National Library of Energy BETA

Sample records for technology emissions reduction

  1. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  2. Optimal Deployment of Emissions Reduction Technologies for Construction Equipment

    E-Print Network [OSTI]

    Quadrifoglio, Luca

    Optimal Deployment of Emissions Reduction Technologies for Construction Equipment Muhammad Ehsanul The objective of this research was to develop a multiob- jective optimization model to deploy emissions reduction technologies for nonroad construction equipment to re- duce emissions in a cost

  3. Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise

    SciTech Connect (OSTI)

    Clarke, Leon E.; Fawcett, Allen; Weyant, John; McFarland, Jim; Chaturvedi, Vaibhav; Zhou, Yuyu

    2014-09-01

    This paper discusses Technology and U.S. Emissions Reductions Goals: Results of the EMF 24 Modeling Exercise

  4. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect (OSTI)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.

  5. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect (OSTI)

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  6. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  7. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect (OSTI)

    Ashton, W.B.; Barns, D.W. (Pacific Northwest Lab., Richland, WA (USA)); Bradley, R.A. (USDOE Office of Policy, Planning and Analysis, Washington, DC (USA). Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  8. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  9. Optimal Deployment Plan of Emission Reduction Technologies for TxDOT's Construction Equipment†

    E-Print Network [OSTI]

    Bari, Muhammad Ehsanul

    2010-10-12

    -road equipment of TxDOT to reduce emissions in a cost effective and optimal manner. Three technologies were considered for deployment in this research, (1) hydrogen enrichment (HE), (2) selective catalytic reduction (SCR) and (3) fuel additive (FA... Gas ....................................................................... 24 Biodiesel ............................................................................ 24 Hydrogen...

  10. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  11. Penetration and air-emission-reduction benefits of solar technologies in the electric utilities

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1981-01-01

    The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

  12. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  13. The potential of future aircraft technology for noise and pollutant emissions reduction

    E-Print Network [OSTI]

    Graham, W. R.; Hall, C. A.; Vera Morales, M.

    2014-03-27

    Aviation and the Environment The potential of future aircraft technology for noise and pollutant emissions reduction W R Graham1, C A Hall, M Vera Morales2 Institute for Aviation and the Environment, University of Cambridge, Cambridge, CB3 0DY, UK... , cruising either at the same Mach number (0.77) as the A320 ó the Ďfast open rotorí ó or at Mach 0.66 ó the Ďreduced-speed open rotorí. Their fuel consumption figures come from a range-equation analysis (cf. Section 2.1). Estimates for the 2025 values...

  14. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production†

    E-Print Network [OSTI]

    Hasanbeigi, A.; Price, L.; Lin, E.

    2012-01-01

    Globally, the cement industry accounts for approximately 5 percent of current man-made carbon dioxide (CO2) emissions. Development of new energy-efficiency and CO2 emission-reduction technologies and their deployment in the market will be key...

  15. The Politics of Carbon Dioxide Emissions Reduction: The Role of Pluralism in Shaping the Climate Change Technology Initiative

    E-Print Network [OSTI]

    Golden, Dylan

    1999-01-01

    sources of carbon dioxide emissions are the destruction ofat 570. 1998/99] CARBON DIOXIDE EMISSIONS REDUCTION causedat 438. 1998/99] CARBON DIOXIDE EMISSIONS REDUCTION trucks.

  16. Recent advances in carbon emissions reduction: policies, technologies, monitoring, assessment and modeling

    E-Print Network [OSTI]

    Moore, John

    energy systems Carbon capture and storage Geoengineering approaches Carbon trade/tax schemes a b s t r Keywords: Carbon emissions reduction Improved energy use efficiency Implementation of low-fossil carbon in this special volume assess alternative carbon emissions reduction approaches, such as carbon capture

  17. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  18. Clean coal technology: selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect (OSTI)

    NONE

    2005-05-01

    The report discusses a project carried out under the US Clean Coal Technology (CCT) Demonstration Program which demonstrated selective catalytic reduction (SCR) technology for the control of NOx emissions from high-sulphur coal-fired boilers under typical boilers conditions in the United States. The project was conducted by Southern Company Services, Inc., who served as a co-funder and as the host at Gulf Power Company's Plant Crist. The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the flue gas through a catalyst bed where the Nox and NH{sub 3} react to form nitrogen and water vapor. The results of the CCTDP project confirmed the applicability of SCR for US coal-fired power plants. In part as a result of the success of this project, a significant number of commercial SCR units have been installed and are operating successfully in the United States. By 2007, the total installed SCR capacity on US coal-fired units will number about 200, representing about 100,000 MWe of electric generating capacity. This report summarizes the status of SCR technology. 21 refs., 3 figs., 2 tabs., 10 photos.

  19. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US...

  20. SCR Technologies for NOx Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for NOx Reduction SCR Technologies for NOx Reduction 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerhesser.pdf More...

  1. Alternative SO sub 2 and NO sub x emission reduction technologies for stationary sources: A comparative analysis

    SciTech Connect (OSTI)

    Emmel, T.E. (Radian Corp., Austin, TX (USA)); South, D.W. (Argonne National Lab., IL (USA))

    1990-01-01

    Emission control of acid rain precursors is currently the subject of intense debate on Capitol Hill. Numerous bills have been introduced which call for substantial reduction in sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from operating utility and industrial boilers. The primary focus of the debates is on the cost, applicability and potential market impacts of emissions control options available to achieve the desired reductions. These topics are also the focus of a report in preparation for the 1990 Assessment of the National Acid Precipitation Assessment Program (NAPAP). This paper summarizes some of the abatement technology information for utility boilers contained in the NAPAP report. First the major provisions in the proposed acid rain legislation are summarized and the emission reduction options potentially applicable to the utility boiler population discussed. This is followed by discussion of the retrofit issues for utility boilers and a synopsis of the applicability and cost of retrofit emission control options. Since the focus of the current proposed legislation is on near-term reduction requirements for utility boilers, this paper emphasizes retrofit control options. 1 ref., 12 figs., 3 tabs.

  2. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  3. Characterizing Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign

    Broader source: Energy.gov [DOE]

    Evaluation of in-use DPFs shows levels of reduction within in-use testing objectives: PM emission reductions >90%, elemental/black carbon reduction of ~99%, and retrofit durability.

  4. Progress Update: Creating Mobile Emission Reduction Credits

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists

  5. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect (OSTI)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.

  6. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation could

  7. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999

    Broader source: Energy.gov [DOE]

    Assessment of the potential of CHP technologies to reduce carbon emissions in the US chemicals and pulp and paper industries.

  8. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    oil shale. Emerging technologies enable the use of these alternative raw materials as well as production of cement

  9. Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Baskaran, Suresh; Kupe, J.

    2000-12-31

    This paper presents an overview of a non-thermal plasma assisted catalyst system as applied to a small displacement diesel powered vehicle. In addition to effectively reducing NOx emissions, it has been found that a non-thermal plasma can also destroy a portion of the particulate matter (PM) that is emitted from diesel engines. Delphi Automotive Systems in conjunction with Pacific Northwest National Laboratories has been developing such an exhaust aftertreatment system to reduce emissions form diesel vehicles. The results of testing and system evaluation will be discussed in general, and the effectiveness on reducing oxides of nitrogen and particulate matter emissions from diesel vehicles. Published in Future Engines-SP1559, SAW, Warrendale, PA

  10. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    2009. CO 2 Capture in the Cement Industry. Energy Procedia2 Capture Technologies for Cement Industry. Energy Procedia,J.M. Makar, T. Sato. 2010. Cement and concrete nanoscience

  11. Update on Diesel Exhaust Emission Control Technology and Regulations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control Technology and Regulations Update on Diesel Exhaust Emission Control Technology and Regulations 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation:...

  12. Emissions Reduction Impact of Renewables†

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs... of NOx/MWh Unit: lbs of NOx/MWh p. 26 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 OSD eGrid for NOx Emissions Unit: Tons of NOx/OSD p. 27 Energy Systems Laboratory ? 2012 p. 28 Energy Systems Laboratory ? 2012 p...

  13. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

  14. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect (OSTI)

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  15. Emissions Reductions as a Result of Automobile Improvement

    E-Print Network [OSTI]

    Denver, University of

    Emissions Reductions as a Result of Automobile Improvement S A J A L S . P O K H A R E L , G A R Y emissions of automobile fleets in Denver for 13 years and in two other U.S. cities for 5 years. Analysis continually less polluting independent of measurement location. Improving emissions control technology spurred

  16. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    sulfur dioxide smelting reduction smelting reduction iron three-dimensional tonne top-gas recycling blast furnace tonnes per day ultra-low-

  17. The Politics of Carbon Dioxide Emissions Reduction: The Role of Pluralism in Shaping the Climate Change Technology Initiative

    E-Print Network [OSTI]

    Golden, Dylan

    1999-01-01

    in Shaping the Climate Change Technology Initiative Dylaninvolved in the Climate Change Technology Initiative priorare listed below: 8 CLIMATE CHANGE TECHNOLOGY INITIATIVE (

  18. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Emerging Technologies for Ironmaking Using Blast FurnaceAgglomerates 3.4. Alternative Ironmaking Technologies 3.4.1.Tecnored 3.4.4. ITmk3 Ironmaking Process 3.4.5. Paired

  19. Creating Mobile Emission Reduction Credits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creating Mobile Emission Reduction Credits Creating Mobile Emission Reduction Credits 2002 DEER Conference Presentation: Emission Credit Brokers 2002deersloan.pdf More Documents...

  20. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Haszeldine, Stuart

    Projections (UEP) [1] show a decrease over the next two decades, but at a reduced rate compared to the 1990's represent electricity supplies with no (historically) or low (UEP projections) UK CO2 reduction targets of alternative options to deliver at a lower price. Additional costs for the 'decarbonised electricity' options

  1. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology, by itself, the scope or quantity of greenhouse gas emissions reductions needed to achiev

  2. Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials...

    Open Energy Info (EERE)

    Mexico - Greenhouse Gas Emissions Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name Mexico - Greenhouse Gas Emissions Baselines and Reduction...

  3. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

  4. Perspectives Regarding Diesel Engine Emissions Reduction in the Northeast

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Presentation: North East States for Coordinated Air Use Management

  5. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company's Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  6. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1991

    SciTech Connect (OSTI)

    Not Available

    1992-02-03

    This quarterly report discusses the technical progress of a US Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) Project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The project is being conducted at Gulf Power Company`s Plant Lansing Smith Unit 2 located near Panama City, Florida. The primary objective of this demonstration is to determine the long-term effects of commercially available tangentially-fired low NO{sub x} combustion technologies on NO{sub x} emissions and boiler performance. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project.

  7. EA-1472: Commercial Demonstration fo the Low Nox Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Holcolm Station, Sunflower Electric Power Corporation Finnety County, Kansas

    Broader source: Energy.gov [DOE]

    The DOE has prepared an Environmental Assessment (EA), to analyze the potential impacts of the commercial application of the Low-NOx Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve nitrogen oxide (NOx) emissions reduction at Sunflowerís Holcomb Unit No. 1 (Holcomb Station), located near Garden City, in Finney County, Kansas. The Holcomb Station would be modified in three distinct phases to demonstrate the synergistic effect of layering NOx control technologies.

  8. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect (OSTI)

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  9. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect (OSTI)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  10. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf More Documents & Publications Cleaning Up Diesel Engines...

  11. Methodology for Estimating Reductions of GHG Emissions from Mosaic...

    Open Energy Info (EERE)

    Methodology for Estimating Reductions of GHG Emissions from Mosaic Deforestation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Estimating Reductions of...

  12. Reduction of Emissions from a High Speed Ferry | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from a High Speed Ferry Reduction of Emissions from a High Speed Ferry 2003 DEER Conference Presentation: West Virginia University 2003deerthompson.pdf More Documents &...

  13. Emissions Reduction Experience with Johnson Matthey EGRT on Off...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Performance of Johnson Matthey EGRT Emission Control System for NOx and PM Emission Reduction in Retrofit Applications Part 1 Performance of Johnson...

  14. South Africa - Greenhouse Gas Emission Baselines and Reduction...

    Open Energy Info (EERE)

    South Africa - Greenhouse Gas Emission Baselines and Reduction Potentials from Buildings Jump to: navigation, search Name South Africa - Greenhouse Gas Emission Baselines and...

  15. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    NONE

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  16. Methods for reduction of charging emissions

    SciTech Connect (OSTI)

    Schuecker, F.J.; Schulte, H. [Krupp Uhde GmbH, Dortmund (Germany)

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  17. NO{sub x} Emission Abatement Technologies

    SciTech Connect (OSTI)

    Goles, R

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) will convert Hanford Site high-level liquid defense waste to a solid vitrified (glass) form suitable for final disposal in a geological repository. Future process flow sheet developments may establish a need for a NO, scrubber in the melter off-gas system. Consequently, a technology review has been conducted to identify and compare applicable off-gas processing alternatives should NO, emission abatement be required. Denitrification processes can be separated into two distinct categories, wet or dry, depending upon whether or not NO{sub x} is absorbed into an aqueous solution. The dry methods of removal are generally more efficient (>90%) than wet scrubbing approaches (>60%); however, most dry approaches are applicable only to NO,. Of the dry removal methods, selective catalytic reduction (SCR) using NH3 reductant and a hydrogen zeolite catalyst appears to be the most suitable technology for reducing HWVP NO{sub x} emissions should emission abatement be required. SCR is a relatively simple, well established technology that produces no secondary waste stream and is applicable to a wide range of NO{sub x} concentrations (500 to 30,000 ppm). This technology has been successfully applied to uranium dissolver exhaust streams and has, more recently, been tested and evaluated as the best available control technology for reducing NO, emissions at the Idaho National Engineering Laboratory's waste calciner facility, and at DOE's West Valley Demonstration Project. Unlike dry NO, scrubbing methods, the wet techniques are not specific to NO{sub x}, so they may support the process in more than one way. This is the only major advantage associated with wet technologies. Their disadvantages are that they are not highly efficient at low NO{sub x} concentrations, they produce a secondary waste stream, and they may require complex chemical support to reduce equipment size. Wet scrubbing of HWVP process NO{sub x} emissions is an option that is justifiable only if the technology is needed to eliminate other process emissions and scrubbing compatibility can be established.

  18. Innovative Clean Coal Technology (ICCT): 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Topical report, LNCFS Levels 1 and 3 test results

    SciTech Connect (OSTI)

    Not Available

    1993-08-17

    This report presents results from the third phase of an Innovative Clean Coal Technology (ICC-1) project demonstrating advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from a coal-fired boiler. The purpose of this project was to study the NO{sub x} emissions characteristics of ABB Combustion Engineering`s (ABB CE) Low NO{sub x} Concentric Firing System (LNCFS) Levels I, II, and III. These technologies were installed and tested in a stepwise fashion at Gulf Power Company`s Plant Lansing Smith Unit 2. The objective of this report is to provide the results from Phase III. During that phase, Levels I and III of the ABB C-E Services Low NO{sub x} Concentric Firing System were tested. The LNCFS Level III technology includes separated overfire air, close coupled overfire air, clustered coal nozzles, flame attachment coal nozzle tips, and concentric firing. The LNCFS Level I was simulated by closing the separated overfire air nozzles of the LNCFS Level III system. Based upon long-term data, LNCFS Level HI reduced NO{sub x} emissions by 45 percent at full load. LOI levels with LNCFS Level III increased slightly, however, tests showed that LOI levels with LNCFS Level III were highly dependent upon coal fineness. After correcting for leakage air through the separated overfire air system, the simulated LNCFS Level I reduced NO{sub x} emissions by 37 percent. There was no increase in LOI with LNCFS Level I.

  19. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    #12;The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on Electricity Prices the impact of proposed federal regulations aimed at reductions in carbon dioxide (CO2) emissions gas emissions; however, it does not attempt to model the full details of the proposed legislation

  20. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and...

  1. Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental Externalities

    E-Print Network [OSTI]

    McCarl, Bruce A.

    support for allocating resources to alter the market mix of carbon sequestration and direct emission carbon sequestration practices also influence the environment by for example reducing erosion1 Sequestration Offsets versus Direct Emission Reductions: Consideration of Environmental

  2. Introduction The reduction of nitrogen oxide emissions is

    E-Print Network [OSTI]

    Sandoghdar, Vahid

    is attained in a post-catalyst homogeneous combustion zone.This process leads to substantial reduction of NOxIntroduction The reduction of nitrogen oxide emissions is of great importance in practical emissions (typically NOx is produced exclusively from the gaseous (homogeneous) reaction path

  3. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control, Prepared byReduction (SCR) Technology for the Control of Nitrogen Oxide (NOx)NOx removal technologies. Volume 1. Selective catalytic reduction.

  4. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect (OSTI)

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  5. Comparison of Particle Sizing Instrument Technologies for Vehicle Emissions Testing

    E-Print Network [OSTI]

    Chen, Vincent

    2014-01-01

    Technologies for Vehicle Emissions Testing A ThesisTechnologies for Vehicle Emissions Testing by Vincent Chen9 Figure 3-1. Schematic diagram of vehicle emissions

  6. Policy effectiveness for road passenger transport emissions reductions across the world

    E-Print Network [OSTI]

    Mercure, J -F

    2014-01-01

    The effectiveness of policy for emissions reductions in private passenger road transport depends on its ability to incentivise consumers to make choices oriented towards lower emissions vehicles. However, car purchase choices are known to be strongly socially determined, and this sector is highly diverse due to significant socio-economic differences between consumer groups. Here, we present a comprehensive analysis of the structure of the 2012 private passenger vehicle fleet-years in six major economies across the World (UK, USA, China, India, Japan and Brazil) in terms of prices, engine sizes and emissions. This is done in order to evaluate the effectiveness of existing and possible fiscal and technological change policies for emissions reductions. We provide tools to understand and evaluate the effectiveness of policy taking account of the distributive structure of prices and emissions in segments of a diverse market, both for conventional as well as unconventional engine technologies. We furthermore explai...

  7. Air Emissions Reduction Assistance Program (Iowa) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Provider Iowa Department of Natural Resources The State of Iowa may provide financial assistance in the form of loans andor grants to projects aimed at reducing air emissions...

  8. Diesel Engine Emission Reduction (DEER) Experiment | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Diesel Injection Shear-Stress Advanced Nozzle (DISSAN) Emissions and Durability of Underground Mining Diesel...

  9. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Not Available

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  10. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  11. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

  12. Estimation and Reduction Methodologies for Fugitive Emissions from Equipment†

    E-Print Network [OSTI]

    Scataglia, A.

    1992-01-01

    and Reduction Methodologies for Fugitive Emissions from Equipment Anthony Scataglia, Branch Manager, Team, Incorporated, Webster, Texas ABSTRACT Environmental regulations have resulted in the need for industrial facilities to reduce fugitive emissions... from equipment leaks to their lowest possible level. This paper presents and compares approved methods outlined by the U.S. Environmental Protection Agency (EPA) for estimating fugitive emissions from equipment leaks, as well as strategies...

  13. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI); Thiel, Matthew P. (Madison, WI)

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  14. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect (OSTI)

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury capture. During July, August, and September 2007, BES designed, procured, installed, and tested the slurry injection system at Beaver Valley. Slurry production was performed by Penn State University using equipment that was moved from campus to the Beaver Valley site. Waste coal fines were procured from Headwaters Inc. and transported to the site in Super Sacks. In addition, bituminous coal was pulverized at Penn State and trucked to the site in 55-gallon drums. This system was operated for three weeks during August and September 2007. NO{sub x} emission data were obtained using the plant CEM system. Hg measurements were taken using EPA Method 30B (Sorbent Trap method) both downstream of the electrostatic precipitator and in the stack. Ohio Lumex Company was on site to provide rapid Hg analysis on the sorbent traps during the tests. Key results from these tests are: (1) Coal Fines reburn alone reduced NO{sub x} emissions by 0-10% with up to 4% heat input from the CWS. However, the NO{sub x} reduction was accompanied by higher CO emissions. The higher CO limited our ability to try higher reburn rates for further NO{sub x} reduction. (2) Coal Fines reburn with Urea (Carbon enhanced SNCR) decreased NO{sub x} emissions by an additional 30% compared to Urea injection only. (3) Coal slurry injection did not change Hg capture across the ESP at full load with an inlet temperature of 400-430 F. The Hg capture in the ESP averaged 40%, with or without slurry injection; low mercury particulate capture is normally expected across a higher temperature ESP because any oxidized mercury is thought to desorb from the particulate at ESP temperatures above 250 F. (4) Coal slurry injection with halogen salts added to the mixing tank increased the Hg capture in the ESP to 60%. This significant incremental mercury reduction is important to improved mercury capture with hot-side ESP operation and wherever hindrance from sulfur oxides limit mercury reduction, because the higher temperature is above sulfur oxide dew point interference.

  15. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  16. Grid Expansion Planning for Carbon Emissions Reduction

    SciTech Connect (OSTI)

    Bent, Russell W. [Los Alamos National Laboratory; Toole, Gasper L. [Los Alamos National Laboratory

    2012-07-18

    There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

  17. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    SciTech Connect (OSTI)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  18. Review of Diesel Emission Control Technology | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emission Control Technology Review of Diesel Emission Control Technology 2002 DEER Conference Presentation: Corning Inc. 2002deerjohnson.pdf More Documents & Publications...

  19. Low-Emissions Burner Technology using Biomass-Derived Liquid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels This factsheet describes a project that...

  20. Adaptive engine injection for emissions reduction

    DOE Patents [OSTI]

    Reitz, Rolf D. (Madison, WI): Sun, Yong (Madison, WI)

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  1. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  2. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect (OSTI)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  3. Driving down emissions : analyzing a plan for meeting Massachusetts' carbon emission reduction targets for passenger vehicles

    E-Print Network [OSTI]

    Irvin, Elizabeth J. (Elizabeth Joanna)

    2015-01-01

    Massachusetts is one of the US states at the forefront of carbon emission reduction policy, and has the potential to model success to the rest of the country. The state's Global Warming Solutions Act (GWSA) passed in 2008, ...

  4. The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on

    E-Print Network [OSTI]

    by 2025. Due to the state's heavy reliance on coal as a fuel source for electricity generation, Indiana#12;The Projected Impacts of Carbon Dioxide Emissions Reduction Legislation on Electricity Prices on the projected prices of electricity and the use of electric energy in the state of Indiana. The analysis

  5. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. Iron and Steel sector

    E-Print Network [OSTI]

    Worrell, Ernst; Martin, N.; Price, L.

    1999-01-01

    Effectiveness of Carbon Dioxide Emission Reduction AchievedEfficiency and Carbon Dioxide Emissions Reduction PotentialEnergy Use and Carbon Dioxide Emissions by Process in U.S.

  6. Validating the role of AFVs in voluntary mobile source emission reduction programs.

    SciTech Connect (OSTI)

    Santini, D. J.; Saricks, C. L.

    1999-03-17

    Late in 1997, EPA announced new allowances for voluntary emission control programs. As a result, the US Department of Energy's (DOE) Clean Cities and other metro areas that have made an ongoing commitment to increasing participation by alternative fuel vehicles (AFVs) in local fleets have the opportunity to estimate the magnitude and obtain emission reduction credit for following through on that commitment. Unexpectedly large reductions in key ozone precursor emissions in key locations and times of the day can be achieved per vehicle-mile by selecting specific light duty AFV offerings from original equipment manufacturers (OEMs) in lieu of their gasoline-fueled counterparts. Additional benefit accrues from the fact that evaporative emissions of non-methane hydrocarbons (generated in the case of CNG, LNG, and LPG by closed fuel-system AFV technology) can be essentially negligible. Upstream emissions from fuel storage and distribution with the airshed of interest are also reduced. This paper provides a justification and outlines a method for including AFVs in the mix of strategies to achieve local and regional improvements in ozone air quality, and for quantifying emission reduction credits. At the time of submission of this paper, the method was still under review by the US EPA Office of Mobile Sources, pending mutually satisfactory resolution of several of its key points. Some of these issues are discussed in the paper.

  7. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  8. Vehicle Technologies Office Merit Review 2014: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  9. Vehicle Technologies Office Merit Review 2015: Emissions Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Modeling: GREET Life Cycle Analysis Vehicle Technologies Office Merit Review 2015: Emissions Modeling: GREET Life Cycle Analysis Presentation given by Argonne National...

  10. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect (OSTI)

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM while not affecting fuel consumption or engine performance compared to the baseline marine diesel. The results showed that a nominal 40% reduction in TPM was realized when switching from the marine diesel to the ULSD. A small reduction in NOx was also shown between the marine fuel and the ULSD. The implementation of the WIS showed that NOx was reduced significantly by between 11% and 17%, depending upon the operating condition. With the WIS, the TPM was reduced by a few percentage points, which was close to the confidence in measurement.

  11. Vehicle Technologies Office: National Idling Reduction Network...

    Energy Savers [EERE]

    Past Newsletters The National Idling Reduction Network News is currently sent as an HTML newsletter and issues starting with the May 2014 newsletter can be searched via the...

  12. Reduction of NOx Emissions in Alamo Area Council of Government Projects†

    E-Print Network [OSTI]

    Haberl, J. S.; Zhu, Y.; Im, P.

    2004-01-01

    This reports summarizes the electricity, natural gas and NOx emissions reductions from retrofit measures reported as part of the AACOG emissions reduction effort. The electricity and natural gas savings were collected by ...

  13. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  14. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on Heavy and Light Vehicles

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Idaho National Engineering and Enviroonmental Laboratory

  15. NOx reduction technology for natural-gas-industry prime movers. Special report, August 1990

    SciTech Connect (OSTI)

    Castaldini, C.

    1990-08-01

    The applicability, performance, and costs are summarized for state-of-the-art NOx emission controls for prime movers used by the natural gas industry to drive pipeline compressors. Nearly 7700 prime movers of 300 hp or greater are in operation at compressor stations. NOx control technologies for application to reciprocating engines are catalytic reduction, engine modification, exhaust gas recirculation, and pre-stratified charge. Technologies discussed for application to gas turbines are catalytic reduction, water or steam injection, and low-NOx combustors.

  16. Mercury Emissions Control Technologies (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 reference case assumes that states will comply with the requirements of the Environmental Protection Agency's new Clean Air Mercury Rule (CAMR) regulation. CAMR is a two-phase program, with a Phase I cap of 38 tons of mercury emitted from all U.S. power plants in 2010 and a Phase II cap of 15 tons in 2018. Mercury emissions in the electricity generation sector in 2003 are estimated at around 50 tons. Generators have a variety of options to meet the mercury limits, such as: switching to coal with a lower mercury content, relying on flue gas desulfurization or selective catalytic reduction equipment to reduce mercury emissions, or installing conventional activated carbon injection (ACI) technology.

  17. Climate change: Clinton affirms binding emissions reduction policy

    SciTech Connect (OSTI)

    Fairley, P.

    1996-12-04

    In Australia last month President Clinton called for an international agreement to negotiate {open_quotes}legally binding commitments to fight climate change.{close_quotes} His comments affirmed the line the Administration adopted in July and lent prominence to the effort to bring about a treaty by December 1997. Environmentalists welcomed Clinton`s comments, but industry response is divided. The Global Climate Coalition (Washington), of which CMA is a member, has tried to slow negotiations by questioning the scientific consensus on climate change and suggesting {open_quotes}serious damage to the American economy{close_quotes} could result from emissions reduction.

  18. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect (OSTI)

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  19. CDM Emission Reductions Calculation Sheet Series | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy Resources JumpEmission Reductions Calculation

  20. Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

    SciTech Connect (OSTI)

    Herling, Darrell R.; Smith, Monty R.; Hemingway, Mark D.; Goulette, David; Silvis, Thomas W.

    2000-08-09

    Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system. This system is comprised of a two-stage corona generation device (plasma reactor) and reduction catalyst that reduces nitric oxide and nitrogen dioxide emissions to nitrogen.

  1. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect (OSTI)

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  2. Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2009-01-01

    an 80% reduction in greenhouse gas emissions from ,Board, 2008. California Greenhouse Gas Emission Inventory.A. , 2003. Reducing Greenhouse Gas Emissions from US

  3. A neural emission-receptor model for ozone reduction S.Barazzetta, G. Corani

    E-Print Network [OSTI]

    Corani, Giorgio

    A neural emission-receptor model for ozone reduction planning S.Barazzetta, G. Corani , G- ulated areas. Ozone is produced by a series of photochemical reactions, activated by the emissions concen- trations are equally complex and cannot be directly used to optimize emission reduction policies

  4. Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

  5. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  6. Effect of GTL Diesel Fuels on Emissions and Engine Performance

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: DaimlerChrysler Research and Technology

  7. An Integrated Surface Technology for Optimum Performance

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Institute of Standards and Technology

  8. Diesel Emission Control Technology in Review | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Review Review of light- and heavy-duty diesel emission regulations and state-of-the-art emission control technologies and strategies to meet them. deer08johnson.pdf More...

  9. Active Diesel Emission Control Technology for Sub-50 HP Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sub-50 HP Engines with Low Exhaust Temperature Profiles Active Diesel Emission Control Technology for Sub-50 HP Engines with Low Exhaust Temperature Profiles A new type of emission...

  10. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume III- Technical Appendix†

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01

    this sixth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (Preliminary Report) to the Texas Commission on Environmental Quality. In this preliminary report, the NOx emissions savings from the energy...

  11. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (√?¬Ę√?¬?√?¬?Energy SMARRT√?¬Ę√?¬?√?¬Ě) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU√?¬Ę√?¬?√?¬?s/year and 6.46 trillion BTU√?¬Ę√?¬?√?¬?s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  12. Low-Emissions Burner Technology using Biomass-Derived Liquid Fuels

    SciTech Connect (OSTI)

    2010-07-01

    The University of Alabama will develop fuel-flexible, low-emissions burner technology for the metal processing industry that is capable of using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas. By replacing a fossil fuel with biomass fuels, this new burner will enable a reduction in energy consumption and greenhouse gas emissions and an increase in fuel flexibility.

  13. Active Diesel Emission Control Technology for Transport Refrigeration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Refrigeration Units Active Diesel Emission Control Technology for Transport Refrigeration Units This project discusses a CARB Level 2+ verified active regeneration...

  14. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  15. An Assessment of carbon reduction technology opportunities in the petroleum refining industry.

    SciTech Connect (OSTI)

    Petrick, M.

    1998-09-14

    The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

  16. NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games

    SciTech Connect (OSTI)

    Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I.; Shao, Min

    2011-07-15

    We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 Ė Sep 20, 2008). The emission reduction began in early July and was in full force by July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.

  17. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect (OSTI)

    none,

    2008-09-01

    U.S. Department of Energyís (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  18. Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

    E-Print Network [OSTI]

    Gumerman, Etan; Marnay, Chris

    2004-01-01

    of International Learning on Technology Cost. In Issues ofbetween initial new technology cost estimates and actualthe revolutionary technologies have cost reductions beyond

  19. Reduction of solvent emissions within a paint booth

    SciTech Connect (OSTI)

    Zirps, N.A.; Wiener, R.K.; Shaver, D.K.

    1988-12-31

    ICF Technology is currently performing a waste minimization study at Vandenberg Air Force Base. As part of the study, ICF has been examining planned freon-113 usage operations within Martin Marietta`s new Titan fairing paint booths. The booths are to be used for painting payload fairing (PLF) for Titan II and Titan IV vehicles. Approximately 1,050 gallons of Freon-113 are planned for use within the paint booths. The following alternatives have been examined to reduce emissions: substitution of the primary coating with an alternative coating such as powder, waterborne, or high solids; recovery of Freon-113 vapors using carbon adsorption or condensation; and use of a different application method.

  20. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect (OSTI)

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  1. Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption Control

    E-Print Network [OSTI]

    Brown, Alan

    are strongly related to NOx emissions, and in order to reach extremely low emission levels, reduction1 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube of the consumed lube-oil. Significant reductions in particulate emission rate could be obtained by controlling

  2. become more important as countries agree to emission reduction targets

    E-Print Network [OSTI]

    Constable, Steve

    : immediate stabilization of carbon dioxide emissions, regulation of air pollution that balances removal

  3. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  4. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide†

    E-Print Network [OSTI]

    Degelman, L.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Baltazar-Cervantes, J. C.; Liu, Z.; Gilman, D.; Culp, C.; Yazdani, B.; Haberl, J. S.

    2008-08-29

    should include the cumulative savings estimates from all projects projected through 2020 for both the annual and Ozone Season Day (OSD) NOx reductions. The NOx emissions reduction from all these programs were calculated using estimated emissions factors...

  5. Reduction in Vehicle Idling Emissions Using RFID Parking Permits Dawson, Pakes-Ahlman, Graham, Gutierrez, Vilasdaechanont

    E-Print Network [OSTI]

    Sprott, Julien Clinton

    1 Reduction in Vehicle Idling Emissions Using RFID Parking Permits 9/20/13 Dawson, Pakes consumption and vehicle emissions. RFID Background RFID tags contain electronically stored data that can's entrance and exit from parking ramps. Table 1. Average Idle Emission Rates by Pollutant and Vehicle Type

  6. Sources of Emission Reductions: Evidence for US SO2 Emissions 1985-2002

    E-Print Network [OSTI]

    Ellerman, A Denny; Dubroeucq, Florence

    2004-06-16

    -gas-fired, combined cycle units have displaced conventional generation that would have emitted about 800,000 tons of SO2; however, the effect has not been to reduce total SO2 emissions since the 9.0 million ton cap is unchanged, but to reduce the quantity... content of the fuel used to generate electricity (either by switching or retrofitting scrubbers) or by shifting generation to lower emitting units including new units. However, Title IV did not replace the source- specific limits and technology mandates...

  7. Going Mobile: Emissions Trading Gets a Boost from Mobile Source Emission Reduction Credits

    E-Print Network [OSTI]

    Goldschein, Perry S.

    1995-01-01

    Going Mobile: Emissions Trading Gets a Boost From Mobilehave tested various emissions trading policies to supplementAn Analysis of EPA's Emissions Trading Program, 6 YALE J. ON

  8. Leading Edge Technology in Diesel Emissions Control

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  9. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect (OSTI)

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  10. Energy Efficiency/ Renewable Energy Impact in The Texas Emissions Reduction Plan (TERP): Volume I- Summary Report†

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar, J. C.; Mukhopadhyay, J..; Degelman, L.; McKelvey, K.; Clardige, D.; Ellis, S.; Kim, H.; Zilbershtein. G.; Gilman, D.

    2012-01-01

    is 336,046 MWh/year (2.5%) In 2011, the total integrated OSD savings from all programs is 36,076 MWh/day, which would be a 1,503 MW average hourly load reduction during the OSD period. The integrated OSD electricity savings from all the different....4%), ? NOx emissions reduction from green power purchases (wind) are 7.63 tons-NOx/day (77.1%), and ? NOx emissions reduction from residential air conditioner retrofits are 0.55 tons-NOx/day (5.6%). By 2013, the total integrated annual NOx emissions...

  11. Ris-R-1545(EN) Emission reduction by means

    E-Print Network [OSTI]

    and Plasma Research Department, RisÝ), Helge Egsgaard (Biosystems Department, RisÝ), Per G. Kristensen reduction by means of low temperature plasma. Summary Department: Optics and Plasma Research Department RisÝ

  12. Regional versus global? -- Will strategies for reduction of sulfur dioxide emissions from electric utilities increase carbon dioxide emissions?

    SciTech Connect (OSTI)

    Randolph, J.C.; Dolsak, N.

    1996-12-31

    Electric utilities, which are dependent on high-sulfur coal are expected to reduce their SO{sub 2} emissions. The strategies for reduction of SO{sub 2} emissions may result in increased CO{sub 2} emissions. Thereby decrease of regional pollution may cause increase of global pollution. Environmental, political, moral, and economic consequences of the two types of pollution differ significantly. Midwestern electric utilities, USA, which are dependent on high-sulfur coal, are analyzed in the paper. However, the same problem is relevant for some European coal fueled power plants. Strategies for reduction of SO{sub 2} emissions, employed by Midwestern electric utilities to comply with the clean Air Act amendments (CAAA) of 1990 and their possible affects on CO{sub 2} emissions, are presented. The paper focuses on two general strategies for reduction of SO{sub 2} emissions. First is coal-switching or blending with a low-sulfur coal. Second is construction and use of flue-gas desulfurization devices (scrubbers). A combination of both strategies is also a viable option. Switching to low-sulfur coal may result in larger CO{sub 2} emissions because that coal has different characteristics and has to be transported much greater distances. Scrubbers require significant amounts of energy for their operation which requires burning more coal. This increases the level of CO{sub 2} emissions.

  13. Reduction of Emission Variance by Intelligent Air Path Control

    Broader source: Energy.gov [DOE]

    This poster describes an air path control concept, which minimizes NOx and PM emission variance while having the ability to run reliably with many different sensor configurations.

  14. Fuel Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Impact of new pollution control technologies on all emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of new pollution control technologies on all emissions: the specific problem of high ratio of NO2 at tail pipe downstream of certain pollution control devices Impact of new...

  16. Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. ft07sluder.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Non-Petroleum-Based Fuels:...

  17. New Jersey: EERE-Supported Technology Lowers GHG Emissions 70...

    Broader source: Energy.gov (indexed) [DOE]

    for Use of CO2 in Concrete Curing Project Overview Positive Impact R&D 100 Award-winning technology helps reduce greenhouse gas emissions in cement and concrete products up to...

  18. NOx Emissions Reductions from Implementation of the 2000 IECC/IRC Conservation Code to Residential Construction in Texas†

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.

    2004-01-01

    Reduction Plan (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions...

  19. Water and Energy Savings, and Carbon Emission Reductions From Rain Water

    E-Print Network [OSTI]

    Das, Suman

    Water and Energy Savings, and Carbon Emission Reductions From Rain Water Harvesting, Combined Heat Infrastructure Ecology Decentralized Water Resource Development: Low Impact Development (LID) Decentralized Energy Production: Combined Heat and Power (CHP) Policies for Adoption of Rain Water Harvesting

  20. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I - Summary Report†

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.; Gilman, D.; Degelman, L.

    2013-01-01

    ninth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP) to the Texas Commission on Environmental Quality. The report is organized in three volumes. Volume I - Summary Report - provides...

  1. Procedure to Calculate NOx Reductions Using the Emissions & Generation Resource Integrated Database (E-Grid) Spreadsheet†

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Verdict, M.; Turner, W. D.

    2003-01-01

    In this report a detailed description of the procedure to calculate NOx reductions from energy savings due to the 2000 IECC code implementation in single family residences using the United States Environmental Protect Agency's (USEPA's) Emissions...

  2. Reduction of CO2 emissions and utilization of slag

    E-Print Network [OSTI]

    Zevenhoven, Ron

    coordinator Sanni Eloneva & Arshe Said, Researchers Helsinki University of Technology, Dept. of Energy Technology/Research group of Energy Technology and Environmental Protection (ENY) SšhkŲmiehentie 4 A, 02015 be achieved. The relatively high price of PCC (ten times that of raw limestone or steelmaking slag) could

  3. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  4. Quantifying emissions reductions from New England offshore wind energy resources

    E-Print Network [OSTI]

    Berlinski, Michael Peter

    2006-01-01

    Access to straightforward yet robust tools to quantify the impact of renewable energy resources on air emissions from fossil fuel power plants is important to governments aiming to improve air quality and reduce greenhouse ...

  5. Technology could deliver 90% Hg reduction from coal

    SciTech Connect (OSTI)

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  6. New Technology Provides Cost-Effective Emissions Control

    E-Print Network [OSTI]

    New Technology Provides Cost- Effective Emissions Control Solution for CHP Applications Renewable are the most cost-effective CHP technology less than three MW in size. With a cost effective) applications less than three megawatts (MW). Because they are relatively low cost and have high

  7. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  8. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  9. Fuel Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Document:† ft007_sluder_2013_o.pdfTechnology Area: Fuels and LubricantsPresenter: Scott SluderPresenting Organization: Oak Ridge National Laboratory (ORNL)Presentation date: Thursday, May 16,...

  10. Power Plant Emission Reductions Using a Generation Performance Standard

    Reports and Publications (EIA)

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  11. The development of Comprehensive Community NOx Emissions Reduction Toolkit (CCNERT)†

    E-Print Network [OSTI]

    Sung, Yong Hoon

    2004-11-15

    -17 Residential Sector?s Total Energy............................................................................. 131 Table 5-18 Comparison of Annual Electric Sales vs. Estimated Electricity Use........................ 133 Table 5-19 2001 College Station... successfully reduce the production of NOx emissions by adopting electricity efficiency programs in its buildings, another community might be equally successful by changing the mix of fuel sources used to generate electricity, which is consumed...

  12. Design of Environmental Regulatory Policies for Sustainable Emission Reduction

    E-Print Network [OSTI]

    Linninger, Andreas A.

    unit of emitted pollutant. When the marginal pollution abatement cost are lower than the tax compliance levels through process innovation. Alternatively, market-based regulations stimulate continued. It assesses the feasibility of treatment options, estimates their cost and expected emissions. Rigorous

  13. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect (OSTI)

    Trexler, E.C. Jr. [USDOE, Washington, DC (United States); Shannon, J.D. [Argonne National Lab., IL (United States)

    1995-06-01

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  14. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2012-06-15

    Chinaís annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the worldís annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  15. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, SebastiŠn (Castro Galnares Wright Paz)

    2008-01-01

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  16. The Impact of Near-term Climate Policy Choices on Technology and Emissions Transition Pathways

    SciTech Connect (OSTI)

    Eom, Jiyong; Edmonds, James A.; Krey, Volker; Johnson, Nils; Longden, Thomas; Luderer, Gunnar; Riahi, Keywan; Van Vuuren, Detlef

    2015-01-01

    This paper explores the implications of delays associated with currently formulated climate policies (compared to optimal policies) for long-term transition pathways to limit climate forcing to 450ppm CO2e on the basis of the AMPERE Work Package 2 model comparison study. The paper highlights the critical importance of the 2030-2050 period for ambitious mitigation strategies. In this period, the most rapid shift to non-greenhouse gas emitting technology occurs. In the delayed response emissions mitigation scenarios, an even faster transition rate in this period is required to compensate for the additional emissions before 2030. Our physical deployment measures indicate that, without CCS, technology deployment rates in the 2030-2050 period would become considerably high. Yet the presence of CCS greatly alleviates the challenges to the transition particularly after the delayed climate policies. The results also highlight the critical role that bioenergy and CO2 capture and storage (BECCS) could play. If this technology is available, transition pathways exceed the emissions budget in the mid-term, removing the excess with BECCS in the long term. Excluding either BE or CCS from the technology portfolio implies that emission reductions need to take place much earlier.

  17. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  18. Texas Air Quality Status and the Texas Emission Reduction Plan†

    E-Print Network [OSTI]

    Hildebrand, S.

    2012-01-01

    in eligible areas. With recent legislation, the TERP also supports programs to encourage the use of alternative fuels for transportation in Texas. Clean Air Through Energy Efficiency Conference ? Galveston, Texas ? October 10, 2012 Clean Air... Transportation Triangle (CTT) (new) ? Texas Natural Gas Vehicle Grant Program (TNGVGP) (new) ? Alternative Fueling Facilities Program (AFFP) (new) ? New Technology Implementation Grants (NTIG) Program ? Texas Clean School Bus Program Clean Air Through...

  19. Technology improvement and emissions reductions as mutually reinforcing efforts

    E-Print Network [OSTI]

    Kastner, Marc A.

    growth in installed capacity and research 13 2.2 Historical cost decline 18 2.3 Determinants the global development of solar and wind energy #12;Project lead: Jessika Trancik Research team: Patrick.2 INDC-based capacity expansions: Model 28 3.3 INDC commitments: Challenges and opportunities in major

  20. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2012-10-30

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-≠?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-≠?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-≠?based energy recovery and storage system. This technology is being developed at TDIís facilities to capture and reuse the energy necessary for the companyís core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-≠?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-≠?based cycling within the company as well as throughout the industry.

  1. Texas Emissions Reductions Program (TERP) Energy Efficiency/ Renewable Energy (EE/RE) Update†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.

    2010-01-01

    counties, and near-nonattainmtent counties. LEGISLATIVE RESPONSE Senate Bill 5 (77th Legislature, 2001) Ch. 386. Texas Emissions Reduction Plan Sec. 386.205. Evaluation Of State Energy Efficiency Programs (with PUC) Ch. 388. Texas Building... ST ON E GR IM ES LE E SO ME RV EL L AN DR EW S BO RD EN OS D NO x E mi ss ion s R ed uc tio ns (T on s/y r) County Total OSD NOx Emissions Reductions (SF, MF and Commercial Buildings) Natural Gas (SF...

  2. Estimation of Annual Reductions of NOx Emissions in ERCOT for the HB3693 Electricity Savings Goals†

    E-Print Network [OSTI]

    Diem, Art; Mulholland, Denise; Yarbrough, James; Baltazar, Juan Carlos; Im, Piljae; Haberl, Jeff

    2008-01-01

    reductions are small compared to the total emission reductions needed to bring the state?s non-attainment areas into attainment of the national ambient air quality standards for ozone, they can be a part of an overall strategy to reduce emissions.... In this step, plants that have a capacity factor of 0.8 or greater are considered to be baseload units and none of their generation would be affected by energy efficiency measures. In addition, plants that have a capacity factor of 0.2 or less are considered...

  3. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Volume I†

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Fitzpatrick, Tom; Muns, Shirley; Liu, Zi; Baltazar, Juan Carlos; Mukhopadhyay, Jaya; Degelman, Larry; Claridge, David

    2008-01-01

    -12-01 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME I ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality January 2007 ? December 2007 Jeff Haberl, Ph.D., P... Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP),? as required under Texas Health and Safety Code Ann. ? 388.003 (e), Vernon Supp. 2002 (Senate Bill 5, 77R as amended 78 R & 78S). The Laboratory is required to annually...

  4. A probabilistic production costing analysis of SO sub 2 emissions reduction strategies for Ohio: Emissions, cost, and employment tradeoffs

    SciTech Connect (OSTI)

    Heslin, J.S.; Hobbs, B.F. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-08-01

    A new approach for state- and utility-level analysis of the cost and regional economic impacts of strategies for reducing utility SO{sub 2} emissions is summarized and applied to Ohio. The methodology is based upon probabilistic production costing and economic input-output analysis. It is an improvement over previous approaches because it: accurately models random outages of generating units, must-run constraints on unit output, and the distribution of power demands; and runs quickly on a microcomputer and yet considers the entire range of potential control strategies from a systems perspective. The input-output analysis considers not only the economic effects of utility fuel use and capital investment, but also those of increased electric rates. Two distinct strategies are found to be most attractive for Ohio. The first, more flexible one, consists of emissions dispatching (ED) alone to meet short run emissions reduction targets. A 75 percent reduction can then be achieved by the turn of the century by combining ED and fuel switching (FS) with flue gas desulfurization, limestone injection multistage burners, and physical coal cleaning at selected plants. The second is a scrubber-based strategy which includes ED. By the year 2000, energy conservation becomes a cost effective component of these strategies. In order to minimize compliance costs, acid rain legislation which facilitates emissions trading and places regional tonnage limits on emissions is desirable.

  5. Methodology to Calculate NOx Emissions Reductions from the Implementation of the 2000 IECC/IRC Conservation Code in Texas†

    E-Print Network [OSTI]

    Haberl, J. S.; Im, P.; Culp, C.

    2004-01-01

    (TERP), to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state. An important part of this legislation is the State's energy efficiency program, which includes reductions in energy...

  6. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update†

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2011-01-01

    Laboratory ? 2011 TEXAS EMISSIONS REDUCTIONS PROGRAM (TERP) ENERGY EFFICIENCY/RENEWABLE ENERGY (EE/RE) UPDATE November 2011 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems... FOR SIP CREDITS (2004) Enforceability: Measures that reduce emissions from electricity generation may be: (1) Enforceable directly against a source; (2) Enforceable against another party responsible for the energy efficiency or renewable...

  7. Refinery Furnaces Retrofit with Gas Turbines Achieve Both Energy Savings and Emission Reductions

    E-Print Network [OSTI]

    Giacobbe, F.; Iaquaniello, G.; Minet, R. G.; Pietrogrande, P.

    1985-01-01

    RETROFIT WITH GAS TURBINES ACHIEVE BOTH ENERGY SAVINGS AND EMISSION REDUCTIONS F. Giacobbe*, G. Iaquaniello**, R. G. Minet*, P. Pietrogrande* *KTI Corp., Research and Development Division, Monrovia, California **KTI SpA., Rome, Italy ABSTRACT... Integrating gas turbines with refinery furnaces can be a cost effective means of reducing NO emissions while also generating electricity ~t an attractive heat rate. Design considerations and system costs are presented. INTRODUCTION Petroleum refining...

  8. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    management program following national energy managementwith national-level energy or GHG tax programs, LBNLnational level energy efficiency and GHG emissions reduction programs.

  9. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  10. PROVO POLLUTION PREVENTION PROGRAM A study designed to show that cost-effective on-road emissions reductions

    E-Print Network [OSTI]

    Denver, University of

    -road emissions reductions can be achieved with a targeted repair program. Prepared by University of Denver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Chemistry of CO and HC Emissions from Automobiles . . . . . . . . . . . . . 3 B. Remote Sensing-road emissions monitor. It is capable of monitoring emissions at vehicle speeds between 2.5 and 150 mph in under

  11. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect (OSTI)

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  12. A Novel Technology for the Reduction of NOx on Char by Microwaves†

    E-Print Network [OSTI]

    Buenger, C.; Peterson, E.

    1994-01-01

    The emphasis on reduction of NOx as a precursor to street level ozone has increased the need for technologies capable of reducing NOx (>95%) to very low levels in major metropolitan areas from a wide variety of sources. Technology offerings...

  13. Clean Coal Technology: Reduction of NO{sub x} and SO{sub 2} using gas reburning, sorbent injection, and integrated technologies. Topical report No. 3, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program), is a unique government/industry cost-shared effort to develop these advanced coal-based technologies. The CCT Program provides numerous options for addressing a wide range of energy and environmental issues, including acid rain, global climate change, improved energy efficiency, energy security, and environmental qualitiy. It is intended to demonstrate a new generation of full-scale, ``showcase`` facilities built through the United States. Gas Reburning, Sorbent Injection and Integrated Technologies -- the subject of this Topical Report -- are one such set of promising innovative developments. In addition to discussing the technologies involved, this report will describe two specific projects, results to date, and the commercial promise of these processes. The objectives of Gas Reburning and Sorbent Injection were to have a 60% reduction in NO{sub x} emissions and a 50% reduction in SO{sub 2} emissions. These objectives have been achieved at the tangentially-fired boiler at the Hennepin site of Illinois Power and at the cyclone-fired boiler operated by City Water, Light and Power in Springfield, Illinois. The other project, Gas Reburning and Low NO{sub x} Burners had the goal of a 70% NO{sub x} reduction from the wall-fired boiler operated by Public Service of Colorado at Denver. In early preliminary testing, this goal was also achieved. Energy and Environmental Research (EER) is now ready to design and install Gas Rebunting and Sorbent Injection systems, and Gas Reburning-Low NO{sub x}, Burner systems for any utility or industrial application. These technologies are offered with performance and emission control guarantees.

  14. Evaluation of air pollutant emission reduction strategies in the context of climate change

    E-Print Network [OSTI]

    Menut, Laurent

    Evaluation of air pollutant emission reduction strategies in the context of climate change Bertrand is a key issue to understand how climate change affects air pollution The global climate fields issued from changes is expected to have a significant impact on air quality. The main meteorological parameters

  15. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    E-Print Network [OSTI]

    McCarl, Bruce A.

    for presentation at DOE First National Conference on Carbon Sequestration, May 14-17, 2001, Washington D.C. #12 sequestration generally refers to the absorption of carbon dioxide from the atmosphere through photosyntheticEconomic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration

  16. Dual-UEGO Active Catalyst Control for Emissions Reduction: Design and Experimental Validation

    E-Print Network [OSTI]

    Grizzle, Jessy W.

    Dual-UEGO Active Catalyst Control for Emissions Reduction: Design and Experimental Validation are used to measure air-fuel ratio upstream and downstream of each catalyst. A series controller on the basis of measured feedgas air-fuel ratio, while the downstream controller uses the feedgas and post

  17. Analysis of Emissions Calculators for a National Center of Excellence on Displaced Emissions Reductions (CEDER)†

    E-Print Network [OSTI]

    Im, P.; Haberl, J. S.; Culp, C.; Yazdani, B.

    2008-07-18

    In August 2004, the Environmental Protection Agency (EPA) issued guidance on quantifying the air emissions benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, ...

  18. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect (OSTI)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no specific Hg controls) ranged from 5.7 x 10{sup -6} in the Midwest to 2 x 10{sup -5} in the Southeast. Reducing emissions from coal plants by 90% reduced the estimated range in risk to 5 x 10{sup -6} in the Midwest and 1.5 x 10{sup -5} in Southeast, respectively. The population risk for the subsistence fisher using the Southeast regional fish Hg levels was 3.8 x 10{sup -3}, a factor of 200 greater than the general population risk. For the subsistence fishers and the Savannah River Hg levels, the population risk was 4.3 x 10{sup -5}, a factor of 2 greater than for the general population. The estimated risk reductions from a 90% reduction in coal plant Hg emissions ranged from 25%-68%, which is greater than the assumed reduction in Hg levels in fish, (15.5%). To place this risk in perspective, there are approximately 4 x 10{sup 6} births/year in the U.S (National Vital Statistics Report, 2000). Assuming that the Southeast risk level (the highest of the regions) is appropriate for the entire U.S., an estimate of 80 newborn children per year have a 5% chance of realizing any of the 16 adverse effects used to generate the DRF. If Hg emissions from power plants are reduced 90%, the number of children at risk is reduced to 60.

  19. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Design Support for Tooling Optimization

    SciTech Connect (OSTI)

    Wang, Dongtao

    2011-09-23

    High pressure die casting is an intrinsically efficient net shape process and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. Computer simulation has become widely used within the industry but use is not universal. Further, many key design decisions must be made before the simulation can be run and expense in terms of money and time often limits the number of decision iterations that can be explored. This work continues several years of work creating simple, very fast, design tools that can assist with the early stage design decisions so that the benefits of simulation can be maximized and, more importantly, so that the chances of first shot success are maximized. First shot success and better running processes contributes to less scrap and significantly better energy utilization by the process. This new technology was predicted to result in an average energy savings of 1.83 trillion BTUs/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2012, a market penetration of 30% by 2015 is 1.89 trillion BTUs/year by 2022. Along with these energy savings, reduction of scrap and improvement in yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2022 is 0.037 Million Metric Tons of Carbon Equivalent (MM TCE).

  20. Vehicle Technologies Office Merit Review 2014: Friction Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Vehicle Technologies Office Merit Review 2014: Can hard coatings and lubricant anti-wear additives work together? An integrated surface technology for...

  1. A fair compromise to break the climate impasse. A major economies forum approach to emissions reductions budgeting

    SciTech Connect (OSTI)

    Grasso, Marco; J. Roberts, Timmons

    2013-04-15

    Key messages of the study are: Given the stalemate in U.N. climate negotiations, the best arena to strike a workable deal is among the members the Major Economies Forum on Energy and Climate (MEF); The 13 MEF membersóincluding the EU-27 (but not double-counting the four EU countries that are also individual members of the MEF)óaccount for 81.3 percent of all global emissions; This proposal devises a fair compromise to break the impasse to develop a science-based approach for fairly sharing the carbon budget in order to have a 75 percent chance of avoiding dangerous climate change; To increase the likelihood of a future climate agreement, carbon accounting must shift from production-based inventories to consumption-based ones; The shares of a carbon budget to stay below 2 deg C through 2050 are calculated by cumulative emissions since 1990, i.e. according to a short-horizon polluter pays principle, and national capability (income), and allocated to MEF members through emission rights. This proposed fair compromise addresses key concerns of major emitters; According to this accounting, no countries have negative carbon budgets, there is substantial time for greening major developing economies, and some developed countries need to institute very rapid reductions in emissions; and, To provide a 'green ladder' to developing countries and to ensure a fair global deal, it will be crucial to agree how to extend sufficient and predictable financial support and the rapid transfer of technology.

  2. The sources of emission reductions : evidence from U.S. SO? emissions from 1985-2002

    E-Print Network [OSTI]

    Ellerman, A. Denny

    2004-01-01

    An enduring issue in environmental regulation is whether to clean up existing "old" plants or in some manner to bring in new ?clean? plants to replace the old. In this paper, a unit-level data base of emissions by nearly ...

  3. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas Ė lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand Ė in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  4. Intergrated Nox Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs across State Agencies in Texas†

    E-Print Network [OSTI]

    Baltazar, J.C.; Haberl, J.; Yazdani, B.

    2014-01-01

    CONFERENCE FOR ENHANCED BUILDING OPERATIONS TSINGHUA UNIVERSITY Ė 2014 BEIJING, CHINA Ė SEPTEMBER 14 -17 Calculation of Integrated NOx Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs across State Agencies in Texas... TSINGHUA UNIVERSITY Ė 2014 BEIJING, CHINA Ė SEPTEMBER 14 -17 Savings (2002 to 2011) Electricity - $1,082 million Demand - $1,245 million Total - $2,327 million Emissions Reduction in 2011 466 tons-NOx/year, (About 158,923 cars) Demand Reduction in 2011...

  5. Venturi/vortex technology for controlling chromium electroplating emissions

    SciTech Connect (OSTI)

    Hay, K.J.; Northrup, J. [Army Construction Engineering Research Labs., Champaign, IL (United States); Heck, S.R. [MSE-HKM, Inc., Butte, MT (United States)

    1997-12-31

    A new technology has been developed to control air emissions from hexavalent chromium electroplating tanks. The venturi/vortex scrubber uses a patented drain assembly to pull plating solution, air with toxic particulates above the solution, and unpopped bubbles of generated gases down with a gravity generated vortex effect. The recirculated plating solution acts as the scrubbing liquid and air agitation is eliminated. Separated gases are passed through a condenser/filter to remove any remaining fumes. The device is almost entirely constructed of CPVC. This device offers several advantages over conventional end-of-pipe systems including significantly lower cost, no wastewater, no extensive ventilation system, and emissions are recycled. The system can be is easily retrofitted to existing tanks, however, a loose fitting tank lid is recommended. A pilot demonstration has been performed at Benet Laboratory, Watervliet, NY (US Army) with a 1,500 gallon chromic acid electroplating tank and 1,500 Amps of applied current. Overall chromium emissions results were 0.00002 mg/Amp-hr, surpassing the stringent California State requirement of 0.006 mg/Amp-hr. Emission prevention by capturing unpopped bubbles is the method in which this system reduces the most emissions. The system met current ambient worker safety standards. Two major improvements are recommended: an increase in gas flow rate through the system and a solution to the system`s sensitivity to the plating solution level.

  6. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    and A. Schafer, Reducing Greenhouse Gas Emissions from U.S.Council. Marintek, Study of Greenhouse Gas Emissions fromfor Biofuels Increases Greenhouse Gases Through Emissions

  7. Venturi/vortex scrubber technology for controlling/recycling chromium electroplating emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Holden, B.; Helgeson, N.; Fraser, M.E.

    1999-03-01

    Chromium electroplating is an essential DOD process. Chromium has a combination of qualities that are very difficult to substitute, however, the process itself is inefficient, resulting in the production of byproduct gases that rise and create a mist of chromic acid (strongly regulated as an air pollutant) above the plating tank. Venturi/Vortex Scrubber Technology (VVST) was designed to control chromium electroplating emissions by collecting the gas bubbles before they burst at the solution`s surface. This project demonstrated the Venturi/Vortex Scrubber Technology at the Marine Corps Logistics Base (MCLB) in Albany, GA. This study concluded that the PLRS was able to reduce the flow rate of the current conventional ventilation system at the one tank chromium electroplating facility at MCLB Albany by 63 percent. If new ventilation and control equipment were to be installed at MCLB Albany, this system would offer a 25 percent reduction in capital costs and a 48 percent reduction in annual costs, representing 36 percent in life-cycle cost savings. This study also presented a strong case for the use of Spark-Induced Breakdown Spectroscopy for monitoring real-time chromium emissions above a chromium electroplating tank.

  8. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)†

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2007-01-01

    p. 2 41 Counties in Texas designated non-attainment or affected. Senate Bill 5 (77th Legislature, 2001) Ch. 386. Texas Emissions Reduction Plan Sec. 386.205. Evaluation Of State Energy Efficiency Programs (with PUC) Ch. 388. Texas Building... Energy Performance Standards Sec. 388.003. Adoption Of Building Energy Efficiency Performance Standards. Sec. 388.004. Enforcement Of Energy Standards Outside Of Municipality. Sec. 388.007. Distribution Of Information And Technical Assistance. Sec...

  9. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated Nox Emissions Savings from EE/RE Programs Statewide†

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Zilbershtein, G.; Baltazar, J. C.; Mukhopadhyay, J.; Clardige, D.; Parker, P.; Ellis, S.; Kim, H.

    2013-01-01

    ninth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan (TERP) to the Texas Commission on Environmental Quality. The report is organized in three volumes. Volume I - Summary Report - provides...

  10. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated NOx Emissions Savings from EE/RE Programs Statewide†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Gilman, D.; Baltazar, J. C.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.; Liu, Z.

    2010-01-01

    eighth annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan to the Texas Commission on Environmental Quality. The report is organized in three volumes: Volume I Ė Summary Report Ė provides an executive...

  11. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect (OSTI)

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.

  12. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect (OSTI)

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  13. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  14. Rooftop Membrane Temperature Reductions with Green Roof Technology in South-Central Texas†

    E-Print Network [OSTI]

    Dvorak, B.

    2010-01-01

    Early green roof cooling and energy reduction research in North America took place in Canada and the northern latitudes of the United States, where green roofs reduced rooftop temperatures by 70% to 90%. Less is known about green roof technology...

  15. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    2004) ĎExperience curves for power plant emission controlLtd. Experience curves for power plant emission controlInc. Experience curves for power plant emission control

  16. Best available control technology (BACT) equivalent for the control of volatile organic emissions from paint dipping operations

    SciTech Connect (OSTI)

    Blankenship, W.R.; Pugh, C.W. Jr.

    1999-07-01

    This paper provides details of a study conducted to demonstrate an equivalent method of Best Available Control Technology (BACT) compliance for volatile organic emissions from dip coating of certain miscellaneous metal parts. The study was proposed to show that the total volatile organic compound (VOC) emissions from 3.8 lb of VOC/gallon coating formulations were no greater than the total VOC emissions from 3.5 lb/gallon formulations used under the same conditions for coating steel joists. The presumptive BACT standard enforced by the Virginia Department of Environmental Quality (DEQ) for dip coating of steel joists is 3.5 lb/gallon. The requirement of 3.5 lb/gallon was derived from the US Environmental Protection Agency Guideline Series Control of Volatile Organic Emissions from Existing Stationary Sources--Volume 6: Surface Coating of Miscellaneous Metal Parts and Products. On June 5, 1998 the source completed a 12 month, full scale comparison study under a consent order with the Virginia DEQ. During the study period, the source made daily measurements of product produced, paint used, and emissions from the control and test paint tanks, and reported data to EPA and the DEQ every two months. The study concluded that a 26 percent reduction in paint usage and a 20 percent reduction in emissions was achieved in the test tanks using a 3.8 lb/gal coating compared to the control tanks using a 3.5 lb/gal coating. This study enables the source to achieve greater emission reductions than the presumptive BACT level and at the same time reduce painting costs by 34%. This study provides positive results for the environment, the steel joist industry, and the construction industry. This study could impact EPA's current Maximum Achievable Control Technology (MACT) rule development for Miscellaneous Metal Parts and Products and national VOC rules for this source category under Section 183(e) of the Clean Air Act.

  17. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving Chinaís goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario Ė to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  18. Development of a Web-Based, Emissions Reduction Calculator for Storm Water/Infiltration Sanitary Sewage Separation†

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J. S.; Brumbelow, K.; Culp, C.; Gilman, D.; Yazdani, B.

    2006-01-01

    This paper presents the procedures developed to calculate the electricity savings and emissions reductions from the infiltration of storm water into sanitary sewage separation using a two-step regression method: one step to correlate the gallons...

  19. Emission Reduction and Assisted Combustion Strategies for Compression Ignition Engines with Subsequent Testing on a Single-Cylinder Engine

    E-Print Network [OSTI]

    Ragone, Colter

    2012-08-31

    Due to increasingly stringent regulations set forth by the Environmental Protection Agency, engine researchers and manufacturers are testing and developing various emission reduction strategies for compression ignition engines. This thesis contains...

  20. Review of the Texas Emissions Reduction Plan (TERP) Program for Political Subdivisions, Institutions of Higher Education and State Agencies†

    E-Print Network [OSTI]

    Claridge, D. E.; Haberl, J. S.; Yazdani, B. L.; Zilbershtein, G.

    2013-01-01

    This report provides a concise review of the Energy Systems Laboratory's experience in evaluating the Texas Emissions Reduction Plan (TERP) Program for Political Subdivisions, Institutions of Higher Education & State Agencies (Texas Health...

  1. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume III--Technical Appendix†

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Muns, Shirley; Liu, Zi; Baltazar-Cervantes, Juan-Carlos; Mukhopadhyay, Jaya; Degelman, Larry; Claridge, David

    2009-01-01

    seventh annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan to the Texas Commission on Environmental Quality. The report is organized in three volumes: Volume I Ė Summary Report Ė provides an executive...

  2. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect (OSTI)

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  3. Emissions Technology Gives Company Clean Win as Energy Innovator

    Broader source: Energy.gov [DOE]

    Umpqua Energy produced an emission control system that can potentially reduce the emissions from vehicles by 90 percent.

  4. Light-Duty Diesel EngineTechnology to Meet Future Emissions and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Meet Future Emissions and Performance Requirements of the U.S. Market Light-Duty Diesel EngineTechnology to Meet Future Emissions and Performance Requirements of the U.S....

  5. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    shift, as demand growth and technology adoption will not betransportation activity growth and technology improvementsgrowth within each subsector, but emphases on different fuels and technologies

  6. Vehicle Technologies Office: Parasitic Loss Reduction | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel Efficiency & Emissions ¬ĽAlternative Fuels

  7. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect (OSTI)

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energyís (DOEís) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  8. Combined SO sub 2 /NO sub x reduction technology

    SciTech Connect (OSTI)

    Livengood, C.D.; Huang, H.S. (Argonne National Lab., IL (United States)); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1992-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  9. Vehicle Technologies Office Merit Review 2014: Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about emissions...

  10. Business Growth with Energy Reduction Made Possible Through Technology

    E-Print Network [OSTI]

    Osifchin, N.

    1983-01-01

    methods and general accep tance. Small wind generators and photovoltaic systems have proven to be applicable for off power grid applications. The availability of 157 ESL-IE-83-04-24 Proceedings from the Fifth Industrial Energy Conservation Technology... organizational structure and administrative system (e.g., ENERGY 11) to manage the total system energy use and cost.) ? Third, there is a mounting level of energy awareness among operating company engineers who specify and purchase central office systems...

  11. Review of SCR Technologies for Diesel Emission Control: Euruopean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles French perspective on diesel engines & emissions Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses...

  12. Fuels and Lubricants to Support Advanced Diesel Engine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricants to Support Advanced Diesel Engine Technology Fuels and Lubricants to Support Advanced Diesel Engine Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  13. Cost Effectiveness of Technology Solutions for Future Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Technology Solutions for Future Vehicle Systems Explores the economics of CO2 emission reductions by added engine technology to determine if there is an overall...

  14. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  15. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  16. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance

    Broader source: Energy.gov [DOE]

    Cost effective reduction of legislated emissions (including CO2) is a major issue. NOx control must not be a limiting factor to the long term success of Diesel engines.

  17. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER): Annual Report†

    E-Print Network [OSTI]

    Yazdani, Bahman; Culp, Charles; Haberl, Jeff; Baltazar, Juan-Carlos; Do, Sung Lok

    2010-01-01

    Calculators According to Annual CO2 Emissions from N.G. Use ................................................................................................................................................ 15 Figure 5. Annual NOx Emissions from the N.G.... Use of a Residential Building ........................ 16 Figure 6. Annual SOx Emissions from the N.G. Use of a Residential Building ......................... 16 LIST OF TABLES Page Table 1. Review of Emissions Calculators in the 2008...

  18. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    2001) The impact of CO 2 emissions trading on the EuropeanJ. D. et al. (2007) Emissions Trading for internationalinvestigating an open emission trading system for aviation

  19. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    are for total full fuel cycle emissions. References l.Light Duty Vehicle Full Fuel Cycle Emissions Analysis,AND FUEL ECONOMY FULL FUEL CYCLE EMISSIONS REGULATORY

  20. Identifying Options for Deep Reductions in Greenhouse Gas Emissions from California Transportation: Meeting an 80% Reduction Goal in 2050

    E-Print Network [OSTI]

    Yang, Christopher; McCollum, David L; McCarthy, Ryan; Leighty, Wayne

    2008-01-01

    without intermediate battery storage), there are severalWith advances in battery storage technology, electric

  1. Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels

    SciTech Connect (OSTI)

    Agrawal, Ajay; Taylor, Robert

    2013-09-30

    This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

  2. Control technology for radioactive emissions to the atmosphere at US Department of Energy facilities

    SciTech Connect (OSTI)

    Moore, E.B.

    1984-10-01

    The purpose of this report is to provide information to the US Environmental Protection agency (EPA) on existing technology for the control of radionuclide emissions into the air from US Department of Energy (DOE) facilities, and to provide EPA with information on possible additional control technologies that could be used to further reduce these emissions. Included in this report are generic discussions of emission control technologies for particulates, iodine, rare gases, and tritium. Also included are specific discussions of existing emission control technologies at 25 DOE facilities. Potential additional emission control technologies are discussed for 14 of these facilities. The facilities discussed were selected by EPA on the basis of preliminary radiation pathway analyses. 170 references, 131 figures, 104 tables.

  3. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC

    Office of Energy Efficiency and Renewable Energy (EERE)

    Showcases new content added to the AFDC including: Diesel Vehicles, Diesel Exhaust Fluid, Selective Catalytic Reduction Technologies, and an upcoming Deisel Exhaust Fluid Locator.

  5. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A

    2007-01-01

    1/2, 2004 Experience curves for power plant emission controlcoal-fired electric power plants. In particular, we focus on2004) ĎExperience curves for power plant emission control

  6. Calculation of NOx Emission Reduction from Implementation of the 2000 IECC/IRC Conservation Code in Texas†

    E-Print Network [OSTI]

    Turner, W. D.; Yazdani, B.; Im, P.; Verdict, M.; Bryant, J.; Fitzpatrick, T.; Haberl, J. S.; Culp, C.

    2003-01-01

    OF NOx EMISSIONS REDUCTION FROM IMPLEMENTATION OF THE 2000 IECC/IRC CONSERVATION CODE IN TEXAS Jeff S. Haberl Ph.D., P.E Professor/ Assc. Director Charles Culp Ph.D., P.E. Assc. Director Bahman Yazdani P.E. Assc. Director Tom Fitzpatrick... and passed Senate Bill 5 to reduce ozone levels by encouraging the reduction of emissions of NOx by sources that are currently not regulated by the state2. An important part of this legislation is the State?s energy efficiency program, which includes...

  7. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeir„o Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F.; Gutberlet, Jutta

    2013-12-15

    Highlights: ē Cooperative recycling achieves environmental, economic and social objectives. ē We calculate GHG emissions reduction for a recycling cooperative in S„o Paulo, Brazil. ē The cooperative merits consideration as a Clean Development Mechanism (CDM) project. ē A CDM project would enhance the achievements of the recycling cooperative. ē National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In S„o Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maine

    SciTech Connect (OSTI)

    2008-10-01

    Analysis of the expected impacts of 1000 MW of wind power in Maine, including economic benefits, CO2 emissions reductions, and water conservation.

  9. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect (OSTI)

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  10. Energy Efficiency/ Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Preliminary Report: Integrated Nox Emisions Savings From EE/RE Programs Statewide†

    E-Print Network [OSTI]

    Haberl, J.S.; Yazdani, B.; Baltazar, J. C.; Parker, P.; Ellis, S.; Mukhopadhyay, J.; Do, S. L.; Zilbertshtein, G.; Claridge, D.

    2014-01-01

    -09-01 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) PRELIMINARY REPORT: INTEGRATED NOX EMISSIONS SAVINGS FROM EE/RE PROGRAMS STATEWIDE Annual Report to the Texas Commission on Environmental Quality January... Laboratory (ESL) at the Texas Engineering Experiment Station of the Texas A&M University System is pleased to provide this preliminary report, ďEnergy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Integrated NOx Emissions...

  11. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  12. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect (OSTI)

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  13. Climate impacts of energy technologies depend on emissions timing

    E-Print Network [OSTI]

    Edwards, Morgan Rae

    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated ...

  14. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction Ė Part II (Base fluid and additive technologies)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  15. Active Diesel Emission Control Technology for Transport Refrigeration Units

    Broader source: Energy.gov [DOE]

    This project discusses a CARB Level 2+ verified active regeneration technology for smal diesel engines

  16. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect (OSTI)

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  17. Assessing "Dangerous Climate Change": Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    E-Print Network [OSTI]

    Hansen, James E.

    Assessing "Dangerous Climate Change": Required Reduction of Carbon Emissions to Protect Young high and would subject young people, future generations and nature to irreparable harm. Carbon dioxide. Of course carbon dioxide from deforestation also causes warming and policies must address that carbon source

  18. Procedures for the Integration of Complete Year Texas Weather Data Files for eCalc-Emissions Reduction Calculator†

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J. S.; Baltazar-Cervantes, J. C.; Culp, C.; Gilman, D.

    2007-01-01

    for the weather normalization needed to a base year for EE/RE projects. This paper describes the procedures that have been followed to assemble annual files of hourly weather data that are required to assess the emission reductions due to the electricity savings...

  19. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Climate Action Partnership Contribution of Food GHG Emissions Reduction: Moving

    E-Print Network [OSTI]

    target: Ensure that 90% of UBC's food system waste can be composted or recycled by 2015. We reviewed Waste Management, UBC Food Services and the AMS Food and Beverage Partnership Contribution of Food GHG Emissions Reduction: Moving UBC Beyond Climate Neutral Jennifer Baum

  20. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Development of CCT Diagrams

    SciTech Connect (OSTI)

    L. Scott Chumbley

    2011-08-20

    One of the most energy intensive industries in the U.S. today is in the melting and casting of steel alloys for use in our advanced technological society. While the majority of steel castings involve low or mild carbon steel for common construction materials, highly-alloyed steels constitute a critical component of many industries due to their excellent properties. However, as the amount of alloying additions increases, the problems associated with casting these materials also increases, resulting in a large waste of energy due to inefficiency and a lack of basic information concerning these often complicated alloy systems. Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma (√?¬?√?¬Į√?¬?√?¬Ā√?¬?√?¬≥) and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. Knowledge of the times and temperatures at which these detrimental phases form is imperative if a company is to efficiently produce castings of high quality in the minimum amount of time, using the lowest amount of energy possible, while producing the least amount of material waste. Anecdotal evidence from company representatives revealed that large castings frequently had to be scrapped due to either lower than expected corrosion resistance or extremely low fracture toughness. It was suspected that these poor corrosion and / or mechanical properties were directly related to the type, amount, and location of various intermetallic phases that formed during either the cooling cycle of the castings or subsequent heat treatments. However, no reliable data existed concerning either the time-temperature-transformation (TTT) diagrams or the continuous-cooling-transformation (CCT) diagrams of the super-austenitics. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3McuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). In this way TTT and CCT diagrams could be developed for the matrix of samples chosen. As this study consisted of basic research into the development of TTT and CCT diagrams as an aid to the US steel casting industry, there is no formal commercialization plan associated with this task other than presentations and publications via the Steel Founders Society of America to their members. The author is confident that the data contained in this report can be used by steel foundries to refine their casting procedures in such a way as to reduce the amount of waste produced and energy wasted by significantly reducing or eliminating the need for remelting or recasting of material due to unwanted, premature intermetallic formation. This development of high alloy steel CCT diagrams was predicted to result in an average energy savings of 0.05 trillion BTU√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s/year over a 10 year period (with full funding). With 65% of the proposed funding, current (2011) annual energy saving estimates, based on initial dissemination to the casting industry in 2011and market penetration of 97% by 2020, is 0.14 trillion BTU√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s/year. The reduction of scrap and improvement in casting yield will also result in a reduction of environmental emissions associated with the melting and pouring of the steel. The average annual estimate of CO2 reduction per year through 2020 is 0.003 Million Metri

  1. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    E-Print Network [OSTI]

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-01-01

    9 Energy Use and Carbon Dioxide Emissions in the U.S.Energy Use and Carbon Dioxide Emissions for Energy Use inConsumption, and Carbon Dioxide Emissions from calcination

  2. Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions

    E-Print Network [OSTI]

    Nielsen, Eric

    2012-12-31

    Increasing energy demands require more energy extraction from fossil fuels. The energy is extracted through combustion and results in mainly CO2 emissions as well as other trace emissions. Reducing energy usage can save money and CO2 emissions...

  3. STATE-OF-THE-ART AND EMERGING TRUCK ENGINE TECHNOLOGIES FOR OPTIMIZED PERFORMANCE, EMISSIONS AND LIFE CYCLE COSTS

    SciTech Connect (OSTI)

    Schittler, M

    2003-08-24

    The challenge for truck engine product engineering is not only to fulfill increasingly stringent emission requirements, but also to improve the engine's economical viability in its role as the backbone of our global economy. While societal impact and therefore emission limit values are to be reduced in big steps, continuous improvement is not enough but technological quantum leaps are necessary. The introduction and refinement of electronic control of all major engine systems has already been a quantum leap forward. Maximizing the benefits of these technologies to customers and society requires full use of parameter optimization and other enabling technologies. The next big step forward will be widespread use of exhaust aftertreatment on all transportation related diesel engines. While exhaust gas aftertreatment has been successfully established on gasoline (Otto cycle) engines, the introduction of exhaust aftertreatment especially for heavy-duty diesel engines will be much mo re demanding. Implementing exhaust gas aftertreatment into commercial vehicle applications is a challenging task but the emission requirements to be met starting in Europe, the USA and Japan in the 2005-2007 timeframe require this step. The engine industry will be able to implement the new technology if all stakeholders support the necessary decisions. One decision has already been taken: the reduction of sulfur in diesel fuel being comparable with the elimination of lead in gasoline as a prerequisite for the three-way catalyst. Now we have the chance to optimize ecology and economy of the Diesel engine simultaneously by taking the decision to provide an additional infrastructure for a NOx reduction agent needed for the introduction of the Selective Catalytic Reduction (SCR) technology that is already implemented in the electric power generation industry. This requires some effort, but the resulting societal benefits, fuel economy and vehicle life cycle costs are significantly better when compared to other competitive technologies. After long discussions this decision for SCR has been made in Europe and is supported by all truck and engine manufacturers. The necessary logistic support will be in place when it will be needed commercially in 2005. For the US the decision has to be taken this year in order to have the infrastructure available in 2007. It will enable the global engine industry to focus their R & D resources in one direction not only for 2007, but for the years beyond 2010 with the best benefit for the environment, the customers and the industry.

  4. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport II

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission cargo transport II.

  5. Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport Projects

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero emission...

  6. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  7. Vehicle Technologies Office Merit Review 2015: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about zero-emission heavy-duty drayage truck...

  8. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  9. Advanced Diesel Common Rail Injection System for Future Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Injection System and Engine Strategies for Advanced Emission Standards SCR Technologies for NOx Reduction Powertrain Trends and Future...

  10. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  11. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect (OSTI)

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  12. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    energy challenge with ISO 50001, International Organizationgas emissions. Also, the ISO 50001 standard for Energy

  13. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    emissions from coal-fired power plants have been the subjectrequired on all new coal-fired power plants in the US andof FGD at coal-burning power plants can be traced back to

  14. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    Chinaís annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the worldís annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  15. Experience curves for power plant emission control technologies

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Hounshell, David A; Taylor, Margaret R

    2007-01-01

    technologies applicable to power plant gas streams) and thecapacity of power plants whose flue gases are treated withat some power plants burning oil or natural gas, including

  16. Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ft007sluder2011...

  17. Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ft007sluder2010...

  18. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  19. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): ďDegradation Mechanisms of Urea Selective Catalytic Reduction TechnologyĒ

    SciTech Connect (OSTI)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications (2 total), reports (3 total including this Final Report), and presentations (5 total).

  20. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect (OSTI)

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  1. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Vol. I - Summary Report†

    E-Print Network [OSTI]

    Degelman, L. O.; Gilman, D.; Ahmed, M.; Yazdani, B.; Liu, Z.; Verdict, M.; Muns, S.; Baltazar-Cervantes, J. C.; Turner, W. D.; Haberl, J. S.; Culp, C.

    2006-10-30

    -06-07 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME I ? SUMMARY REPORT Annual Report to the Texas Commission on Environmental Quality September 2004 ? December 2005 Jeff Haberl, Ph.D., P... P. O. Box 13087 Austin, TX 78711-3087 Dear Chairman White: The Energy Systems Laboratory (ESL) at the Texas Engineering Experiment Station of the Texas A&M University System is pleased to provide its fourth annual report, ?Energy Efficiency/Renewable...

  2. Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site

    SciTech Connect (OSTI)

    Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

    1996-06-01

    Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

  3. Energy Efficiency as a Low-Cost Resource for Achieving Carbon Emissions Reductions

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the scale and economic value of energy efficiency for reducing carbon emissions and discusses barriers to achieving the potential for cost-effective energy efficiency.

  4. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    Vehicle Activity Network Efficiency GHG Emissions Operational Efficiency Alternative EnergyAlternative energy includes the substitution of fuels other than fossil fuels for vehicle

  5. Reversing Climate Change: Using Carbon Technology to Offset Carbon Emissions

    E-Print Network [OSTI]

    with a walk-away safe, less expensive, more proliferation-resistant form of nuclear power, with acceptable solutions for the problems of high-level and low-level nuclear waste. Taken together, STRs and MSBRs allow and Technology Advisory Group and as an Advisor on Energy to the Premier of Taiwan. He also Chairs the Advisory

  6. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    SciTech Connect (OSTI)

    White, Thornton C

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: ē Improve important capabilities of castings ē Reduce carbon footprint of the foundry industry ē Develop new job opportunities in manufacturing ē Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: ē Improvements in Melting Efficiency ē Innovative Casting Processes for Yield Improvement/Revert Reduction ē Instrumentation and Control Improvement ē Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been made possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOEís Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Foundersí Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June 2014, the E-SMARRT program predicts an average annual estimated savings of 59 Trillion BTUs per year over a 10 year period through Advanced Melting Efficiencies and Innovative Casting Processes. Along with these energy savings, an estimated average annual estimate of CO2 reduction per year over a ten year period is 3.56 Million Metric Tons of Carbon Equivalent (MM TCE).

  7. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  8. Assessing ``Dangerous Climate Change'': Required Reduction of Carbon Emissions to Protect Young People,

    E-Print Network [OSTI]

    , Florida State University, Tallahassee, Florida, United States of America, 9 Marine Institute, PlymouthC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting

  9. Greenhouse Gas Emission Reduction in the ENERGY STAR Commercial, Industrial and Residential Sectors. An Example of How the Refinery Industry is Capitalizing on ENERGY STAR†

    E-Print Network [OSTI]

    Patrick, K.

    2008-01-01

    to accomplish strategically a reduction in emissions. Through its development, ENERGY STAR has become an integral player with many Green Buildings Program to help them carry the energy efficiency banner to higher levels of cooperation. What is occurring today...

  10. Determination of a cost-effective air pollution control technology for the control of VOC and HAP emissions from a steroids processing plant

    SciTech Connect (OSTI)

    Hamel, T.M.

    1997-12-31

    A steroids processing plant located in northeastern Puerto Rico emits a combined average of 342 lb/hr of hazardous air pollutants (HAPs) and volatile organic compounds (VOCs) from various process operations. The approach that this facility used to implement maximum achievable control technology (MACT) may assist others who must contend with MACT for pharmaceutical or related manufacturing facilities. Federal air regulations define MACT standards for stationary sources emitting any of 189 HAPs. The MACT standards detailed in the NESHAPs are characterized by industry and type of emission control system or technology. It is anticipated that the standard will require HAP reductions of approximately 95%. The steroid plant`s emissions include the following pollutant loadings: VOC/HAP Emission Rate (lb/hr): Methanol 92.0; Acetone 35.0; Methylene chloride 126.0; Chloroform 25.0; Ethyl acetate 56.0; Tetrahydrofuran 5.00; and 1,4-Dioxane 3.00. The facility`s existing carbon adsorption control system was nearing the end of its useful life, and the operators sought to install an air pollution control system capable of meeting MACT requirements for the pharmaceutical industry. Several stand-alone and hybrid control technologies were considered for replacement of the carbon adsorption system at the facility. This paper examines the following technologies: carbon adsorption, membrane separation, thermal oxidation, membrane separation-carbon adsorption, and condensation-carbon adsorption. Each control technology is described; the advantages and disadvantages of utilizing each technology for the steroid processing plant are examined; and capital and operating costs associated with the implementation of each technology are presented. The rationale for the technology ultimately chosen to control VOC and HAP emissions is presented.

  11. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  12. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01

    is coal-fired power generation. power generation. China Cement (10), 18-heat recovery (WHR) power generation technologies have been

  13. Cost Effectiveness of Technology Solutions for Future Vehicle Systems

    Broader source: Energy.gov [DOE]

    Explores the economics of CO2 emission reductions by added engine technology to determine if there is an overall positive or negative benefit.

  14. A Methodology for Calculating Integrated Nox Emissions Reductions from Energy Efficiency and Renewable Energy (EE/RE) Programs Across State Agencies in Texas†

    E-Print Network [OSTI]

    Haberl, J. S.

    2012-01-01

    . Haberl, Ph.D., P.E. Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System A METHODOLOGY FOR CALCULATING INTEGRATED NOx EMISSIONS REDUCTIONS FROM ENERGY EFFICIENCY AND RENEWABLE ENERGY (EE/RE) PROGRAMS... reductions for municipally owned utilities and electric cooperatives reporting to SECO. INTEGRATED NOx SAVINGS Energy Systems Laboratory 2012 p. 5 IN 2005 TCEQ INITIATED A PROGRAM TO DETERMINE INTEGRATED EMISSIONS SAVINGS (from 2005 to 2020) TO REPORT...

  15. Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Broader source: Energy.gov [DOE]

    Numerous transportation strategies are directed at reducing energy use and greenhouse gas (GHG) emissions by changing the behavior of individual drivers or travelers. These behavioral changes may have the effect of reducing travel, shifting travel to more efficient modes, or improving the efficiency of existing travel. Since the 1970s, federal, regional, state and municipal agencies have tried to reduce energy use, emissions, and congestion by influencing travel behavior. This report reviews and summarizes the literature on relationships between these strategies and transportation-related energy use and GHG emissions to examine how changes to travel behavior can reduce transportation energy use and discuss the potential for federal actions to affect travel behavior.

  16. Technologies to characterize natural gas emissions tested in field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies

  17. Vehicle Technologies Office Merit Review 2014: Emissions Modeling: GREET

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,BiofuelsLetEnergy Vehicle Technologies OfficeforLife

  18. Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas†

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

    2006-05-23

    . These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction...

  19. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  20. Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Morris, J.

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  1. Forecasting and Capturing Emission Reductions Using Industrial Energy Management and Reporting Systems†

    E-Print Network [OSTI]

    Robinson, J.

    2010-01-01

    The Mandatory 2010 Green House Gas (GHG) Reporting Regulations and pending climate change legislation has increased interest in Energy Management and Reporting Systems (EMRS) as a means of both reducing and reporting GHG emissions. This paper...

  2. Reductions in ozone concentrations due to controls on variability in industrial flare emissions in Houston, Texas

    E-Print Network [OSTI]

    Nam, Junsang

    2007-01-01

    High concentrations of ozone in the Houston/Galveston area are associated with industrial plumes of highly reactive hydrocarbons, mixed with NOx. The emissions leading to these plumes can have significant temporal variability, ...

  3. A Comparative Evaluation of Greenhouse Gas Emission Reduction Strategies for the Maritime Shipping and Aviation Sectors

    E-Print Network [OSTI]

    Hansen, Mark; Smirti, Megan; Zou, Bo

    2008-01-01

    fuels in place of Heavy Fuel Oil (HFO). A replacement of HFOGHG Emissions Change from Heavy Fuel Oil Marine Diesel Oil AEmissions Change from Heavy Fuel Oil At worst be CO 2

  4. Electricity generation and emissions reduction decisions under uncertainty : a general equilibrium analysis

    E-Print Network [OSTI]

    Morris, Jennifer F. (Jennifer Faye)

    2013-01-01

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  5. Pulsed Corona Plasma Technology for Treating VOC Emissions from Pulp Mills

    SciTech Connect (OSTI)

    Fridman, Alexander A.; Gutsol, Alexander; Kennedy, Lawrence A.; Saveliev, Alexei V.; Korobtsev, Sergey V.; Shiryaevsky, Valery L.; Medvedev, Dmitry

    2004-07-28

    Under the DOE Office of Industrial Technologies Forest Products program various plasma technologies were evaluated under project FWP 49885 ''Experimental Assessment of Low-Temperature Plasma Technologies for Treating Volatile Organic Compound Emissions from Pulp Mills and Wood Products Plants''. The heterogeneous pulsed corona discharge was chosen as the best non-equilibrium plasma technology for control of the vent emissions from HVLC Brownstock Washers. The technology for removal of Volatile Organic Compounds (VOCs) from gas emissions with conditions typical of the exhausts of the paper industry by means of pulsed corona plasma techniques presented in this work. For the compounds of interest in this study (methanol, acetone, dimethyl sulfide and ? -pinene), high removal efficiencies were obtained with power levels competitive with the present technologies for the VOCs removal. Laboratory experiments were made using installation with the average power up to 20 W. Pilot plant prepared for on-site test has average plasma power up to 6.4 kW. The model of the Pilot Plant operation is presented.

  6. Report on NOx Emissions Reduction from Voluntary Energy Efficiency Projects within the Alamo Area Council of Governments to the Texas Commission on Environmental Quality, August 2003†

    E-Print Network [OSTI]

    Haberl, J. S.; Verdict, M.; Yazdani, B.; Zhu, Y.; Im, P.

    2004-01-01

    for credit within their 2004 Clean Air Plan. The purpose of this study is two-fold: 1) estimate the creditable emissions reductions from energy efficiency actions in AACOG regions, and 2) serve as a pilot project for documenting and calculating emissions...

  7. A Study of Cooling Time Reduction of Interferometric Cryogenic Gravitational Wave Detectors Using a High-Emissivity Coating

    E-Print Network [OSTI]

    Y. Sakakibara; N. Kimura; T. Suzuki; K. Yamamoto; D. Chen; S. Koike; C. Tokoku; T. Uchiyama; M. Ohashi; K. Kuroda

    2013-09-19

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  8. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect (OSTI)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  9. Uncle Sam goes to market: Federal agency disposal of emission reduction credits under the Federal property management regulations. Master's thesis

    SciTech Connect (OSTI)

    Rafferty, V.J.

    1994-01-30

    With the realignment and closure of Federal facilities, especially Department of Defense installations, Federal agencies have been presented with a unique opportunity: the chance to create and dispose of air emission reduction credits (ERCs). This situation and current commitments by the Congress and EPA to expand the use of market based pollution control programs have generated interest in certain circles as to whether and how Federal agencies can dispose of ERCs and similar pollution rights and allowances. This paper will discuss ERCs, why the disposal of ERCs by Federal agencies is a pressing issue, and how Federal agencies can dispose of ERCs under existing Federal property laws and regulations.

  10. DOE/NETL's advanced NOx emissions control technology R & D program

    SciTech Connect (OSTI)

    Lani, B.W.; Feeley, T.J. III; Miller, C.E.; Carney, B.A.; Murphy, J.T.

    2006-11-15

    Efforts are underway to provide more cost-effective options for coal-fired power plants to meet stringent emissions limits. Several recently completed DOE/NETL R & D projects were successful in achieving the short-term goal of controlling NOx emissions at 0.15 lb/MMBtu using in-furnace technologies. In anticipation of CAIR and possible congressional multi-pollutant legislation, DOE/NETL issued a solicitation in 2004 to continue R & D efforts to meet the 2007 goal and to initiate R & D targeting the 2010 goal of achieving 0.10 lb/MMBtu using in-furnace technologies in lieu of SCR. As a result, four new NOx R & D projects are currently underway and will be completed over the next three years. The article outlines: ALSTOM's Project on developing an enhanced combustion, low NOx burner for tangentially-fired boilers; Babcock and Wilcox's demonstration of an advanced NOx control technology to achieve an emission rate of 0.10 lb/MMBtu while burning bituminous coal for both wall- and cyclone-fired boilers; Reaction Engineering International's (REI) full-scale field testing of advanced layered technology application (ALTA) NOx control for cyclone fired boilers; and pilot-scale testing of ALTA NOx control of coal-fired boilers also by REI. DOE/NETL has begun an R & D effort to optimize performance of SCR controls to achieve the long term goal of 0.01 lb/MMBtu NOx emission rate by 2020. 1 fig.

  11. Fiddling while carbon burns: why climate policy needs pervasive emission pricing as well as technology promotion

    E-Print Network [OSTI]

    Pezzey, Jack

    supply technologies with lower emissions, greater energy use efficiency, and substitution in demand, innovation, Asia≠Pacific Partnership, AP6 John (Jack) Pezzey (email: jack.pezzey@anu.edu.au) is a Senior to facilitate the development, diffusion, deployment, and transfer of existing, emerging and longer term cost

  12. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01

    Cement†Production Source: IEA 2011a, GOI 2012b Appendix 3.International Energy Agency (IEA), 2009, Cement TechnologyInternational Energy Agency (IEA), 2011a. Energy Transition

  13. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect (OSTI)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5"¬Ě from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

  14. Reduction of NO sub x and SO sub 2 emissions from coal burning pulse combustors

    SciTech Connect (OSTI)

    Powell, E.A.; Zinn, B.T.; Miller, N.; Chen, F.

    1990-12-01

    In this investigation, a Rijke pulse combustor was constructed, in which unpulverized coal was burned on a rotating bed where the presence of acoustic velocity oscillations resulted in bed fluidization and intensification of the combustion process. The objectives of this investigation were to determine (1) if the nitrogen oxides emissions of the experimental Rijke pulse combustor could be reduced by air staging the combustion process and (2) if the sulfur dioxide emissions of this pulse combustor could be reduced by the addition of sorbent materials such as limestone to the coal bed or to the gas stream above the bed. Air staging experiments were conducted for total dimensionless air fuel ratios ranging from 1.0 to 1.4 and primary dimensionless air/fuel ratios ranging from 0.6 to 0.9. Injection heights ranged from 20 cm to 52 cm above the coal bed. Air staging was effective in reducing the nitrogen oxides emissions of coal burning Rijke type pulse combustors under the proper conditions. Another series of experiments was conducted using sorbent addition to reduce sulfur dioxide emissions. In some of these experiments, pulverized dolomitic limestone was introduced along with the coal through the coal delivery tube just above the bed, while in the remainder of the experiments, the sorbent was dispersed in an air stream and injected at 15 cm or 23 cm above the coal bed. 9 refs., 49 figs., 9 tabs.

  15. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP): Volume III†

    E-Print Network [OSTI]

    Haberl, Jeff; Culp, Charles; Yazdani, Bahman; Gilman, Don; Fitzpatrick, Tom; Muns, Shirley; Verdict, Malcolm; Ahmed, M.; Liu, Zi; Baltazar, Juan Carlos; Montgomery, Cynthia; McKelvey, Katherine; Mukhopadhyay, Jaya; Degelman, Larry

    2008-01-01

    The Energy Systems Laboratory, in fulfillment of its responsibilities under Texas Health and Safety Code Ann. ß 388.003 (e), Vernon Supp. 2002, submits its third annual report, Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions...

  16. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  17. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    OF TECHNOLOGIES FOR HYBRID-ELECTRIC VEHICLES 4.1EnginesG.H. , SIMPLEV: Simple Electric Vehicle Simulation Program-G.H, SIMPLEV: Simple Electric Vehicle Simulation Program-

  18. Reduction of VOC emissions from metal dip coating applications -- Canam Steel Corporation Point of Rocks, MD case study

    SciTech Connect (OSTI)

    Monfet, J.P.

    1997-12-31

    The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.

  19. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Vehicle Technologies Office Merit Review 2015: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about fuel and...

  2. Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant Effects on Emissions Control Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel and...

  3. Calculation of Nox Emissions Reductions from Energy Efficient Residential Building Construction in Texas†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Gilman, D.; Baltazar-Cervantes, J. C.; Yazdani, B.; Fitzpatrick, T.; Muns, S.; Verdict, M.

    2004-01-01

    severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction in non...,000 ft2 single-family residence. ESL Code Traceable DOE-2 Simulation (Residential, Commercial, Industrial, Renewables) County-wide Electricity Use (w/ and w/o code) E-GRID Database Model For ERCOT, SERC, SPP, and WSCC Regions 1999 Building...

  4. Texas Emissions Reductions Program (TERP) Energy Efficiency/Renewable Energy (EE/RE) Update†

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    REDUCTIONS PROGRAM (TERP) ENERGY EFFICIENCY/RENEWABLE ENERGY (EE/RE) UPDATE October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012 Faculty/Staff: Juan... or renewable energy activity; or (3) Included under our voluntary measures policy. Record Keeping: The measure should be permanent throughout the term for which the credit is granted unless it is replaced by another measure or the State...

  5. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect (OSTI)

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  8. Development of venturi/vortex scrubber technology for controlling chromium electroplating hazardous air emissions. Final report

    SciTech Connect (OSTI)

    Hay, K.J.; Qi, S.; Northrup, J.I.; Heck, S.R.

    1998-07-01

    Chromium has a combination of qualities that give chromium electroplating an important role in coating military hardware and armament. However, chromium electroplating and chromium anodizing operations create hazardous air pollutants in the form of hexavalent chromium. Conventional technologies for controlling this pollutant are expensive, noisy, and use a lot of energy and water. Consequently, an air pollution problem is turned into a water pollution problem that also requires treatment. There is a need for an economical control option that pollutes less than conventional technologies. This project developed control technologies to effectively and economically control hazardous air emissions from Army chromium electroplating and anodizing operations, primarily focusing on the development of the Venturi/Vortex Scrubber technology (VVST).

  9. Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles

    E-Print Network [OSTI]

    Burke, A.F.; Miller, M.

    1997-01-01

    Powerplant Efficiency (%) FF Vehicle Fuel/Technologies gmC02) pp I Llecmcity gmC02 ] j KJ)Fuel gm j Coal Steam Oil Steam GasGas from Biomass from Solar Carbon Dioxide Table 2: [gin ~mlsslons~-~iJfįr Usage for Various Powerplant

  10. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP)†

    E-Print Network [OSTI]

    Degelman, Larry; Mukhopadhyay, Jaya; McKelvey, Kathy; Montgomery, Cynthia; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Gilman, Don; Yazdani, Bahman; Culp, Charles; Haberl, Jeff

    2009-01-01

    specially prepared for this purpose. In 2008, the cumulative total annual electricity savings from all programs is 20,380,240 MWh/year (12, 727 tons-NOx/year). The total cumulative OSD electricity savings from all programs is 48,602 MWh/day, which... would be a 2,025 MW average hourly load reduction during the OSD period (31.38 tons-NOx/day). By 2013, the total cumulative annual electricity savings from will be 32,736,151 MWh/year (20,395 tons-NOx/year). The total cumulative OSD electricity...

  11. Alternative Fuels Data Center: Idle-Reduction Efforts Cut Emissions and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith Propane Florida Schools FirstIdle Reduction Research

  12. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    DEFRA), 2005a. UK Emissions Trading Scheme. London: DEFRA.Energy/GHG Tax Emissions trading Target Setting Penaltiesthe European Union Emissions Trading Scheme and a lack of

  13. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect (OSTI)

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  14. Removing mercury from coal emissions: options for ash-friendly technologies

    SciTech Connect (OSTI)

    Sager, J.

    2009-07-01

    The article gives a brief description of techniques to remove mercury emitted from coal-fired power plants and discusses environmental considerations associated with the effect of emission controls on coal fly ash. Techniques covered include use of injected mercury sorbents (activated carbon, metal oxide catalysts, MerCAP{trademark} and MercScreen{trademark}) and fuel cleaning. Technologies currently being researched are mentioned. 8 refs.

  15. Review of technical literature and trends related to automobile mass-reduction technology

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2010-01-01

    optimization including integration, parts consolidation, advanced materialoptimization designs that incorporate component-level mass reduction, a diverse mix of materials,materials, processes, and components for mass reduction. Existing mass-optimization

  16. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  17. Regulation of GHG emissions from transportation fuels: Emission quota versus emission intensity standard

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Derivation of average cost of emission reduction by blending?) and ? respectively. GHG emissions per unit of blend is, ?+ ?? i Reduction in GHG emissions with respect to unblended

  18. New algorithms and technologies for the un-supervised reduction of Optical/IR images

    E-Print Network [OSTI]

    Benoit Vandame

    2002-08-12

    This paper presents some of the main aspects of the software library that has been developed for the reduction of optical and infrared images, an integral part of the end-to-end survey system being built to support public imaging surveys at ESO. Some of the highlights of the new library are: unbiased estimates of the background, critical for deep IR observations; efficient and accurate astrometric solutions, using multi-resolution techniques; automatic identification and masking of satellite tracks; weighted co-addition of images; creation of optical/IR mosaics, and appropriate management of multi-chip instruments. These various elements have been integrated into a system using XML technology for setting input parameters, driving the various processes, producing comprehensive history logs and storing the results, binding them to the supporting database and to the web. The system has been extensively tested using deep images as well as images of crowded fields (e.g. globular clusters, LMC), processing at a rate of 0.5 Mega-pixels per second using a DS20E ALPHA computer with two processors. The goal of this presentation is to review some of the main features of this package.

  19. Fuel Cell Project Selected for First Ever Technology-to-Market...

    Broader source: Energy.gov (indexed) [DOE]

    cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

  20. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC

    2000-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  1. Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction

    Broader source: Energy.gov [DOE]

    Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

  2. An investigation of gas separation membranes for reduction of thermal treatment emissions

    SciTech Connect (OSTI)

    Stull, D.M.; Logsdon, B.W.; Pellegrino, J.J.

    1994-05-16

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

  3. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    processes to reduce the carbon footprint of concrete. Thelargest share of energy and carbon footprint of the concreteproduct have a negative carbon footprint because they are

  4. ITP Chemicals: Hybripd Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    Broader source: Energy.gov [DOE]

    Energy used to drive separation processes accounts for approximately sixty percent of the total energy used by the chemical and petroleum industries.

  5. Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol

    Broader source: Energy.gov [DOE]

    Results from an idling strategy using PCCI coupled with LTC indicate that, when used with n-butanol, it can be very promising for extended idling including the LTC regimes.

  6. Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction

    SciTech Connect (OSTI)

    Eldridge, R. Bruce; Seibert, A. Frank; Robinson, Sharon; Rogers, Jo

    2005-04-01

    This report focuses on improving the existing separations systems for the two largest energy-consuming sectors: the chemicals and petroleum refining industries. It identifies the technical challenges and research needs for improving the efficiency of distillation systems. Areas of growth are also highlighted.

  7. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    Hilger, J. 2003. Combined Utilization of Oil Shale Energyand Oil Shale Minerals within the Production of Cement andOther Hydraulic Minerals. Oil Shale, Vol. 20, No. 3, pp.

  8. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    electric (MWe) natural gas power plant (Calera 2012). Other2 in the flue gas of cement plants over power plants, thusgas purity requirements, and a combined heat and power plant

  9. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    continuous kiln operation (Perkins 2000). For example, Texas Industries has licensed its patented CemStar cement production process

  10. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    the binder and recycled materials as aggregate has a doubleUsing recycled materials as aggregate in concrete divertsa recycled material that can be used as concrete aggregate.

  11. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    Applications of 100 Percent Fly Ash Concrete. 2005 World ofTowards sustainable solutions for fly ash through mechanicalVerification of Self- Cementing Fly Ash Binders for ďGreenĒ

  12. Transformative Reduction of Transportation Greenhouse Gas Emissions: Opportunities for Change in Technologies and Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week DayDr.Theories81TowardsTrackingCarbon2 -,

  13. The FreedomCAR & Vehicle Technologies Health Impacts Program- The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  14. Characterizing the In-Use Emissions Performance of Novel PM and NOx Control Technologies on Diesel Construction Equipment

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Limiting net greenhouse gas emissions in the United States

    SciTech Connect (OSTI)

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  16. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that anaerobic methane oxidizing (AOM) microorganisms are predominantly found in marine habitats and grow poorly under most laboratory conditions. One path for future research would be to use a small rotary rig to collect samples from deeper soil horizons, possibly adjacent to the coal-bearing horizons that may be more anaerobic.

  17. NOx Emissions Reduction from CPS Energy's "Save For Tomorrow Energy Plan" Within the Alamo Area Council of Governments Report to the Texas Commission on Environmental Quality†

    E-Print Network [OSTI]

    Do, S. L.; Baltazar, J. C.; Haberl, J.; Yazdani, B.

    2010-01-01

    to be 2,543 GWh of electricity savings (based on the aggressive incentive scenario and exception of industrial sector). According to the TCEQ/ESL, the total annual NOx emissions reductions estimated through 2009 energy savings were 114.03 ton/year. Annual...

  18. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    Affairs (DEFRA), 2005. UK Emissions Trading Scheme. http://targets through the UK Emissions Trading Scheme. 6 Table 1is to be adjusted for emissions trading. The reports must be

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    CO2 Emissions Reduced (Mt) Taxes Subsidies Agreements Total Source:CO2 from UTO Source: CARB, 2009a; LBNL own estimates Not Specified: emissions

  20. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect (OSTI)

    Noam Lior; Stuart W. Churchill

    2003-10-01

    The primary objective of the proposed study was the study and analysis of, and design recommendations for, a novel radiatively-conductively stabilized combustion (RCSC) process for pulverized coal, which, based on our prior studies with both fluid fuels and pulverized coal, holds a high promise to reduce NO{sub x} production significantly. We have primarily engaged in continuing and improving our process modeling and analysis, obtained a large amount of quantitative information about the effects of the major parameters on NO{sub x} production, conducted an extensive exergy analysis of the process, evaluated the practicalities of employing the Radiatively-Conductively Stabilized Combustor (RCSC) to large power and heat plants, and improved the experimental facility. Prior experimental work has proven the feasibility of the combustor, but slagging during coal combustion was observed and should be dealt with. The primary outcomes and conclusions from the study are: (1) we developed a model and computer program that represents the pulverized coal combustion in the RCSC, (2) the model predicts that NO{sub x} emissions can be reduced by a number of methods, detailed in the report. (3) the exergy analysis points out at least a couple of possible ways to improve the exergetic efficiency in this combustor: increasing the effectiveness of thermal feedback, and adjusting the combustor mixture exit location, (4) because of the low coal flow rates necessitated in this study to obtain complete combustion in the burner, the size of a burner operating under the considered conditions would have to be up to an order of magnitude, larger than comparable commercial burners, but different flow configurations of the RCSC can yield higher feed rates and smaller dimensions, and should be investigated. Related to this contract, eleven papers were published in journals and conference proceedings, and ten invited presentations were given at university and research institutions, as well as at the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  1. Technology Improvement Opportunities for Low Wind Speed Turbines and Implications for Cost of Energy Reduction

    SciTech Connect (OSTI)

    None

    2008-02-01

    This report analyzes the status of wind energy technology in 2002 and describes the potential for technology advancements to reduce the cost and increase the performance of wind turbines.

  2. Presentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum capacity to biofuel due to funds from the emissions reduction units sell, under the Kyoto Protocol

    E-Print Network [OSTI]

    conversion to wood chips Due to funds from the emissions reduction units sell, under the Kyoto ProtocolPresentation 2.8: Program for the conversion of Russian municipal boilers with 20MW maximum capacity to biofuel due to funds from the emissions reduction units sell, under the Kyoto Protocol Andrey

  3. Vehicle Technologies Office Merit Review 2015: Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  5. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  6. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    CO2 Emissions Reduction by Source ..67 AIS Power Sector CO2 Emissions Reduction by Source EnergyCO2 Emission Reduction under AIS by Fuel Source

  7. Nanoparticle Emissions from Internal Combustion Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  8. Suspension Hydrogen Reduction of Iron Oxide Concentrates

    SciTech Connect (OSTI)

    H.Y. Sohn

    2008-03-31

    The objective of the project is to develop a new ironmaking technology based on hydrogen and fine iron oxide concentrates in a suspension reduction process. The ultimate objective of the new technology is to replace the blast furnace and to drastically reduce CO2 emissions in the steel industry. The goals of this phase of development are; the performance of detailed material and energy balances, thermochemical and equilibrium calculations for sulfur and phosphorus impurities, the determination of the complete kinetics of hydrogen reduction and bench-scale testing of the suspension reduction process using a large laboratory flash reactor.

  9. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect (OSTI)

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  10. Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

    2011-04-18

    Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

  11. Partnership for AiR Transportation Noise and Emission Reduction An FAA/NASA/TC-sponsored Center of Excellence

    E-Print Network [OSTI]

    emissions of CO2, hydrocarbons, NOx, SOx and particulate matter ≠ An estimated 6 million tons of CO2, 45 emissions from these flights [ASPM, ICAO data] #12;5 NOx performance ∑ Percentage of (domestic) departures from the top 20 airports vs. percentage of taxi-out NOx emissions from these flights [ASPM, ICAO data

  12. North American influence on tropospheric ozone and the effects of recent emission reductions: Constraints from ICARTT observations

    E-Print Network [OSTI]

    Goldstein, Allen

    s, possibly reflecting the decrease in the NOx/CO emission ratio as well as an increase in the ozone production efficiency per unit NOx. North American NOx emissions during summer 2004 as constrained organic compounds (NMVOCs) in the presence of nitrogen oxides (NOx = NO + NO2). Anthropogenic emissions

  13. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region†

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    2007-01-01

    , 07/2010 46 Ector, 300 MW, Notrees Windpower, 2008 47 Kenedy, 400 MW, Penascal Wind, 2008 48 150 MW, Galveston Offshore Wind, 2010 Wind Projects Retired: ERCOT Region ? 7MW 49 Jeff Davis, 7MW, Ft. Davis Wind Farm, 1996 Source: http... Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles Culp, Bahman Yazdani Energy...

  14. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    specified in the ďEnergy Technology ListĒ on their income orappear on the 2004 Energy Technology List are: air-to-airlist of technologies can be found at the website of Sustainable Energy

  15. Demonstration of improved vehicle fuel efficiency through innovative tire design, materials, and weight reduction technologies

    SciTech Connect (OSTI)

    Donley, Tim

    2014-12-31

    Cooper completed an investigation into new tire technology using a novel approach to develop and demonstrate a new class of fuel efficient tires using innovative materials technology and tire design concepts. The objective of this work was to develop a new class of fuel efficient tires, focused on the ďreplacement marketĒ that would improve overall passenger vehicle fuel efficiency by 3% while lowering the overall tire weight by 20%. A further goal of this project was to accomplish the objectives while maintaining the traction and wear performance of the control tire. This program was designed to build on what has already been accomplished in the tire industry for rolling resistance based on the knowledge and general principles developed over the past decades. Cooperís CS4 (Figure #1) premium broadline tire was chosen as the control tire for this program. For Cooper to achieve the goals of this project, the development of multiple technologies was necessary. Six technologies were chosen that are not currently being used in the tire industry at any significant level, but that showed excellent prospects in preliminary research. This development was divided into two phases. Phase I investigated six different technologies as individual components. Phase II then took a holistic approach by combining all the technologies that showed positive results during phase one development.

  16. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

  17. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    SciTech Connect (OSTI)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)] [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 ◊ 50 ◊ 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    Avoided Energy/GHG Tax Emissions trading Target Settingexits ē Calculating trading group targets ē Measuring energyemissions trading scheme, and a ďlight touchĒ on energy

  19. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    Berkeley National Laboratoryís Energy Analysis Program forare often national-level energy or GHG programs that combinea national-level energy or GHG emissions mitigation program

  20. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    2012. Potential energy savings and CO 2 emissions reductiondesign code for energy saving, energy consumption auditingCement: Benchmarking and Energy Savings Tool for the Cement

  1. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    Total primary energy saving energy saving in Chinese steelPower Enterprises Energy Savings and Emissions Reductioncost of the measures, and energy saving of the measures). It

  2. Flexible CHP System with Low NOx, CO, and VOC Emissions- Presentation by the Gas Technology Institute (GTI), June 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation on Flexible CHP System with Low NOx, CO, and VOC Emissions, given by David Cygan of the Gas Technology Institute, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  3. Combined SO{sub 2}/NO{sub x} reduction technology

    SciTech Connect (OSTI)

    Livengood, C.D.; Huang, H.S. [Argonne National Lab., IL (United States); Markussen, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1992-09-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  4. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume I-Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2009-December 2009†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Lewis, C.; Liu, Z.; Baltazar-Cervantes, J. C.; Mukhopadhyay, J.; Gilman, D.; Degelman, L.; McKelvey, K.; Claridge, D.

    2010-01-01

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  5. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume II Ė Technical Report, Annual Report to the Texas Commission on Environmental Quality September 2002 Ė August 2003†

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) ...

  6. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I Ė Summary Report, Annual Report to the Texas Commission on Environmental Quality September 2002 Ė August 2003†

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Bryant, J.; Turner, W. D.

    2003-01-01

    The Energy Systems Laboratory (Laboratory) is pleased to provide our second annual report, Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan to the Texas Council on Environmental Quality (TCEQ) ...

  7. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP) Volume III- Technical Appendix, Annual Report to the Texas Commission on Environmental Quality, January 2009 Ė December 2009†

    E-Print Network [OSTI]

    Haberl, J.; Culp, C.; Yazdani, B.; Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Lewis, C.; McKelvey, K.; Mukhopadhyay, J.; Degelman, L.

    2010-01-01

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  8. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I - Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007†

    E-Print Network [OSTI]

    Verdict, M.; Baltazar-Cervantes, J. C.; Yazdani, B.; Ahmed, M.; Degelman, L.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Liu, Z.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Haberl, J. S.; Culp, C.

    2008-01-23

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  9. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume I--Summary Report, Annual Report to the Texas Commission on Environmental Quality, January 2008-December 2008†

    E-Print Network [OSTI]

    Baltazar, Juan-Carlos; Claridge, David; Yazdani, Bahman; Mukhopadhyay, Jaya; Liu, Zi; Muns, Shirley; Gilman, Don; Degelman, Larry; Haberl, Jeff; Culp, Charles

    2009-01-01

    report, 'Energy Efficiency/Renewable Energy (EE/RE) Impact in the Texas Emissions Reduction Plan' to the Texas Commission on Environmental Quality. This report is organized in three volumes: Volume I - Summary Report - provides an executive summary...

  10. Emission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M.Emilio Segrè About the LabEmission

  11. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    Industrial Technologies Program provides many software tools, such as MotorMaster, for assessing energy efficiency of motors,

  12. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    specified in the ďEnergy Technology ListĒ on their income orappear on the 2004 Energy Technology List are: air-to-airEnergy, Industrial Technologies Program. http://www1.eere.energy.gov/industry/imf/pdfs/eeroci_dec03a.pdf SenterNovem presents lists

  13. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER)- 2008 Annual Report to the United States Environmental Protection Agency†

    E-Print Network [OSTI]

    Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.

    2009-01-01

    to Annual CO2 Emissions from Electricity Use Page 13 March 2009 Energy Systems Laboratory, Texas A&M University System 0 5 10 15 20 25 30 35 40 45 50 1 2 3 . 1 3 . 2 4 5 6 7 8 9 1 0 1 1...?Northwest?National?Laboratory Offline?emissions?calculator Page 12 March 2009 Energy Systems Laboratory, Texas A&M University System 0 2 4 6 8 10 12 14 16 18 20 0?~?5,000? 5,000?~?10,000 10,000?~?15,000 15,000?~?20,000 20...

  14. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01

    3 (Table 6 and Figure 4), and LPG savings 13 million tonnes.electricity and 28 billion m 3 LPG, with a CO2 reduction ofGas WH* (billion m 3 ) LPG WH (million tonnes) Electric

  15. Planning for future uncertainties in electric power generation : an analysis of transitional strategies for reduction of carbon and sulfur emissions

    E-Print Network [OSTI]

    Tabors, Richard D.

    1991-01-01

    The object of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gases. The research used the EPRI Electric Generation Expansion Analysis ...

  16. Statewide Emissions Reduction, Electricity and Demand Savings from the Implementation of Building-Energy-Codes in Texas†

    E-Print Network [OSTI]

    Yazdani, B.; Haberl, J.; Kim, H.; Baltazar, J.C.; Zilbershtein, G.

    2012-01-01

    This paper focuses on the estimate of electricity reduction and electric demand savings from the adoption energy codes for single-family residences in Texas, 2002-2009, corresponding increase in cnstruction costs and estimates of the statewide...

  17. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01

    Electricity Reduction (TWh) Coal-fired Generation Capacityto the output of 72 1-GW coal-fired power plants, and annualto the output of 65 1-GW coal-fired power plants, and annual

  18. Adaptive PI control of NOx? emissions in a Urea Selective Catalytic Reduction System using system identification models

    E-Print Network [OSTI]

    Ong, Chun Yang

    2009-01-01

    The Urea SCR System has shown great potential for implementation on diesel vehicles wanting to meet the upcoming emission regulations by the EPA. The objective of this thesis is to develop an adaptive controller that is ...

  19. Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model

    E-Print Network [OSTI]

    Morris, Jennifer

    Marginal abatement cost (MAC) curves, relationships between tons of emissions abated and the CO2 (or GHG) price, have been widely used as pedagogic devices to illustrate simple economic concepts such as the benefits of ...

  20. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    E-Print Network [OSTI]

    Levine, Mark D.

    2010-01-01

    Top-1000 Energy Savings and Energy-Related CO 2 EmissionsTotal Final Energy Savings Energy Efficiency in BuildingsTotal Primary Energy Savings Energy Efficiency in Buildings

  1. Investigation of Alternative Fuels and Advanced Engine Technology: Improving Engine Efficiency and Reducing Emissions

    E-Print Network [OSTI]

    Rapp, Vi Hai

    2011-01-01

    NO x . Unburned Hydrocarbon Emissions Measurements UnburnedHoriba, 1990]. Measurements of hydrocarbon concentrationdifferent hydrocarbons. This allows accurate measurements to

  2. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    SciTech Connect (OSTI)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nationís finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nationís balance sheet, and stimulate job-creation and economic renewal.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  6. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  7. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  12. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PI√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?s: Von Richards, Jeffrey Smith

    2012-07-31

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  13. Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

    2007-12-01

    An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

  14. Energy Saving Melting and Revert Reduction Technology: Aging of Graphitic Cast Irons and Machinability

    SciTech Connect (OSTI)

    Von L. Richards

    2012-09-19

    The objective of this task was to determine whether ductile iron and compacted graphite iron exhibit age strengthening to a statistically significant extent. Further, this effort identified the mechanism by which gray iron age strengthens and the mechanism by which age-strengthening improves the machinability of gray cast iron. These results were then used to determine whether age strengthening improves the machinability of ductile iron and compacted graphite iron alloys in order to develop a predictive model of alloy factor effects on age strengthening. The results of this work will lead to reduced section sizes, and corresponding weight and energy savings. Improved machinability will reduce scrap and enhance casting marketability. Technical Conclusions: √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ę Age strengthening was demonstrated to occur in gray iron ductile iron and compacted graphite iron. √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ę Machinability was demonstrated to be improved by age strengthening when free ferrite was present in the microstructure, but not in a fully pearlitic microstructure. √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ę Age strengthening only occurs when there is residual nitrogen in solid solution in the Ferrite, whether the ferrite is free ferrite or the ferrite lamellae within pearlite. √?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬Ę Age strengthening can be accelerated by Mn at about 0.5% in excess of the Mn/S balance Estimated energy savings over ten years is 13.05 trillion BTU, based primarily on yield improvement and size reduction of castings for equivalent service. Also it is estimated that the heavy truck end use of lighter castings for equivalent service requirement will result in a diesel fuel energy savings of 131 trillion BTU over ten years.

  15. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    E-Print Network [OSTI]

    Levine, Mark D.

    2010-01-01

    documents/011Danishvoluntaryagreements.PDF ETSU, 1999.See discussion of this report in ETSU, AEA Technology, 2001.environment/ccl/pdf/etsu-analysis.pdf European Union (EU).

  16. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    BOF) Steelmaking Ė EAF Casting and Refining Hot Rolling Coldconverter steam, continuous casting, slab hot charging andNo. Technology/Measure Casting and Refining Integrated

  17. Agricultural Industry Advanced Vehicle Technology: Benchmark Study for Reduction in Petroleum Use

    SciTech Connect (OSTI)

    Roger Hoy

    2014-09-01

    Diesel use on farms in the United States has remained relatively constant since 1985, decreasing slightly in 2009, which may be attributed to price increases and the economic recession. During this time, the United Statesí harvested area also has remained relatively constant at roughly 300 million acres. In 2010, farm diesel use was 5.4% of the total United States diesel use. Crops accounting for an estimated 65% of United States farm diesel use include corn, soybean, wheat, hay, and alfalfa, respectively, based on harvested crop area and a recent analysis of estimated fuel use by crop. Diesel use in these cropping systems primarily is from tillage, harvest, and various other operations (e.g., planting and spraying) (Figure 3). Diesel efficiency is markedly variable due to machinery types, conditions of operation (e.g., soil type and moisture), and operator variability. Farm diesel use per acre has slightly decreased in the last two decades and diesel is now estimated to be less than 5% of farm costs per acre. This report will explore current trends in increasing diesel efficiency in the farm sector. The report combines a survey of industry representatives, a review of literature, and data analysis to identify nascent technologies for increasing diesel efficiency

  18. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect (OSTI)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy); Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it [CNR-Institute of Biophysics, San Cataldo Research Area, Via G. Moruzzi 1, 56124 Pisa (Italy); Dini, F., E-mail: fdiniprotisti@gmail.com [University of Pisa, Department of Biology, Via A. Volta 4, 56126 Pisa (Italy); Tamburello, L., E-mail: ltamburello@biologia.unipi.it [University of Pisa, Department of Biology, Via Derna 1, I-56126 Pisa (Italy); Pirrone, N.; Sprovieri, F. [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)] [CNR-Institute of Atmospheric Pollution Research, c/o: UNICAL-Polifunzionale, 87036 Rende (Italy)

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup ?2} h{sup ?1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup ?2} h{sup ?1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup ?2} h{sup ?1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 įC and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ? Mercury air/surface exchange from grass covered soil is different from bare soil. ? Light enhances mercury emissions and is the main parameter driving the process. ? The presence of wild vegetation covering the soil reduces mercury emission. ? Vegetative covers could be a solution to reduce atmospheric mercury pollution.

  19. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    SciTech Connect (OSTI)

    R. Allen Miller, Principal Investigator; Contributors: Khalil Kabiri-Bamoradian; Abelardo Delgado-Garza; Karthik Murugesan; Adham Ragab

    2011-09-13

    As a net shape process, die casting is intrinsically efficient and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. A casting that is distorted and fails to meet specified dimensional requirements is typically remelted but this still results in a decrease in process yield, lost productivity, and increased energy consumption. This work focuses on developing, and expanding the use of, computer modeling methods that can be used to improve the dimensional accuracy of die castings and produce die designs and machine/die setups that reduce rejection rates due to dimensional issues. A major factor contributing to the dimensional inaccuracy of the casting is the elastic deformations of the die cavity caused by the thermo mechanical loads the dies are subjected to during normal operation. Although thermal and die cavity filling simulation are widely used in the industry, structural modeling of the die, particularly for managing part distortion, is not yet widely practiced. This may be due in part to the need to have a thorough understanding of the physical phenomenon involved in die distortion and the mathematical theory employed in the numerical models to efficiently model the die distortion phenomenon. Therefore, two of the goals of this work are to assist in efforts to expand the use of structural modeling and related technologies in the die casting industry by 1) providing a detailed modeling guideline and tutorial for those interested in developing the necessary skills and capability and 2) by developing simple meta√?¬Ę√?¬?√?¬źmodels that capture the results and experience gained from several years of die distortion research and can be used to predict key distortion phenomena of relevance to a die caster with a minimum of background and without the need for simulations. These objectives were met. A detailed modeling tutorial was provided to NADCA for distribution to the industry. Power law based meta√?¬Ę√?¬?√?¬źmodels for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid√?¬Ę√?¬?√?¬źstructure√?¬Ę√?¬?√?¬źinteraction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU√?¬Ę√?¬?√?¬?s/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU√?¬Ę√?¬?√?¬?s/year by 2019. Along with these en

  20. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    SciTech Connect (OSTI)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  1. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies

    E-Print Network [OSTI]

    Mercure, J.-F.; Lam, A.

    2015-06-08

    -based taxes by designing vehicles with smaller engines for the same amount of power (e.g. with turbo-chargers). Negative tax values also lead to increases in emissions by the same factors, suggesting that relative consumer in- come increases lead to increasing...

  2. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    SciTech Connect (OSTI)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts from a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.

  3. Active Diesel Emission Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Active Diesel Emission Control Systems 2004 Diesel Engine Emissions Reduction (DEER) Conferencen Presentation: RYPOS Active Diesel Emission Control Systems...

  4. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine for Low Temperature Combustion Operation Development of ADECS to Meet 2010 Emission Levels: Optimization of NOx, NH3 and Fuel Consumption Using High and Low...

  5. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines

    Broader source: Energy.gov [DOE]

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. International Experience with Key Program Elements of Industrial Energy Efficiency or Greenhouse Gas Emissions Reduction Target-Setting Programs

    E-Print Network [OSTI]

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-01-01

    See discussion of this report in ETSU, AEA Technology, 2001.environment/ccl/pdf/etsu- analysis.pdf Price, L. , Blok,a report prepared by ETSU (now AEA Energy & Environment) on

  7. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01

    20april%202006.pdf ETSU, 1999. Industrial Sector CarbonSee discussion of this report in ETSU, AEA Technology, 2001.a report prepared by ETSU (now AEA Energy & Environment) on

  8. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION†

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    2008-01-01

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  9. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01

    mill Waste heat recovery from cooling water No. Technology/line, waste heat recovery from cooling water, flameless oxy-line* Waste heat recovery from cooling water* Recovery of

  10. Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand. Part 1. Methodology and Preliminary Results.

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    refrigeration generation type coal nuclear ngcc renewableby fuel type. %TWh Reduction Commercial coal ngcc nuclearType and Technology : Electricity : Electric Power Electric Power Projections for EMM Region : Electricity : Emissions Quantity Liquid Fuels Natural Gas Steam Coal

  11. Analysis of the Climate Change Technology Initiative

    Reports and Publications (EIA)

    1999-01-01

    Analysis of the impact of specific policies on the reduction of carbon emissions and their impact on U.S. energy use and prices in the 2008-2012 time frame. Also, analyzes the impact of the President's Climate Change Technology Initiative, as defined for the 2000 budget, on reducing carbon emissions from the levels forecast in the Annual Energy Outlook 1999 reference case.

  12. Diesel Emission Control Review

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and technology approaches for diesel emission control for heavy and light duty applications

  13. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOE Patents [OSTI]

    Sobolevskiy, Anatoly (Orlando, FL); Rossin, Joseph A. (Columbus, OH); Knapke, Michael J. (Columbus, OH)

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  14. Decomposing the Impact of Alternative Technology Sets on Future Carbon Emissions Growth1

    E-Print Network [OSTI]

    Wing, Ian Sue

    of carbon capture and storage, nuclear, and hydroelectric generation all lead to upward shifts in the long are the drivers of future global carbon dioxide (CO2) emissions growth and how would the availability of key Classification: D58, Q4, Q54, O1, Keywords: Asia, energy use, carbon emissions, global climate change, computable

  15. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect (OSTI)

    Keebler, P. F.; Phipps, K. O. [EPRI Solutions, 942 Corridor Park Blvd, Knoxville, TN 37932 (United States)

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an overview of wireless emissions sources, the need for EMC characterization of power and signal cables with exposure to wireless devices, and an intelligent and automated emissions measurement system. Such a system can be used in nuclear power plants to determine the spectral quality of the wireless band, the EMC characterization of power and signal cables, and if wireless technologies can be collocated in plants while reducing the risk of interference with I and C systems. (authors)

  16. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

  17. Assessment of China's Energy-Saving and Emission-Reduction Accomplishments and Opportunities During the 11th Five Year Plan

    SciTech Connect (OSTI)

    Levine, Mark D.; Price, Lynn; Zhou, Nan; Fridley, David; Aden, Nathaniel; Lu, Hongyou; McNeil, Michael; Zheng, Nina; Yining, Qin; Yowargana, Ping

    2010-04-28

    During the period 1980 to 2002, China experienced a 5% average annual reduction in energy consumption per unit of gross domestic product (GDP). The period 2002-2005 saw a dramatic reversal of the historic relationship between energy use and GDP growth: energy use per unit of GDP increased an average of 3.8% per year during this period (NBS, various years). China's 11th Five Year Plan (FYP), which covers the period 2006-2010, required all government divisions at different levels to reduce energy intensity by 20% in five years in order to regain the relationship between energy and GDP growth experienced during the 1980s and 1990s. This report provides an assessment of selected policies and programs that China has instituted in its quest to fulfill the national goal of a 20% reduction in energy intensity by 2010. The report finds that China has made substantial progress toward its goal of achieving 20% energy intensity reduction from 2006 to 2010 and that many of the energy-efficiency programs implemented during the 11th FYP in support of China's 20% energy/GDP reduction goal appear to be on track to meet - or in some cases even exceed - their energy-saving targets. It appears that most of the Ten Key Projects, the Top-1000 Program, and the Small Plant Closure Program are on track to meet or surpass the 11th FYP savings goals. China's appliance standards and labeling program, which was established prior to the 11th FYP, has become very robust during the 11th FYP period. China has greatly enhanced its enforcement of new building energy standards but energy-efficiency programs for buildings retrofits, as well as the goal of adjusting China's economic structure to reduce the share of energy consumed by industry, do not appear to be on track to meet the stated goals. With the implementation of the 11th FYP now bearing fruit, it is important to maintain and strengthen the existing energy-saving policies and programs that are successful while revising programs or adding new policy mechanisms to improve the programs that are not on track to achieve the stated goals.

  18. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Effect of Hydrocarbon Emissions From PCCI-Type Combustion On The Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL] [ORNL; Pihl, Josh A [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  20. Effect of Hydrocarbon Emissions From PCCI-Type Combustion on the Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

    2011-01-01

    Core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends.

  1. Development of a combustion technology for ultra-low emission (< 5 ppm nox) industrial burner

    E-Print Network [OSTI]

    Littlejohn, D.; Majeski, A.J.; Cheng, R.K.; Castaldini, C.

    2002-01-01

    Investigation of an Ultra-Low NO x Premixed CombustionInvestigation of an Ultra-Low NO x Premixed Combustioncombustion concept to achieve ultra-low emissions (NO x ? 2

  2. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the US Market Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept Light-Duty Diesel Market Potential in North America...

  3. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Maine (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Maine. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Maine to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,387 million gallons.

  5. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in North Carolina (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in North Carolina. Although construction and operation of 1000 MW of wind power is a significant effort, seven states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in North Carolina to be $1.1 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,558 million gallons.

  6. Fuel and emission impacts of heavy hybrid vehicles.

    SciTech Connect (OSTI)

    An, F.; Eberhardt, J. J.; Stodolsky, F.

    1999-03-02

    Hybrid powertrains for certain heavy vehicles may improve fuel economy and reduce emissions. Of particular interest are commercial vehicles, typically in Classes 3-6, that travel in urban areas. Hybrid strategies and associated energy/emissions benefits for these classes of vehicles could be significantly different from those for passenger cars. A preliminary analysis has been conducted to investigate the energy and emissions performance of Class 3 and 6 medium-duty trucks and Class 6 school buses under eight different test cycles. Three elements are associated with this analysis: (1) establish baseline fuel consumption and emission scenario's from selected, representative baseline vehicles and driving schedules; (2) identify sources of energy inefficiency from baseline technology vehicles; and (3) assess maximum and practical potentials for energy savings and emissions reductions associated with heavy vehicle hybridization under real-world driving conditions. Our analysis excludes efficiency gains associated with such other measures as vehicle weight reduction and air resistance reduction, because such measures would also benefit conventional technology vehicles. Our research indicates that fuel economy and emission benefits of hybridization can be very sensitive to different test cycles. We conclude that, on the basis of present-day technology, the potential fuel economy gains average about 60-75% for Class 3 medium-duty trucks and 35% for Class 6 school buses. The fuel economy gains can be higher in the future, as hybrid technology continues to improve. The practical emissions reduction potentials associated with vehicle hybridization are significant as well.

  7. Gate Length Reduction Technology for Pseudomorphic In0:52Al0:48As/In0:7Ga0:3As High Electron Mobility Transistors

    E-Print Network [OSTI]

    Seo, Kwang Seok

    Gate Length Reduction Technology for Pseudomorphic In0:52Al0:48As/In0:7Ga0:3As High Electron, 2006; accepted November 29, 2006; published online April 24, 2007) Gate length reduction technology was developed for pseudomorphic high-electron-mobility transistors (P-HEMTs) applicable to nano

  8. Vehicle Technologies Office Merit Review 2014: High Temperature DC-Bus Capacitors Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  9. Vehicle Technologies Office Merit Review 2015: High Temperature DC-Bus Capacitor Cost Reduction and Performance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sigma Technologies International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  10. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    SciTech Connect (OSTI)

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  11. Vehicle Technologies Office Merit Review 2015: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  12. Vehicle Technologies Office Merit Review 2015: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  13. Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  14. Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by Advanced Filtration Systems for GDI Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about particulate...

  15. Vehicle Technologies Office Merit Review 2014: Fuel-Neutral Studies of Particulate Matter Transport Emissions

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel...

  16. Vehicle Technologies Office Merit Review 2015: Joint Development and Coordination of Emissions Control Data and Models

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about joint...

  17. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Engine Technologies and an Introduction to SwRI's Dedicated EGR Concept Development of Dual-Fuel Engine for Class 8 Applications Gasoline Ultra Fuel Efficient Vehicle...

  18. Innovative Clean Coal Technology (ICCT): Demonstration of innovative applications of technology for cost reductions to the CT-121 FGD process. Quarterly report No. 6, July--September 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The project`s objective is to demonstrate innovative applications of technology for cost reduction for the Chiyoda Thoroughbred-121 (CT-121) process. The CT-121 process is a wet FGD process that removes SO{sub 2}, can achieve simultaneous particulate control, and can produce a salable by-product gypsum thereby reducing or even eliminating solid waste disposal problems. Figure 1 shows a flow schematic of the process. CT-121 removes SO{sub 2} and particulate matter in a unique limestone-based scrubber called the Jet Bubbling Reactor (JBR). IN the JBR, flue gas bubbles beneath the slurry, SO{sub 2} is absorbed, and particulate matter is removed from the gas. The agitator circulates limestone slurry to ensure that fresh reactant is always available in the bubbling or froth zone sot that SO{sub 2} removal can proceed at a rapid rate. Air is introduced into the bottom of the JBR to oxidize the absorbed SO{sub 2} to sulfate, and limestone is added continuously to neutralize the acid slurry and form gypsum. The JBR is designed to allow ample time for complete oxidation of the SO{sub 2}, for complete reaction of the limestone, and for growth of large gypsum crystals. The gypsum slurry is continuously withdrawn from the JBR and is to be dewatered in a gypsum stack. The stacking technique involves filing a diked area with gypsum slurry, allowing the gypsum solids to settle, and removing clear liquid from the top of the stack for recycle back to the process.

  19. Control technology of vinyl chloride in EDC-VCM and PVC plants at main source points and fugitive emissions

    E-Print Network [OSTI]

    Parra, Dario Antonio

    1983-01-01

    of the great quantities of dilute gas in EDC-VCN and PVC plants, the combustion system cannot be self-supported and therefore additional fuel is necessary, resulting in a waste of combustibles and heat. 3. Due to the flame, flares need to be located away...CONTROL TECHNOLOGY OF VINYL CHLORIDE IN EDC-VCM AND PVC PLANTS AT MAIN SOURCE POINTS AND FUGITIVE EMISSIONS A Thesis by DARIO ANTONIO PARRA Submitted to the Graduate College of Texas A6M University in partial fulfillment of the requirements...

  20. Technologies and policies for controlling greenhouse gas emissions from the U. S. automobile and light truck fleet.

    SciTech Connect (OSTI)

    Plotkin, S.

    1999-01-01

    The message conveyed by the above discussion is that there are no shortages of technologies available to improve the fuel efficiency of the U.S. fleet of autos and light trucks. It clearly is technically feasible to improve greatly the fuel economy of the average new light-duty vehicle. Many of these technologies require tradeoffs, however, that manufacturers are unwilling or (as yet) unable to make in today's market and regulatory environment. These tradeoffs involve higher costs (that might be reduced substantially over time with learning and economies of scale), technical risk and added complexity, emissions concerns (especially for direct injection engines, and especially with respect to diesel engine technology), and customer acceptance issues. Even with current low U.S. oil prices, however, many of these technologies may find their way into the U.S. market, or increase their market share, as a consequence of their penetration of European and Japanese markets with their high gasoline prices. Automotive technology is ''fungible'' that is, it can be easily transported from one market to another. Nevertheless, it probably is unrealistic to expect substantial increases in the average fuel economy of the U.S. light-duty fleet without significant changes in the market. Without such changes, the technologies that do penetrate the U.S. market are more likely to be used to increase acceleration performance or vehicle structures or enable four wheel drive to be included in vehicles without a net mpg penalty. In other words, technology by itself is not likely to be enough to raise fleet fuel economy levels - this was the conclusion of the 1995 Ailomar Conference on Energy and Sustainable Transportation, organized by the Transportation Research Board's Committees on Energy and Alternative Fuels, and it is one I share.

  1. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  2. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  3. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    SciTech Connect (OSTI)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.

  4. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector

    SciTech Connect (OSTI)

    Sathaye, J.; Xu, T.; Galitsky, C.

    2010-08-15

    Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

  5. Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia Institute of Technology

    E-Print Network [OSTI]

    California at Davis, University of

    Project Title Improved Emission Models for Project Evaluation (MOVES-Matrix) University Georgia or organization) DOT - $92,292.15 Total Project Cost $92,292.15 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1, 2013 ≠ June 30, 2015 Brief Description of Research Project Local governments

  6. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric options is an important step in formulating a cohesive strategy to abate U.S. greenhouse gas (GHG

  7. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    EAF heat recovery, an organic rankine cycle turbine can befor power generation. Organic rankine cycle generators aregas firing) ? With an organic rankine cycle turbine, 7.5-

  8. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    and Bubbling Fluidized Beds ..in Circulating and Bubbling Fluidized Beds Description: Bothfluidized bed with a bubbling fluidized bed. Both are direct

  9. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    CO 2 Steelmaking). Ē Presented in IEA Deployment workshop,using fluidized bed. Ē 61st IEA-FBC Meeting. October 28-29,at http://www.processeng.biz/iea-fbc.org/index.php? site=

  10. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    effective use of non-coking coal and iron-bearing dust andfrom iron ore and non-coking coal. The process was developedBF production in using non-coking coal as reducing agent and

  11. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    fuel must be solid and have downdraft combustion characteristics similar to those of coke breeze. Charcoal

  12. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    metallurgy furnace are eliminated ? Less space required (about two-thirds of the space required for the conventional process) Block Diagram

  13. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    rate, oxygen concentration, coal type, PCI rate, and tuyeretype of vessel: H 2 , natural gas, or synthetic gas produced from partial combustion of coal and/coal or coke, which are reduced in the solid state using a rotary hearth or similar type

  14. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    Using recycled materials as aggregate in concrete divertsa recycled material that can be used as concrete aggregate.

  15. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    third of the cleaned coke oven gas (COG) is used to fuel theor higher Utilization of coke oven gas as energy carrier,include a coal gasifier, coke oven gas, or BOF gas. The big

  16. Emerging Energy-efficiency and Carbon Dioxide Emissions-reduction Technologies for the Iron and Steel Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    consisting of: 1) a melter-gasifier, which melts the DRI andmounted above melter- gasifier, which reduces lump ore orreducing gas from the melter-gasifier. The shaft furnace is

  17. Progress on DOE Vehicle Technologies Light-Duty Diesel Engine Efficiency and Emissions Milestones

    Broader source: Energy.gov [DOE]

    The path to 45 percent peak BTE in FY 2010 includes modern base engine plus enabling technologies demonstrated in FY 2008 plus the recovery of thermal energy from the exhaust and EGR systems

  18. Vehicle Technologies Office Merit Review 2014: Zero-Emission Heavy-Duty Drayage Truck Demonstration

    Broader source: Energy.gov [DOE]

    Presentation given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Siddiqui, Afzal; Marnay, Chris; Aki, Hirohisa; Lai, Judy

    2009-08-10

    The U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero-net-energy commercial buildings (ZNEB), i.e. ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge, energy-efficiency technologies and meet their remaining energy needs through on-site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost- or CO2-minimizing microgrid that is able to adopt and operate various technologies: photovoltaic modules (PV) and other on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand-response technologies. A mixed-integer linear program (MILP) that has a multi-criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the ZNEB objective. Using a commercial test site in northernCalifornia with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power (CHP) equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero-carbon (ZC) buildings as is frequently argued. We also show a multi-objective frontier for the CA example, whichallows us to estimate the needed technologies and costs for achieving a ZC building or microgrid.

  20. Chemical Emissions of Residential Materials and Products: Review of Available Information Environmental Energy Technologies Division

    E-Print Network [OSTI]

    infiltration of outdoor air through cracks and other leakage pathways in the residential building envelope Building Technologies Program, Office of Energy Efficiency and Renewable Energy under DOE Contract No. DE in the context of a larger program whose mission is to advance understanding of ventilation and indoor air

  1. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990?

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States); McDermott, K.A. [Argonne National Lab., IL (United States)]|[Illinois State Univ., Normal, IL (United States)

    1991-12-31

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  2. Clean coal technology and emissions trading: Is there a future for high-sulfur coal under the Clean Air Act Amendments of 1990

    SciTech Connect (OSTI)

    Bailey, K.A.; South, D.W. (Argonne National Lab., IL (United States)); McDermott, K.A. (Argonne National Lab., IL (United States) Illinois State Univ., Normal, IL (United States))

    1991-01-01

    The near-term and long-term fate of high-sulfur coal is linked to utility compliance plans, the evolution of emission allowance trading, state and federal regulation, and technological innovation. All of these factors will play an implicit role in the demand for high-sulfur coal. This paper will explore the potential impact that emissions trading will have on high-sulfur coal utilization by electric utilities. 28 refs., 6 figs., 4 tabs.

  3. Vehicle Technologies Office Merit Review 2015: Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  4. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2014: Friction Reduction through Surface Modification (Agreement ID:23284) Project ID:18518

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about friction...

  6. Vehicle Emissions Review- 2011

    Broader source: Energy.gov [DOE]

    Reviews regulatory requirements and general technology approaches for heavy- and light-duty vehicle emissions control - filter technology, new catalysts, NOx control, diesel oxidation catalysts, gasoline particulate filters

  7. Investigation of Particle and Gaseous Emissions from Conventional and Emerging Vehicle Technologies Operating on Bio-Fuels

    E-Print Network [OSTI]

    Short, Daniel

    2014-01-01

    D.R. 2009. Real World Vehicle Emissions: A Summary of the 18Research Council On-Road Vehicle Emissions Workshop, JournalAnalysis: Tier 3 Motor Vehicle Emission and Fuel Standards,

  8. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    A. Potential Methods for NOx Reduction from Biodiesel. SAECombustion on NOx Emissions and their Reduction Approaches.Combustion on NOx Emissions and their Reduction Approaches.

  9. Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions

    Office of Energy Efficiency and Renewable Energy (EERE)

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: National Environmental Respiratory Center

  10. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  11. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction 2005 Diesel Engine...

  12. The Role of Lubricant Additives in Fuel Efficiency and Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

  13. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    estimate the needed technologies and costs for achieving aexamples due to higher technology costs. To be published inwe find that at current technology costs, the nursing home

  14. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  15. Comparing Emissions Benefits from Regulating Heavy Vehicle Idling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Regulating Heavy Vehicle Idling Comparing Emissions Benefits from Regulating Heavy Vehicle Idling 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  16. Energy Efficiency/Renewable Energy Impact in the Texas Emissions Reduction Plan (TERP), Volume III - Appendix, Annual Report to the Texas Commission on Environmental Quality, January 2006 - June 2007†

    E-Print Network [OSTI]

    Degelman, L.; Mukhopadhyay, J.; McKelvey, K.; Montgomery, C.; Baltazar-Cervantes, J. C.; Liu, Z.; Ahmed, M.; Verdict, M.; Muns, S.; Fitzpatrick, T.; Gilman, D.; Yazdani, B.; Culp, C.; Haberl, J. S.

    2009-02-20

    -12-03 ENERGY EFFICIENCY/RENEWABLE ENERGY IMPACT IN THE TEXAS EMISSIONS REDUCTION PLAN (TERP) VOLUME III ? APPENDIX Annual Report to the Texas Commission on Environmental Quality January 2006 ? June 2007 Jeff Haberl, Ph.D., P.E.; Charles... 78711-3087 Dear Chairman Garcia: The Energy Systems Laboratory (Laboratory) at the Texas Engineering Experiment Station of the Texas A&M University System is pleased to provide its fifth annual report, ?Energy Efficiency/Renewable Energy Impact...

  17. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  18. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  19. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01

    Distributed Energy Resource Technology Characterizations. ĒABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions

  20. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01

    Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

  1. JV Task 107- Pilot-Scale Emission Control Technology Testing for Constellation Energy

    SciTech Connect (OSTI)

    Michael Jones; Brandon Pavlish; Stephen Sollom; John Kay

    2007-06-30

    An Indonesian, Colombian, and Russian coal were tested in the Energy & Environmental Research Center's combustion test facility for their performance and an evaluation of mercury release and capture with selected additives in both electrostatic precipitator and baghouse configurations. Sorbents included the carbon-based materials NORIT DARCO Hg, Sorbent Technologies B-PAC and B-PAC LC, STI Rejects provided by Constellation Energy, and Envergex e-Sorb, along with ChemMod's high-temperature additive. Each coal was evaluated over several days and compared. Ash-fouling tests were conducted, and mercury levels were monitored using continuous mercury monitors (CMMs). The Ontario Hydro mercury sampling method was also utilized. The Indonesian coal had the lowest ash content, lowest sulfur content, and lowest energy content of the three coals tested. The Colombian coal had the highest mercury content and did contain a significant level of selenium which can interfere with the ability of a CMM to monitor mercury in the gas stream. All sorbents displayed very favorable results. In most cases, mercury removal greater than 86% could be obtained. The Indonesian coal displayed the best mercury removal with sorbent addition. A maximum removal of 97% was measured with this coal using Envergex's carbon-based sorbent at a rate of 4 lb/Macf across an electrostatic precipitator. The high ash and selenium content of the Colombian coal caused it to be a problematic fuel, and ash plugging of the test furnace was a real concern. Problems with the baghouse module led to limited testing. Results indicated that native capture across the baghouse for each coal type was significant enough not to warrant sorbent addition necessary. The fouling potential was the lowest for the Indonesian coal. Low sulfur content contributes to the poor potential for fouling, as witnessed by the lack of deposits during testing. The Russian and Colombian coals had a much higher potential for fouling primarily because of their high ash contents, but the potential was highest for the Colombian coal. Of the three coals tested, the Colombian would be the least desirable.

  2. Development of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications

    SciTech Connect (OSTI)

    Armstrong, Phillip

    2014-11-01

    Air Products is carrying out a scope of work under DOE Award No. DE-FE0012065 ďDevelopment of ITM Oxygen Technology for Low-cost and Low-emission Gasification and Other Industrial Applications.Ē The Statement of Project Objectives (SOPO) includes a Task 4f in which a Decision Point shall be reached, necessitating a review of Tasks 2-5 with an emphasis on Task 4f. This Topical Report constitutes the Decision Point Application pertaining to Task 4f. The SOPO under DOE Award No. DE-FE0012065 is aimed at furthering the development of the Ion Transport Membrane (ITM) Oxygen production process toward a demonstration scale facility known as the Oxygen Development Facility (ODF). It is anticipated that the completion of the current SOPO will advance the technology significantly along a pathway towards enabling the design and construction of the ODF. Development progress on several fronts is critical before an ODF project can commence; this Topical Report serves as an early update on the progress in critical development areas. Progress was made under all tasks, including Materials Development, Ceramic Processing Development, Engineering Development, and Performance Testing. Under Task 4f, Air Products carried out a cost and performance study in which several process design and cost parameters were varied and assessed with a process model and budgetary costing exercise. The results show that the major variables include ceramic module reliability, ITM operating temperature, module production yield, and heat addition strategy. High-temperature compact heat exchangers are shown to contribute significant cost benefits, while directly firing into the feed stream to an ITM are even a mild improvement on the high-temperature recuperation approach. Based on the findings to-date, Air Products recommends no changes to the content or emphasis in the current SOPO and recommends its completion prior to another formal assessment of these factors.

  3. Alternative Fuels, Vehicle Technologies and Urban Logistics

    E-Print Network [OSTI]

    Witt, Maggie

    2012-01-01

    Technologies and Urban Logistics Policy Note prepared byvehicle technologies, urban logistics, and VMT reduction. It

  4. Status of flue-gas treatment technologies for combined SO[sub 2]/NO[sub x] reduction

    SciTech Connect (OSTI)

    Livengood, C.D. (Argonne National Lab., IL (United States). Energy Systems Div.); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1993-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO.) regulations have fueled research and development efforts on the technologies for the combined control of sulfur dioxide (SO[sub 2]) and NO[sub x]. The integrated removal of both SO[sub 2] and NO[sub x] in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  5. 2010 Emissions from an Electronics Perspective | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from an Electronics Perspective 2010 Emissions from an Electronics Perspective 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  6. High Engine Efficiency at 2010 Emissions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency at 2010 Emissions High Engine Efficiency at 2010 Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deernelson.pdf...

  7. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  8. Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rigorous HDD Emissions Capabilities of Shell GTL Fuel Rigorous HDD Emissions Capabilities of Shell GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

  9. Retrofit Diesel Emissions Control System Providing 50% NOxControl...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Emissions Control System Providing 50% NOxControl Retrofit Diesel Emissions Control System Providing 50% NOxControl 2005 Diesel Engine Emissions Reduction (DEER) Conference...

  10. Mass Correlation of Engine Emissions with Spectral Instruments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Correlation of Engine Emissions with Spectral Instruments Mass Correlation of Engine Emissions with Spectral Instruments 2004 Diesel Engine Emissions Reduction (DEER)...

  11. Advanced Ceramic Filter For Diesel Emission Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Filter For Diesel Emission Control Advanced Ceramic Filter For Diesel Emission Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Dow Automotive...

  12. Combustion Targets for Low Emissions and High Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Targets for Low Emissions and High Efficiency Combustion Targets for Low Emissions and High Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and...

  13. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect (OSTI)

    Kirby S. Chapman

    2004-01-01

    During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.

  14. Application of Derrick Corporation's stack sizer technology for slimes reduction in 6 inch clean coal hydrocyclone circuits

    SciTech Connect (OSTI)

    Brodzik, P.

    2009-04-15

    The article discusses the successful introduction of Derrick Corporation's Stack Sizer technology for removing minus 200 mesh slimes from 6-inch coal hydrocyclone underflow prior to froth flotation or dewatering by screen bowl centrifuges. In 2006, the James River Coal Company selected the Stack Sizer fitted with Derrick 150 micron and 100 micron urethane screen panels for removal of the minus 100 mesh high ash clay fraction from the clean coal spiral product circuits. After this application proved successful, Derrick Corporation introduced new 75 micron urethane screen panels for use on the Stack Sizer. Evaluation of feed slurry to flotation cells and screen bowl centrifuges showed significant amounts of minus 75 micron that could potentially be removed by efficient screening technology. Removal of the minus 75 micron fraction was sought to reduce ash and moisture content of the final clean coal product. Full-scale lab tests confirmed that the Stack Sizer fitted with Derrick 75 micron urethane screen panels consistently reduced the minus 75 micron percentage in coal slurry from 6-inch clean coal hydrocyclone underflow that is approximately 15 to 20% solid by-weight and 30 to 60% minus 75 micron to a clean coal fraction that is approximately 13 to 16% minus 75 micron. As a result total ash is reduced from approximately 36 to 38% in the hydrocyclone underflow to 14 to 16% in the oversize product fraction form the Stack Sizers. 1 fig., 2 tabs., 5 photos.

  15. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    SciTech Connect (OSTI)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain the largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).

  16. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Electric Power Sector Planning Model

    E-Print Network [OSTI]

    Nelson, James Henry

    2013-01-01

    technologies †and † demand † response † in † deregulated †Transmission † Demand †Response † 12GW †Distributed †PV †Transmission † Demand †Response † 12GW †Distributed †PV †

  17. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  18. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  19. An Improvement of Diesel PM and NOx Reduction System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Development on simultaneous reduction system of NOx and PM from a diesel engine An Improvement of Diesel PM and NOx Reduction System New Diesel Emissions...

  20. Unique Catalyst System for NOx Reduction in Diesel Exhaust |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst System for NOx Reduction in Diesel Exhaust Unique Catalyst System for NOx Reduction in Diesel Exhaust Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions...