to alpha spectrometry, measurements at FIU-HCET were performed on different energy alpha sources, and response factors of ST electrets in 960-mL chamber were determined. Earlier, EIC was considered as only a charge-integrating device without spectrometric capability. This is a potentially significant development accomplished by FIU-HCET. It could appreciably lower the current cost of spectral characterization. FIU-HCET has been invited to participate in the Operating Engineers' National Hazmat program's assessment of the Mini Mitter, commercially known as the VitalSense{trademark} Telemetric Monitoring System. This evaluation is scheduled for early July 1999. Additional health and safety technology evaluations, in which FIU-HCET will also participate, are also scheduled for later in the summer. The Technology Information System (TIS), MISD, and DASD are now complete and accessible through the Internet website http://www.DandD.org/tis.

  10. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  11. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  12. Fuel Cell Technologies Office Funding by State: FY 2013, FY 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Competitively Selected Projects and National Lab Core Capabilities - Prime Recipients Only View a list of projects, organized by state, funded by the Fuel Cell Technologies Office ...

  13. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  14. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  15. Production of Working Reference Materials for the Capability Evaluation Project

    SciTech Connect (OSTI)

    Phillip D. Noll, Jr.; Robert S. Marshall

    1999-03-01

    Nondestructive waste assay (NDA) methods are employed to determine the mass and activity of waste-entrained radionuclides as part of the National TRU (Trans-Uranic) Waste Characterization Program. In support of this program the Idaho National Engineering and Environmental Laboratory Mixed Waste Focus Area developed a plan to acquire capability/performance data on systems proposed for NDA purposes. The Capability Evaluation Project (CEP) was designed to evaluate the NDA systems of commercial contractors by subjecting all participants to identical tests involving 55 gallon drum surrogates containing known quantities and distributions of radioactive materials in the form of sealed-source standards, referred to as working reference materials (WRMs). Although numerous Pu WRMs already exist, the CEP WRM set allows for the evaluation of the capability and performance of systems with respect to waste types/configurations which contain increased amounts of {sup 241}Am relative to weapons grade Pu, waste that is dominantly {sup 241}Am, as well as wastes containing various proportions of depleted uranium. The CEP WRMs consist of a special mixture of PuO{sub 2}/AmO{sub 2} (IAP) and diatomaceous earth (DE) or depleted uranium (DU) oxide and DE and were fabricated at Los Alamos National Laboratory. The IAP WRMS are contained inside a pair of welded inner and outer stainless steel containers. The DU WRMs are singly contained within a stainless steel container equivalent to the outer container of the IAP standards. This report gives a general overview and discussion relating to the production and certification of the CEP WRMs.

  16. Verification of New Floating Capabilities in FAST v8: Preprint

    SciTech Connect (OSTI)

    Wendt, F.; Robertson, A.; Jonkman, J.; Hayman, G.

    2015-01-01

    In the latest release of NREL's wind turbine aero-hydro-servo-elastic simulation software, FAST v8, several new capabilities and major changes were introduced. FAST has been significantly altered to improve the simulator's modularity and to include new functionalities in the form of modules in the FAST v8 framework. This paper is focused on the improvements made for the modeling of floating offshore wind systems. The most significant change was to the hydrodynamic load calculation algorithms, which are embedded in the HydroDyn module. HydroDyn is now capable of applying strip-theory (via an extension of Morison's equation) at the member level for user-defined geometries. Users may now use a strip-theory-only approach for applying the hydrodynamic loads, as well as the previous potential-flow (radiation/diffraction) approach and a hybrid combination of both methods (radiation/diffraction and the drag component of Morison's equation). Second-order hydrodynamic implementations in both the wave kinematics used by the strip-theory solution and the wave-excitation loads in the potential-flow solution were also added to HydroDyn. The new floating capabilities were verified through a direct code-to-code comparison. We conducted a series of simulations of the International Energy Agency Wind Task 30 Offshore Code Comparison Collaboration Continuation (OC4) floating semisubmersible model and compared the wind turbine response predicted by FAST v8, the corresponding FAST v7 results, and results from other participants in the OC4 project. We found good agreement between FAST v7 and FAST v8 when using the linear radiation/diffraction modeling approach. The strip-theory-based approach inherently differs from the radiation/diffraction approach used in FAST v7 and we identified and characterized the differences. Enabling the second-order effects significantly improved the agreement between FAST v8 and the other OC4 participants.

  17. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  18. Devices capable of removing silicon and aluminum from gaseous atmospheres

    DOE Patents [OSTI]

    Spengler, Charles J.; Singh, Prabhakar

    1989-01-01

    An electrochemical device is made of a containment vessel (30) optional ceramic material within the containment vessel and including one or more electrochemical cells (10), the cells containing a porous exposed electrode (11) in contact with a solid electrolyte, where at least one of the exposed electrode, the containment vessel, and the optional ceramic material contains a deposit selected from metal oxide and metal salt capable of forming a metal oxide upon heating, where the metal is selected from the group consisting of Ce, Sm, Mg, Be, Ca, Sr, Ti, Zr, Hf, Y, La, Pr, Nb, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and their mixtures.

  19. Threaded insert for compact cryogenic-capable pressure vessels

    DOE Patents [OSTI]

    Espinosa-Loza, Francisco; Ross, Timothy O.; Switzer, Vernon A.; Aceves, Salvador M.; Killingsworth, Nicholas J.; Ledesma-Orozco, Elias

    2015-06-16

    An insert for a cryogenic capable pressure vessel for storage of hydrogen or other cryogenic gases at high pressure. The insert provides the interface between a tank and internal and external components of the tank system. The insert can be used with tanks with any or all combinations of cryogenic, high pressure, and highly diffusive fluids. The insert can be threaded into the neck of a tank with an inner liner. The threads withstand the majority of the stress when the fluid inside the tank that is under pressure.

  20. Alternative fuel capabilities of the Mod II Stirling vehicle

    SciTech Connect (OSTI)

    Grandin, A.W.; Ernst, W.D.

    1988-01-01

    The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

  1. Emergency Response Capability Baseline Needs Assessment Compliance Assessment

    SciTech Connect (OSTI)

    Sharry, John A.

    2013-09-16

    This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2013 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2009 BNA, the 2012 BNA document, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures.

  2. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect (OSTI)

    Clark, G.L.; Johnson, R.A.; Smith, R.W.; Abbott, D.G.; Tyacke, M.J.

    1994-10-01

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  3. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOE Patents [OSTI]

    Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  4. Idaho National Laboratory DOE-NE's National Nuclear Capability-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -2023 Idaho National Laboratory DOE-NE's National Nuclear Capability- Developing and Maintaining the INL Infrastructure TEN-YEAR SITE PLAN DOE/ID-11474 Final June 2012 Sustainable INL continues to exceed DOE goals for reduction in the use of petroleum fuels - running its entire bus fleet on biodiesel while converting 75% of its light-duty fleet to E85 fuel. The Energy Systems Laboratory (ESL), slated for completion this year, will be a state-of-the-art laboratory with high-bay lab space where

  5. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  6. Computational physics and applied mathematics capability review June 8-10, 2010 (Advance materials to committee members)

    SciTech Connect (OSTI)

    Lee, Stephen R

    2010-01-01

    Los Alamos National Laboratory will review its Computational Physics and Applied Mathematics (CPAM) capabilities in 2010. The goals of capability reviews are to assess the quality of science, technology, and engineering (STE) performed by the capability, evaluate the integration of this capability across the Laboratory and within the scientific community, examine the relevance of this capability to the Laboratory's programs, and provide advice on the current and future directions of this capability. This is the first such review for CPAM, which has a long and unique history at the laboratory, starting from the inception of the Laboratory in 1943. The CPAM capability covers an extremely broad technical area at Los Alamos, encompassing a wide array of disciplines, research topics, and organizations. A vast array of technical disciplines and activities are included in this capability, from general numerical modeling, to coupled mUlti-physics simulations, to detailed domain science activities in mathematics, methods, and algorithms. The CPAM capability involves over 12 different technical divisions and a majority of our programmatic and scientific activities. To make this large scope tractable, the CPAM capability is broken into the following six technical 'themes.' These themes represent technical slices through the CP AM capability and collect critical core competencies of the Laboratory, each of which contributes to the capability (and each of which is divided into multiple additional elements in the detailed descriptions of the themes in subsequent sections): (1) Computational Fluid Dynamics - This theme speaks to the vast array of scientific capabilities for the simulation of fluids under shocks, low-speed flow, and turbulent conditions - which are key, historical, and fundamental strengths of the laboratory; (2) Partial Differential Equations - The technical scope of this theme is the applied mathematics and numerical solution of partial differential equations

  7. Fuel Fabrication Capability WBS 01.02.01.05 - HIP Bonding Experiments Final Report

    SciTech Connect (OSTI)

    Dickerson, Patricia O'Donnell; Summa, Deborah Ann; Liu, Cheng; Tucker, Laura Arias; Chen, Ching-Fong; Aikin, Beverly; Aragon, Daniel Adrian; Beard, Timothy Vance; Montalvo, Joel Dwayne; Pena, Maria Isela; Dombrowski, David E.

    2015-06-10

    The goals of this project were to demonstrate reliable, reproducible solid state bonding of aluminum 6061 alloy plates together to encapsulate DU-10 wt% Mo surrogate fuel foils. This was done as part of the CONVERT Fuel Fabrication Capability effort in Process Baseline Development . Bonding was done using Hot Isotatic Pressing (HIP) of evacuated stainless steel cans (a.k.a HIP cans) containing fuel plate components and strongbacks. Gross macroscopic measurements of HIP cans prior to HIP and after HIP were used as part of this demonstration, and were used to determine the accuracy of a finitie element model of the HIP bonding process. The quality of the bonding was measured by controlled miniature bulge testing for Al-Al, Al-Zr, and Zr-DU bonds. A special objective was to determine if the HIP process consistently produces good quality bonding and to determine the best characterization techniques for technology transfer.

  8. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    SciTech Connect (OSTI)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandia's extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  9. EMERGING CAPABILITIES FOR MATERIALS CHARACTERIZATION WITH POLYCHROMATIC MICRODIFFRACTION8

    SciTech Connect (OSTI)

    Ice, Gene E; Larson, Ben C; Budai, John D; Specht, Eliot D; Barabash, Rozaliya; Pang, Judy; Tischler, Jonathan; Liu, Wenjun

    2014-01-01

    Polychromatic microdiffraction is an emerging tool for mapping local crystal structure with submicron three-dimensional resolution. The method is sensitive to the local crystal phase, crystallographic orientation, elastic strain, and lattice curvature. For many materials it is also nondestructive, which allows for unique experiments that probe how particular structural configurations evolve during processing and service. This capability opens up the possibility of testing and guiding theories without the limitations imposed by destructive techniques, surface-limited measurements or ensemble averages. This new capability will impact long-standing issues of materials science ranging from the factors that control anisotropic materials deformation to factors that influence grain growth, grain boundary migration, electromigration and stress driven materials evolution. Such mesoscopic phenomena are at the heart of virtually all materials processing and form the basis for modern materials engineering. Here we describe the state-of-the-art, and discuss new instrumentation with the promise of better sensitivity and better real and reciprocal space resolution. Example science and future research opportunities are described.

  10. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    SciTech Connect (OSTI)

    Alam, Todd M.

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  11. SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES

    SciTech Connect (OSTI)

    Koenig, R.

    2013-07-02

    In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

  12. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  13. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  14. Science and Technology Perspectives on R&D Partnerships (Presentation)

    SciTech Connect (OSTI)

    Raffaelle, R. P.

    2009-11-01

    Description of capabilities of the National Center for Photovoltaics, its focus on PV technology innovations that drive PV industry growth, and methods employed for collaborating with universities and industry.

  15. Nuclear Forensics: A Capability at Risk (Abbreviated Version)

    SciTech Connect (OSTI)

    National Research Council of the National Academies

    2010-07-01

    Nuclear forensics is important to our national security. Actions, including provision of appropriate funding, are needed now to sustain and improve the nation's nuclear forensics capabilities. The Department of Homeland Security (DHS), working with cooperating agencies and national laboratories, should plan and implement a sustainable, effective nuclear forensics program. Nuclear forensics is the examination and evaluation of discovered or seized nuclear materials and devices or, in cases of nuclear explosions or radiological dispersals, of detonation signals and post-detonation debris. Nuclear forensic evidence helps law enforcement and intelligence agencies work toward preventing, mitigating, and attributing a nuclear or radiological incident. This report, requested by DHS, the National Nuclear Security Administration, and the Department of Defense, makes recommendations on how to sustain and improve U.S. nuclear forensics capabilities. The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of interdicted materials and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline. Major areas of concern include: Organization. The responsibility for nuclear forensics is shared by several agencies without central authority and with no consensus on strategic requirements to guide the program. This organizational complexity hampers the program and could prove to be a major hindrance operationally. Sustainability. The nation's current nuclear forensics capabilities are available primarily because the system of laboratories, equipment, and personnel upon which they depend was developed and funded by the nuclear weapons program. However, the weapons program's funds are declining. Workforce and Infrastructure. Personnel skilled in nuclear forensics

  16. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  17. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  18. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  19. New process schemes, retrofits, fine tune alkylation capabilities

    SciTech Connect (OSTI)

    Rhodes, A.K.

    1994-08-22

    Given alkylate's position as a key bleeding component for reformulated and oxygenated gasolines, process licensors have been working toward improved operation and design of alkylation technologies. An overview of the progress some of these companies have made will give refiners an update on the status of these new schemes. Phillips Petroleum Co. is a major licensor of HF alkylation units. Phillips' latest major process improvement is its so-called split-olefin feed technology (SOFT). By reducing the overall isobutane-to-olefin ratio (I/O) while maintaining a high I/O in the reaction zone, alkylate quality can be maintained and energy usage reduced. Other modifications have improved unit safety and environmental performance. The paper also discusses H[sub 2]SO[sub 4] alkylation processes and the Kellogg/Exxon alkylation process improvements.

  20. Robust Diamond-Based RF Switch Yields Enhanced Communication Capabilities |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Robotics program gets boost from $10,000 donation Friday, March 27, 2015 - 3:43pm Consolidated Nuclear Security (CNS), managing and operating contractor of NNSA's Pantex Plant and the Y-12 National Security Complex, this week donated $10,000 to Bushland Independent School District (ISD) in Texas. The donation will help create a multi-level robotics program for the school district. The donation also serves as an investment in science, technology, engineering

  1. Real time capable infrared thermography for ASDEX Upgrade

    SciTech Connect (OSTI)

    Sieglin, B. Faitsch, M.; Herrmann, A.; Brucker, B.; Eich, T.; Kammerloher, L.; Martinov, S.

    2015-11-15

    Infrared (IR) thermography is widely used in fusion research to study power exhaust and incident heat load onto the plasma facing components. Due to the short pulse duration of today’s fusion experiments, IR systems have mostly been designed for off-line data analysis. For future long pulse devices (e.g., Wendelstein 7-X, ITER), a real time evaluation of the target temperature and heat flux is mandatory. This paper shows the development of a real time capable IR system for ASDEX Upgrade. A compact IR camera has been designed incorporating the necessary magnetic and electric shielding for the detector, cooler assembly. The camera communication is based on the Camera Link industry standard. The data acquisition hardware is based on National Instruments hardware, consisting of a PXIe chassis inside and a fibre optical connected industry computer outside the torus hall. Image processing and data evaluation are performed using real time LabVIEW.

  2. Low resistance bakelite RPC study for high rate working capability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore » structure performs as efficiently as traditional RPCs.« less

  3. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect (OSTI)

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  4. Statistical evaluation of PACSTAT random number generation capabilities

    SciTech Connect (OSTI)

    Piepel, G.F.; Toland, M.R.; Harty, H.; Budden, M.J.; Bartley, C.L.

    1988-05-01

    This report summarizes the work performed in verifying the general purpose Monte Carlo driver-program PACSTAT. The main objective of the work was to verify the performance of PACSTAT's random number generation capabilities. Secondary objectives were to document (using controlled configuration management procedures) changes made in PACSTAT at Pacific Northwest Laboratory, and to assure that PACSTAT input and output files satisfy quality assurance traceability constraints. Upon receipt of the PRIME version of the PACSTAT code from the Basalt Waste Isolation Project, Pacific Northwest Laboratory staff converted the code to run on Digital Equipment Corporation (DEC) VAXs. The modifications to PACSTAT were implemented using the WITNESS configuration management system, with the modifications themselves intended to make the code as portable as possible. Certain modifications were made to make the PACSTAT input and output files conform to quality assurance traceability constraints. 10 refs., 17 figs., 6 tabs.

  5. New capabilities and applications for electrophoretically deposited coatings

    SciTech Connect (OSTI)

    Sharp, D.J.

    1991-01-01

    Our primary purpose in this test is to provide a brief general description of a few applications of various electrophoretic systems which have been investigated and have found use in various coating applications at Sandia National Laboratories. Both organic and inorganic suspensions in aqueous and non-aqueous media have been considered in these studies. Applications include high voltage insulating dielectrics, thermally conductive/electrically insulating films, adherent lubricating films, uniform photoresist films, glass coatings, and fissile uranium oxide/carbon composite films for studies of nuclear powered lasers. More recently, we have become interested in the beneficial environmental aspects of being able to provide protective polymer coatings which reduce or minimize the use of organic solvents required by traditional spray coat processes. Important practical factors which relate to film uniformity, adhesion, and composition are related to unique coating or plating capabilities and applications. 6 refs., 2 figs., 1 tab.

  6. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Boehm, Leah (Jerusalem, IL); Volin, Kenneth J. (Fort Collins, CO); Delbacq, Charles J. (Downers Grove, IL)

    1985-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  7. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, Sherman (Park Forest, IL); Delbecq, Charles J. (Downers Grove, IL); Volin, Kenneth J. (Fort Collins, CO); Boehm, Leah (Jerusalem, IL)

    1984-01-01

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS.sub.2, B.sub.2 S.sub.3 and SiS.sub.2 in mixture with a glass modifier such as Na.sub.2 S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na.sub.2 O:XB.sub.2 S.sub.3 is disclosed.

  8. Stand Up of Uranium Capability for Swipe Analysis

    SciTech Connect (OSTI)

    Matthew Watrous; Anthony Appelhans; Robert Hague; Tracy Houghton; John Olson

    2013-11-01

    The INL has established the capability to process and analyze swipe samples to determine if the amount of U and Pu present on equipment and facilities are at the level typical for natural background, to quantify their isotopic composition and to determine if any off-normal isotopic ratio present in the sample is statistically relevant. A previous report detailed this capability for Pu and preliminarily for U; this report describes the measurements and analysis that were performed to demonstrate the INL capability for U. To establish that a piece of equipment is not contaminated with the element to be sampled, a fabric swipe is used to collect a sample of the materials present on the surface. The swipes are then processed and analyzed to determine if Pu and U are present on the sample at levels above what is accepted as natural background and, for the case of U, whether the isotope ratios deviate from the accepted natural background levels. Both the method applied for chemical processing of the swipes to remove and isolate the U and Pu and the method used to analyze the extracts influences the sensitivity and specificity. Over the years various methods have been developed for processing and analyzing these types of samples; the gold standard for these measurements involves a lengthy and complex separation process followed by analysis using thermal ionization mass spectrometry (TIMS). However, this method is expensive and time consuming, thus driving a need for a less complicated and more efficient method that provides the necessary level of sensitivity and specificity. Advances in Inductively Coupled Plasma Mass Spectrometry (ICPMS) over the last decade have enabled analyses of U and Pu that rival that of TIMS. This, coupled with the potential for simplifying the extraction and separation process required for an ICPMS analysis, prompted the INL’s development of methods that provide the analysis of swipes in a timely and efficient manner. U is present in the blank

  9. NGNP Data Management and Analysis System Modeling Capabilities

    SciTech Connect (OSTI)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  10. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  11. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Boehm, L.; Volin, K.J.; Delbecq, C.J.

    1982-05-06

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS/sub 2/, B/sub 2/S/sub 2/ and SiS/sub 2/ in mixture with a glass modifier such as Na/sub 2/S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1 - X) Na/sub 2/O:XB/sub 2/S/sub 3/ is disclosed.

  12. Glass capable of ionic conduction and method of preparation

    DOE Patents [OSTI]

    Susman, S.; Delbecq, C.J.; Volin, K.J.; Boehm, L.

    1984-02-21

    Sulfide glasses capable of conducting alkali metal ions are prepared from a nonmetal glass former such as GeS[sub 2], B[sub 2]S[sub 3] and SiS[sub 2] in mixture with a glass modifier such as Na[sub 2]S or another alkali metal sulfide. A molten mixture of the constituents is rapidly quenched to below the glass transition temperature by contact with a metal mold. The rapid quench is sufficient to prevent crystallization and permit solidification as an amorphous solid mixture. An oxygen-free atmosphere is maintained over the mixture to prevent oxidation. A new glass system of (1-X) Na[sub 2]O:XB[sub 2]S[sub 3] is disclosed. 4 figs.

  13. Fission matrix capability for MCNP, Part II - Applications

    SciTech Connect (OSTI)

    Carney, S. E.; Brown, F. B.; Kiedrowski, B. C.; Martin, W. R.

    2013-07-01

    This paper describes the initial experience and results from implementing a fission matrix capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost during the normal simulation for criticality calculations. It can be used to provide estimates of the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the power method iterations. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of the matrix, permitting much larger and more accurate fission matrix representations. Numerous examples are presented. A companion paper (Part I - Theory) describes the theoretical basis for the fission matrix method. (authors)

  14. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect (OSTI)

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  15. Development of an analysis capability for the National Transportation System

    SciTech Connect (OSTI)

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  16. Conceptual Evaluation for the Installation of Treatment Capability for Mixed Low Level Waste at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-11-24

    National Security Technologies, LLC, initiated an evaluation of treatment technologies that they would manage and operate as part of the mixed low-level waste (MLLW) disposal facilities at the Nevada National Security Site (NNSS). The NNSS Disposal Facility has been receiving radioactive waste from the U.S. Department of Energy (DOE) complex since the 1960s, and since 2005 the NNSS Disposal Facility has been receiving radioactive and MLLW for disposal only. In accordance with the Resource Conservation and Recovery Act (RCRA), all mixed waste must meet land disposal restrictions (LDRs) prior to disposal. Compliance with LDRs is attained through treatment of the waste to mitigate the characteristics of the listed waste hazard. Presently, most generators utilize commercial capacity for waste treatment prior to shipment to the NNSS Disposal Facility. The objectives of this evaluation are to provide a conceptual study of waste treatment needs (i.e., demand), identify potential waste treatment technologies to meet demand, and analyze implementation considerations for initiating MLLW treatment capacity at the NNSS Disposal Facility. A review of DOE complex waste generation forecast data indicates that current and future Departmental demand for mixed waste treatment capacity will remain steady and strong. Analysis and screening of over 30 treatment technologies narrowed the field of treatment technologies to four: Macroencapsulation Stabilization/microencapsulation Sort and segregation Bench-scale mercury amalgamation The analysis of treatment technologies also considered existing permits, current the NNSS Disposal Facility infrastructure such as utilities and procedures, and past experiences such as green-light and red-light lessons learned. A schedule duration estimate has been developed for permitting, design, and construction of onsite treatment capability at the NNSS Disposal Facility. Treatment capability can be ready in 20 months.

  17. Production Technology | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Production Technology NNSA continues to assure the safety, security, and reliability of the existing stockpile as it progresses towards a newly responsive nuclear weapons infrastructure as called for in the 2001 Nuclear Posture Review and described in the vision for Complex Transformation. The work is one of the key providers of design-to-manufacturing and technological readiness capabilities for this transformation effort. NNSA closely integrates planning and project selection prioritization

  18. Computing and Computational Sciences Directorate - Information Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology Information Technology (IT) at ORNL serves a diverse community of stakeholders and interests. From everyday operations like email and telecommunications to institutional cluster computing and high bandwidth networking, IT at ORNL is responsible for planning and executing a coordinated strategy that ensures cost-effective, state-of-the-art computing capabilities for research and development. ORNL IT delivers leading-edge products to users in a risk-managed portfolio of

  19. Development of explosive event scale model testing capability at Sandia`s large scale centrifuge facility

    SciTech Connect (OSTI)

    Blanchat, T.K.; Davie, N.T.; Calderone, J.J.

    1998-02-01

    Geotechnical structures such as underground bunkers, tunnels, and building foundations are subjected to stress fields produced by the gravity load on the structure and/or any overlying strata. These stress fields may be reproduced on a scaled model of the structure by proportionally increasing the gravity field through the use of a centrifuge. This technology can then be used to assess the vulnerability of various geotechnical structures to explosive loading. Applications of this technology include assessing the effectiveness of earth penetrating weapons, evaluating the vulnerability of various structures, counter-terrorism, and model validation. This document describes the development of expertise in scale model explosive testing on geotechnical structures using Sandia`s large scale centrifuge facility. This study focused on buried structures such as hardened storage bunkers or tunnels. Data from this study was used to evaluate the predictive capabilities of existing hydrocodes and structural dynamics codes developed at Sandia National Laboratories (such as Pronto/SPH, Pronto/CTH, and ALEGRA). 7 refs., 50 figs., 8 tabs.

  20. CSP technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy