Minimum length, extra dimensions, modified gravity and black hole remnants
Maziashvili, Michael
2013-03-01
We construct a Hilbert space representation of minimum-length deformed uncertainty relation in presence of extra dimensions. Following this construction, we study corrections to the gravitational potential (back reaction on gravity) with the use of correspondingly modified propagator in presence of two (spatial) extra dimensions. Interestingly enough, for r?0 the gravitational force approaches zero and the horizon for modified Schwarzschild-Tangherlini space-time disappears when the mass approaches quantum-gravity energy scale. This result points out to the existence of zero-temperature black hole remnants in ADD brane-world model.
Applied Studies and Technology: The Third Dimension-Variation...
Applied Studies and Technology: The Third Dimension-Variation in Groundwater Aquifers Applied Studies and Technology: The Third Dimension-Variation in Groundwater Aquifers October...
Technology development for gene discovery and full-length sequencing
Marcelo Bento Soares
2004-07-19
In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.
The Human Dimension in Chinese Defense Science, Technology, and Innovation: An Overview
CHEUNG, Tai Ming
2015-01-01
STUDY OF INNOVATION AND TECHNOLOGY IN CHINA RESEARCH BRIEFScience, Technology, and Innovation: An Overview Tai Mingscience, technology, and innovation (STI). While this may
Seo, Kwang Seok
Gate Length Reduction Technology for Pseudomorphic In0:52Al0:48As/In0:7Ga0:3As High Electron, 2006; accepted November 29, 2006; published online April 24, 2007) Gate length reduction technology was developed for pseudomorphic high-electron-mobility transistors (P-HEMTs) applicable to nano
Sprouse, Gene D. [American Physical Society (United States)
2011-07-15
Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.
Screening length in plasma winds
Elena Caceres; Makoto Natsuume; Takashi Okamura
2007-06-04
We study the screening length L_s of a heavy quark-antiquark pair in strongly coupled gauge theory plasmas flowing at velocity v. Using the AdS/CFT correspondence we investigate, analytically, the screening length in the ultra-relativistic limit. We develop a procedure that allows us to find the scaling exponent for a large class of backgrounds. We find that for conformal theories the screening length is (boosted energy density)^{-1/d}. As examples of conformal backgrounds we study R-charged black holes and Schwarzschild-anti-deSitter black holes in (d+1)-dimensions. For non-conformal theories, we find that the exponent deviates from -1/d and as examples we study the non-extremal Klebanov-Tseytlin and Dp-brane geometries. We find an interesting relation between the deviation of the scaling exponent from the conformal value and the speed of sound.
Length dependence of the Raman spectra of carbon nanotubes
Zare, Aurea Tucay
2009-01-01
DNA-wrapping technology, combined with size-exclusion chromatography, have made possible the sorting of carbon nanotubes according to length. In particular, length sorted nanotube samples, with finite lengths approaching ...
Time and length scales of autocrine signals in three dimensions
Mathieu Coppey; Alexander M. Berezhkovskii; Stuart C. Sealfon; Stanislav Y. Shvartsman
2007-09-22
A model of autocrine signaling in cultures of suspended cells is developed on the basis of the effective medium approximation. The fraction of autocrine ligands, the mean and distribution of distances traveled by paracrine ligands before binding, as well as the mean and distribution of the ligand lifetime are derived. Interferon signaling by dendritic immune cells is considered as an illustration.
Peffer, Therese; Arens, Edward A; Chen, Xue; Jang, Jaehwi; Auslander, David M.
2008-01-01
technology to enable residential Demand Response (DR) is aalternative model for a residential demand response enablinguse it. Existing Residential Demand Response (DR) Programs
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology
Alexandru C Mihul; Eleonora A Mihul
2006-08-25
Lorentz ordering (causality) implies the following rule: for any given energy p0 of a system there is a certain interval c0 on x0 so that their product is the Lorentz ordering constant L It means p0c0 = L. The constant L=hc. Hence Planck constant h in a similar way as c are both consequences of Lorentz metric. The basic ideas are: 1. Lorentz metric implies that x0 must represent a length like the other components of x in X 2. The dual metric space X* is well defined since the Lorentz metric tensor is not singular. The components of the vectors p in X*are interpreted as representing energy. The properties of the physical systems that are direct consequences of the detailed structure of X and X*, and so expressed through the Lorentz Limit L are presented.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D
Gravity, Dimension, Equilibrium, & Thermodynamics
Jerome Perez
2006-03-30
Is it actually possible to interpret gravitation as space's property in a pure classical way. Then, we note that extended self-gravitating system equilibrium depends directly on the number of dimension of the space in which it evolves. Given those precisions, we review the principal thermodynamical knowledge in the context of classical gravity with arbitrary dimension of space. Stability analyses for bounded 3D systems, namely the Antonov instability paradigm, are then rapproched to some amazing properties of globular clusters and galaxies.
Correlation-length bounds, and estimates for intermittent islands in parabolic SPDEs
Conus, Daniel; Khoshnevisan, Davar
2011-01-01
We consider the nonlinear stochastic heat equation in one dimension. Under some conditions on the nonlinearity, we show that the "peaks" of the solution are rare, almost fractal like. We also provide an upper bound on the length of the "islands," the regions of large values. These results are obtained by analyzing the correlation length of the solution.
Congestion pricing : policy dimensions, public rejection and impacts
Chingcuanco, Franco (Franco Felipe)
2014-01-01
This thesis makes three related contributions to the broad literature on congestion pricing. First, it examines three policy dimensions that underlie pricing: the economic arguments that motivate it, the technological ...
E. I. Guendelman; J. R. Morris
2003-07-01
Some of the peculiar electrodynamical effects associated with gauged ``dimension bubbles'' are presented. Such bubbles, which effectively enclose a region of 5d spacetime, can arise from a 5d theory with a compact extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommodate the case of a gauged U(1) symmetry. Using a dielectric approach to the 4d dilaton-Maxwell theory, it is seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.
Big Mysteries: Extra Dimensions
Lincoln, Don
2014-06-10
The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.
Big Mysteries: Extra Dimensions
Lincoln, Don
2014-08-07
The weakness of gravity compared to the other subatomic forces is a real mystery. While nobody knows the answer, one credible solution is that gravity has access to more spatial dimensions than the other three known forces. In this video, Fermilab's Dr. Don Lincoln describes this idea, with the help of some very urbane characters.
Continuously variable focal length lens
Adams, Bernhard W; Chollet, Matthieu C
2013-12-17
A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.
Introduction Fracture at small length scales is a concern
Suo, Zhigang
Introduction Fracture at small length scales is a concern in many advanced technologies. Micro. These constrained geometries localize cracking so that fracture may not compromise the structural integrity functions. For example, lo- calized fracture of a dielectric film adjacent to a conducting line
Variable focal length deformable mirror
Headley, Daniel (Albuquerque, NM); Ramsey, Marc (Albuquerque, NM); Schwarz, Jens (Albuquerque, NM)
2007-06-12
A variable focal length deformable mirror has an inner ring and an outer ring that simply support and push axially on opposite sides of a mirror plate. The resulting variable clamping force deforms the mirror plate to provide a parabolic mirror shape. The rings are parallel planar sections of a single paraboloid and can provide an on-axis focus, if the rings are circular, or an off-axis focus, if the rings are elliptical. The focal length of the deformable mirror can be varied by changing the variable clamping force. The deformable mirror can generally be used in any application requiring the focusing or defocusing of light, including with both coherent and incoherent light sources.
Dimensions and aspect ratios of natural ice crystals
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.
2014-12-10
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore »distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at ?67 T T L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationship determined in previous studies were within the range of the current data.« less
Dimension growth for C -algebras
2007-05-14
Feb 6, 2007 ... its range is exhausted by simple, nuclear C?-algebras. As consequences we obtain a well developed the- ory of dimension growth for ...
Hidden Photons in Extra Dimensions
Chris J. Wallace; Joerg Jaeckel; Sabyasachi Roy
2013-11-25
Additional U(1) gauge symmetries and corresponding vector bosons, called hidden photons, interacting with the regular photon via kinetic mixing are well motivated in extensions of the Standard Model. Such extensions often exhibit extra spatial dimensions. In this note we investigate the effects of hidden photons living in extra dimensions. In four dimensions such a hidden photon is only detectable if it has a mass or if there exists additional matter charged under it. We note that in extra dimensions suitable masses for hidden photons are automatically present in form of the Kaluza-Klein tower.
Stable heteronuclear few-atom bound states in mixed dimensions
Yin Tao; Zhang Peng; Zhang Wei [Department of Physics, Renmin University of China, Beijing 100872 (China)
2011-11-15
We study few-body problems in mixed dimensions where two or three heavy atoms are trapped individually in parallel one-dimensional tubes or two-dimensional disks and a single light atom travels freely in three dimensions. Using the Born-Oppenheimer approximation, we find three- and four-body bound states for a broad parameter region. Specifically, the existence of trimer and tetramer states persists to the negative scattering length regime, where no two-body bound state is present. As pointed out by Y. Nishida in an earlier work [Phys. Rev. A 82, 011605(R) (2010)], these few-body bound states are stable against three-body recombination due to geometric separation. In addition, we find that the binding energy of the ground trimer and tetramer state reaches its maximum value when the scattering lengths are comparable to the separation between the low-dimensional traps.
Eugen Schweitzer
2009-06-13
In different passages of his dialogues, Plato showed deep mathematically-based physical insights. Regrettably most readers overlooked the respective statements, or they utterly did not understand those hints since they were full of philological fallacious terms. Respectable translators misinterpreted such statements and therefore Plato's respective remarks were not recognized as substantial knowledge. Furthermore, Plato often supplemented such basic remarks by diffusely veiled and varied allusions that were often ironically hidden somewhere in his dialogues by inconspicuous double meanings. However, this mode of intentionally coded discrete communication was generally not understood because such irony is not to everyone's taste. However, the attempts to reconstruct Plato's system on the basis of admittedly individually interpreted double meanings lead to a conclusive mathematical-physical cyclical system of dimensions. Additionally it was possible to assign Plato's system of philosophical ideas analogously to this cyclical system. Plato took the verifiability of the mathematical-physical results as proof of the system of his ideas and finally as proof of his ethical creed, the unconditional trust in the 'all surmounting Good.'
The BCS - BEC Crossover In Arbitrary Dimensions
Zohar Nussinov; Shmuel Nussinov
2005-10-11
Cold atom traps and certain neutron star layers may contain fermions with separation much larger than the range of pair-wise potentials yet much shorter than the scattering length. Such systems can display {\\em universal} characteristics independent of the details of the short range interactions. In particular, the energy per particle is a fraction $\\xi$ of the Fermi energy of the free Fermion system. Our main result is that for space dimensions D smaller than two and larger than four a specific extension of this problem readily yields $\\xi=1$ for all $D \\le 2$ whereas $\\xi$ is rigorously non-positive (and potentially vanishing) for all $ D \\ge 4$. We discuss the D=3 case. A particular unjustified recipe suggests $\\xi=1/2$ in D=3.
Low-energy potential scattering in two and three dimensions
N. N. Khuri; Andre Martin; Jean-Marc Richard; Tai Tsun Wu
2009-06-10
Conditions are established for the existence of a scattering length and an effective range in the low-energy expansion of the S-wave phase-shift of a central potential in two and three dimensions. The behavior of the phase-shift as a function of the momentum is also derived for longer-range power-law potentials which do not fulfill these conditions.
and Scholz, 2000], (2) linkage [e.g., Cartwright et al., 1995] or (3) variations in rock properties [Bu on a 3070° dipping bedding plane of early Maestrichtian continental limestone in the lignite quarry from
Mining Clustering Dimensions Sajib Dasgupta sajib@hlt.utdallas.edu
Ng, Vincent
@hlt.utdallas.edu Human Language Technology Research Institute, University of Texas at Dallas, Richardson, TX 75083 USA Abstract Many realworld datasets can be clustered along multiple dimensions. For example, text documents viability on several challenging text classification tasks. 1. Introduction Many realworld datasets can
Word lengths are optimized for efficient communication
Makous, Walter
Word lengths are optimized for efficient communication Steven T. Piantadosi1 , Harry Tily celebrated empirical laws in the study of language, Zipf's 75-y-old theory that word length is primarily languages that average information content is a much better predictor of word length than frequency
Lozano-Robledo, Alvaro
Formulas & definitions to know Formulas & definitions that will be provided if needed Distance formula in 3 dimensions compab = aÂ·b |a| Equation of a sphere W = F Â· D (work, force, distance) Vector of differentiability for a function of two variables arc length formula, arc length function the graph of a function
Boom and Bust Inflation: a Graceful Exit via Compact Extra Dimensions
Adam R. Brown
2008-07-03
A model of inflation is proposed in which compact extra dimensions allow a graceful exit without recourse to flat potentials or super-Planckian field values. Though bubbles of true vacuum are too sparse to uniformly reheat the Universe by colliding with each other, a compact dimension enables a single bubble to uniformly reheat by colliding with itself. This mechanism, which generates an approximately scale invariant perturbation spectrum, requires that inflation be driven by a bulk field, that vacuum decay be slow, and that the extra dimension be at least a hundred times larger than the false vacuum Hubble length.
Low-Income Weatherization: The Human Dimension
Broader source: Energy.gov [DOE]
This presentation focuses on how the human dimension saves energy within low-income weatherization programs.
Domain Bubbles of Extra Dimensions
Morris, J R
2003-01-01
``Dimension bubbles'' of the type previously studied by Blau and Guendelman [S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively enclose a region of 5d spacetime and are surrounded by a region of 4d spacetime, can arise in a 5d theory with a compact extra dimension that is dimensionally reduced to give an effective 4d theory. These bubbles with thin domain walls can be stabilized against total collapse in a rather natural way by a scalar field which, as in the case with ``ordinary'' nontopological solitons, traps light scalar particles inside the bubble.
Domain Bubbles of Extra Dimensions
J. R. Morris
2002-11-19
``Dimension bubbles'' of the type previously studied by Blau and Guendelman [S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively enclose a region of 5d spacetime and are surrounded by a region of 4d spacetime, can arise in a 5d theory with a compact extra dimension that is dimensionally reduced to give an effective 4d theory. These bubbles with thin domain walls can be stabilized against total collapse in a rather natural way by a scalar field which, as in the case with ``ordinary'' nontopological solitons, traps light scalar particles inside the bubble.
Dimensions and aspect ratios of natural ice crystals
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S. -S.; Jung, C. H.; Lawson, R. P.; Mo, Q.
2015-04-15
During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were furthermore »distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' orL') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at ?67 L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.« less
Technology and market evaluation for semiconductor nanowire transistors
Omampuliyur, Rajamouly Swaminathan
2008-01-01
Information processing systems have been getting more powerful over the course of the past three decades due to the scaling of transistor dimensions. Scaling of transistor dimension causes a plethora of technological ...
DIMENSION THEORY AND PARAMETERIZED NORMALIZATION ...
2003-10-06
wishes to thank his advisor Professor Leonard Lipshitz for support and guidance during the ... considers dimension functions over Tarski systems of definable sets and proves ... power series Sm,n, the norm function |·| and the restricted division operations D0 ...... Model completeness and subanalytic sets, Astérisque, vol.
Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale
D. J. Kapner; T. S. Cook; E. G. Adelberger; J. H. Gundlach; B. R. Heckel; C. D. Hoyle; H. E. Swanson
2006-11-14
We conducted three torsion-balance experiments to test the gravitational inverse-square law at separations between 9.53 mm and 55 micrometers, probing distances less than the dark-energy length scale $\\lambda_{\\rm d}=\\sqrt[4]{\\hbar c/\\rho_{\\rm d}}\\approx 85 \\mu$m. We find with 95% confidence that the inverse-square law holds ($|\\alpha| \\leq 1$) down to a length scale $\\lambda = 56 \\mu$m and that an extra dimension must have a size $R \\leq 44 \\mu$m.
Nanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes
Nair, Sankar
made from metal oxides -- work that could lead to a technique for precisely conNanotube Formation: Researchers Learn To Control The Dimensions Of Metal Oxide Nanotubes Science their diameter and length. Based on metal oxides in combination with silicon and germanium, such single
Hausdorff dimension and filling factor
Wellington Cruz
1998-02-25
We propose a new hierarchy scheme for the filling factor, a parameter which characterizes the occurrence of the Fractional Quantum Hall Effect (FQHE). We consider the Hausdorff dimension, $h$, as a parameter for classifying fractional spin particles, such that, it is written in terms of the statistics of the collective excitations. The number $h$ classifies these excitations with different statistics in terms of its homotopy class.
Van Zee, John W.
2006-01-01
Journal of Power Sources xxx (2006) xxxxxx The impact of channel path length on PEMFC flow Distributions in reactant species concentration in a PEMFC due to local consumption of fuel and local transport in three dimensions in a PEMFC. These distributions can lead to flooding or drying of the membrane that may
R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu
2012-04-01
The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.
Human Dimensions of Wildlife Research Norman Dandy
Human Dimensions of Wildlife Research Norman Dandy Social & Economic Research Group #12;Wildlife) · Human-dimensions of species management (HDSM) Research Projects #12;Collaborative Frameworks for Land of woodland landscapes discussion groups, · Choice experiments, · Fellowships / Placements, · Newsletters
A length operator for canonical quantum gravity
T. Thiemann
1996-06-29
We construct an operator that measures the length of a curve in four-dimensional Lorentzian vacuum quantum gravity. We work in a representation in which a $SU(2)$ connection is diagonal and it is therefore surprising that the operator obtained after regularization is densely defined, does not suffer from factor ordering singularities and does not require any renormalization. We show that the length operator admits self-adjoint extensions and compute part of its spectrum which like its companions, the volume and area operators already constructed in the literature, is purely discrete and roughly is quantized in units of the Planck length. The length operator contains full and direct information about all the components of the metric tensor which faciliates the construction of a new type of weave states which approximate a given classical 3-geometry.
Mixing lengths scaling in a gravity flow
Ecke, Robert E [Los Alamos National Laboratory; Rivera, Micheal [Los Alamos National Laboratory; Chen, Jun [Los Alamos National Laboratory; Ecke, Robert E [Los Alamos National Laboratory
2009-01-01
We present an experimental study of the mixing processes in a gravity current. The turbulent transport of momentum and buoyancy can be described in a very direct and compact form by a Prandtl mixing length model [1]: the turbulent vertical fluxes of momentum and buoyancy are found to scale quadraticatly with the vertical mean gradients of velocity and density. The scaling coefficient is the square of the mixing length, approximately constant over the mixing zone of the stratified shear layer. We show in this paper how, in different flow configurations, this length can be related to the shear length of the flow {radical}({var_epsilon}/{partial_derivative}{sub z}u{sup 3}).
Word lengths are optimized for efficient communication
Piantadosi, Steven Thomas
We demonstrate a substantial improvement on one of the most celebrated empirical laws in the study of language, Zipf's 75-y-old theory that word length is primarily determined by frequency of use. In accord with rational ...
Process for fabricating continuous lengths of superconductor
Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)
1998-01-01
A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.
Mapping Technology Space by Normalizing Technology Relatedness Networks
Alstott, Jeff; Yan, Bowen; Luo, Jianxi
2015-01-01
Technology is a complex system, with technologies relating to each other in a space that can be mapped as a network. The technology relatedness network's structure can reveal properties of technologies and of human behavior, if it can be mapped accurately. Technology networks have been made from patent data, using several measures of relatedness. These measures, however, are influenced by factors of the patenting system that do not reflect technologies or their relatedness. We created technology networks that precisely controlled for these impinging factors and normalized them out, using data from 3.9 million patents. The normalized technology relatedness networks were sparse, with only ~20% of technology domain pairs more related than would be expected by chance. Different measures of technology relatedness became more correlated with each other after normalization, approaching a single dimension of technology relatedness. The normalized network corresponded with human behavior: we analyzed the patenting his...
Sixth Dimension | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to:Idaho-Utah |RenovablesSixth Dimension Jump
Applied Studies and Technology: The Third Dimension-Variation in
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv.AlisonEnergyApplications
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn (Idaho Falls, ID)
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Crystal diffraction lens with variable focal length
Smither, Robert K. (Hinsdale, IL)
1991-01-01
A method and apparatus for altering the focal length of a focusing element o one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels.
Apparatus for fabricating continuous lengths of superconductor
Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)
2002-01-01
A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
Apparatus for fabricating continuous lengths of superconductor
Kroeger, Donald M. (Knoxville, TN); List, III, Frederick A. (Andersonville, TN)
2001-01-01
A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
Crystal diffraction lens with variable focal length
Smither, R.K.
1991-04-02
A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.
CDMS, Supersymmetry and Extra Dimensions
Laura Baudis
2006-09-07
The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.
Gamma-Normal Probability Distribution Arc Length
Hesam
2014-11-04
... Engineering, Mazandaran University of Science and Technology, Babol, Iran ... the arcs are assumed to represent transportation time or cost rather than the ...
Dimension Reduction of Chemical Process Simulation Data
Truemper, Klaus
transportation systems and the majority of electric power plants rely directly or indirectly on the combustion: dimension reduction, subgroup discovery, lazy learner, modeling combustion 1 Introduction Virtually all
Earthquake spatial distribution: the correlation dimension
Kagan, Yan Y
2007-01-01
S. Lasocki, D. Luzio & M. Vitale, 1999. Fractal dimensionDe Luca L. , D. Luzio & M. Vitale, 2002. A ML estimator of
Length Scale of Leidenfrost Ratchet Switches Droplet Directionality...
Office of Scientific and Technical Information (OSTI)
Length Scale of Leidenfrost Ratchet Switches Droplet Directionality Citation Details In-Document Search Title: Length Scale of Leidenfrost Ratchet Switches Droplet Directionality...
Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2
Kimball, Gregory
.6 However, even the basic materials parameters of Zn3P2, such as the energy gap, remainPhotoluminescence-based measurements of the energy gap and diffusion length of Zn3P2 Gregory M and Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA Received 29 June
Technology Assessment TECHNOLOGY ASSESSMENT
Rock, Chris
Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications
Bioscience Technology Bioscience Technology
Vertes, Akos
Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when
Biofuel Plant, Clearfield County, PA Human Dimensions
Omiecinski, Curtis
to communicate effectively with stakeholders affected by natural resource and envi ronmental change issuesBiofuel Plant, Clearfield County, PA Human Dimensions of Natural Resources and the Environment Intercollege DualTitle Program For more information, please contact: Human Dimensions of Natural Resources
New hydrocracking catalysts increase throughput, run length
Huizinga, T. [Shell Internationale Petroleum Mij., The Hague (Netherlands); Theunissen, J.M.H. [Rayong Refinery Co. Ltd., Rayong (Thailand); Minderhoud, H.; Veen, R. van [Koninklijke/Shell-Lab., Amsterdam (Netherlands)
1995-06-26
An improved, second-stage hydrocracking catalyst has been developed by combining stabilized Y zeolites with amorphous silica alumina cracking components. A commercial application of this catalyst, along with a new, first-stage zeolitic hydrocracking catalyst, resulted in increased unit throughput and cycle length. The paper discusses the hydrocracking process, first-stage catalysts, second-stage catalysts, hydrogenation process, commercial results, and product properties.
Critical length limiting super-low friction
Ming Ma; Andrea Benassi; Andrea Vanossi; Michael Urbakh
2015-01-02
Since the demonstration of super-low friction (superlubricity) in graphite at nanoscale, one of the main challenges in the field of nano- and micro-mechanics was to scale this phenomenon up. A key question to be addressed is to what extent superlubricity could persist, and what mechanisms could lead to its failure. Here, using an edge-driven Frenkel-Kontorova model, we establish a connection between the critical length above which superlubricity disappears and both intrinsic material properties and experimental parameters. A striking boost in dissipated energy with chain length emerges abruptly due to a high-friction stick-slip mechanism caused by deformation of the slider leading to a local commensuration with the substrate lattice. We derived a parameter-free analytical model for the critical length that is in excellent agreement with our numerical simulations. Our results provide a new perspective on friction and nano-manipulation and can serve as a theoretical basis for designing nano-devices with super-low friction, such as carbon nanotubes.
American Society for Testing and Materials. Philadelphia
2005-01-01
1.1 This test method covers a procedure for measuring in-plane lengths (including deflections) of patterned thin films. It applies only to films, such as found in microelectromechanical systems (MEMS) materials, which can be imaged using an optical interferometer. 1.2 There are other ways to determine in-plane lengths. Using the design dimensions typically provides more precise in-plane length values than using measurements taken with an optical interferometer. (Interferometric measurements are typically more precise than measurements taken with an optical microscope.) This test method is intended for use when interferometric measurements are preferred over using the design dimensions (for example, when measuring in-plane deflections and when measuring lengths in an unproven fabrication process). 1.3 This test method uses a non-contact optical interferometer with the capability of obtaining topographical 3-D data sets. It is performed in the laboratory. 1.4 The maximum in-plane length measured is determine...
Positioner with long travel in two dimensions
Trumper, David L. (Plaistow, NH); Williams, Mark E. (Pelham, NH)
1997-12-23
A precision positioning system is provided which provides long travel in two of the linear dimensions, while using non-contact bearings for both a first subassembly which provides long travel in one of the linear dimension and a second subassembly which provides long travel in the second linear dimension. The first or upper subassembly is preferably a magnetic subassembly which, in addition to providing long travel, also compensates or positions in three rotary dimensions and in the third linear dimension. The second subassembly is preferably either an air bearing or magnetic subassembly and is normally used only to provide long travel. Angled surfaces may be provided for magnetic bearings and capacitive or other gap sensing probes may be mounted to the stage and ground flush with the bearing actuators to provide more precise gap measurements.
Exploring Small Extra Dimensions at the Large Hadron Collider
B. C. Allanach; K. Odagiri; M. J. Palmer; M. A. Parker; A. Sabetfakhri; B. R. Webber
2002-11-13
Many models that include small extra space dimensions predict graviton states which are well separated in mass, and which can be detected as resonances in collider experiments. It has been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode G->ee, using a conservative model. This work extends the study of the ee channel over the full accessible parameter space, and shows that the reach could extend as high as 3.5 TeV. It then discusses ways in which the expected universal coupling of the resonance can be confirmed using other decay modes. In particular, the mode G-> di-photons is shown to be measurable with good precision, which would provide powerful confirmation of the graviton hypothesis. The decays G-> mu mu, WW, ZZ and jet--jet are measurable over a more limited range of couplings and masses. Using information from mass and cross-section measurements, the underlying parameters can be extracted. In one test model, the size of the extra dimension can be determined to a precision in length of 7x10^-33 m.
Length and Energy of Quadratic Bezier Curves and Applications
Hoffmann, Christoph M.
Length and Energy of Quadratic B´ezier Curves and Applications Young Joon Ahn a , Christoph for the arc length and the bending energy of quadratic B´ezier curves. The formulae are in terms control point is analyzed for curves of fixed arc length or bending energy. In the case of arc length
Multiple Contributors
1988-01-01
Trek IV! SHALOM PAX PEACE to us all in 1986 Table of Contents TITLE AUTHOR ARTIST PAGE I. DATA ENTRIES FROST ON THE TYPEWRITER V.L. Thorn LaVena Kay Kldd 2 "Trek Omen" V.L. Thorn 6 (originally appeared In TREKisM #26) JAMES T. KIRK vs THE COMPUTER... appeared in TREKisM at Length III) TALES FROM THE VULCAN HEARTH Karen C. Hunter 53 HOW THE VULCANS LOST THEIR WINGS 54 THE SKY GOD'S DAUGHTER 56 THE GIFT OF THE GODS LaVena Kay Kldd 57 "Sul Generis" V.L. Thorn 58 "Cat-Kin" Emily Ross 60 (originally appeared...
Multiple Contributors
1983-01-01
Length III is published by the Star Trek Special Interest Group LSIGJ of Mensa. Copyright (c) 1983..., 1701 W. Third St, Brooklyn NY 11223. \\S In January Paramount STAR TREK new produc Star Trek' no time wa two-and-a- of TREKisM interested said in an Thank you, never ceas the contin eternally ixgmqp^ion of 19 P i c t u r II. A er, Ha...
Localization length of nearly periodic layered metamaterials
del Barco, O
2015-01-01
We have analyzed numerically the localization length of light $\\xi$ for nearly periodic arrangements of homogeneous stacks (formed exclusively by right-handed materials) and mixed stacks (with alternating right and left-handed metamaterials). Layers with index of refraction $n_1$ and thickness $L_1$ alternate with layers of index of refraction $n_2$ and thickness $L_2$. Positional disorder has been considered by shifting randomly the positions of the layer boundaries with respect to periodic values. For homogeneous stacks, we have shown that the localization length is modulated by the corresponding bands and that $\\xi$ is enhanced at the center of each allowed band. In the limit of long-wavelengths $\\lambda$, the parabolic behavior previously found in purely disordered systems is recovered, whereas for $\\lambda \\ll L_1 + L_2$ a saturation is reached. In the case of nearly periodic mixed stacks with the condition $|n_1 L_1|=|n_2 L_2|$, instead of bands there is a periodic arrangement of Lorenztian resonances, ...
Nuclear Proliferation Technology Trends Analysis
Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.
2005-10-04
A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.
Solar energy generation in three dimensions
Bernardi, Marco
We formulate, solve computationally and study experimentally the problem of collecting solar energy in three dimensions. We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build ...
Hausdorff dimension and anyonic distribution functions
Wellington da Cruz
1998-03-06
We obtain the distribution functions for anyonic excitations classified into equivalence classes labeled by Hausdorff dimension, $h$ and as an example of such anyonic systems, we consider the collective excitations of the Fractional Quantum Hall Effect (FQHE).
Collineations in Space of Four Dimensions
Pond, Robert S.
1910-01-01
KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Collineations in space of four dimensions. 1910 by Robert S. Pond This work was digitized by the Scholarly Communications program staff in the KU Libraries...KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Collineations in space of four dimensions. 1910 by Robert S. Pond This work was digitized by the Scholarly Communications program staff in the KU Libraries...
Naked singularities in three-dimensions
G. Oliveira-Neto
2002-02-01
We study an analytical solution to the Einstein's equations in 2+1-dimensions, representing the self-similar collapse of a circularly symmetric, minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents the formation of naked singularities. Since our solution is asymptotically flat, these naked singularities may be relevant for the weak cosmic censorship conjecture in 2+1-dimensions.
Breaking Parity Symmetry Using Extra Dimensions
R. N. Mohapatra; A. Pérez-Lorenzana
1999-11-17
We present a new way to break parity symmetry in left-right symmetric models using boundary conditions on the fields residing in the fifth dimension. We also discuss the connection between the limits on the size of extra dimensions and the scale of right handed symmetry breaking obtained from the analysis of neutrinoless double beta decay in the case where the righthanded gauge symmetry is in the bulk.
Supersymmetric {sigma}-models in 2-dimensions
Zumino, B. |
1997-02-01
The author gives a brief introduction to supersymmetric {sigma}-models in two space-time dimensions. The topics he covers are: the bosonic {sigma}-model; supersymmetry in two dimensions; complex manifolds; the Kaehler and hyper-Kaehler case; and chiral supersymmetries. The lesson to be learned from the lecture is that the number of supersymmetries is intimately related to the geometric structure of the target space manifold: more geometric structure corresponds to more supersymmetries.
White Paper Societal Dimensions of Earth System Modeling
on Societal Dimensions of Earth System Modeling July 5, 2011 #12; 2 Executive Summary · A Societal Dimensions of Earth System Modeling workshop was held
Einstein's Dream of Unified Forces - extra dimensions | U.S....
Office of Science (SC) Website
Are there extra dimensions of space? The Tevatron .jpg file (220KB) At Fermilab's Tevatron, physicists study such exotic phenomena as extra dimensions, paving the way for...
Large-dimension, high-ZT Thermoelectric Nanocomposites for High...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...
Fast Length-Constrained MAP Decoding of Variable Length Coded Markov Sequences over Noisy Channels
Wu, Xiaolin
Zhe Wang, Xiaolin Wu and Sorina Dumitrescu Department of Electrical and Computer Engineering McMaster University, Hamilton, Ontario, Canada L8S 4K1 zwang@grads.ece.mcmaster.ca xwu that is variable length coded and transmitted over a binary symmetric channel. The number of source symbols
Zavadil, Kevin Robert; Wall, Frederick Douglas
2004-03-01
A key factor in our ability to produce and predict the stability of metal-based macro- to nano-scale structures and devices is a fundamental understanding of the localized nature of corrosion. Corrosion processes where physical dimensions become critical in the degradation process include localized corrosion initiation in passivated metals, microgalvanic interactions in metal alloys, and localized corrosion in structurally complex materials like nanocrystalline metal films under atmospheric and inundated conditions. This project focuses on two areas of corrosion science where a fundamental understanding of processes occurring at critical dimensions is not currently available. Sandia will study the critical length scales necessary for passive film breakdown in the inundated aluminum (Al) system and the chemical processes and transport in ultra-thin water films relevant to the atmospheric corrosion of nanocrystalline tungsten (W) films. Techniques are required that provide spatial information without significantly perturbing or masking the underlying relationships. Al passive film breakdown is governed by the relationship between area of the film sampled and its defect structure. We will combine low current measurements with microelectrodes to study the size scale required to observe a single initiation event and record electrochemical breakdown events. The resulting quantitative measure of stability will be correlated with metal grain size, secondary phase size and distribution to understand which metal properties control stability at the macro- and nano-scale. Mechanisms of atmospheric corrosion on W are dependent on the physical dimensions and continuity of adsorbed water layers as well as the chemical reactions that take place in this layer. We will combine electrochemical and scanning probe microscopic techniques to monitor the chemistry and resulting material transport in these thin surface layers. A description of the length scales responsible for driving the corrosion of the nanocrystalline metal films will be developed. The techniques developed and information derived from this work will be used to understand and predict degradation processes in microelectronic and microsystem devices critical to Sandia's mission.
Dictionaries Using Variable-Length Keys and Data, with Applications *
Blelloch, Guy E.
(Isil- logn, 1) + Itil) and Isil is the length of bit string si. We assume a word length w > log m. We present string Isil > 1, Itil > 1 for all bit-strings si and ti. Fox' fixed-length keys the dictionary problem
Generation of Full-Length cDNA Library
Chuong, Cheng-Ming
Generation of Full- Length cDNA Library from Single Human Prostate Cancer Cells BioTechniques 27 are performed on fixed and per- meabilized cells. Subsequent RT-PCR generates full-length cDNA libraries. Flowchart of current method for generating a full-length cDNA library from single cells. Cell fixation
Nicholson, Paul
2009-01-01
by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:
Security and Social Dimensions of City Surveillance Policy
Spirtes, Peter
....................................................................................................53 Drone Technology and Governance
Integral equations of scattering in one dimension
Vania E. Barlette; Marcelo M. Leite; Sadhan K. Adhikari
2001-03-05
A self-contained discussion of integral equations of scattering is presented in the case of centrally-symmetric potentials in one dimension, which will facilitate the understanding of more complex scattering integral equations in two and three dimensions. The present discussion illustrates in a simple fashion the concept of partial-wave decomposition, Green's function, Lippmann-Schwinger integral equations of scattering for wave function and transition operator, optical theorem and unitarity relation. We illustrate the present approach with a Dirac delta potential.
Constraints on extra dimensions from atomic spectroscopy
Dahia, F
2015-01-01
We consider a hydrogen atom confined in a thick brane embedded in a higher-dimensional space. Due to effects of the extra dimensions, the gravitational potential is amplified in distances smaller than the size of the supplementary space, in comparison with the Newtonian potential. Studying the influence of the gravitational interaction modified by the extra dimensions on the energy levels of the hydrogen atom, we find independent constraints for the higher-dimensional Planck mass in terms of the thickness of the brane by using accurate measurements of atomic transition frequencies. The constraints are very stringent for narrow branes.
Constraints on extra dimensions from atomic spectroscopy
F. Dahia; A. S. Lemos
2015-09-23
We consider a hydrogen atom confined in a thick brane embedded in a higher-dimensional space. Due to effects of the extra dimensions, the gravitational potential is amplified in distances smaller than the size of the supplementary space, in comparison with the Newtonian potential. Studying the influence of the gravitational interaction modified by the extra dimensions on the energy levels of the hydrogen atom, we find independent constraints for the higher-dimensional Planck mass in terms of the thickness of the brane by using accurate measurements of atomic transition frequencies. The constraints are very stringent for narrow branes.
Self-Dual Superstring in Six Dimensions
John H. Schwarz
1996-04-27
A free superstring with chiral N=2 supersymmetry in six dimensions is proposed. It couples to a two-form gauge field with a self-dual field strength. Compactification to four dimensions on a two-torus gives a strongly coupled N=4 four-dimensional gauge theory with SL(2, Z) duality and an infinite tower of dyons. Various authors have suggested that this string theory should be also the world-volume theory of M theory five-branes. Accepting this proposal, we find a puzzling factor of two in the application to black-hole entropy computations.
A New Basis for Interpretation of the Planck Length
C. L. Herzenberg
2006-10-17
A critical length has recently been identified that appears to provide a fundamental limit distinguishing quantum behavior from classical behavior. Because of the unique association between critical length and mass, it appears that we can correlate the mass of an object with the size over which its quantum behavior is manifested. When the expression for the critical length is set equal to the Planck length, we find an associated mass value that in magnitude corresponds to an approximation of the mass of the visible universe. This would appear to suggest that the quantum behavior associated with the universe as a whole would be manifested at distances comparable to or smaller than the Planck length. Accordingly, it would appear that all position measurements would be subject to uncertainties at the limit of the Planck length, so that the Planck length sets a fundamental limit on position determination.
Cosmological model with movement in fifth dimension
W. B. Belayev
2001-10-24
Presented cosmological model is 3D brane world sheet moved in extra dimension with variable scale factor. Analysis of the geodesic motion of the test particle gives settle explanation of the Pioneer effect. It is found that for considered metric the solution of the semi-classical Einstein equations with various parameters conforms to isotropic expanded and anisotropic stationary universe.
Transmission Eigenvalues in One Dimension John Sylvester
Sylvester, John
Transmission Eigenvalues in One Dimension John Sylvester Abstract We show how to locate all the transmission eigenvalues for a one dimensional constant index of refraction on an interval. 1 Introduction #12;Whenever such a nontrivial pair exists, we say that k2 is an interior transmission eigenvalue
Title: China Dimensions Data Collection Data Creator /
holds wide range of natural science and socioeconomic research and educational activities of China Digital Data Format: Arc Info, TwinBridge Based MS Access, SPSS, ASCII, dBase IV Datum / Map Projection: N Network (CIESIN). "China Dimensions Data Collection" [electronic resource: vector]. Palisades, New York
PERSPECTIVES AND USAGE OF TECHNOLOGY OF ARABIC LANGUAGE TEACHERS IN THE UNITED ARAB EMIRATES
ALhumaid, Khadija Farhan
2014-05-31
Abstract This study examined the perspectives and usage of technology by Arabic language teachers' in various schools all across The United Arab Emirates. Barriers to integrating technology were closely examined. Dimensions ...
Evidence of gravitons as fused photons in four dimensions
Z R Adam
2009-06-02
A model of graviton momentum transfer was constructed to investigate a conjecture that gravitons are fused photons propagating in four dimensions. The model describes gravitational attraction between two bodies, each of simplified geometric shape and comprised of a calculable number of massive particles (quarks and leptons), as a probabilistic quantized mechanism of graviton scattering that gives rise to gravitational momentum flux. Earth-Human, Moon-Human, and Earth-Moon gravitational systems were investigated to solve for the wavelength of photons that comprise the graviton. The calculated wavelength for each system was approximately equal to the predicted value of the Planck length, which is interpreted as evidence that gravitons may be formed as fused four dimensional photons. The results corroborate current thinking about the temperature at which gravity separated from a unified force during the Big Bang, while explaining the weakness of the gravitational force from the atomic to the sub-planetary scale. Extension of the model produces unique, testable predictions arising from the averaged quantum properties of the graviton as fused photons, and the general model approach may be compatible with other efforts to describe the inner structure of the graviton.
Structuring Materials on Multiple Length Scales for Energy Application...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Structuring Materials on Multiple Length Scales for Energy Applications October 25, 2012 at 3pm36-428 Adreas Stein Department of Chemistry, University of Minnesota astein...
Ultra-low-loss tapered optical fibers with minimal lengths
Ryutaro Nagai; Takao Aoki
2014-11-09
We design and fabricate ultra-low-loss tapered optical fibers (TOFs) with minimal lengths. We first optimize variations of the torch scan length using the flame-brush method for fabricating TOFs with taper angles that satisfy the adiabaticity criteria. We accordingly fabricate TOFs with optimal shapes and compare their transmission to TOFs with a constant taper angle and TOFs with an exponential shape. The highest transmission measured for TOFs with an optimal shape is in excess of 99.7 % with a total TOF length of only 23 mm, whereas TOFs with a constant taper angle of 2 mrad reach 99.6 % transmission for a 63 mm TOF length.
Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Chen, Hua-Mao; Tai, Ya-Hsiang [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Tsai, Ming-Yen; Hung, Pei-Hua; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wu, Ming-Siou; Hung, Yi-Syuan [Department of Electronics Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Yeh, Bo-Liang [Advanced Display Technology Research Center, AU Optronics, No.1, Li-Hsin Rd. 2, Hsinchu Science Park, Hsin-Chu 30078, Taiwan (China)
2014-10-21
This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.
Modified Newton's Law of Gravitation Due to Minimal Length in Quantum Gravity
Ahmed Farag Ali; A. Tawfik
2013-02-22
A recent theory about the origin of the gravity suggests that the gravity is originally an entropic force. In this work, we discuss the effects of generalized uncertainty principle (GUP) which is proposed by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity theories (DSR), on the area law of the entropy. This leads to a $\\sqrt{Area}$-type correction to the area law of entropy which imply that the number of bits $N$ is modified. Therefore, we obtain a modified Newton's law of gravitation. Surprisingly, this modification agrees with different sign with the prediction of Randall-Sundrum II model which contains one uncompactified extra dimension. Furthermore, such modification may have observable consequences at length scales much larger than the Planck scale.
Geometrically induced magnetic catalysis and critical dimensions
Antonino Flachi; Kenji Fukushima; Vincenzo Vitagliano
2015-04-27
We discuss the combined effect of magnetic fields and geometry in interacting fermionic systems. At leading order in the heat-kernel expansion, the infrared singularity (that in flat space leads to the magnetic catalysis) is regulated by the chiral gap effect, and the catalysis is deactivated by the effect of the scalar curvature. We discover that an infrared singularity is found in higher-order terms that mix the magnetic field with curvature, and these lead to a novel form of geometrically induced magnetic catalysis. The dynamical mass squared is then modified not only due to the chiral gap effect by an amount proportional to the curvature, but also by a magnetic shift $\\propto (4-D)eB$, where $D$ represents the number of space-time dimensions. We argue that $D=4$ is a critical dimension across which the behavior of the magnetic shift changes qualitatively.
Spherical gravitational collapse in N dimensions
Goswami, Rituparno; Joshi, Pankaj S.
2007-10-15
We investigate here spherically symmetric gravitational collapse in a space-time with an arbitrary number of dimensions and with a general type I matter field, which is a broad class that includes most of the physically reasonable matter forms. We show that given the initial data for matter in terms of the initial density and pressure profiles at an initial surface t=t{sub i} from which the collapse evolves, there exist the rest of the initial data functions and classes of solutions of Einstein equations which we construct here, such that the space-time evolution goes to a final state which is either a black hole or a naked singularity, depending on the nature of initial data and evolutions chosen, and subject to validity of the weak energy condition. The results are discussed and analyzed in the light of the cosmic censorship hypothesis in black hole physics. The formalism here combines the earlier results on gravitational collapse in four dimensions in a unified treatment. Also the earlier work is generalized to higher-dimensional space-times to allow a study of the effect of the number of dimensions on the possible final outcome of the collapse in terms of either a black hole or naked singularity. No restriction is adopted on the number of dimensions, and other limiting assumptions such as self-similarity of space-time are avoided, in order to keep the treatment general. Our methodology allows us to consider to an extent the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse.
Kinks, extra dimensions, and gravitational waves
O'Callaghan, Eimear; Gregory, Ruth, E-mail: r.a.w.gregory@durham.ac.uk [Institute for Particle Physics Phenomenology and Centre for Particle Theory, Durham University, South Road, Durham, DH1 3LE (United Kingdom)
2011-03-01
We investigate in detail the gravitational wave signal from kinks on cosmic (super)strings, including the kinematical effects from the internal extra dimensions. We find that the signal is suppressed, however, the effect is less significant that that for cusps. Combined with the greater incidence of kinks on (super)strings, it is likely that the kink signal offers the better chance for detection of cosmic (super)strings.
Carlos Castro; Alex Granik; M. S. El Naschie
2000-08-18
A Cantorian fractal spacetime, a family member of von Neumann's noncommutative geometry is introduced as a geometry underlying a new relativity theory which is similar to the relation between general relativity and Riemannian geometry. Based on this model and the new relativity theory an ensemble distribution of all the dimensions of quantum spacetime is derived with the help of Fermat grand theorem. The calculated average dimension is very close to the value of $4+\\phi^3 $ (where $\\phi$ is the golden mean) obtained by El Naschie on the basis of a different approach. It is shown that within the framework of the new relativity the cosmological constant problem is nonexistent, since the Universe self-organizes and self-tunes according to the renormalization group (RG) flow with respect to a local scaling microscopic arrow of time. This implies that the world emerged as a result of a non-equilibrium process of self-organized critical phenomena launched by vacuum fluctuations in Cantorian fractal spacetime $\\cal E^{\\infty}$. It is shown that we are living in a metastable vacuum and are moving towards a fixed point ($ D$ = 4+$\\phi^3$) of the RG. After reaching this point, a new phase transition will drive the universe to a quasi-crystal phase of the lower average dimension of $\\phi^3$.
Crandall, David Lynn
2011-08-16
Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.
T Cell Renewal Rates, Telomerase, and Telomere Length Shortening1
de Boer, Rob J.
T Cell Renewal Rates, Telomerase, and Telomere Length Shortening1 Rob J. De Boer2 and Andre´ J develop mathematic models describing how the population average of telomere length depends on the cell division rates of naive and memory T cells during clonal expansion and normal renewal. The results show
Biophysics of filament length regulation by molecular motors
Hui-Shun Kuan; M. D. Betterton
2013-02-13
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
On Termination and Derivation Lengths for Ground Rewrite Systems
Giesl, Juergen
On Termination and Derivation Lengths for Ground Rewrite Systems Dieter Hofbauer 1 UniversitÂ¨at GH@theory.informatik.uniÂkassel.de Abstract. It is shown that for terminating ground term rewrite systems the length of derivations a suitable interpretation into the natural numbers. Terminating ground systems are not necessarily
How Salmonella Typhimurium measure the length of their Flagellar Filaments
Keener, James P.
How Salmonella Typhimurium measure the length of their Flagellar Filaments J. P. Keener Department and length regulation of the fil- ament of the flagellar motor of Salmonella Typhimurium. Under of Salmonella Typhimurium is an example of an organelle that is built to exacting standards. Morphologically
Explanation of the Random Lengths Framing Lumber Composite Price
Explanation of the Random Lengths Framing Lumber Composite Price May 10, 2006 The Random Lengths Framing Lumber Composite is a broad measure of price behavior in the U.S. framing lumber market prices, 33% comes from Western U.S. prices, and 34% comes from Canadian prices. The Composite does
Scaling Behavior and Equilibrium Lengths of Knotted Polymers
California at Santa Barbara, University of
Scaling Behavior and Equilibrium Lengths of Knotted Polymers Eric Rawdon Akos Dobay John C. Kern numerical simulations to investigate how the chain length and topology of freely fluctuating knotted polymer of a characteristic changes with the chain size and how this change depends on the topology of the modeled polymers
The Theory of Dimensioned Matrices George W. Hart*
The Theory of Dimensioned Matrices George W. Hart* Abstract Dimensioned matrices are defined. Electrical Engineering, Columbia University, New York, NY 10027; HART@CTR.COLUMBIA.EDU 1 #12; 2 Hart, G
Yolanda Gil Marc Linster Dimensions to Analyze Applications
Southern California, University of
1 1 Abstract Yolanda Gil Marc Linster Dimensions to Analyze Applications gil@isi.edu linster@guess.enet
Reviewing the human dimensions of wildlife management and recreation
to wildlife management? Who opposes wildlife management and why? Change in the human dimensions of wildlifeReviewing the human dimensions of wildlife management and recreation Mariella Marzano Norman Dandy Centre for Human & Ecological Sciences Forest Research #12;Human Dimensions of Species Management http
Temperature-dependent solvation modulates the dimensions of disordered proteins
Schuler, Ben
solvent interactions, the collapse allows us to probe the physical interactions governing the dimensions of disorderedTemperature-dependent solvation modulates the dimensions of disordered proteins René Wuttkea, 2014 (received for review July 10, 2013) For disordered proteins, the dimensions of the chain are an im
Exploration Technologies - Technology Needs Assessment
Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory
2011-06-01
This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.
Stark effect in low-dimension hydrogen
Thomas Garm Pedersen; Héctor Mera; Branislav K. Nikoli?
2015-10-06
Studies of atomic systems in electric fields are challenging because of the diverging perturbation series. However, physically meaningful Stark shifts and ionization rates can be found by analytical continuation of the series using appropriate branch cut functions. We apply this approach to low-dimensional hydrogen atoms in order to study the effects of reduced dimensionality. We find that modifications by the electric field are strongly suppressed in reduced dimensions. This finding is explained from a Landau-type analysis of the ionization process.
Hausdorff dimension, anyonic distribution functions, and duality
Wellington da Cruz
1998-12-15
We obtain the distribution functions for anyonic excitations classified into equivalence classes labeled by Hausdorff dimension $h$ and as an example of such anyonic systems, we consider the collective excitations of the Fractional Quantum Hall Effect (FQHE). We also introduce the concept of duality between such classes, defined by $\\tilde{h}=3-h$. In this way, we confirm that the filling factors for which the FQHE were observed just appears into these classes and the internal duality for a given class $h$ or $\\tilde{h}$ is between quasihole and quasiparticle excitations for these FQHE systems. Exchanges of dual pairs $(\
Hydrogen atom in momentum space with a minimal length
Djamil Bouaziz; Nourredine Ferkous
2010-09-05
A momentum representation treatment of the hydrogen atom problem with a generalized uncertainty relation,which leads to a minimal length ({\\Delta}X_{i})_{min}= \\hbar \\sqrt(3{\\beta}+{\\beta}'), is presented. We show that the distance squared operator can be factorized in the case {\\beta}'=2{\\beta}. We analytically solve the s-wave bound-state equation. The leading correction to the energy spectrum caused by the minimal length depends on \\sqrt{\\beta}. An upper bound for the minimal length is found to be about 10^{-9} fm.
Exploiting Universality in Atoms with Large Scattering Lengths
Braaten, Eric
2012-05-31
The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Benrong Mu; Peng Wang; Haitang Yang
2015-01-24
In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Mu, Benrong; Yang, Haitang
2015-01-01
In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Phase structure and the gluon propagator of SU(2) gauge-Higgs model in two dimensions
Shinya Gongyo; Daniel Zwanziger
2015-01-26
We study numerically the phase structure and the gluon propagator of the SU(2) gauge-Higgs model in two dimensions. First, we calculate gauge-invariant quantities, in particular the static potential from Wilson Loop, the W propagator, and the plaquette expectation value. Our results suggest that a confinement-like region and a Higgs-like region appear even in two dimensions. In the confinement-like region, the static potential rises linearly, with string breaking at large distances, while in the Higgs-like region, it is of Yukawa type, consistent with a Higgs-type mechanism. The correlation length obtained from the W propagator has a finite maximum between these regions. The plaquette expectation value shows a smooth cross-over consistent with the Fradkin-Shenker-Osterwalder-Seiler theorem. From these results, we suggest that there is no phase transition in two dimensions. We also calculate a gauge-dependent order parameter in Landau gauge. Unlike gauge invariant quantities, the gauge non-invariant order parameter has a line of discontinuity separating these two regions. Finally we calculate the gluon propagtor. We infer from its infrared behavior that the gluon propagator would vanish at zero momentum in the infinite-volume limit, consistent with an analytical study.
Thermally Activated Technologies Technology Roadmap, May 2003...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a...
The Local Dimension: a method to quantify the Cosmic Web
Prakash Sarkar; Somnath Bharadwaj
2008-12-09
It is now well accepted that the galaxies are distributed in filaments, sheets and clusters all of which form an interconnected network known as the Cosmic Web. It is a big challenge to quantify the shapes of the interconnected structural elements that form this network. Tools like the Minkowski functionals which use global properties, though well suited for an isolated object like a single sheet or filament, are not suited for an interconnected network of such objects. We consider the Local Dimension $D$, defined through $N(R)=A R^D$, where $N(R)$ is the galaxy number count within a sphere of comoving radius $R$ centered on a particular galaxy, as a tool to locally quantify the shape in the neigbourhood of different galaxies along the Cosmic Web. We expect $D \\sim 1,2$ and 3 for a galaxy located in a filament, sheet and cluster respectively. Using LCDM N-body simulations we find that it is possible to determine $D$ through a power law fit to $N(R)$ across the length-scales 2 to $10 {\\rm Mpc}$ for $\\sim 33 %$ of the galaxies. We have visually identified the filaments and sheets corresponding to many of the galaxies with $D \\sim 1$ and 2 respectively. In several other situations the structure responsible for the $D$ value could not be visually identified, either due to its being tenuous or due to other dominating structures in the vicinity. We also show that the global distribution of the $D$ values can be used to visualize and interpret how the different structural elements are woven into the Cosmic Web.
Applying Vocal Tract Length Normalization to Meeting Recordings
Garau, Giulia; Renals, Steve; Hain, Thomas
2005-01-01
Vocal Tract Length Normalisation (VTLN) is a commonly used technique to normalise for inter-speaker variability. It is based on the speaker-specific warping of the frequency axis, parameterised by a scalar warp factor. ...
FEL GAIN LENGTH AND TAPER MEASUREMENTS AT LCLS
Ratner, D.
2010-01-01
taper mea- surements from LCLS. We ?nd gain lengths of ? 2.9AND TAPER MEASUREMENTS AT LCLS ? D. Ratner † , A. Brachmann,et al. , First Results of the LCLS Laser-Heater Sys- tem,
Inferring the Rate-Length Law of Protein Folding
Lane, Thomas J
2013-01-01
We investigate the rate-length scaling law of protein folding, a key undetermined scaling law in the analytical theory of protein folding. We demonstrate that chain length is a dominant factor determining folding times, and that the unambiguous determination of the way chain length corre- lates with folding times could provide key mechanistic insight into the folding process. Four specific proposed laws (power law, exponential, and two stretched exponentials) are tested against one an- other, and it is found that the power law best explains the data. At the same time, the fit power law results in rates that are very fast, nearly unreasonably so in a biological context. We show that any of the proposed forms are viable, conclude that more data is necessary to unequivocally infer the rate-length law, and that such data could be obtained through a small number of protein folding experiments on large protein domains.
FEL GAIN LENGTH AND TAPER MEASUREMENTS AT LCLS
Ratner, D.
2010-01-01
more than double the coherent, FEL power over the satura-FEL GAIN LENGTH AND TAPER MEASUREMENTS AT LCLS ? D.Figure 11: Post-saturation FEL pulse energy for a taper with
Formation lengths of hadrons in lepto-production
Levon Grigoryan
2012-09-28
The average formation lengths of the hadrons produced during the deep inelastic scattering (DIS) of leptons on protons are studied in the framework of the symmetric Lund model. It is shown that these formation lengths essentially depend on the electric charges of the hadron. For electro-production and charged current (CC) neutrino-production, the average formation lengths of positively charged particles are larger than those of negatively charged antiparticles. This situation is reversed for CC antineutrino-production. In all the mentioned cases, the main mechanism is the direct production of hadrons. The additional mechanism of hadron production, through the decay of resonances, is essential only for pions and leads to a decrease in the average formation lengths.
Antenna mechanism of length control of actin cables
Lishibanya Mohapatra; Bruce L. Goode; Jane Kondev
2015-05-02
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This antenna mechanism involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.
Suetterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jaeckel, Heinz; Murk, Axel
2010-10-15
A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.
Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions
Macia, A.; Mazzanti, F.; Boronat, J.; Zillich, R. E.
2011-09-15
A microscopic description of the zero-energy two-body ground state and many-body static properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions at low densities is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole-dipole interaction, on the energy per particle, comparing the results with mean-field predictions. We restrict the analysis to the regime where the interaction is always repulsive, although the strength of the repulsion depends on the orientation with respect to the polarization field. We present a series expansion of the solution of the zero-energy two-body problem, which allows us to find the scattering length of the interaction and to build a suitable Jastrow factor that we use as a trial wave function for both a variational and diffusion Monte Carlo simulation of the infinite system. We find that the anisotropy has an almost negligible impact on the ground-state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions.
Extra dimensions, orthopositronium decay, and stellar cooling
Alexander Friedland; Maurizio Giannotti
2007-09-14
In a class of extra dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision orthopositronium decay experiments. We point out that in this framework a photon in plasma should be metastable. We consider the astrophysical consequences of this observation, in particular, what it implies for the plasmon decay rate in globular cluster stars and for the core-collapse supernova cooling rate. The resulting bounds on the model parameter exceed the possible reach of orthopositronium experiments by many orders of magnitude.
Rotating black lens solution in five dimensions
Chen Yu; Teo, Edward
2008-09-15
It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring or lens-space topology. In this paper, we study the third possibility, a so-called black lens with L(n,1) horizon topology. Using the inverse scattering method, we construct a black-lens solution with the simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature singularity present in the space-time.
Improved Bounds on Universal Extra Dimensions
Thomas Flacke
2006-05-13
We report on recent constraints on models with a flat ``universal'' extra dimension in which all Standard Model fields propagate in the bulk. A significantly improved constraint on the compactification scale is obtained from the extended set of electroweak precision observables accurately measured at LEP1 and LEP2. We find a lower bound of 1/R > 700 (800) GeV at the 99% (95%) confidence level. Comparison of this constraint with the relic density of Kaluza-Klein dark matter for the Minimal UED model points towards the necessity of including non-minimal boundary terms which motivates studying alternative Kaluza-Klein dark matter candidates. Results for the one-loop induced magnetic dipole moment for Kaluza-Klein neutrino dark matter are presented. This talk is based on Phys.Rev.D73:095002,2006 and hep-ph/0601161.
Solar Energy Generation in Three Dimensions
Bernardi, Marco; Wan, Jin H; Villalon, Rachelle; Grossman, Jeffrey C
2011-01-01
Optimizing the conversion of solar energy to electricity is central to the World's future energy economy. Flat photovoltaic panels are commonly deployed in residential and commercial rooftop installations without sun tracking systems and using simple installation guidelines to optimize solar energy collection. Large-scale solar energy generation plants use bulky and expensive sun trackers to avoid cosine losses from photovoltaic panels or to concentrate sunlight with mirrors onto heating fluids.[1,2] However, none of these systems take advantage of the three-dimensional nature of our biosphere, so that solar energy collection largely occurs on flat structures in contrast with what is commonly observed in Nature.[3,4] Here we formulate, solve computationally and study experimentally the problem of collecting solar energy in three-dimensions.[5] We demonstrate that absorbers and reflectors can be combined in the absence of sun tracking to build three-dimensional photovoltaic (3DPV) structures that can generate ...
Feedback Mechanism for Microtubule Length Regulation by Stathmin Gradients
Maria Zeitz; Jan Kierfeld
2014-12-09
We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switch-like regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT length distributions for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe promoting stathmin we do not find bistability.
Computing fractal dimension in supertransient systems directly, fast and reliable
Romulus Breban; Helena E. Nusse
2006-08-07
Chaotic transients occur in many experiments including those in fluids, in simulations of the plane Couette flow, and in coupled map lattices and they are a common phenomena in dynamical systems. Superlong chaotic transients are caused by the presence of chaotic saddles whose stable sets have fractal dimensions that are close to phase-space dimension. For many physical systems chaotic saddles have a big impact on laboratory measurements, and it is important to compute the dimension of such stable sets including fractal basin boundaries through a direct method. In this work, we present a new method to compute the dimension of stable sets of chaotic saddles directly, fast, and reliable.
Gauge and Higgs Boson Masses from an Extra Dimension
Graham Moir; Peter Dziennik; Nikos Irges; Francesco Knechtli; Kyoko Yoneyama
2014-11-03
We present novel calculations of the mass hierarchy of the $SU(2)$ pure gauge theory on a space-time lattice with an orbifolded fifth dimension. This theory has three parameters; the gauge coupling $\\beta$, the anisotropy $\\gamma$, which is a measure of the ratio of the lattice spacing in the four dimensions to that in the fifth dimension, and the extent of the extra dimension $N_{5}$. Using a large basis of scalar and vector operators we explore in detail the spectrum along the $\\gamma = 1$ line, and for the first time we investigate the spectrum for $\\gamma \
Estimating the Attractor Dimension of the Equatorial Weather System
Melvin Leok Boon Tiong
1995-10-25
The correlation dimension and limit capacity serve theoretically as lower and upper bounds, respectively, of the fractal dimension of attractors of dynamic systems. In this paper, we show that estimates of the correlation dimension grow rapidly with increasing noise level in the time-series, while estimates of the limit capacity remain relatively unaffected. It is therefore proposed that the limit capacity be used in studies of noisy data, despite its heavier computational requirements. An analysis of Singapore wind data with the limit capacity estimate revealed a surprisingly low dimension (~2.5). It is suggested that further studies be made with comprehensive equatorial weather data.
Universal anomalous dimensions at large spin and large twist
Apratim Kaviraj; Kallol Sen; Aninda Sinha
2015-06-09
In this paper we consider anomalous dimensions of double trace operators at large spin ($\\ell$) and large twist ($\\tau$) in CFTs in arbitrary dimensions ($d\\geq 3$). Using analytic conformal bootstrap methods, we show that the anomalous dimensions are universal in the limit $\\ell\\gg \\tau\\gg 1$. In the course of the derivation, we extract an approximate closed form expression for the conformal blocks arising in the four point function of identical scalars in any dimension. We compare our results with two different calculations in holography and find perfect agreement.
Pumping current of a Luttinger liquid with finite length
Sebastián Franchino Viñas; Pablo Pisani; Mariano Salvay
2012-03-16
We study transport properties in a Tomonaga-Luttinger liquid in the presence of two time-dependent point like weak impurities, taking into account finite-length effects. By employing analytical methods and performing a perturbation theory, we compute the backscattering pumping current (I_bs) in different regimes which can be established in relation to the oscillatory frequency of the impurities and to the frequency related to the length and the renormalized velocity (by the electron-electron interactions) of the charge density modes. We investigate the role played by the spatial position of the impurity potentials. We also show how the previous infinite length results for I_bs are modified by the finite size of the system.
Kaonic hydrogen atom and kaon-proton scattering length
Y. Yan
2009-05-29
Kaonic hydrogen is studied with various realistic potentials in an accurate numerical approach based on Sturmian functions. The kaon-proton scattering length extracted from the 1s energy shift of the kaonic hydrogen by applying the Deser-Trueman formula is severely inconsistent with the one derived by directly solving the scattering Schoedinger equation. We pay special attention to the recent measurement of the energy shift and decay width of the 1s kaonic hydrogen state by the DEAR Collaboration. After taking into account the large discrepancy between the extracted and directly-evaluated scattering lengths, we found theoretical predictions of most chiral SU(3) based models for the kaonic hydrogen decay width are consistent with the DEAR data. We warn the SIDDHARTA collaboration that it may not be reasonable to extract kaon-nucleon scattering lengths, by using the Coulomb-interaction corrected Deser-Truemab formula, from the planned measurement of kaonic hydrogen.
Proton radius puzzle and large extra dimensions
Li-Bang Wang; Wei-Tou Ni
2013-05-23
We propose a theoretical scenario to solve the proton radius puzzle which recently arises from the muonic hydrogen experiment. In this framework, 4 + n dimensional theory is incorporated with modified gravity. The extra gravitational interaction between the proton and muon at very short range provides an energy shift which accounts for the discrepancy between spectroscopic results from muonic and electronic hydrogen experiments. Assuming the modified gravity is a small perturbation to the existing electromagnetic interaction, we find the puzzle can be solved with stringent constraint on the range of the new force. Our result not only provides a possible solution to the proton radius puzzle but also suggest a direction to test new physics at very small length scale.
Chaos in a well : Effects of competing length scales
R. Sankaranarayanan; A. Lakshminarayan; V. B. Sheorey
2001-06-12
A discontinuous generalization of the standard map, which arises naturally as the dynamics of a periodically kicked particle in a one dimensional infinite square well potential, is examined. Existence of competing length scales, namely the width of the well and the wavelength of the external field, introduce novel dynamical behaviour. Deterministic chaos induced diffusion is observed for weak field strengths as the length scales do not match. This is related to an abrupt breakdown of rotationally invariant curves and in particular KAM tori. An approximate stability theory is derived wherein the usual standard map is a point of ``bifurcation''.
High Impact Technology Catalyst: Technology Deployment Strategies...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
High Impact Technology Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact...
Vehicle Technologies Office: 2014 Electric Drive Technologies...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The...
Not Available
1991-01-01
The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.
LEXSEE 19 BERKELEY TECH L J 1 Copyright (c) 2004 Berkeley Technology Law Journal
Kammen, Daniel M.
Page 1 LEXSEE 19 BERKELEY TECH L J 1 Copyright (c) 2004 Berkeley Technology Law Journal Berkeley Technology Law Journal 2004 19 Berkeley Tech. L.J. 1 LENGTH: 8383 words FOREWORD: The Rise of Internet Berkeley Technology Law Journal & Berkeley Center for Law and Technology. + Senior Annual Review Editor
Reduction of dimension for nonlinear dynamical systems
Heather A. Harrington; Robert A. Van Gorder
2015-08-24
We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination to obtain the reduced system. While analytical, the approach is algorithmic, and is implemented in symbolic software such as {\\sc MAPLE} or {\\sc SageMath}. In other cases, the reduction cannot be performed strictly in terms of differential operators, and one obtains integro-differential operators, which may still be useful. In either case, one can use the reduced equation to both approximate solutions for the state variables and perform chaos diagnostics more efficiently than could be done for the original higher-dimensional system, as well as to construct Lyapunov functions which help in the large-time study of the state variables. A number of chaotic and hyperchaotic dynamical systems are used as examples in order to motivate the approach.
Moment Based Dimension Reduction for Multivariate Response Regression
Bura, Efstathia
Moment Based Dimension Reduction for Multivariate Response Regression Xiangrong Yin Efstathia Bura January 20, 2005 Abstract Dimension reduction aims to reduce the complexity of a regression without re- quiring a pre-specified model. In the case of multivariate response regressions, covariance
SCIENCE IN HIGH DIMENSIONS: MULTIPARAMETER MODELS AND BIG DATA
Sethna, James P.
SCIENCE IN HIGH DIMENSIONS: MULTIPARAMETER MODELS AND BIG DATA A Dissertation Presented #12;SCIENCE IN HIGH DIMENSIONS: MULTIPARAMETER MODELS AND BIG DATA Ricky Chachra, Ph.D. Cornell parameters as well as a large-dimensional space of predicted data. These high-dimensional spaces of inputs
LABORATORY I: DESCRIPTION OF MOTION IN ONE DIMENSION
Minnesota, University of
Lab I - 1 LABORATORY I: DESCRIPTION OF MOTION IN ONE DIMENSION In this laboratory you will measure with your instructor. Remember, one of the reasons for doing physics in a laboratory setting is to help you this laboratory, you should be able to: · Describe completely the motion of any object moving in one dimension
A note on exclusion statistics parameter and Hausdorff dimension
Wellington da Cruz
1998-03-05
We obtain for an anyon gas in the high temperature limit a relation between the exclusion statistics parameter $g$ and the Hausdorff dimension $h$, given by $g=h(2-h)$. The anyonic excitations are classified into equivalence classes labeled by Hausdorff dimension, $h$, and in that limit, the parameter $g$ give us the second virial coefficient for any statistics, $\
TIME CONSTANTS AND ELECTROTONIC LENGTH OF MEMBRANE CYLINDERS
Zucker, Robert S.
TIME CONSTANTS AND ELECTROTONIC LENGTH OF MEMBRANE CYLINDERS AND NEURONS WILFRID RALL From electrophysiological experiments. It depends upon the several time con- stants present in passive decay of membrane membrane time constant, Tm = RmCm, observed in the decay of a uniform membrane potential, there exist many
TECHNICAL NOTES Determination of Length of a Horizontal Drain
Chahar, B. R.
(Sherard et al. 1967; Sharma 1991) suggested limits for the upstream and the downstream slopes. Chahar1 Abstract: An earth dam can be prevented from a seepage failure due to softening of the downstream the downstream slope cover and the length of the downstream horizontal drain in homogeneous isotropic
Branch length distribution in TREF fractionated polyethylene Ramnath Ramachandran a
Beaucage, Gregory
Branch length distribution in TREF fractionated polyethylene Ramnath Ramachandran a , Gregory Keywords: Polyethylene Branching Neutron scattering a b s t r a c t Commercial polyethylene is typically and catalyst activity. Further, processing of polyethylene after polymerization may also result in changes
Zero Capacity Region of Multidimensional Run Length Constraints
Zeger, Kenneth
there are at least consecutive zeros. An -dimensional pattern of zeros and ones arranged in an hyper For integers and satisfying , a binary sequence is said to satisfy a one-dimensional run length constraint. For , the -dimensional -constrained capacity is defined as where denotes the number of -dimensional binary rectangular
Path Length Correction for dE/dx Olushakin Olojo
Cinabro, David
Path Length Correction for dE/dx Olushakin Olojo Department of Mechanical Engineering Wayne State used in CLEO. Due to the recent use of Helium Propane gas in the drift chamber, it is now possible of 5050% ArgonEthane to 6040% HeliumPropane in the CLEO drift chamber has reduced e#ects caused
Holographic Screening Length in a Hot Plasma of Two Sphere
Ardian Nata Atmaja; Hasan Abu Kassim; Norhasliza Yusof
2015-04-16
We study the screening length of a quark-antiquark pair moving in a hot plasma living in two sphere $S^2$ manifold using AdS/CFT correspondence where the background metric is four dimensional Schwarzschild-AdS black hole. The geodesic solution of the string ends at the boundary is given by a stationary motion in the equatorial plane as such the separation length $L$ of quark-antiquark pair is parallel to the angular velocity $\\omega$. The screening length and the bound energy are computed numerically using Mathematica. We find that the plots are bounded from below by some functions related to the momentum transfer $P_c$ of the drag force configuration. We compare the result by computing the screening length in the quark-antiquark reference frame where the gravity dual are "Boost-AdS" and Kerr-AdS black holes. Finding relations of the parameters of both black holes, we argue that the relation between mass parameters $M_{Sch}$ of the Schwarzschild-AdS black hole and $M_{Kerr}$ of the Kerr-AdS black hole in high temperature is given by $M_{Kerr}=M_{Sch}(1-a^2l^2)^{3/2}$, where $a$ is the angular momentum parameter.
Scaling Behavior and Equilibrium Lengths of Knotted Polymers Eric Rawdon,
Bigelow, Stephen
Scaling Behavior and Equilibrium Lengths of Knotted Polymers Eric Rawdon, Akos Dobay, John C. Kern fluctuating knotted polymer rings affect their various spatial characteristics such as the radius of the smallest sphere enclosing momentary configurations of simulated polymer chains. We describe how the average
Anomalous dimensions determine the power counting -- Wilsonian RG analysis of nuclear EFT --
Harada, K; Harada, Koji; Kubo, Hirofumi
2006-01-01
The Legendre flow equation, a version of exact Wilsonian renormalization group (WRG) equation, is employed to consider the power counting issues in Nuclear Effective Field Theory. A WRG approach is an ideal framework because it is nonperturbative and does not require any prescribed power counting rule. The power counting is determined systematically from the scaling dimensions of the operators at the nontrivial fixed point. The phase structure is emphasized and the inverse of the scattering length, which is identified as a relevant coupling, is shown to play a role of the order parameter. The relations to the work done by Birse, McGovern, and Richardson and to the Kaplan-Savage-Wise scheme are explained.
Anomalous dimensions determine the power counting -- Wilsonian RG analysis of nuclear EFT --
Koji Harada; Hirofumi Kubo
2006-10-24
The Legendre flow equation, a version of exact Wilsonian renormalization group (WRG) equation, is employed to consider the power counting issues in Nuclear Effective Field Theory. A WRG approach is an ideal framework because it is nonperturbative and does not require any prescribed power counting rule. The power counting is determined systematically from the scaling dimensions of the operators at the nontrivial fixed point. The phase structure is emphasized and the inverse of the scattering length, which is identified as a relevant coupling, is shown to play a role of the order parameter. The relations to the work done by Birse, McGovern, and Richardson and to the Kaplan-Savage-Wise scheme are explained.
Triviality of the BCS-BEC crossover in extended dimensions: Implications for the ground state energy
Nussinov, Zohar [Department of Physics, Washington University, St. Louis, Missouri 63160-4899 (United States); Nussinov, Shmuel [School of Physics and Astronomy, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978 (Israel)
2006-11-15
Cold atom traps and certain neutron star layers may contain fermions with separation much larger than the range of pairwise potentials yet much shorter than the scattering length. Such systems can display universal characteristics independent of the details of the short range interactions. Our main result is that for space dimensions D smaller than two and larger than four a specific extension of this problem is amenable to exact results. In particular, the energy per particle at the BCS-BEC crossover point is equal to the energy of the free fermion system in all D{<=}2 whereas this energy is rigorously nonpositive (and potentially vanishing) in all D{>=}4. We discuss the D=3 case. A particular unjustified recipe suggests {xi}=1/2 in D=3.
Office of Environmental Management (EM)
capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...
Effects of Ultramicroelectrode Dimensions on the Electropolymerization of Polypyrrole
Fletcher, Benjamin L [ORNL; Fern, Jared T. [University of Tennessee, Knoxville (UTK); Rhodes, Kevin [University of Tennessee, Knoxville (UTK); McKnight, Timothy E [ORNL; Fowlkes, Jason Davidson [ORNL; Retterer, Scott T [ORNL; Keffer, David J. [University of Tennessee, Knoxville (UTK); Simpson, Michael L [ORNL; Doktycz, Mitchel John [ORNL
2009-01-01
Anode geometry can significantly affect the electrochemical synthesis of conductive polymers. Here, the effects of anode dimensions on the electropolymerization of pyrrole are investigated. Band microelectrodes were prepared with widths ranging from 2 to 500 {micro}m. The anode dimension has a significant effect on the resulting thickness of polymer film. The electropolymerization process deviates significantly from that predicted by simple mass transfer considerations when electrode dimensions are less than {approx}20 {micro}m. Polymer film thickness is thinner than expected when electrode dimensions become less than {approx}10 {micro}m. A simple mathematical model was derived to explain the observed effects of anode dimensions on the polymerization process. Simulation results confirm that diffusive loss of reaction intermediates accounts for the observed experimental trends. The described simulation facilitates understanding of the electropolymerization processes and approaches to the controlled deposition of polypyrrole, particularly at the submicron scale, for microelectromechanical systems and biomedical applications.
Progress in Long Scale Length Laser-Plasma Interactions
Glenzer, S H; Arnold, P; Bardsley, G; Berger, R L; Bonanno, G; Borger, T; Bower, D E; Bowers, M; Bryant, R; Buckman, S; Burkhart, S C; Campbell, K; Chrisp, M P; Cohen, B I; Constantin, G; Cooper, F; Cox, J; Dewald, E; Divol, L; Dixit, S; Duncan, J; Eder, D; Edwards, J; Erbert, G; Felker, B; Fornes, J; Frieders, G; Froula, D H; Gardner, S D; Gates, C; Gonzalez, M; Grace, S; Gregori, G; Greenwood, A; Griffith, R; Hall, T; Hammel, B A; Haynam, C; Heestand, G; Henesian, M; Hermes, G; Hinkel, D; Holder, J; Holdner, F; Holtmeier, G; Hsing, W; Huber, S; James, T; Johnson, S; Jones, O S; Kalantar, D; Kamperschroer, J H; Kauffman, R; Kelleher, T; Knight, J; Kirkwood, R K; Kruer, W L; Labiak, W; Landen, O L; Langdon, A B; Langer, S; Latray, D; Lee, A; Lee, F D; Lund, D; MacGowan, B; Marshall, S; McBride, J; McCarville, T; McGrew, L; Mackinnon, A J; Mahavandi, S; Manes, K; Marshall, C; Mertens, E; Meezan, N; Miller, G; Montelongo, S; Moody, J D; Moses, E; Munro, D; Murray, J; Neumann, J; Newton, M; Ng, E; Niemann, C; Nikitin, A; Opsahl, P; Padilla, E; Parham, T; Parrish, G; Petty, C; Polk, M; Powell, C; Reinbachs, I; Rekow, V; Rinnert, R; Riordan, B; Rhodes, M
2003-11-11
The first experiments on the National Ignition Facility (NIF) have employed the first four beams to measure propagation and laser backscattering losses in large ignition-size plasmas. Gas-filled targets between 2 mm and 7 mm length have been heated from one side by overlapping the focal spots of the four beams from one quad operated at 351 nm (3{omega}) with a total intensity of 2 x 10{sup 15} W cm{sup -2}. The targets were filled with 1 atm of CO{sub 2} producing of up to 7 mm long homogeneously heated plasmas with densities of n{sub e} = 6 x 10{sup 20} cm{sup -3} and temperatures of T{sub e} = 2 keV. The high energy in a NIF quad of beams of 16kJ, illuminating the target from one direction, creates unique conditions for the study of laser plasma interactions at scale lengths not previously accessible. The propagation through the large-scale plasma was measured with a gated x-ray imager that was filtered for 3.5 keV x rays. These data indicate that the beams interact with the full length of this ignition-scale plasma during the last {approx}1 ns of the experiment. During that time, the full aperture measurements of the stimulated Brillouin scattering and stimulated Raman scattering show scattering into the four focusing lenses of 6% for the smallest length ({approx}2 mm). increasing to 12% for {approx}7 mm. These results demonstrate the NIF experimental capabilities and further provide a benchmark for three-dimensional modeling of the laser-plasma interactions at ignition-size scale lengths.
Lolon, Elyezer P.
2006-04-12
Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may...
Technology Commercialization Showcase 2008 Vehicle Technologies Program
Davis, Patrick B.
2009-06-19
Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.
Temkin, Richard
2014-12-24
Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.
Thermally activated technologies: Technology Roadmap
None, None
2003-05-01
The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.
Zhang, Junshan
: · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific
Predicting Pattern Tooling and Casting Dimensions for Investment Casting - Phase II
Sabau, Adrian S [ORNL
2005-09-01
The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The wax patterns are used to create a ceramic shell by the application of a series of ceramic coatings, and the alloy is cast into the dewaxed shell mold (Fig. 1.1). However, the complexity of shape and the close dimensional tolerances required in the final casting make it difficult to determine tooling dimensions. The final linear dimension of the casting depends on the cumulative effects of the linear expansions or contractions in each step of the investment casting process (Fig. 1.2). In most cases, the mold geometry or cores restrict the shrinkage of the pattern or the cast part, and the final casting dimensions may be affected by time-dependent processes such as viscoelastic deformation of the wax, and viscoplastic creep and plastic deformations of the shell and alloy. The pattern die is often reworked several times to produce castings whose dimensions are within acceptable tolerances. To date, investment casting technology has been based on hands-on training and experience. Technical literature is limited to experimental, phenomenological studies aimed at obtaining empirical correlations for quick and easy application in industry. The goal of this project was to predict casting dimensions for investment castings in order to meet blueprint nominal during the first casting run. Several interactions have to be considered in a coupled manner to determine the shrinkage factors: these are the die-wax, wax-shell, and shell-alloy interactions (as illustrated in Fig. 1.3). In this work, the deformations of the die-wax and shell-alloy systems were considered in a coupled manner, while the coupled deformation of the wax-shell system was not considered. Future work is needed in order to deliver to industry a computer program in which all three systems are coupled for determining the dimensions of the wax pattern, the shell mold, and casting in a sequential but coupled manner.
Transport relaxation time and length scales in turbulent suspensions
P. Claudin; F. Charru; B. Andreotti
2010-11-03
We show that in a turbulent flow transporting suspended sediment, the unsaturated sediment flux $q(x,t)$ can be described by a first-order relaxation equation. From a mode analysis of the advection-diffusion equation for the particle concentration, the relaxation length and time scales of the dominant mode are shown to be the deposition length $H U/V_{\\rm fall}$ and deposition time $H/V_{\\rm fall}$, where $H$ is the flow depth, $U$ the mean flow velocity and $V_{\\rm fall}$ the sediment settling velocity. This result is expected to be particularly relevant for the case of sediment transport in slowly varying flows, where the flux is never far from saturation. Predictions are shown to be in quantitative agreement with flume experiments, for both net erosion and net deposition situations.
The Dilute Bose-Einstein Condensate with Large Scattering Length
Eric Braaten; H. -W. Hammer; Thomas Mehen
2002-02-01
We study a dilute Bose gas of atoms whose scattering length a is large compared to the range of their interaction. We calculate the energy density of the homogeneous Bose-Einstein condensate to second order in the low-density expansion, expressing it in terms of a and a second parameter Lambda_* that determines the low-energy observables in the 3-body sector. The second-order correction to the energy density has a small imaginary part that reflects the instability due to 3-body recombination. In the case of a trapped Bose-Einstein condensate with large negative scattering length, we calculate the coefficient of the 3-body mean-field term in the energy density in terms of a and Lambda_*. It can be very large if there is an Efimov state near threshold.
Grin', E. A.; Bochkarev, V. I.
2013-01-15
An approach for estimating the permissible dimensions of technological defects in butt welded joints in category III and IV pipelines is described. The allowable size of a welding defect is determined from the condition of compliance with the specifications on strength for a reference cross section (damaged joint) of the pipeline taking into account its weakening by a given defect.With regard to the fairly widespread discovery of technological defects in butt welded joints during diagnostics of auxiliary pipelines for thermal electric power plants, the proposed approach can be used in practice by repair and consulting organizations.
Dangerous implications of a minimum length in quantum gravity
Cosimo Bambi; Katherine Freese
2008-07-17
The existence of a minimum length and a generalization of the Heisenberg uncertainty principle seem to be two fundamental ingredients required in any consistent theory of quantum gravity. In this letter we show that they would predict dangerous processes which are phenomenologically unacceptable. For example, long--lived virtual super--Planck mass black holes may lead to rapid proton decay. Possible solutions of this puzzle are briefly discussed.
Critical Waves and the Length Problem of Biology
R. B. Laughlin
2015-04-17
It is pointed out that the mystery of how biological systems measure their lengths vanishes away if one premises that they have discovered a way to generate linear waves analogous to compressional sound. These can be used to detect length at either large or small scales using echo timing and fringe counting. It is shown that suitable linear chemical potential waves can, in fact, be manufactured by tuning to criticality conventional reaction-diffusion with a small number substances. Min oscillations in E. coli are cited as precedent resonant length measurement using chemical potential waves analogous to laser detection. Mitotic structures in eucaryotes are identified as candidates for such an effect at higher frequency. The engineering principle is shown to be very general and functionally the same as that used by hearing organs. PNAS Significance Statement: This paper invokes physical principles to address the question of how living things might use reaction-diffusion to measure out and regulate the many thousands of lengths required to make their body parts and internal organs. It argues that two ideas have been missing. One is that oscillation is necessary to achieve the necessary design stability and plasticity. The other is that the system must be tuned to criticality to stabilize the propagation velocity, thus enabling clocks to function as meter sticks. The broader significance is twofold: First, a fundamental piece of the machinery of life is probably invisible to present-day biochemical methods because they are too slow. Second, the simplicity of growth and form identified a century ago by D'Arcy Thompson is probably a symptom of biological engineering strategies, not primitive law.
Compression- and Shear-Driven Jamming of U-Shaped Particles in Two Dimensions
Theodore Marschall; Scott V. Franklin; S. Teitel
2015-01-23
We carry out numerical simulations of soft, U-shaped, frictionless particles in $d=2$ dimensions in order to explore the effects of complex particle shape on the jamming transition. We consider both cases of uniform compression-driven and shear-driven jamming as packing fraction $\\phi$ and compression or shear rate is varied. Upon slow compression, jamming is found to occur when the isostatic condition is satisfied. Under driven steady state shearing, jamming occurs at a higher packing fraction $\\phi_J$ than observed in compression. A growing relaxation time and translational correlation length is found as $\\phi$ increases towards $\\phi_J$. We consider the orientational ordering and rotation of particles induced by the shear flow. Both nematic and tetratic ordering are found, but these decrease as $\\phi$ increases to $\\phi_J$. At the jamming transition, the nematic ordering further decreases, while the tetratic ordering increases, but the orientational correlation lengths remain small throughout. The average angular velocity of the particles is found to increase as $\\phi$ increases, saturating to a plateau just below $\\phi_J$, but then increasing again as $\\phi$ increases above $\\phi_J$.
Physical Interpretation of the 26 Dimensions of Bosonic String Theory
Frank D. Smith Jr
2002-07-15
The 26 dimensions of Closed Unoriented Bosonic String Theory are interpreted as the 26 dimensions of the traceless Jordan algebra J3(O)o of 3x3 Octonionic matrices, with each of the 3 Octonionic dimenisons of J3(O)o having the following physical interpretation: 4-dimensional physical spacetime plus 4-dimensional internal symmetry space; 8 first-generation fermion particles; 8 first-generation fermion anti-particles. This interpretation is consistent with interpreting the strings as World Lines of the Worlds of Many-Worlds Quantum Theory and the 26 dimensions as the degrees of freedom of the Worlds of the Many-Worlds.
INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY
Columbia University
1 INTERSTATE WASTE TECHNOLOGIES THERMOSELECT TECHNOLOGY AN OVERVIEW Presented to the DELAWARE SOLID WASTE MANAGEMENT TECHNICAL WORKING GROUP January 10, 2006 #12;2 INTERSTATE WASTE MANAGEMENT ALLIANCE and maintenance (30 years) Will guarantee performance and Operation and Maintenance Serves solid waste
Universality in Few-body Systems with Large Scattering Length
Eric Braaten; H. -W. Hammer
2006-08-18
Particles with short-range interactions and a large scattering length have universal low-energy properties that do not depend on the details of their structure or their interactions at short distances. In the 2-body sector, the universal properties are familiar and depend only on the scattering length a. In the 3-body sector for identical bosons, the universal properties include the existence of a sequence of shallow 3-body bound states called "Efimov states" and log-periodic dependence of scattering observables on the energy and the scattering length. The spectrum of Efimov states in the limit a -> +/- infinity is characterized by an asymptotic discrete scaling symmetry that is the signature of renormalization group flow to a limit cycle. In this review, we present a thorough treatment of universality for the system of three identical bosons and we summarize the universal information that is currently available for other 3-body systems. Our basic tools are the hyperspherical formalism to provide qualitative insights, Efimov's radial laws for deriving the constraints from unitarity, and effective field theory for quantitative calculations. We also discuss topics on the frontiers of universality, including its extension to systems with four or more particles and the systematic calculation of deviations from universality.
Implementing Sustainability: The Behavioral-Institutional Dimension
Malone, Elizabeth [Pacific Northwest National Laboratory (PNNL); Diamond, Richard C. [Lawrence Berkeley National Laboratory (LBNL); Wolfe, Amy K [ORNL; Sanquist, Tom [Pacific Northwest National Laboratory (PNNL); Payne, Christopher [Lawrence Berkeley National Laboratory (LBNL); Dion, Jerry [U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy
2013-01-01
Organizations, both public and private sector, are increasingly pursuing strategies to reduce their energy use and increase sustainability. Whether these efforts are based on economic rationale, community spirit, environmental ethics, federal mandates, or other reasons, they predominantly feature strategies that rely on new technologies. If there is any focus on behavior change, it is typically addressed to changing individual behavior. While we recognize the importance and limitations of the role of individual behavior in promoting sustainability goals, we are more interested in the role of institutional behavior. We have reviewed the small but growing literature on institutional behavior change, and have identified eight evidence-based principles as a guide for federal agencies to take action. This article presents the principles and illustrates them with examples to suggest ways that they can serve as models for others.
. Schultza, 1 , Haakon Fossenb, 2 a GeomechanicsRock Fracture Group, Department of Geological Sciences/172
- ploitation in the petroleum industry. We acquired our survey on top of a bench of an open-pit diatomite for predicting the travel dis- tance of fluid particles between two points and the pump time necessary). These statistical parameters may be useful for oil and gas field development in the petroleum industry. Variogram
Broader source: Energy.gov [DOE]
To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...
The motivation and pleasure dimension of negative symptoms: Neural substrates
The motivation and pleasure dimension of negative symptoms: Neural substrates and behavioral Schizophrenia; Motivation; Pleasure; Neural substrates; Effort; Anticipation Abstract A range of emotional and motivation impairments have long been clinically documented in people with schizophrenia, and there has been
Testing dimension and non-classicality in communication networks
Joseph Bowles; Nicolas Brunner; Marcin Paw?owski
2015-09-14
We consider networks featuring preparation, transformation, and measurement devices, in which devices exchange communication via mediating physical systems. We investigate the problem of testing the dimension of the mediating systems in the device-independent scenario, that is, based on observable data alone. A general framework for tackling this problem is presented, considering both classical and quantum systems. These methods can then also be used to certify the non-classicality of the mediating systems, given an upper bound on their dimension. Several case studies are reported, which illustrate the relevance of the framework. These examples also show that, for fixed dimension, quantum systems largely outperform classical ones. Moreover, the use of a transformation device considerably improves noise tolerance when compared to simple prepare-and-measure networks. These results suggest that the classical simulation of quantum systems becomes costly in terms of dimension, even for simple networks.
Penetrative internally heated convection in two and three dimensions
Goluskin, David
2015-01-01
Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ($H$) without convection, grows like $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh-B\\'enard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\\times10^{10}$.
Search for Large Extra Dimensions Based on Observations of Neutron...
Office of Scientific and Technical Information (OSTI)
ThesisDissertation: Search for Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT Citation Details In-Document Search Title: Search for Large Extra...
NLO BFKL and anomalous dimensions of light-ray operators
Balitsky, Ian
2013-05-01
This presentation covers: Regge limit in the coordinate space; “BFKL” representation of 4-point correlation function in N = 4 SYM; light-ray operators; “DGLAP” representation of 4-point correlation function; and anomalous dimensions from DGAP vs BFKL representations.
The Higgs boson as a gauge field in extra dimensions
Marco Serone
2005-08-29
I review, at a general non-technical level, the main properties of models in extra dimensions where the Higgs field is identified with some internal component of a gauge field.
Euler Number Existing estimators for curve length in 3D are applied to a binary representation
van Vliet, Lucas J.
. This technique measures curve length in 3D and (DÂ2)-dimensional hyper- length in D-dimensional hyper oriented lines in three-dimensional space. Verwer (Verwer 1991) published recipes and results be extended to measure hyper-length in hyper-space. To allow comparison with binary length estimators we
Fractal dimension of cohesive sediment flocs at steady state under seven shear flow conditions
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zhu, Zhongfan; Yu, Jingshan; Wang, Hongrui; Dou, Jie; Wang, Cheng
2015-08-12
The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s-1). These properties include a one-dimensional (1-D) fractal dimension (D1), a two-dimensional (2-D) fractal dimension (D2), a perimeter-based fractal dimension (Dpf) and an aspect ratio (AR). They were calculated based on the projected area (A), equivalent size, perimeter (P) and length (L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter D2, which characterizes the relationship between the projectedmore »area and the length of the major axis using a power function, A ? LD2, increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (G = 5.36, 9.17, and 14 s-1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s-1), respectively. The parameter D1 characterizes the relationship between the perimeter and length of the major axis by the function P ? LD1 and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s-1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s-1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in Dpf and AR show that the flocs become less convoluted and more symmetrical and that their boundaries become smoother and more regular in the high shear rate group than in the low shear rate group due to breakage and possible restructuring processes. To assess the effects of electrolyte and sediment concentration, 0.1 mol/L calcium chloride (CaCl2) and initial sediment concentration from 7.87 × 10-5 to 1.57 × 10-5 were used in this preliminary study. The addition of electrolyte and increasing sediment concentration could produce more symmetrical flocs with less convoluted and simpler boundaries. In addition, some new information on the temporal variation of the median size of the flocs during the flocculation process is presented.« less
Technology Roadmap Analysis 2013: Assessing Automotive Technology...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive...
Building Technologies Office Overview
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving...
Dimension of holes and high-temperature condensate in Bose--Einstein statistics
V. P. Maslov
2006-12-22
We introduce the notion of weight for the lattice dimension and the notion of topological dimension -- hole dimension. The condensate in Bose-holes exists in the case when temperature in not low.
Dimension of physical systems, information processing, and thermodynamics
Nicolas Brunner; Marc Kaplan; Anthony Leverrier; Paul Skrzypczyk
2014-12-18
We ask how quantum theory compares to more general physical theories from the point of view of dimension. To do so, we first give two model independent definition of the dimension of physical systems, based on measurements and on the capacity of storing information. While both definitions are equivalent in classical and quantum mechanics, they are in general different in generalized probabilistic theories. We discuss in detail the case of a theory known as 'boxworld', and show that such a theory features systems with a dimension mismatch. This dimension mismatch can be made arbitrarily large by using an amplification procedure. Furthermore, we show that the dimension mismatch of boxworld has strong consequences on its power for performing information-theoretic tasks, leading to the collapse of communication complexity and to the violation of information causality. Finally, we discuss the consequences of a dimension mismatch from the perspective of thermodynamics, and ask whether this effect could break Landauer's erasure principle and thus the second law.
Pauling bond strength, bond length and electron density distribution
Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.; Rosso, Kevin M.; Iversen, Bo B.; Spackman, M. A.
2014-01-18
A power law regression equation, /r)-0.21, determined for a large number of oxide crystals at ambient conditions and /r)-0.22, determined for geometry optimized hydroxyacid molecules, that connect the bond lengths to the average Pauling electrostatic bond strength, , for the M-O bonded interactions. On the basis of the correspondence between the two sets of equations connecting ?(rc) and the Pauling bond strength s with bond length, it appears that Pauling’s simple definition of bond strength closely mimics the accumulation of the electron density between bonded pairs of atoms. The similarity of the expressions for the crystals and molecules is compelling evidence that the M-O bonded interactions for the crystals and molecules 2 containing the same bonded interactions are comparable. Similar expressions, connecting bond lengths and bond strength, have also been found to hold for fluoride, nitride and sulfide molecules and crystals. The Brown-Shannon bond valence, ?, power law expression ? = [R1/(R(M-O)]N that has found wide use in crystal chemistry, is shown to be connected to a more universal expression determined for oxides and the perovskites, = r[(1.41)/
I=2 $?$-$?$ scattering length with dynamical overlap fermion
Takuya Yagi; Shoji Hashimoto; Osamu Morimatsu; Munehisa Ohtani
2011-08-15
We report on a lattice QCD calculation of the I=2 $\\pi\\pi$ scattering length using the overlap fermion formulation for both sea and valence quarks. We investigate the consistency of the lattice data with the prediction of the next-to-next-to-leading order chiral perturbation theory after correcting finite volume effects. The calculation is performed on gauge ensembles of two-flavor QCD generated by the JLQCD collaboration on a $16^3\\times 32$ lattice at a lattice spacing $\\sim$ 0.12 fm.
Varying properties along lengths of temperature limited heaters
Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX); Ginestra, Jean Charles (Richmond, TX)
2011-07-26
A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.
Self-aligned submicron gate length gallium arsenide MESFET
Huang, Hsien-Ching
1987-01-01
38 21. Proximity cap annealing . 22. Temperature profile of post implant anneal 46 47 23. 24. 25. 26. 27. 28. 29. 30. "Pits" or holes in GaAs post implant anneal without sacrificial cap Silicon monoxide source (bafile box) used.... 16(b)). The bottom resist layer is then further etched in the oxygen plasma to produce undercutting for the desire gate structure. The amount of undercut is determined by the desired length of the gate and is the width of the remaining resist...
Optical Scattering Lengths in Large Liquid-Scintillator Neutrino Detectors
Michael Wurm; Franz von Feilitzsch; Marianne Goeger-Neff; Martin Hofmann; Tobias Lachenmaier; Timo Lewke; Teresa Marrodan Undagoitita; Quirin Meindl; Randoplh Moellenberg; Lothar Oberauer; Walter Potzel; Marc Tippmann; Sebastian Todor; Christoph Traunsteiner; Juergen Winter
2010-04-06
For liquid-scintillator neutrino detectors of kiloton scale, the transparency of the organic solvent is of central importance. The present paper reports on laboratory measurements of the optical scattering lengths of the organic solvents PXE, LAB, and Dodecane which are under discussion for next-generation experiments like SNO+, Hanohano, or LENA. Results comprise the wavelength range from 415 to 440nm. The contributions from Rayleigh and Mie scattering as well as from absorption/re-emission processes are discussed. Based on the present results, LAB seems to be the preferred solvent for a large-volume detector.
Probing the Conformational Distributions of Sub-Persistence Length DNA
Mastroianni, Alexander; Sivak, David; Geissler, Phillip; Alivisatos, Paul
2009-06-08
We have measured the bending elasticity of short double-stranded DNA (dsDNA) chains through small-angle X-ray scattering from solutions of dsDNA-linked dimers of gold nanoparticles. This method, which does not require exertion of external forces or binding to a substrate, reports on the equilibrium distribution of bending fluctuations, not just an average value (as in ensemble FRET) or an extreme value (as in cyclization), and in principle provides a more robust data set for assessing the suitability of theoretical models. Our experimental results for dsDNA comprising 42-94 basepairs (bp) are consistent with a simple worm-like chain model of dsDNA elasticity, whose behavior we have determined from Monte Carlo simulations that explicitly represent nanoparticles and their alkane tethers. A persistence length of 50 nm (150 bp) gave a favorable comparison, consistent with the results of single-molecule force-extension experiments on much longer dsDNA chains, but in contrast to recent suggestions of enhanced flexibility at these length scales.
The Chain-Length Distribution in Subcritical Systems
Steven Douglas Nolen
2000-06-01
The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.
LEXSEE 16 BERKELEY TECH L J 1 Copyright (c) 2001 Berkeley Technology Law Journal
Kammen, Daniel M.
Page 1 LEXSEE 16 BERKELEY TECH L J 1 Copyright (c) 2001 Berkeley Technology Law Journal Berkeley Technology Law Journal 2001 16 Berkeley Tech. L.J. 1 LENGTH: 3937 words ANNUAL REVIEW OF LAW AND TECHNOLOGY Law Journal; J.D. candidate, 2001, Boalt Hall School of Law, University of California, Berkeley; Ph
Southampton, University of
Software Technologies Deloitte Dialog Semiconductor ECM Selection EDT-Year in Industry EMC Corporation to join our organisation and be based in our Ferndown, Dorset, location within our product electronics have application, design and manufacturing facilities in Canada, America, Europe and China. We
1995-09-01
The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.
Kemner, Ken
of pyrochemical processes for the recycle of oxide, carbide and other advanced fuels and laid the foundationPyroprocessing Technologies RECYCLING USED NUCLEAR FUEL FOR A SUSTAINABLE ENERGY FUTURE #12;32 Storing Used Nuclear Fuel is a Real Waste Nuclear power is the most environmentally friendly way
Building Technologies Office Overview
2013-04-01
Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review
Biltoft, P J
2004-10-15
The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.
Science &Technology Facilities Council
Science &Technology Facilities Council Science &Technology Facilities Council Science and Technology Facilities Council Annual Report and Accounts 2011-2012 Science and Technology Facilities Council Laboratory, Cheshire; UK Astronomy Technology Centre, Edinburgh; Chilbolton Observatory, Hampshire; Isaac
SELECTING INFORMATION TECHNOLOGY SECURITY
April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems
Analysis and Optimization of "Full-Length" Diodes
Schock, Alfred
2012-01-19
A method of analyzing the axial variation of the heat generation rate, temperature, voltage, current density and emitter heat flux in a thermionic converter is described. The method is particularly useful for the case of "long" diodes, each extending over the full length of the reactor core. For a given diode geometry and fuel distribution, the analysis combines a nuclear solution of the axial fission density profile with the iterative solution of four differential equations representing the thermal, electrical, and thermionic interactions within the diode. The digital computer program developed to solve these equations can also perform a design optimization with respect to lead resistance, load voltage, and emitter thickness, for a specified maximum emitter temperature. Typical results are presented, and the use of this analysis for predicting the diode operating characteristics is illustrated.
Light absorption cell combining variable path and length pump
Prather, W.S.
1993-12-07
A device is described for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid there between and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data. 2 figures.
Light absorption cell combining variable path and length pump
Prather, William S. (2419 Dickey Rd., Augusta, GA 30906)
1993-01-01
A device for use in making spectrophotometric measurements of fluid samples. In particular, the device is a measurement cell containing a movable and a fixed lens with a sample of the fluid therebetween and through which light shines. The cell is connected to a source of light and a spectrophotometer via optic fibers. Movement of the lens varies the path length and also pumps the fluid into and out of the cell. Unidirectional inlet and exit valves cooperate with the movable lens to assure a one-way flow of fluid through the cell. A linear stepper motor controls the movement of the lens and cycles it from a first position closer to the fixed lens and a second position farther from the fixed lens, preferably at least 10 times per minute for a nearly continuous stream of absorption spectrum data.
Characteristic length of an AdS/CFT superconductor
Kengo Maeda; Takashi Okamura
2008-10-30
We investigate in more detail the holographic model of a superconductor recently found by Hartnoll, Herzog, and Horowitz [Phys. Rev. Lett. 101, 031601], which is constructed from a condensate of a charged scalar field in AdS_4-Schwarzschild background. By analytically studying the perturbation of the gravitational system near the critical temperature T_c, we obtain the superconducting coherence length proportional to 1/\\sqrt{1-T/T_c} via AdS/CFT correspondence. By adding a small external homogeneous magnetic field to the system, we find that a stationary diamagnetic current proportional to the square of the order parameter is induced by the magnetic field. These results agree with Ginzburg-Landau theory and strongly support the idea that a superconductor can be described by a charged scalar field on a black hole via AdS/CFT duality.
eta-Nucleon Scattering Length and Effective Range uncertainties
A. M. Green; S. Wycech
2005-06-28
The coupled eta-N, pi-N, gamma-N, 2pi-N system is described by a K-matrix method. The parameters in this model are adjusted to get an optimal fit to pi-N-->pi-N, pi-N-->eta-N, gamma-N-->pi-N and gamma-N-->eta-N data in an energy range of about 100 MeV or so each side of the eta-threshold. Compared with our earlier analysis, we now utilize recent Crystal Ball data. However, the outcome confirms our previous result that the eta-nucleon scattering length (a) is large with a value of 0.91(6)+i0.27(2) fm.
Fermions in odd space-time dimensions: back to basics
Bashir, A; Galicia, Ma. de Jesus Anguiano
2005-01-01
It is a well known feature of odd space-time dimensions $d$ that there exist two inequivalent fundamental representations $A$ and $B$ of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in $A$ and $B$. As a consequence, a parity invariant Lagrangian can only be constructed by incorporating both the representations. Based upon these ideas and contrary to long held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge conjugation operations. We work explicitly in 2+1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions.
Fermions in odd space-time dimensions: back to basics
A. Bashir; Ma. de Jesus Anguiano Galicia
2005-02-09
It is a well known feature of odd space-time dimensions $d$ that there exist two inequivalent fundamental representations $A$ and $B$ of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in $A$ and $B$. As a consequence, a parity invariant Lagrangian can only be constructed by incorporating both the representations. Based upon these ideas and contrary to long held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge conjugation operations. We work explicitly in 2+1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions.
Conformal constraints for anomalous dimensions of leading twist operators
A. N. Manashov; M. Strohmaier
2015-03-16
Leading-twist operators have a remarkable property that their divergence vanishes in a free theory. Recently it was suggested that this property can be used for an alternative technique to calculate anomalous dimensions of leading-twist operators and allows one to gain one order in perturbation theory so that, i.e., two-loop anomalous dimensions can be calculated from one-loop Feynman diagrams, etc. In this work we study feasibility of this program on a toy-model example of the $\\varphi^3$ theory in six dimensions. Our conclusion is that this approach is valid, although it does not seem to present considerable technical simplifications as compared to the standard technique. It does provide one, however, with a very nontrivial check of the calculation as the structure of the contributions is very different.
(Meeting on human dimensions of global environmental change)
Rayner, S.
1990-12-18
Traveler attended the meeting of the Standing Committee on the Human Dimensions of Global Environmental Change of the International Social Science Council (ISSC) and the Scientific Symposium organized by the Standing Committee. The purpose of the meeting and symposium was to discuss the Draft Framework and the Workplan of the Standing Committee prior to its presentation to the 1990 Congress of the ISSC on November 28--30, 1990. The meetings indicate that ORNL Global Environmental Studies Center is on the international leading edge of human dimensions research, except in the area of human dimensions data systems. This weakness could be rectified by close collaboration with the efforts of the Consortium for International Earth Science Information Network (CIESIN) in Michigan.
Sidestepping the Cosmological Constant with Football-Shaped Extra Dimensions
Sean M. Carroll; Monica M. Guica
2003-02-11
We present an exact solution for a factorizable brane-world spacetime with two extra dimensions and explicit brane sources. The compactification manifold has the topology of a two-sphere, and is stabilized by a bulk cosmological constant and magnetic flux. The geometry of the sphere is locally round except for conical singularities at the locations of two antipodal branes, deforming the sphere into an American-style football. The bulk magnetic flux needs to be fine-tuned to obtain flat geometry on the branes. Once this is done, the brane geometry is insensitive to the brane vacuum energy, which only affects the conical deficit angle of the extra dimensions. Solutions of this form provide a new arena in which to explore brane-world phenomenology and the effects of extra dimensions on the cosmological constant problem.
LIN, Pik-Yan
2008-01-01
Research on computer-mediated communication (CMC) has moved from the linguistic aspect to the sociolinguistic dimension in order to understand how human linguistic behaviour is influenced by the availability of new technology. ...
Stable blowup for wave equations in odd space dimensions
Roland Donninger; Birgit Schörkhuber
2015-04-03
We consider semilinear wave equations with focusing power nonlinearities in odd space dimensions $d \\geq 5$. We prove that for every $p > \\frac{d+3}{d-1}$ there exists an open set of radial initial data in $H^{\\frac{d+1}{2}} \\times H^{\\frac{d-1}{2}}$ such that the corresponding solution exists in a backward lightcone and approaches the ODE blowup profile. The result covers the entire range of energy supercritical nonlinearities and extends our previous work for the three-dimensional radial wave equation to higher space dimensions.
Fractal dimension analysis in a highly granular calorimeter
Ruan, M; Brient, J.C; Jeans, D; Videau, H
2015-01-01
The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.
Ground-state energy of the interacting Bose gas in two dimensions: An explicit construction
Beane, Silas R.
2010-12-15
The isotropic scattering phase shift is calculated for nonrelativistic bosons interacting at low energies via an arbitrary finite-range potential in d space-time dimensions. Scattering on a (d-1)-dimensional torus is then considered, and the eigenvalue equation relating the energy levels on the torus to the scattering phase shift is derived. With this technology in hand, and focusing on the case of two spatial dimensions, a perturbative expansion is developed for the ground-state energy of N identical bosons which interact via an arbitrary finite-range potential in a finite area. The leading nonuniversal effects due to range corrections and three-body forces are included. It is then shown that the thermodynamic limit of the ground-state energy in a finite area can be taken in closed form to obtain the energy per particle in the low-density expansion by explicitly summing the parts of the finite-area energy that diverge with powers of N. The leading and subleading finite-size corrections to the thermodynamic limit equation of state are also computed. Closed-form results--some well known, others perhaps not--for two-dimensional lattice sums are included in an Appendix.
Warner, Beth Forrest
2002-03-27
Portal Technology Beth Forrest Warner Director, KU Digital Library Initiatives bwarner@ku.edu PUAD 839 March 27, 2002 Defining the issue… Today’s government agencies at all levels should note that the citizens they serve are “little concerned... their citizens’ perspectives. Instead of launching online services on a department-by-department basis, they are aggregating services across departments, accessible through a common portal.” (Janet Caldow, “The Quest for Electronic Government: A Defining...
Lambda-Neutron Scattering Lengths from Radiative K-minus Capture
W. R. Gibbs; S. A. Coon; H. K. Han; B. F. Gibson
2000-01-02
Radiative capture of the K-minus by the deuteron as a reaction for measurement of the Lambda-neutron scattering lengths. The use of spin information to separate the singlet and triplet scattering lengths is treated.
Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles
Broader source: Energy.gov [DOE]
The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business...
Lu, Shin-yee
1993-03-01
The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.
Papatheodorou, Y.
2007-02-15
Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.
Venus Technology Plan Venus Technology Plan
Rathbun, Julie A.
Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan
Fault Detection Likelihood of Test Sequence Length Fevzi Belli, Michael Linschulte
Belli, Fevzi
accepted hypothesis is that the longer the test sequences, the higher the chances to detect faults. However the length of test sequences. · For our experiments the length of sequences varied from 2 to 4, definingFault Detection Likelihood of Test Sequence Length Fevzi Belli, Michael Linschulte University
QueueTrak: Automated Line Length Detection using a Wireless Sensor Network
Whitehouse, Kamin
, it uses a series of custom active infrared sensors to detect the length of a line in a store or restaurant the design, implementation, and evaluation of QueueTrak, a sensor network that measures the length of linesQueueTrak: Automated Line Length Detection using a Wireless Sensor Network Jared Alexander, Matthew
NON-DESTRUCTIVE SINGLE SHOT BUNCH LENGTH MEASUREMENTS FOR THE CLIC TEST FACILITY 3
NON-DESTRUCTIVE SINGLE SHOT BUNCH LENGTH MEASUREMENTS FOR THE CLIC TEST FACILITY 3 A. Dabrowski, M and P. Urschütz, CERN, Geneva, Switzerland Abstract A non-destructive bunch length detector has been has been made at CTF3 to develop a non destructive single shot bunch length monitor. This device
THE DISTRIBUTION OF THE COMBINED LENGTH OF SPANNED CYCLES IN A
Hart, Sergiu
THE DISTRIBUTION OF THE COMBINED LENGTH OF SPANNED CYCLES IN A RANDOM PERMUTATION By YANNAI A of the combined length L = L(, M) of all cycles of that contain at least one element of M. We give a simple-MAIL: ratio@math.huji.ac.il URL: http://www.ratio.huji.ac.il/ #12;The Distribution of the Combined Length
A maximally superintegrable system in n dimensions A. Ballesterosa
Enciso, Alberto
di Fisica Nucleare, Via Vasca Navale 84, 00146 Rome, Italy Abstract We introduce a novel Hamiltonian al. (cf. [23] and references therein), and in fact in two dimensions they managed to obtain a (local to low- dimensional spaces. To the best of our knowledge, the only known examples of n- dimensional MS
Existence of piecewise linear Lyapunov functions in arbitrary dimensions
Hafstein, SigurÃ°ur Freyr
Existence of piecewise linear Lyapunov functions in arbitrary dimensions Peter Giesl Department/Hafstein (2010) the exis- tence of a piecewise linear Lyapunov function was shown, and in Giesl/Hafstein (subm-dimensional systems. This paper generalises the existence of piecewise linear Lyapunov functions to arbitrary
Human Dimensions and Ocean Health in a Changing Climate
Zhou, Xianghong Jasmine
Human Dimensions and Ocean Health in a Changing Climate When: March 12, 2013, 10:00 am - 5:00 pm@usc.edu) by March 5, 2013 Morning Session: Ocean Health in a Changing Climate 9:30 - 10:00 Registration (coffee Health Index Lunch (Lunch will be provided) 12:30 - 1:45 Steve Lamy, USC The Geopolitics of Climate
Top-kkk Preferences in High Dimensions Duke University
Agarwal, Pankaj K.
Top-kkk Preferences in High Dimensions Albert Yu Duke University syu@cs.duke.edu Pankaj K. Agarwal applications, users are interested only in a small num- ber (say, k) of "top" objects from a large set on preference top-k queries [9, 12, 13, 23, 38]. Motivated by applications in business analysis, Vlachou et al
Data Assimilation in Variable Dimension Dispersion Models using Particle Filters
Singh, Tarunraj
Data Assimilation in Variable Dimension Dispersion Models using Particle Filters K. V. Umamaheswara at Buffalo Buffalo, NY, U.S.A. peter@buffalo.edu Abstract-- Data assimilation in the context of puff based models usually lead to high dimensional space-gridded state space models. In the case of puff based
LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS
Minnesota, University of
Lab II - 1 LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS In this laboratory you continue the study of accelerated motion in more situations. The carts you used in Laboratory I moved in only one instructor. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine
LABORATORY I: DESCRIPTION OF MOTION IN ONE DIMENSION
Minnesota, University of
Lab I - 1 LABORATORY I: DESCRIPTION OF MOTION IN ONE DIMENSION In this laboratory you will measure with your instructor. Remember, one of the reasons for doing physics in a laboratory setting is to help you: After you successfully complete this laboratory, you should be able to: · Describe completely the motion
LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS
Minnesota, University of
Lab II - 1 LABORATORY II DESCRIPTION OF MOTION IN TWO DIMENSIONS In this laboratory you continue the study of accelerated motion in more situations. The carts you used in Laboratory I moved in only one or your instructor. OBJECTIVES: After successfully completing this laboratory, you should be able to
Yang-Mills like instantons in eight and seven dimensions
E. K. Loginov; E. D. Loginova
2014-10-10
We consider a gauge theory in which a nonassociative Moufang loop takes the place of a structure group. We construct Belavin-Polyakov-Schwartz-Tyupkin (BPST) and t'Hooft like instanton solutions of the gauge theory in seven and eight dimensions.
Fusion Frames and Robust Dimension Reduction Ali Pezeshki
Kutyniok, Gitta
Fusion Frames and Robust Dimension Reduction Ali Pezeshki Princeton University Princeton, NJ 08544 fusion frame measurements in presence noise and subspace erasures. Each fusion frame mea- surement is a low-dimensional vector whose elements are inner products of an orthogonal basis for a fusion frame
The Post Anachronism: The Temporal Dimension of Facebook Privacy
Bauer, Lujo
The Post Anachronism: The Temporal Dimension of Facebook Privacy Lujo Bauer , Lorrie Faith Cranor the audience and emphasis of Facebook posts change over time. In a 63-participant longitudinal study, par- ticipants gave their audience and emphasis preferences for up to ten of their Facebook posts in the week
PRIMITIVE ALGEBRAS WITH ARBITRARY GELFAND-KIRILLOV DIMENSION
Vishne, Uzi
(1), (1999), 151-158 1. Preliminaries Let A be an affine k-algebra. The Gelfand-Kirillov dimension [6 A is finite dimensional. Otherwise GKdim(A) 1, and by Bergman's gap theorem [3], ei- ther GKdim(A) = 1 (in
A note on Farey sequences and Hausdorff dimension
Wellington da Cruz
1999-02-15
We prove that the Farey sequences can be express into equivalence classes labeled by a fractal parameter which looks like a Hausdorff dimension $h$ defined within the interval 1 < h < 2. The classes $h$ satisfy the same properties of the Farey series and for each value of $h$ there exists an algebraic equation.
Independent Control of Multiple Magnetic Microrobots in Three Dimensions
Sitti, Metin
Independent Control of Multiple Magnetic Microrobots in Three Dimensions Eric Diller, Joshua method to independently control multiple sub-mm microrobots in three dimen- sions (3D) using magnetic of geometrically or magnetically distinct microrobots which assume different magnetization directions in a rotating
$?$-Minkowski star product in any dimension from symplectic realization
Anna Pachol; Patrizia Vitale
2015-10-25
We derive an explicit expression for the star product reproducing the $\\kappa$-Minkowski Lie algebra in any dimension $n$. The result is obtained by suitably reducing the Wick-Voros star product defined on $\\mathbb{C}^{d}_\\theta$ with $n=d+1$. It is thus shown that the new star product can be obtained from a Jordanian twist.
Bounds on Scattering Poles in One Dimension Michael Hitrik
Hitrik, Michael
1 Bounds on Scattering Poles in One Dimension Michael Hitrik Department of Mathematics, University-exponentially decaying potentials on the real line sharp upper bounds on the counting function of the poles in discs are derived and the density of the poles in strips is estimated. In the case of nonnegative potentials
Maitland, Padma
2013-01-01
its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of “Technology and the Box” emerged
Information Technology and Libraries
Hubble, Ann; Murphy, Deborah A.; Perry, Susan Chesley
2011-01-01
Sue Chesley Perry 196 INFORMATION TECHNOLOGY AND LIBRARIES |LITA - Library & Information Technology Association). ”Two of the 190 INFORMATION TECHNOLOGY AND LIBRARIES |
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...
Length Scale Selects Directionality of Droplets on Vibrating Pillar Ratchet
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; Srijanto, Bernadeta R.; Retterer, Scott T.; Collier, Pat; Lavrik, Nickolay V.
2014-09-22
Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore »scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. The ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less
A method for estimating the cooperativity length in polymers
Marco Pieruccini
2014-10-28
The problem of estimating the size of the cooperatively rearranging regions (CRRs) in supercooled polymeric melts from the analysis of the $\\alpha$-process in ordinary relaxation experiments is addressed. The system is treated with the canonical formalism as an ensemble of CRRs, which are described by a stationary distribution relative to the rearrangement energy threshold. The process whereby a CRR changes its configuration is viewed as consisting of two distinct steps: a reduced number of monomers reaches initially an activated state allowing for some local rearrangement; then, the regression of the energy fluctuation may take place through the configurational degrees of freedom, thus allowing for further rearrangements on larger length-scales. The latter are indeed those to which the well known Donth's scheme refers. Two main regimes are envisaged, depending on wether the role played by the configurational degrees of freedom in the regression of the energy fluctuation is significant or not. It is argued that the latter case is related to the occurrence of an arrhenian dependence of the central relaxation time. Data of the literature are rediscussed within this new framework.
Thermal management of long-length HTS cable systems
Demko, Jonathan A; Hassenzahl, William V
2011-01-01
Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.
Decreasing transmembrane segment length greatly decreases perfringolysin O pore size
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin
2015-04-08
Perfringolysin O (PFO) is a transmembrane (TM) ?-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore »assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM ?-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less
Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales
Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.
2011-08-10
The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone’s toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by “plastic” deformation at higher structural levels, which occurs by the process of microcracking.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtomsVehicles and Fuels VehiclesTechnologies
Distributed Energy Technology Characterization (Desiccant Technologies...
Office of Environmental Management (EM)
technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide...
Vehicle Technologies Office: 2014 Electric Drive Technologies...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will reduce...
NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
in Technology Transfer" award from the Federal Laboratory Consortium. Application of this technology reduces the costs and energy associated with more conventional scrubbing...
Fournier, John J.F.
. It is called the specific heat of the body. · The rate at which heat energy crosses a surface is proportional), so the rate at which heat energy crosses the right hand end is AT x (x + dx, t). Similarly, the rateThe Heat Equation (One Space Dimension) In these notes we derive the heat equation for one space
Method for compression of data using single pass LZSS and run-length encoding
Berlin, G.J.
1994-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, G.J.
1997-12-23
A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, Gary J. (Beech Island, SC)
1997-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
Technology Support Services · Bob Davis · Associate Director User Support Services 1 #12;Technology Support Services · NUIT Technology Support Services (TSS) helps Northwestern faculty, staff, and students Technologies · Brian Nielsen · Project Manager Faculty Initiatives 8 #12;Support for Teaching & Learning
NREL: Technology Deployment - Technology Acceleration
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS -Being Replicated AcrossSolarTechnology
Technologies de base Architectures
Grigoras, .Romulus
Technologies de base Architectures Cinquième partie Technologies Web Intergiciels et applications communicantes 1 / 38 #12;Technologies de base Architectures Client-serveur HTTP Présentation Plan 1 Technologies Contenu dynamique 2-tier 3-tier V Technologies Web 2 / 38 #12;Technologies de base Architectures Client
TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer
Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements for such intellectual property with companies for commercial applications of ORNL-developed technologies. Such licenses
APPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology
Sommerville, Ian
penetrate more and more into people's everyday lives and homes, the `design problem' is not so muchAPPROPRIATE HOME TECHNOLOGY: Depending on Dependable Technology Systems Guy Dewsbury, Karen Clarke 2002 #12;Dewsbury et al (2002): Appropriate Home Technology APPROPRIATE HOME TECHNOLOGY: Depending
Destabilization of Neutron Stars by Type I Dimension Bubbles
E. I. Guendelman; J. R. Morris
2005-01-16
An inhomogeneous compactification of a higher dimensional spacetime can result in the formation of type I dimension bubbles, i.e., nontopological solitons which tend to absorb and entrap massive particle modes. We consider possible consequences of a neutron star that harbors such a soliton. The astrophysical outcome depends upon the model parameters for the dimension bubble, with a special sensitivity to the bubble's energy scale. For relatively small energy scales, the bubble tends to rapidly consume the star without forming a black hole. For larger energy scales, the bubble grows to a critical mass, then forms a black hole within the star, which subsequently causes the remaining star to collapse. It is possible that the latter scenario is associated with core collapse explosions and gamma ray bursts.
Particle Creation by Naked Singularities in Higher Dimensions
Umpei Miyamoto; Hiroya Nemoto; Masahiro Shimano
2011-03-28
Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as "a visible border of spacetime" is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recast in quasi-thermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.
Particle creation by naked singularities in higher dimensions
Miyamoto, Umpei; Nemoto, Hiroya; Shimano, Masahiro
2011-04-15
Recently, the possibility was pointed out by one of the present authors and his collaborators that an effective naked singularity referred to as ''a visible border of spacetime'' is generated by high-energy particle collision in the context of large extra dimensions or TeV-scale gravity. In this paper, we investigate the particle creation by a naked singularity in general dimensions, while adopting a model in which a marginally naked singularity forms in the collapse of a homothetic lightlike pressureless fluid. We find that the spectrum deviates from that of Hawking radiation due to scattering near the singularity but can be recast in quasithermal form. The temperature is always higher than that of Hawking radiation of a same-mass black hole, and can be arbitrarily high depending on a parameter in the model. This implies that, in principle, the naked singularity may be distinguished from a black hole in collider experiments.
Team Massachusetts Brings a Fourth Dimension to the Solar Decathlon
Broader source: Energy.gov [DOE]
Team Massachusetts is bringing a unique perspective to the Solar Decathlon this fall. You might say it is a fourth dimension because of the team’s newly constructed 4D Home. But it could also be argued that it is because the Massachusetts College of Art and Design and University of Massachusetts Lowell are collaborating for the team’s first entry into the biannual competition, and they’re both public institutions.
Asymptotically flat anisotropic space-time in 5 dimensions
Manavendra Mahato; Ajay Pratap Singh
2014-09-28
We construct and investigate non conformal anisotropic Bianchi type VII solutions in 5 dimensions. The solutions are asymptotically flat, but they contain a naked singularity at the origin. We also construct solutions of Einstein-Maxwell gravity using the method employed in Majumdar -Papapetrou solutions with various profiles of charged dust. In a fictitious case of negative matter density, we obtain a solution with horizon hiding the singularity.
Zero point energy on extra dimension: Noncommutative Torus
S. Fabi; B. Harms; G. Karatheodoris
2007-04-25
In this paper we calculate the zero point energy density experienced by observers on M^4 due to a massless scalar field defined throughout M^4 x T^2_F, where T^2_F are fuzzy extra dimensions. Using the Green's function approach we calculate the energy density for the commutative torus and the fuzzy torus. We calculate then the energy density for the fuzzy torus using the Hamiltonian approach. Agreement is shown between Green's function and Hamiltonian approaches.
Garcia, Kristina Marie
2012-07-16
) occupational. With regard to these six dimensions of wellness, the purpose of this study was to conduct a naturalistic inquiry among graduating health education majors to evaluate which particular dimension of wellness was most influenced or impacted...
Radicle length and osmotic stress affect the chilling sensitivity of cucumber radicles
Mangrich, M E; Martinez-Font, R T; Saltveit, Mikal E
2006-01-01
seedling vigor, and induced osmotic- and heat-shock pro-2006 Radicle Length and Osmotic Stress Affect the Chillingmm before and after the osmotic treatment, after chilling,
Three-Body Recombination of {sup 6}Li Atoms with Large Negative Scattering Lengths
Braaten, Eric; Kang, Daekyoung; Platter, Lucas; Hammer, H.-W.
2009-08-14
The three-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex-valued. We provide semianalytic expressions for the cases of 2 or 3 equal scattering lengths, and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of {sup 6}Li atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.
Three-body Recombination of Lithium-6 Atoms with Large Negative Scattering Lengths
Eric Braaten; H. -W. Hammer; Daekyoung Kang; Lucas Platter
2009-10-29
The 3-body recombination rate at threshold for distinguishable atoms with large negative pair scattering lengths is calculated in the zero-range approximation. The only parameters in this limit are the 3 scattering lengths and the Efimov parameter, which can be complex valued. We provide semi-analytic expressions for the cases of 2 or 3 equal scattering lengths and we obtain numerical results for the general case of 3 different scattering lengths. Our general result is applied to the three lowest hyperfine states of Lithium-6 atoms. Comparisons with recent experiments provide indications of loss features associated with Efimov trimers near the 3-atom threshold.
Note on the Kaplan{Yorke dimension and linear transport coecients
Roma "La Sapienza", Università di
Note on the Kaplan{Yorke dimension and linear transport coeÆcients Denis J. Evans, #3; E. G. D the Kaplan{Yorke dimension, phase space contraction, transport coeÆcients and the maximal Lyapunov exponents. A new expression for the linear transport coeÆcients in terms of the Kaplan{Yorke dimension is derived
Dominant dimensions, derived equivalences and tilting modules Hongxing Chen and Changchang Xi
Xi, Changchang
Dominant dimensions, derived equivalences and tilting modules Hongxing Chen and Changchang Xi by understanding this conjecture in the context of derived categories, we study dominant dimensions of algebras under derived equivalences induced by tilting modules, specifically, the infinity of dominant dimensions
Ward, P.P.; Dybwad, G.L.
1995-03-01
The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.
Technology Application Centers: Facilitating Technology Transfer
Kuhel, G. J.
1994-01-01
Industrial DSM programs cannot succeed unless customers learn about and implement new technologies in a timely manner. Why? Because this expeditious transfer of new technologies represents the key challenge for the 1990s. This paper explores...
Widget:RemovePDFImageDimensions | Open Energy Information
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:Meadow Lake,Maine:RemovePDFImageDimensions Jump to:
Static spherically symmetric solutions for conformal gravity in three dimensions
Julio Oliva; David Tempo; Ricardo Troncoso
2009-05-10
Static spherically symmetric solutions for conformal gravity in three dimensions are found. Black holes and wormholes are included within this class. Asymptotically the black holes are spacetimes of arbitrary constant curvature, and they are conformally related to the matching of different solutions of constant curvature by means of an improper conformal transformation. The wormholes can be constructed from suitable identifications of a static universe of negative spatial curvature, and it is shown that they correspond to the conformal matching of two black hole solutions with the same mass.
Search for universal extra dimensions in ppbar collisions
Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Aoki, Masato; Askew, Andrew Warren; /Florida State U. /Stockholm U.
2011-12-01
We present a search for Kaluza-Klein (KK) particles predicted by models with universal extra dimensions (UED) using a data set corresponding to an integrated luminosity of 7.3 fb{sup -1}, collected by the D0 detector at a p{bar p} center of mass energy of 1.96 TeV. The decay chain of KK particles can lead to a final state with two muons of the same charge. This signature is used to set a lower limit on the compactification scale of R{sup -1} > 260 GeV in a minimal UED model.
Bimetric Gravity From Adjoint Frame Field In Four Dimensions
Guo, Zhi-Qiang
2015-01-01
We provide a novel model of gravity by using adjoint frame fields in four dimensions. It has a natural interpretation as a gravitational theory of a complex metric field, which describes interactions between two real metrics. The classical solutions establish three appealing features. The spherical symmetric black hole solution has an additional hair, which includes the Schwarzschild solution as a special case. The de Sitter solution is realized without introducing a cosmological constant. The constant flat background breaks the Lorentz invariance spontaneously, although the Lorentz breaking effect can be localized to the second metric while the first metric still respects the Lorentz invariance.
Method of forming cavitated objects of controlled dimension
Anderson, P.R.; Miller, W.J.
1981-02-11
A method is disclosed of controllably varying the dimensions of cavitated objects such as hollow spherical shells wherein a precursor shell is heated to a temperature above the shell softening temperature in an ambient atmosphere wherein the ratio of gases which are permeable through the shell wall at that temperature to gases which are impermeable through the shell wall is substantially greater than the corresponding ratio for gases contained within the precursor shell. As the shell expands, the partial pressures of permeable gases internally and externally of the shell approach and achieve equilibrium, so that the final shell size depends solely upon the difference in impermeable gas partial pressures and shell surface tension.
Near field optical probe for critical dimension measurements
Stallard, Brian R. (Albuquerque, NM); Kaushik, Sumanth (Cambridge, MA)
1999-01-01
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.
Near field optical probe for critical dimension measurements
Stallard, B.R.; Kaushik, S.
1999-05-18
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.
Can the Cabibbo mixing originate from noncommutative extra dimensions?
A. M. Gavrilik
2000-12-20
Treating hadronic flavor symmetries with quantum algebras U_q(su_n) leads to interesting consequences such as: new mass sum rules for hadrons 1^-, (1/2)^+, (3/2)^+ of improved accuracy; possibility to label different flavors topologically - by torus winding number; properly fixed deformation parameter q in case of baryons is linked in a simplest way to the Cabibbo angle \\theta_C, that suggests for \\theta_C the exact value {\\pi}/{14}. In this connection, we discuss the possibility that this angle and the Cabibbo mixing as a whole take its origin in noncommutativity of some additional, with regard to 3+1, space-time dimensions.
Detecting Extra Dimension by Helium-like Ions
Yu-Xiao Liu; Xin-Hui Zhang; Yi-Shi Duan
2007-11-26
Considering that gravitational force might deviate from Newton's inverse-square law and become much stronger in small scale, we present a method to detect the possible existence of extra dimensions in the ADD model. By making use of an effective variational wave function, we obtain the nonrelativistic ground energy of a helium atom and its isoelectronic sequence. Based on these results, we calculate gravity correction of the ADD model. Our calculation may provide a rough estimation about the magnitude of the corresponding frequencies which could be measured in later experiments.
The Casimir Force in Randall Sundrum Models with q+1 dimensions
Mariana Frank; Nasser Saad; Ismail Turan
2008-07-02
We evaluate the Casimir force between two parallel plates in Randall Sundrum (RS) scenarios extended by q compact dimensions. After giving exact expressions for one extra compact dimension (RS 6D model), we generalize to an arbitrary number of compact dimensions. We present the complete calculation for both two brane scenario (RSI model) and one brane scenario (RSII models) using the method of summing over the modes. We investigate the effects of extra dimensions on the magnitude and sign of the force, and comment on limits for the size and number of the extra dimensions.
Maitland, Padma
2013-01-01
study of architecture through references to “Technology andhis new “Architecture for Man” that combines technology withArchitecture and Minarc Architects, two contemporary designers that are pushing prefab technologies
Hall, Bronwyn H.; Khan, Beethika
2003-01-01
Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.affect whether or not new technologies are successful, the
Technology & Engineering Division
Technology & Engineering Division High-Temperature Superconducting Magnets for Fusion: New & Engineering Division Contents · Background on Superconductivity · Fusion Magnets Present and Future Vision/15/2014 2Joseph V. Minervini #12;Technology & Engineering Division Superconductivity #12;Technology
Hall, Bronwyn H.; Khan, Beethika
2003-01-01
Firm Diffusion of New Technology: A Real Options Model. ”and the Adoption of New technology: Evidence from the U.S.the Diffusion of New Technology in the Banking Industry. ”
Estimating the correlation length of inhomogeneities in a polycrystalline Igor Simonovski*
Cizelj, Leon
such as the random orientation, shape and size of the grains. A crystal plasticity material model was applied rules. Keywords: Correlation length; Polycrystalline material; Crystal plasticity; 2 #12;1 INTRODUCTION size. The correlation length can therefore be considered as an indicator of first plastic deformations
SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS
Boyer, Edmond
L-263 SPIN-DEPENDENT SCATTERING LENGTHS OF SLOW NEUTRONS WITH NUCLEI BY PSEUDOMAGNETIC MEASUREMENTS vu par les noyaux. Abstract. - The spin-dependent scattering length of slow neutrons by the nuclei 23 can be of practical importance in many thermal neutron scattering experiments. A new method, called
VALVE: Variable Length Value Encoder for Off-Chip Data Buses. Dinesh C. Suresh, Banit Agrawal*
Najjar, Walid A.
VALVE: Variable Length Value Encoder for Off-Chip Data Buses. Dinesh C. Suresh, Banit Agrawal (VALVE) technique to reduce the power consumption in the off-chip data buses. While past research has proposed scheme is capable of detecting and encoding variable length bit patterns in the data values. VALVE
Estimating Total Length of Headless White Hake, Urophycis tenuis, Landed in Maine
Estimating Total Length of Headless White Hake, Urophycis tenuis, Landed in Maine EDWIN P. CREASER, little is known about the length composition of this species landed from Maine fishing vessels sampling personnel of the Maine Department of Marine Resources to develop an easy and rapid method
Length: 4-15 mm Larvae (maggots): Creamy-white to green or
Isaacs, Rufus
Hover fly Syrphidae Length: 4-15 mm Larvae (maggots): Creamy-white to green or brown. Worm flies" or "flower flies"). Eggs: Small (1 mm in length). Cylindrical, white and laid singly on leaves or shoots near aphid colonies. 15 mm4 mm #12;Pupae: Green, tan or brown. Typically pear- shaped with a pair
TESLA-FEL 2004-01 Silica Aerogel Radiators for Bunch Length
TESLA-FEL 2004-01 Silica Aerogel Radiators for Bunch Length Measurements J. BÂ¨ahr a , V. Djordjadze aerogel are used to measure the electron bunch length at the photo injector test facility at DESY Zeuthen by the usage of aerogel is calculated analytically and Monte Carlo simulations are performed. It is shown
Variable length pattern coding for power reduction in off-chip data buses
Venkitasubramanian Iyer, Jayakrishnan
2009-05-15
indicating the index of the match is sent. If a variable length pattern match occurs then the code and unmatched portion of data is sent. We implemented our scheme, Variable Length Pattern Coding (VLPC) for various integer and floating point benchmarks...
Surface Free Energies, Interfacial Tensions and Correlation Lengths of the ABF Models
Pearce, Paul A.
Surface Free Energies, Interfacial Tensions and Correlation Lengths of the ABF Models David L. O. Abstract The surface free energies, interfacial tensions and correlation lengths of the Andrews been established there are various quan- tities of physical interest, such as the surface free energies
Gardel, Margaret
Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units motors are clustered into thick filaments. Although the role of mechanochemistry is well appreciated, the extent to which thick filament length regulates actomyosin contractility is unknown. Here, we study
Classification of Self-Dual Codes of Length 36 Masaaki Harada
Harada, Masaaki
by eight. Two codes are equivalent if one can be obtained from the other by permuting the coordinates. An automorphism of C is a permutation of the coordinates of C which preserves C. The set consisting of all-dual codes of lengths up to 30 and doubly even self-dual codes of length 32 is known (see [9, Table I
Scanning microscopy using a short-focal-length Fresnel zone plate
Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial
A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality
A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality CHANG IK, Washington 98115, USA Abstract.--A biomass-based length-cohort analysis (LCA) was examined for its performance in estimating total stock biomass and fishing mortality (F) for a population in equilibrium. We
De Flaviis, Franco
Tilt Beam Characteristic by Changing Length of Finite-Sized Square Dielectric Substrate of One Arm by changing the length of finite-sized square dielectric substrate of one arm rectangular spiral antenna has). Horizontal spiral arm length (HL) is varied from HL=0.8o to HL=5.2o to choose the length that yields
Stewart, G.; Lackner, M.; Haid, L.; Matha, D.; Jonkman, J.; Robertson, A.
2013-07-01
With the push towards siting wind turbines farther offshore due to higher wind quality and less visibility, floating offshore wind turbines, which can be located in deep water, are becoming an economically attractive option. The International Electrotechnical Commission's (IEC) 61400-3 design standard covers fixed-bottom offshore wind turbines, but there are a number of new research questions that need to be answered to modify these standards so that they are applicable to floating wind turbines. One issue is the appropriate simulation length needed for floating turbines. This paper will discuss the results from a study assessing the impact of simulation length on the ultimate and fatigue loads of the structure, and will address uncertainties associated with changing the simulation length for the analyzed floating platform. Recommendations of required simulation length based on load uncertainty will be made and compared to current simulation length requirements.
Technology Readiness Assessment Report
Office of Environmental Management (EM)
of management decisions by identifying key technologies that have been demonstrated to work or by highlighting immature or unproven technologies that might result in increased...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
about promising new and underutilized energy-saving technologies available for Federal and commercial building sector deployment. To identify promising technologies,...
Building Technologies Office Overview
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use...
Hydropower Program Technology Overview
Not Available
2001-10-01
New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.
Vehicle Technologies Office: News
Broader source: Energy.gov [DOE]
EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...
Building Technologies Office Overview
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Technologies Office Roland Risser Director, Building Technologies Office National Energy Consumption 40% 60% Reducing consumption or improving performance calls for cutting-edge...
Essays on University Technology Management
Drivas, Kyriakos
2011-01-01
of university technology management and their implicationson University Technology Management by Kyriakos Drivas Aon University Technology Management by Kyriakos Drivas
Morgantown Energy Technology Center, technology summary
Not Available
1994-06-01
This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.
2009 Wind Technologies Market Report
Wiser, Ryan
2010-01-01
land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.
Technology Licensing | ornl.gov
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
License ORNL Technologies Licensing Guidelines NDA(s) and MTA(s) Sample Agreements Technology Innovation Program Technology Assistance Program Licensing Staff Technology Search...
Johnson Jr.,, Ray
Training & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Faculty Center Verification & Technology Solutions Queens College ~ Office of Information Technology ~ Training & Technology Solutions 718
Los Alamos Quantum Dots for Solar, Display Technology
Klimov, Victor
2015-04-13
Quantum dots are ultra-small bits of semiconductor matter that can be synthesized with nearly atomic precision via modern methods of colloidal chemistry. Their emission color can be tuned by simply varying their dimensions. Color tunability is combined with high emission efficiencies approaching 100 percent. These properties have recently become the basis of a new technology – quantum dot displays – employed, for example, in the newest generation of e-readers and video monitors.
SU-C-12A-06: A Universal Definition for CT Irradiated Length
McKenney, S; Bakalyar, D [Henry Ford Health System, Detroit, MI (United States); Boone, J [UC Davis Medical Center, Sacramento, CA (United States)
2014-06-01
Purpose: The length of scan shown or calculated from the console is the distance between the center of the starting and ending images. The irradiated length for such a set of images can vary substantially from this distance, depending on the acquisition mode. We propose that the rise to equilibrium function h(?) be used to uniquely define an irradiated length independent of the details of the scanning process. This method also seamlessly accommodates recent developments in active collimation. Method: h(?) is determined along the central axis of a long cylindrical phantom, ideally from integration of the dose spread function. For practical reasons h(?) may be approximated from helical scans with real-time dose rate measurements or from a series of central dose measurements using finite irradiated length exposures. For a particular scan then, the irradiated length ? is calculated from a central dose measurement of h and then applying the inverse function h(?){sup -1}. Results: h(?) was determined from measurements made in a prototype ICRU/TG200 phantom, 60 cm long and 30 cm in diameter. The resultant ? generally agreed with indicated scan length plus one beam width for axial and indicated scan length for helical scans if overscanning was accounted for. For most scanners, DLP/CTDIvol is a good measure of irradiated length allowing for another index of comparison. Conclusion: Central dose measurements with a small chamber along with the rise to equilibrium function h(?) provide us with a robust and consistent means of determining scan length independent of the means of irradiation over a variety of scanners and scanning conditions. The method is limited to ? significantly less than the equilibrium.
TOKYO INSTITUTE OF TECHNOLOGY 2005 TOKYO INSTITUTE OF TECHNOLOGY 152-8550 2 12 1 E3-3 2005 8 TEL. 03 5734 2975 URL. http://www.titech.ac.jp/ PROFILE #12;TOKYO INSTITUTE OF TECHNOLOGY 0201 CONTENTS 03 06 06 08 09 10 15 17 25 31 33 37 41 0201 #12;TOKYO INSTITUTE OF TECHNOLOGY TOKYO INSTITUTE
Predictive Maintenance Technologies
Broader source: Energy.gov [DOE]
Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.
Hydrogen delivery technology roadmap
None, None
2005-11-15
Document describing plan for research into and development of hydrogen delivery technology for transportation applications.
Northwest Regional Technology Center
management and public safety professionals to define and prioritize technology needs. Coordinate and leadNorthwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate
SPACE TECHNOLOGY Actual Estimate
technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management..." Space Technology investmentsSPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY
Murton, Mark; Bouchier, Francis A.; vanDongen, Dale T.; Mack, Thomas Kimball; Cutler, Robert Paul; Ross, Michael P.
2013-08-01
Although technological advances provide new capabilities to increase the robustness of security systems, they also potentially introduce new vulnerabilities. New capability sometimes requires new performance requirements. This paper outlines an approach to establishing a key performance requirement for an emerging intrusion detection sensor: the sensored net. Throughout the security industry, the commonly adopted standard for maximum opening size through barriers is a requirement based on square inches-typically 96 square inches. Unlike standard rigid opening, the dimensions of a flexible aperture are not fixed, but variable and conformable. It is demonstrably simple for a human intruder to move through a 96-square-inch opening that is conformable to the human body. The longstanding 96-square-inch requirement itself, though firmly embedded in policy and best practice, lacks a documented empirical basis. This analysis concluded that the traditional 96-square-inch standard for openings is insufficient for flexible openings that are conformable to the human body. Instead, a circumference standard is recommended for these newer types of sensored barriers. The recommended maximum circumference for a flexible opening should be no more than 26 inches, as measured on the inside of the netting material.
The Harmonic Oscillator in the Classical Limit of a Minimal-Length Scenario
Quintela, T S; Nogueira, J A
2015-01-01
In this work we explicitly solve the problem of the harmonic oscillator in the classical limit of a minimal-length scenario. We show that (i) the motion equation of the oscillator is not linear anymore because the presence of a minimal length introduces an anarmonic term and (ii) its motion is described by a Jacobi sine elliptic function. Therefore the motion is still periodic with the new period depending on the minimal length. This result is very important since it can be used to probe the Planck-scale physics. We show applications of our results in spectroscopy and gravity.
A Bunch Length Monitor for JLab 12 GeV Upgrade
Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.
2013-12-01
A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.
Resonant dimer relaxation in cold atoms with a large scattering length
Braaten, Eric; Hammer, H.-W.
2007-05-15
Efimov physics refers to universal phenomena associated with a discrete scaling symmetry in the three-body problem with a large scattering length. The first experimental evidence for Efimov physics was the recent observation of a resonant peak in the three-body recombination rate for {sup 133}Cs atoms with large negative scattering length. There can also be resonant peaks in the atom-dimer relaxation rate for large positive scattering length. We calculate the atom-dimer relaxation rate as a function of temperature and show how measurements of the relaxation rate can be used to determine accurately the parameters that govern Efimov physics.
Resonant Dimer Relaxation in Cold Atoms with a Large Scattering Length
Eric Braaten; H. -W. Hammer
2009-03-13
Efimov physics refers to universal phenomena associated with a discrete scaling symmetry in the 3-body problem with a large scattering length. The first experimental evidence for Efimov physics was the recent observation of a resonant peak in the 3-body recombination rate for 133Cs atoms with large negative scattering length. There can also be resonant peaks in the atom-dimer relaxation rate for large positive scattering length. We calculate the atom-dimer relaxation rate as a function of temperature and show how measurements of the relaxation rate can be used to determine accurately the parameters that govern Efimov physics.
The effect of stride length alterations on running efficiency in beginning runners
James, Jerry Lynn
1980-01-01
summary table for caloric cost 2 Descriptive statistics for caloric cost 3 Duncan's New Nultiple Range Test for Stride Length 18 20 LIST OF FIGURES F1gure Page l The eff1cient range of a runner 2 The relat1ve roles of Stride Rate and Stride... Length in velocity changes 3 A two-by-three (sex-by-stride length) repeated measures design 4 A bar chart of the caloric cost means of SL-A, SL-B, and SL-C w1thout distinction between sexes l7 22 5 A bar chart of the caloric cost means of each...
Massive "spin-2" theories in arbitrary $D \\ge 3$ dimensions
D. Dalmazi; A. L. R. dos Santos; E. L. Mendonça
2014-08-28
Here we show that in arbitrary dimensions $D\\ge 3$ there are two families of second order Lagrangians describing massive "spin-2" particles via a nonsymmetric rank-2 tensor. They differ from the usual Fierz-Pauli theory in general. At zero mass one of the families is Weyl invariant. Such massless theory has no particle content in $D=3$ and gives rise, via master action, to a dual higher order (in derivatives) description of massive spin-2 particles in $D=3$ where both the second and the fourth order terms are Weyl invariant, contrary to the linearized New Massive Gravity. However, only the fourth order term is invariant under arbitrary antisymmetric shifts. Consequently, the antisymmetric part of the tensor $e_{[\\mu\
Diesel lube oils; Fourth dimension of diesel particulate control
Springer, K.J. (Southwest Research Institute, San Antonio, TX (US))
1989-07-01
Particulate emission control, for the HD diesel engine, has previously been considered a three-dimensional problem involving: combustion of the fuel by the engine, fuel modification, and exhaust aftertreatment. The lube oil contribution may be considered a fourth dimension of the problem. Historically, the heavy-duty engine manufacturer has met emission standards for smoke (1968 to present), CO, HC, and NOx (1974 to present) and particulates (1988 to present) through changes in engine design. This paper used the allocation method to estimate the reduction in lube oil consumption needed to meet 1991 and 1994 U.S. particulate emission standards. This analysis places the contribution of lube oil as a source of exhaust particulates into prospective with the contributions from fuel sulfur and fuel combustion. An emissions control strategy to meet future regulations is offered in which reductions from fuel modification, combustion improvement, reduced lube oil consumption, and exhaust particulate trap-catalysts are all involved.
Dirac equation in low dimensions: The factorization method
J. A. Sanchez-Monroy; C. J. Quimbay
2014-09-30
We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equation in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to a two Klein-Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein's paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials.
Fermion Generations from "Apple-Shaped" Extra Dimensions
Merab Gogberashvili; Pavle Midodashvili; Douglas Singleton
2007-08-13
We examine the behavior of fermions in the presence of an internal compact 2-manifold which in one of the spherical angles exhibits a conical character with an obtuse angle. The extra manifold can be pictured as an apple-like surface i.e. a sphere with an extra "wedge" insert. Such a surface has conical singularities at north and south poles. It is shown that for this setup one can obtain, in four dimensions, three trapped massless fermion modes which differ from each other by having different values of angular momentum with respect to the internal 2-manifold. The extra angular momentum acts as the family label and these three massless modes are interpreted as the three generations of fundamental fermions.
Brane solutions of a spherical sigma model in six dimensions
Hyun Min Lee; Antonios Papazoglou
2004-11-16
We explore solutions of six dimensional gravity coupled to a non-linear sigma model, in the presence of co-dimension two branes. We investigate the compactifications induced by a spherical scalar manifold and analyze the conditions under which they are of finite volume and singularity free. We discuss the issue of single-valuedness of the scalar fields and provide some special embedding of the scalar manifold to the internal space which solves this problem. These brane solutions furnish some self-tuning features, however they do not provide a satisfactory explanation of the vanishing of the effective four dimensional cosmological constant. We discuss the properties of this model in relation with the self-tuning example based on a hyperbolic sigma model.
Extra dimensions and neutrinoless double beta decay experiments
Gozdz, Marek; Kaminski, Wieslaw A.; Faessler, Amand [Theoretical Physics Department, Maria Curie-Sklodowska University, Lublin (Poland); Institute fuer Theoretische Physik, Universitaet Tuebingen, Auf der Morgenstelle 14, D-72076 Tuebingen (Germany)
2005-05-01
The neutrinoless double beta decay is one of the few phenomena, belonging to the nonstandard physics, which is extensively being sought for in experiments. In the present paper the link between the half-life of the neutrinoless double beta decay and theories with large extra dimensions is explored. The use of the sensitivities of currently planned 0{nu}2{beta} experiments: DAMA, CANDLES, COBRA, DCBA, CAMEO, GENIUS, GEM, MAJORANA, MOON, CUORE, EXO, and XMASS, gives the possibility for a nondirect 'experimental' verification of various extra dimensional scenarios. We discuss also the results of the Heidelberg-Moscow Collaboration. The calculations are based on the Majorana neutrino mass generation mechanism in the Arkani-Hamed-Dimopoulos-Dvali model.
Higher Derivative Corrections to Charged Fluids in 2n Dimensions
Banerjee, Nabamita; Jain, Akash
2015-01-01
We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.
Higher Derivative Corrections to Charged Fluids in 2n Dimensions
Nabamita Banerjee; Suvankar Dutta; Akash Jain
2015-02-25
We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.
Sparse matrix transform for fast projection to reduced dimension
Theiler, James P; Cao, Guangzhi; Bouman, Charles A
2010-01-01
We investigate three algorithms that use the sparse matrix transform (SMT) to produce variance-maximizing linear projections to a lower-dimensional space. The SMT expresses the projection as a sequence of Givens rotations and this enables computationally efficient implementation of the projection operator. The baseline algorithm uses the SMT to directly approximate the optimal solution that is given by principal components analysis (PCA). A variant of the baseline begins with a standard SMT solution, but prunes the sequence of Givens rotations to only include those that contribute to the variance maximization. Finally, a simpler and faster third algorithm is introduced; this also estimates the projection operator with a sequence of Givens rotations, but in this case, the rotations are chosen to optimize a criterion that more directly expresses the dimension reduction criterion.
Extra dimensions and Seesaw Neutrinos at the International Linear Collider
Tomoyuki Saito; Masaki Asano; Keisuke Fujii; Naoyuki Haba; Shigeki Matsumoto; Takehiro Nabeshima; Yosuke Takubo; Hitoshi Yamamoto; Koichi Yoshioka
2010-11-27
We study the capability of the international linear collider (ILC) to probe extra dimensions via the seesaw mechanism. In the scenario we study, heavy Kaluza-Klein neutrinos generate tiny neutrino masses and, at the same time, have sizable couplings to the standard-model particles. Consequently, a Kaluza-Klein tower of heavy neutrinos (N) can be produced and studied at the ILC through the process: e+e- -> vN followed by N -> Wl decay. We show that the single lepton plus two-jets final states with large missing energy from this signal process will provide a good opportunity to measure the masses and cross sections of Kaluza-Klein neutrinos up to the third level. Furthermore, the neutrino oscillation parameters can be extracted from the flavor dependence of the lowest-mode signals, which give us information about the origin of low-energy neutrino masses.
Anomaly-Free Supersymmetric Models in Six Dimensions
John H. Schwarz
1995-12-11
The conditions for the cancellation of all gauge, gravitational, and mixed anomalies of $N=1$ supersymmetric models in six dimensions are reviewed and illustrated by a number of examples. Of particular interest are models that cannot be realized perturbatively in string theory. An example of this type, which we verify satisfies the anomaly cancellation conditions, is the K3 compactification of the $SO(32)$ theory with small instantons recently proposed by Witten. When the instantons coincide it has gauge group $SO(32) \\times Sp(24)$. Two new classes of models, for which non-perturbative string constructions are not yet known, are also presented. They have gauge groups $SO(2n+8)\\times Sp(n)$ and $SU(n)\\times SU(n)$, where $n$ is an arbitrary positive integer.
Tests of mode-coupling theory in two dimensions
Fabian Weysser; David Hajnal
2011-04-26
We analyze the glassy dynamics of a binary mixtures of hard disks in two dimensions. Predictions of the Mode-Coupling theory(MCT) are tested with extensive Brownian dynamics simulations. Measuring the collective particle density correlation functions in the vicinity of the glass transition we verify four predicted mixing effects. For instance, for large size disparities, adding a small amount of small particles at fixed packing fraction leads to a speed up in the long time dynamics, while at small size disparity it leads to a slowing down. Qualitative features of the non-ergodicity parameters and the $\\beta$-relaxation which both depend in a non-trivial way on the mixing ratio are found in the simulated correlators. Studying one system in detail we are able to determine its ideal MCT glass transition point as $\\phi^c = 0.7948$ and test MCT predictions quantitatively.
Renyi information from entropic effects in one higher dimension
Maghrebi, Mohammad F
2015-01-01
Computing entanglement entropy and its cousins is often challenging even in the simplest continuum and lattice models, partly because such entropies depend nontrivially on all geometric characteristics of the entangling region. Quantum information measures between two or more regions are even more complicated, but contain more, and universal, information. In this paper, we focus on Renyi entropy and information of the order n=2. For a free field theory, we show that these quantities are mapped to the change of the thermodynamic free energy by introducing boundaries subject to Dirichlet and Neumann boundary conditions in one higher dimension. This mapping allows us to exploit the powerful tools available in the context of thermal Casimir effect, specifically a multipole expansion suited for computing the Renyi information between arbitrarily-shaped regions. We provide an alternative representation as a sum over closed-loop polymers, which establishes a connection to purely entropic effects, and proves useful i...
Generalized Duality and Singular Strings in Higher Dimensions
I. Bars; K. Sfetsos
1991-10-24
Deformations of gauged WZW actions are constructed for any pair $(G,H)$ by taking different embeddings of the gauge group $H\\subset G$ as it acts on the left and right of the group element $g$. This leads to models that are dual to each other, generalizing the axial/vector duality of the two dimensional black hole manifold. The classical equations are completely solved for any pair $(G,H)$ and in particular for the anti de Sitter string based on $SO(d- 1,2)/SO(d-1,1)$ for which the normal modes are determined. Duality is demonstrated for models that have the same set of normal modes. Concentrating on $SO(2,2)/SO(2,1)$, the metric and dilaton fields of the $d=3$ string as well as some of the dual generalizations are obtained. They have curvature singularities and represent new singular solutions of Einstein's general relativity in three dimensions.
Vehicle Technologies Office: 2008 Advanced Vehicle Technology...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Well-to-Wheels Analysis of Energy Use and...
Vehicle Technologies Office: 2009 Advanced Vehicle Technology...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report 2009avtaehvso.pdf More Documents &...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
example is the use of betatron x-ray radiation for research in the growing field of high energy density (HED) science on extremely short time and length scales (energy density is...
An evaluation of inductance loop detector lead length and optimal speed trap distance
Hamm, Robert Alan
1994-01-01
component of freeway management systems is the inductance loop detector. This research effort evaluated the use of inductance loop detectors in a freeway management situation to determine maximum permissible lead lengths and an optimal speed trap distance...
2013-01-01
stained in the cells as brightly as the full PTN, but with aFull length PTN or any mutant that contains the black domain and either grey domain (represented by black lines) can transform cells
The dynamics of genomic-length DNA molecules in 100-nm channels
Wang, Yan Mei
Prinz*, Han Cao , Steven Chou , Walter W. Reisner , Robert Riehn , Yan Mei Wang , Edward C. Cox§ , James w, and contour length L, such that (pw)1/5 L3/5 . Compare this form with the result expected
McGehee, Michael
of their prom- ise as low-cost solutions for the world's energy needs.13 Efficiencies under simulated solar thicknesses, a model can be fitted to the data and an exciton diffusion length extracted. Important consid
Length regulation of microtubules by molecular motors: Exact solution and density profiles
Arita, Chikashi; Santen, Ludger
2015-01-01
In this work we study a microtubule (MT) model , whose length is regulated by the action of processive kinesin motors. We treat the case of infinite processivity, i.e. particle exchange in the bulk is neglected. The exact results can be obtained for model parameters which correspond to a finite length of the MT. In contrast to the model with particle exchange we find that the lengths of the MT are exponentially distributed in this parameter regime. The remaining parameter space of the model, which corresponds to diverging MT lengths, is analyzed by means of extensive Monte-Carlo simulations and a macroscopic approach. For divergent MTs we find a complex structure of the phase diagram in terms of shapes of the density profile.
Telomere Length in Circulating Leukocytes Is Associated with Lung Function and Disease
Nyholt, Dale R.
Telomere Length in Circulating Leukocytes Is Associated with Lung Function and Disease Eva Albrecht. Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Germany
Zabaras, Nicholas J.
Multi-length scale design of deformation processes for control of orientation (texture) dependent properties Shankar Ganapathysubramanian and Nicholas Zabaras Materials Process Design and Control Laboratory are quite sensitive to the anisotropy of these crystalline materials. Process optimization is especially
Qurz 2 SOLUTIONS, SECTION ALL (10 pts.) Find the length of the ...
Jony
Qurz 2 SOLUTIONS, SECTION ALL. (10 pts.) Find the length of the curve. Solution. Using the formula for the arclength, of a curve onthe interval [0, 2],. 0. (5 pts.) ...
Fresnel zone effects in the scattering of sound by cylinders of various lengths
Stanton, Tim
Fresnel zone effects in the scattering of sound by cylinders of various lengths DanielT. Di-source/point-receivercombination.Numerically evaluatingthisexpressionshowedthescatteringcharacteristicstobedominatedbyFresnel zoneeffects·scillationsin thebackscatterversuslengthcurvecausedbyconstructiveand
Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks
Lee, Jeonyoon
Here, we quantify the electron transport properties of aligned carbon nanotube (CNT) networks as a function of the CNT length, where the electrical conductivities may be tuned by up to 10× with anisotropies exceeding 40%. ...
expansion. Given bone's inherent mechanosensitivity, low intensity vibration (LIV), a mechanical signal-frequency mechanical signals induced via low intensity vibration (LIV) are anabolic to bone, perhaps servingOriginal Full Length Article Low magnitude mechanical signals mitigate osteopenia without
Can one extract the pi-neutron scattering length from pi-deuteron scattering?
A. Nogga; C. Hanhart
2005-11-02
We give a prove of evidence that the original power counting by Weinberg can be applied to estimate the contributions of the operators contributing to the pi-deuteron scattering length. As a consequence, pi-deuteron observables can be used to extract neutron amplitudes--in case of pi-deuteron scattering this means that the pi-neutron scattering length can be extracted with high accuracy. This result is at variance with recent claims. We discuss the origin of this difference.
Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer
Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory; /Fermilab
2008-05-01
We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.
Viscosity of plant oils as a function of temperature, fatty acid chain length, and unsaturation
Neo, Tong Heng
1988-01-01
VISCOS1TY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATIY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1988 Major Subject: Agricultural Engineering VISCOSITY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATTY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Approved as to style and content by...
Effect of tube length on laboratory displacement of oil by CO?
Turki, Wafik Hussein
1973-01-01
EFFECT OF TUBE LENGTH ON LABORATORY DISPLACEMENT OF OIL BY CO 2 A Thesis by WAFIK H. " TURKI Submitted to the Graduate College of Texas AhM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December... 1973 Major Subject: Petroleum Engineering EFFECT OF TUBE LENGTH ON LABORATORY DISPLACEMENT OF OIL BY CO A Thesis by WAFIK H. TURKI Approved as to style and content by: (Chair n of Committee) (Head of Department) (Member) (Member ) Z. ~-g...
Pricing Carbon for Electricity Generation: National and International Dimensions
Grubb, Michael; Newbery, David
In this paper, which forms a chapter in the forthcoming Book Ã¢Â?Â?Delivering a Low Carbon Electricity System: Technologies, Economics and PolicyÃ¢Â?Â, Grubb and Newbery examine how carbon for electricity generation should be priced. They begin...
Assessing Software Engineering Technology Transfer
Zelkowitz, Marvin V.
, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest
SHARED TECHNOLOGY TRANSFER PROGRAM
GRIFFIN, JOHN M. HAUT, RICHARD C.
2008-03-07
The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.
Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)
2011-02-15
Large discrepancies among the laminar flame speeds and Markstein lengths of methane/air mixtures measured by different researchers using the same constant-pressure spherical flame method are observed. As an effort to reduce these discrepancies, one linear model (LM, the stretched flame speed changes linearly with the stretch rate) and two non-linear models (NM I and NM II, the stretched flame speed changes non-linearly with the stretch rate) for extracting the laminar flame speed and Markstein length from propagating spherical flames are investigated. The accuracy and performance of the LM, NM I, and NM II are found to strongly depend on the Lewis number. It is demonstrated that NM I is the most accurate for mixtures with large Lewis number (positive Markstein length) while NM II is the most accurate for mixtures with small Lewis number (negative Markstein length). Therefore, in order to get accurate laminar flame speed and Markstein length from spherical flame experiments, different non-linear models should be used for different mixtures. The validity of the theoretical results is further demonstrated by numerical and experimental studies. The results of this study can be used directly in spherical flame experiments measuring the laminar flame speed and Markstein length. (author)
Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data
A. Deloff
2001-04-23
The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.
Nayaz Khalid Ahmed; Martin Hecht
2009-11-09
In microfluidics, varying wetting properties, expressed in terms of the local slip length, can be used to influence the flow of a liquid through a device. We study flow past surfaces on which the slip length is modulated in stripes. We find that the effective slip length for such a flow can be expressed as a function of the individual slip lengths on the stripes. The angle dependence of the effective slip is in excellent agreement with a recent theory describing the slip length as a tensorial quantity. This tensorial nature allows to induce a transverse flow, which can be used in micro mixers to drive a vortex. In our simulations of a flow through a square channel with patterned surfaces we see a homogeneous rotation about the direction of the flow. We investigate the influence of patterns of cosine shaped varying local slip on the flow field depending on the orientation of the pattern and find the largest effective slip length for periods of stripes parallel to the flow direction.
A Model for Fiber Length Attrition in Injection-Molded Long-Fiber Composites
TuckerIII, Charles L. [University of Illinois, Urbana-Champaign; Phelps, Jay H [University of Illinois, Urbana-Champaign; El-Rahman, Ahmed Abd [University of Illinois, Urbana-Champaign; Kunc, Vlastimil [ORNL
2013-01-01
Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10 to 13 mm long. When an LFT is injection molded, flow during mold filling orients the fibers and degrades the fiber length. Fiber orientation models for injection molding are well developed, and special orientation models for LFTs have been developed. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution (FLD) at each spatial node. Key equations are a conservation equation for total fiber length, and a breakage rate equation. The breakage rate is based on buckling of fibers due to hydrodynamic forces, when the fibers are in unfavorable orientations. The FLD model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glassfiber/ PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress-strain behavior of molded LFT materials. Author to whom correspondence should be addressed; electronic mail: ctucker@illinois.edu 1
Extra Dimensions of Space: Are They Going to be Found Soon?
Rubakov, Valery [Institute for Nuclear Research, Moscow, Russia
2010-09-01
Our space may well have more than 3 dimensions. Indeed, theories that pretend to be most fundamental choose to live in higher dimensions: a natural area for superstring/Mtheory is 9- or 10-dimensional space. Extra dimensions have been hidden so far, but they would open up above a certain energy threshold. A fascinating possibility is that this happens within reach of particle colliders. This lecture will address the motivation for such a viewpoint and implications of accessible extra dimensions for our understanding of nature.
Johnson Jr.,, Ray
Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training
Chin, Y.H.
2011-01-01
for a quick estimate of the FEL parameters which minimizefor the Optimization of the FEL Gain Length Including thet h e Optimization o f the FEL Gain Length Including t h e
UNIVERSITY of STRATHCLYDE TECHNOLOGY &
Mottram, Nigel
electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within
Massachusetts Institute of Technology
ChemE Massachusetts Institute of Technology Department of Chemical Engineering Undergraduate technology, chemical engineers play a role in almost every industry and they collaborate with all types, creating and improving pharmaceuticals, fuels, polymers, plastics, cosmetics, cereals and more." Klavs
SIMULATING EVOLUTION OF TECHNOLOGY
SIMULATING EVOLUTION OF TECHNOLOGY: AN AID TO ENERGY POLICY ANALYSIS A CASE STUDY OF STRATEGIES Approval Name: John Nyboer Degree: Doctor of Philosophy Title of Thesis: Simulating Evolution of Technology
Technology Readiness Assessment Guide
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
2011-09-15
The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Supersedes DOE G 413.3-4.
Technology Deployment Case Studies
Broader source: Energy.gov [DOE]
Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.
Utilities Inspection Technologies
Messock, R. K.
1993-01-01
Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been...
Technology Business Incubation Programme
1 Technology Business Incubation Programme Ms. Kimmie Wong Assistant Manager Incubation Admission and organization. Industry Technology Biotechnology Clusters IT & Telecomm. Pharmaceutical Precision Engg. Chinese Lab Premises Technical Support Facilities Technical and Management Assistance Management and Technical
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
17all en CNS, UT chemical sensing technology wins R&D 100 Award http:www.y12.doe.govnewspress-releasescns-ut-chemical-sensing-technology-wins-rd-100-award
Higgs phenomenology in warped extra dimensions with a fourth generation
Frank, Mariana; Korutlu, Beste; Toharia, Manuel [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal Quebec, H4B 1R6 (Canada)
2011-10-01
We study a warped extra-dimension scenario where the standard model fields lie in the bulk, with the addition of a fourth family of fermions. We concentrate on the flavor structure of the Higgs couplings with fermions in the flavor anarchy ansatz. Even without a fourth family, these couplings will be generically misaligned with respect to the standard model fermion mass matrices. The presence of the fourth family typically enhances the misalignment effects and we show that one should expect them to be highly nonsymmetrical in the (34) intergenerational mixing. The radiative corrections from the new fermions and their flavor-violating couplings to the Higgs affect negligibly known experimental precision measurements such as the oblique parameters and Z{yields}bb or Z{yields}{mu}{sup +}{mu}{sup -}. On the other hand, {Delta}F=1, 2 processes, mediated by tree-level Higgs exchange, as well as radiative corrections to b{yields}s{gamma} and {mu}{yields}e{gamma} put some generic pressure on the allowed size of the flavor-violating couplings. But more importantly, these couplings will alter the Higgs decay patterns as well as those of the new fermions, and produce very interesting new signals associated to Higgs phenomenology in high energy colliders. These signals might become very important indirect signals for these type of models as they would be present even when the KK mass scale is high and no heavy KK particle is discovered.
Gamma ray lines from a universal extra dimension
Bertone, G.; Jackson, C. B.; Shaughnessy, G.; Tait, T. M.P.; Vallinotto, A.
2012-03-01
Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. We focus in particular on the two body annihilation of Dark Matter particles into a photon and another particle, which produces monochromatic photons, resulting in a line in the energy spectrum of gamma rays. Previous calculations in the context of the five dimensional UED model have computed the line signal from annihilations into \\gamma \\gamma, but we extend these results to include \\gamma Z and \\gamma H final states. We find that these spectral lines are subdominant compared to the predicted \\gamma \\gamma signal, but they would be important as follow-up signals in the event of the observation of the \\gamma \\gamma line, in order to distinguish the 5d UED model from other theoretical scenarios.
Dirac equation in low dimensions: The factorization method
Sánchez-Monroy, J.A.; Quimbay, C.J.
2014-11-15
We present a general approach to solve the (1+1) and (2+1)-dimensional Dirac equations in the presence of static scalar, pseudoscalar and gauge potentials, for the case in which the potentials have the same functional form and thus the factorization method can be applied. We show that the presence of electric potentials in the Dirac equation leads to two Klein–Gordon equations including an energy-dependent potential. We then generalize the factorization method for the case of energy-dependent Hamiltonians. Additionally, the shape invariance is generalized for a specific class of energy-dependent Hamiltonians. We also present a condition for the absence of the Klein paradox (stability of the Dirac sea), showing how Dirac particles in low dimensions can be confined for a wide family of potentials. - Highlights: • The low-dimensional Dirac equation in the presence of static potentials is solved. • The factorization method is generalized for energy-dependent Hamiltonians. • The shape invariance is generalized for energy-dependent Hamiltonians. • The stability of the Dirac sea is related to the existence of supersymmetric partner Hamiltonians.
Is the proton radius puzzle an evidence of extra dimensions?
Dahia, F
2015-01-01
The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between 2S and 2P states. In this scenario, the gravitation...
Is the proton radius puzzle an evidence of extra dimensions?
F. Dahia; A. S. Lemos
2015-09-29
The proton charge radius inferred from muonic hydrogen spectroscopy is not compatible with the previous value given by CODATA-2010, which, on its turn, essentially relies on measurements of the electron-proton interaction. The proton's new size was extracted from the 2S-2P Lamb shift in the muonic hydrogen, which showed an energy excess of 0.3 meV in comparison to the theoretical prediction, evaluated with the CODATA radius. Higher-dimensional gravity is a candidate to explain this discrepancy, since the muon-proton gravitational interaction is stronger than the electron-proton interaction and, in the context of braneworld models, the gravitational potential can be hugely amplified in short distances when compared to the Newtonian potential. Motivated by these ideas, we study a muonic hydrogen confined in a thick brane. We show that the muon-proton gravitational interaction modified by extra dimensions can provide the additional separation of 0.3 meV between 2S and 2P states. In this scenario, the gravitational energy depends on the higher-dimensional Planck mass and indirectly on the brane thickness. Studying the behavior of the gravitational energy with respect to the brane thickness in a realistic range, we find constraints for the fundamental Planck mass that solve the proton radius puzzle and are consistent with previous experimental bounds.
Social impact assessment - new dimensions in project planning
Jones, M.G.; Hartog, J.J.; Sykes, R.M.
1996-11-01
The Objective of the presentation is to provide understanding of how to improve attention to the social dimensions of EP projects. Social Impacts are the consequences to human populations, communities or individuals resulting from a project or activity. Such impacts may change the way in which people live, relate to one another, organize and cope as members of society. There is an increasing demand and expectation that Exploration and Production activities will both understand their impacts and define benefits for the local communities. Social Impact Assessment can be considered a branch of Environmental Impact Assessment. It has become a tool in its own fight due to the focus that was paid to the natural and physical issues within the EIA process. However there are still strong alignments and the wise project planner will integrate social and environmental issues within their project planning process. This can be done through a combination of studies but can result in a single report. The benefits of SIA will be demonstrated to include: (1) obtaining approvals (2) forward planning and design (3) increased project success-benefits to local community (4) economic benefits (5) decision making by management The types of impacts including demographic, socioeconomic, health, social infrastructure, resources, psychological and community, cultural and social equity will be reviewed. Methods and techniques to identify and assess impacts will be addressed. One of the main challenges in SIA is to reach the right audience. Methods to scope studies and implement consultation will be addressed.
Thermodynamics of SU(3) Gauge Theory in 2 + 1 Dimensions
P. Bialas; L. Daniel; A. Morel; B. Petersson
2008-07-21
The pressure, and the energy and entropy densities are determined for the SU(3) gauge theory in $2 + 1$ dimensions from lattice Monte Carlo calculations in the interval $0.6 \\leq T/T_c \\leq 15$. The finite temperature lattices simulated have temporal extent $N_\\tau = 2, 4, 6$ and 8, and spatial volumes $N_S^2$ such that the aspect ratio is $N_S/N_\\tau = 8$. To obtain the thermodynamical quantities, we calculate the averages of the temporal plaquettes $P_\\tau$ and the spatial plaquettes $P_S$ on these lattices. We also need the zero temperature averages of the plaquettes $P_0$, calculated on symmetric lattices with $N_\\tau = N_S$. We discuss in detail the finite size ($N_S$-dependent) effects. These disappear exponentially. For the zero temperature lattices we find that the coefficient of $N_S$ in the exponent is of the order of the glueball mass. On the finite temperature lattices it lies between the two lowest screening masses. For the aspect ratio equal to eight, the systematic errors coming from the finite size effects are much smaller than our statistical errors. We argue that in the continuum limit, at high enough temperature, the pressure can be parametrized by the very simple formula $p=a-bT_c/T$ where $a$ and $b$ are two constants. Using the thermodynamical identities for a large homogeneous system, this parametrization then determines the other thermodynamical variables in the same temperature range.
Global Fits of the Minimal Universal Extra Dimensions Scenario
Bertone, Gianfranco; Kong, Kyoungchul; de Austri, Roberto Ruiz; Trotta, Roberto; /Imperial Coll., London
2012-06-22
In theories with Universal Extra-Dimensions (UED), the {gamma}{sub 1} particle, first excited state of the hypercharge gauge boson, provides an excellent Dark Matter (DM) candidate. Here we use a modified version of the SuperBayeS code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive in particular the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the {gamma}{sub 1} with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at {approx} 10{sup -11} pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross-section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross-sections. On the other hand, the LHC with 1 fb{sup -1} of data should be able to probe the current best-fit UED parameters.
The Voronoi Tessellation Cluster Finder in 2 1 Dimensions
Soares-Santos, Marcelle; /Fermilab /Sao Paulo U.; de Carvalho, Reinaldo R.; /Sao Jose, INPE; Annis, James; /Fermilab; Gal, Roy R.; /Hawaii U.; La Barbera, Francesco; /Capodimonte Observ.; Lopes, Paulo A.A.; /Valongo Observ.; Wechsler, Risa H.; Busha, Michael T.; Gerke, Brian F.; /SLAC /KIPAC, Menlo Park
2011-06-23
We present a detailed description of the Voronoi Tessellation (VT) cluster finder algorithm in 2+1 dimensions, which improves on past implementations of this technique. The need for cluster finder algorithms able to produce reliable cluster catalogs up to redshift 1 or beyond and down to 10{sup 13.5} solar masses is paramount especially in light of upcoming surveys aiming at cosmological constraints from galaxy cluster number counts. We build the VT in photometric redshift shells and use the two-point correlation function of the galaxies in the field to both determine the density threshold for detection of cluster candidates and to establish their significance. This allows us to detect clusters in a self-consistent way without any assumptions about their astrophysical properties. We apply the VT to mock catalogs which extend to redshift 1.4 reproducing the ?CDM cosmology and the clustering properties observed in the Sloan Digital Sky Survey data. An objective estimate of the cluster selection function in terms of the completeness and purity as a function of mass and redshift is as important as having a reliable cluster finder. We measure these quantities by matching the VT cluster catalog with the mock truth table. We show that the VT can produce a cluster catalog with completeness and purity >80% for the redshift range up to {approx}1 and mass range down to {approx}10{sup 13.5} solar masses.
Exploring Small Extra Dimensions at the Large Hadron Collider
Allanach, Benjamin C; Palmer, M J; Parker, M A; Sabetfakhri, A; Webber, Bryan R
2002-01-01
Many models that include small extra space dimensions predict graviton states which are well separated in mass, and which can be detected as resonances in collider experiments. It has been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode $Gightarrow e^+e^-$, using a conservative model. This work extends the study of the $e^+e^-$ channel over the full accessible parameter space, and shows that the reach could extend as high as 3.5 TeV. It then discusses ways in which the expected universal coupling of the resonance can be confirmed using other decay modes. In particular, the mode $Gightarrow gammagamma$ is shown to be measurable with good precision, which would provide powerful confirmation of the graviton hypothesis. The decays $Gightarrow mu^+mu^-, W^+W^-, Z^0Z^0$ and jet--jet are measurable over a more limited range of couplings and masses. Using information from mass and cross-section measurements, the underlying parameter...
A Superstring Theory in Four Curved Space-Time Dimensions
I. Bars; K. Sfetsos
1991-11-20
Neveu-Schwarz-Ramond type heterotic and type-II superstrings in four dimensional curved space-time are constructed as exact $N=1$ superconformal theories. The tachyon is eliminated with a GSO projection. The theory is based on the N=1 superconformal gauged WZW model for the anti-de Sitter coset $SO(3,2)/SO(3,1)$ with integer central extension $k=5$. The model has dynamical duality properties in its space-time metric that are similar to the large-small ($R\\rightarrow 1/R$) duality of tori. To first order in a $1/k$ expansion we give expressions for the metric, the dilaton, the Ricci tensor and their dual generalizations. The curvature scalar has several singularities at various locations in the 4-dimensional manifold. This provides a new singular solution to Einstein's equations in the presence of matter in four dimensions. A non-trivial path integral measure which we conjectured in previous work for gauged WZW models is verified.
Carbon Fiber Technology Facility
Broader source: Energy.gov [DOE]
2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting
Broader source: Energy.gov [DOE]
Presentation by Charles Page (Air Products & Chemicals, Inc.) for the Membrane Technology Workshop held July 24, 2012
States & Emerging Energy Technologies
Office of Energy Efficiency and Renewable Energy (EERE)
This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.
Technology in water conservation
Finch, Dr. Calvin
2013-01-01
?? percent to ?? percent. Water reuse systems treat wastewater by various technologies including ?ltering, bioremediation and ozone exposure. ?ese technologies can involve billions of gallons of wastewater ? such as in a municipal recycling e... Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a behavioral exercise and urge...
Advanced Propulsion Technology Strategy
Broader source: Energy.gov [DOE]
GM is also developing new classes of electrically driven vehicles, leveraging technology first used in their hybrids.
Office of Energy Efficiency and Renewable Energy (EERE)
Check out a few stories of companies who have taken a breakthrough energy technology and run with it.
Consumer Vehicle Technology Data
Broader source: Energy.gov [DOE]
2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting
Technology Readiness Assessment (TRA)/Technology Maturation Plan...
(TRA)Technology Maturation Plan (TMP) Process Guide Technology Readiness Assessment (TRA)Technology Maturation Plan (TMP) Process Guide This document is a guide for those...
Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D)...
EM Engineering & Technology Roadmap and Major Technology Demonstration...
Office of Environmental Management (EM)
Processing Office of Engineering and Technology April 2008 EM Engineering & Technology Roadmap and Major Technology Demonstrations Introduction Progress made in EM cleanup...
Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
2 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report The Fuel & Lubricant...
Does Doctrine Drive Technology or Does Technology Drive Doctrine?
Blasko, Dennis
2010-01-01
Policy Brief No. 4 September 2010 Does Doctrine DriveTechnology or Does Technology Drive Doctrine? Dennis Blaskoone way. However, technology does not determine strat- egy.
Does Doctrine Drive Technology or Does Technology Drive Doctrine?
Blasko, Dennis
2010-01-01
Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some
MHK Technologies/Oregon State University Columbia Power Technologies...
OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...
Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...
Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies
Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.
2007-01-01
including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the
Technology Advertising Contact Information
Peters, Richard
Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions
Department of Science, Technology, &
Huang, Wei
Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive
Responder Technology Alert Monthly
PNNL-24014 Responder Technology Alert Monthly (Oct-Nov 2014) January 2015 JF Upton SL Stein #12;#12;PNNL-24014 Responder Technology Alert Monthly (Oct-Nov 2014) JF Upton SL Stein January 2015 Prepared for the Department of Homeland Security Science and Technology Directorate under Contract HSHQPM-14-X-00058. Pacific
PUBLICATIONS BRANCH OF TECHNOLOGY
INDEX of PUBLICATIONS by the BRANCH OF TECHNOLOGY BUREAU OF COMMERCIAL FISHERIES, 1955-59 Inclusive OF PUBLICATIONS BY THE BRANCH OF TECHNOLOGY BUREAU OF COMMERCIAL FISHERIES 1955-59 Inclusive by F. Bruce Sanford continue s, for the year s 1955- 59, the listing of publications by the Branch of Technology given
Science &Technology Facilities Council
Science &Technology Facilities Council Accelerator Science and Technology Centre Daresbury Science)1235 445808 www.stfc.ac.uk/astec Head office, Science and Technology Facilities Council, Polaris House, North Newton Group, La Palma: Joint Astronomy Centre, Hawaii. ASTeC Science Highlights 2009 - 2010 Science
Technology Performance Exchange
2015-09-01
To address the need for accessible, high-quality data, the Department of Energy has developed the Technology Performance Exchange (TPEx). TPEx enables technology suppliers, third-party testing laboratories, and other entities to share product performance data. These data are automatically transformed into a format that technology evaluators can easily use in their energy modeling assessments to inform procurement decisions.
NORTHWEST REGIONAL TECHNOLOGY CENTER
NORTHWEST REGIONAL TECHNOLOGY CENTER for Homeland Security Northwest Regional Technology Center May 2015 | 1 AROUND THE REGION IN HOMELAND SECURITY The Northwest Regional Technology Center (NWRTC.S. Army Cyber Command; and Michael Echols, Director, Cyber Joint Program Management Office National
Web Technology (elective package)
Franssen, Michael
Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing
Transmission Enhancement Technology Report
a recommendation of the most cost-effective methods and technologies to enhance electricity transmission from a review of methods and technologies with potential to enhance electricity transmission capability-traditional methods and technologies to increase the capacity of the high voltage electric power transmission system
Mechanism Mobility and a Local Dimension Test Charles W. Wampler1,2,
Hauenstein, Jonathan
is mathematically equivalent to the dimension of the solution set of the kinematic loop equations for the mechanismMechanism Mobility and a Local Dimension Test Charles W. Wampler1,2, General Motors Research The mobility of a mechanism is the number of degrees of freedom (DOF) with which it may move. This notion
ON THE DIMENSION OF SOLAR ATTRACTOR V.M. OSTRYAKOV andI. G. USOSKIN
Usoskin, Ilya G.
., 1983). To construct a model of solar activity on a long time-scale one should take into accountON THE DIMENSION OF SOLAR ATTRACTOR V.M. OSTRYAKOV andI. G. USOSKIN A. F. loffe Physico numbers and radiocarbon data (c), we have obtained the dimensions d of the solar attractor which are: 3
Automatic detection of dimension errors in spreadsheets Chris Chambers, Martin Erwig
Erwig, Martin
University, USA a r t i c l e i n f o Keywords: Spreadsheet Dimension Unit of measurement Static analysis Inference rule Error detection a b s t r a c t We present a reasoning system for inferring dimension information in spreadsheets. This system can be used to check the consistency of spreadsheet formulas and thus
Comment on the shape of Hydrogen equation in spaces of arbitrary dimension
M. Ya. Amusia
2015-02-20
We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z/r . This was not done in a number of relatively recent papers [1-5]. Therefore some results obtained there seem to be doubtful. Some required considerations in the area are mentioned.
A multivariate analysis of the niches of plant populations in raised bogs. I. Niche dimensions
Johnson, Edward A.
A multivariate analysis of the niches of plant populations in raised bogs. I. Niche dimensions E. A Biologictrl Lrrhorrrrory,WoorlsHole, MA, U.S.A. Received July 19, 1976 JOHNSON,E. A. 1977. A multivariate. A multivariate analysis of the niches of plant populations in raised bogs. I. Niche dimensions. Can. J. Bot. 55
A Dimension Space for Designing Richly Interactive Systems: a Perspective on the MagicBoards
Nigay, Laurence
A Dimension Space for Designing Richly Interactive Systems: a Perspective on the Magic is intended to help designers understand both the physical and virtual entities from which their systems and informational density. The Dimension Space is applied to two new systems developed at Grenoble, exposing design
A Dimension Space for the Design of Interactive Systems within their Physical Environments
Nigay, Laurence
A Dimension Space for the Design of Interactive Systems within their Physical Environments T their systems are built, and the tradeoffs involved in both the design of the entities themselves at Grenoble, exposing design tradeoffs and design rules for richly interactive systems. Keywords Dimension
Adaptive Dimension Reduction Using Discriminant Analysis and K-means Chris Ding CHQDING@LBL.GOV
Li, Tao
Adaptive Dimension Reduction Using Discriminant Analysis and K-means Clustering Chris Ding CHQDING discriminant analysis (LDA) and K-means clustering into a coherent frame- work to adaptively select the most(s)/owner(s). An extension of this approach is the adaptive dimension re- duction approach (Ding et al., 2002; Li et al
Lyapunov instability of rigid diatomic molecules in three dimensions: A simpler method Seungho Choe1
Lee, EokKyun
Lyapunov instability of rigid diatomic molecules in three dimensions: A simpler method Seungho Choe 2007 We present a method to calculate Lyapunov exponents of rigid diatomic molecules in three dimensions 12N-dimensional phase space . The spectra of Lyapunov exponents are obtained for 32 rigid diatomic
THE LYAPUNOV AND DIMENSION SPECTRA OF EQUILIBRIUM MEASURES FOR CONFORMAL EXPANDING MAPS.
THE LYAPUNOV AND DIMENSION SPECTRA OF EQUILIBRIUM MEASURES FOR CONFORMAL EXPANDING MAPS. HOWARD the dimension spectrum for equilibrium measures and the Lyapunov spectrum for conformal repellers. We explicitly compute the Lyapunov spectrum and show that it is a delta function. We observe that while the Lyapunov
Measuring acoustic-prosodic entrainment with respect to multiple levels and dimensions.
Hirschberg, Julia
Measuring acoustic-prosodic entrainment with respect to multiple levels and dimensions. Rivka- ious dimensions. This phenomenon, commonly called entrain- ment, coordination, or alignment, is widely believed to be cru- cial to the success and naturalness of human interactions. We investigate entrainment
Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines: Preprint
Haid, L.; Stewart, G.; Jonkman, J.; Robertson, A.; Lackner, M.; Matha, D.
2013-06-01
The goal of this paper is to examine the appropriate length of a floating offshore wind turbine (FOWT) simulation - a fundamental question that needs to be answered to develop design requirements. To examine this issue, a loads analysis of an example FOWT was performed in FAST with varying simulation lengths. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency Code Comparison Collaborative Project and supports NREL's offshore 5-megawatt baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regards to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas industry, where running simulations of at least 3 hours in length is common practice.
Seng, Y. S.; Lee, P.; Rawat, R. S.
2014-11-15
The breakdown phase of the UNU-ICTP plasma focus (PF) device was successfully simulated using the electromagnetic particle in cell method. A clear uplift of the current sheath (CS) layer was observed near the insulator surface, accompanied with an exponential increase in the plasma density. Both phenomena were found to coincide with the surge in the electric current, which is indicative of voltage breakdown. Simulations performed on the device with different insulator lengths showed an increase in the fast ionization wave velocity with length. The voltage breakdown time was found to scale linearly with the insulator length. Different spatial profiles of the CS electron density, and the associated degree of uniformity, were found to vary with different insulator lengths. The ordering, according to the degree of uniformity, among insulator lengths of 19, 22, and 26?mm agreed with that in terms of soft X-ray radiation yield observed from experiments. This suggests a direct correlation between CS density homogeneity near breakdown and the radiation yield performance. These studies were performed with a linearly increasing voltage time profile as input to the PF device.
Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band
Ge, Li
2015-01-01
Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy E_{FB}, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-E_{FB})/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rul...
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mkhitaryan, V. V.; Dobrovitski, V. V.
2015-08-24
The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore »occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization ?(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while ?(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less
Building Technologies Office Window and Envelope Technologies...
Broader source: Energy.gov (indexed) [DOE]
Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by 50% in 2030, compared to the "business-as- usual" energy consumption...
Efficient Scheme of Experimental Quantifying non-Markovianity in High-Dimension Systems
S. -J. Dong; B. -H. Liu; Y. -N. Sun; Y. -J. Han; G. -C. Guo; Lixin He
2015-01-29
The non-Markovianity is a prominent concept of the dynamics of the open quantum systems, which is of fundamental importance in quantum mechanics and quantum information. Despite of lots of efforts, the experimentally measuring of non-Markovianity of an open system is still limited to very small systems. Presently, it is still impossible to experimentally quantify the non-Markovianity of high dimension systems with the widely used Breuer-Laine-Piilo (BLP) trace distance measure. In this paper, we propose a method, combining experimental measurements and numerical calculations, that allow quantifying the non-Markovianity of a $N$ dimension system only scaled as $N^2$, successfully avoid the exponential scaling with the dimension of the open system in the current method. After the benchmark with a two-dimension open system, we demonstrate the method in quantifying the non-Markovanity of a high dimension open quantum random walk system.
FEASIBILITY STUDY OF PRESSURE PULSING PIPELINE UNPLUGGING TECHNOLOGIES FOR HANFORD
Servin, M. A.; Garfield, J. S.; Golcar, G. R.
2012-12-20
The ability to unplug key waste transfer routes is generally essential for successful tank farms operations. All transfer lines run the risk of plugging but the cross site transfer line poses increased risk due to its longer length. The loss of a transfer route needed to support the waste feed delivery mission impacts the cost and schedule of the Hanford clean up mission. This report addresses the engineering feasibility for two pressure pulse technologies, which are similar in concept, for pipeline unplugging.
Technology Investment Roadmap 2012 -2017
Hickman, Mark
Technology Investment Roadmap 2012 - 2017 20 February 2012 #12;2 Contents Introduction & Overview ............................................................................................ 8 Trend 3: Technology Enabled Learning .................................................................................................... 16 2. Technology enabled learning and teaching
Technology Policy and Economic Growth
Borrus, Michael; Stowsky, Jay
1997-01-01
economic growth) and the Pentagon’s Technology Reinvestment20 Tassey, Technology and Economic Growth: Implications forTechnology Policy and Economic Growth Michael Borrus Jay
2008 Solar Technologies Market Report
Price, S.
2010-01-01
Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.Concentrating Solar Power—Technology, Cost, and Markets.
2011 Wind Technologies Market Report
Bolinger, Mark
2013-01-01
land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology
2010 Wind Technologies Market Report
Wiser, Ryan
2012-01-01
land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy
2012 Wind Technologies Market Report
Wiser, Ryan
2014-01-01
land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team
High Impact Technology Hub- Results
Broader source: Energy.gov [DOE]
Highlights, outcomes and activities to support the adoption of High Impact Technologies. Technology Highlights preview early results from current technology demonstrations. Case Studies overview...
Advanced Integrated Systems Technology Development
2013-01-01
Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (
Technology Innovation Program | Partnerships | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...
Technology reviews: Glazing systems
Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.
1992-09-01
We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.
Quantum phase transitions of the Dirac oscillator in a minimal length scenario
L. Menculini; O. Panella; P. Roy
2014-11-19
We obtain exact solutions of the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field within a minimal length ($\\Delta x_0=\\hbar \\sqrt{\\beta}$), or generalised uncertainty principle (GUP) scenario. This system in ordinary quantum mechanics has a single left-right chiral quantum phase transition (QPT). We show that a non zero minimal length turns on a infinite number of quantum phase transitions which accumulate towards the known QPT when $\\beta \\to 0$. It is also shown that the presence of the minimal length modifies the degeneracy of the states and that in this case there exist a new class of states which do not survive in the ordinary quantum mechanics limit $\\beta \\to 0$.
Infrared length scale and extrapolations for the no-core shell model
Wendt, K A; Papenbrock, T; Sääf, D
2015-01-01
We precisely determine the infrared (IR) length scale of the no-core shell model (NCSM). In the NCSM, the $A$-body Hilbert space is truncated by the total energy, and the IR length can be determined by equating the intrinsic kinetic energy of $A$ nucleons in the NCSM space to that of $A$ nucleons in a $3(A-1)$-dimensional hyper-radial well with a Dirichlet boundary condition for the hyper radius. We demonstrate that this procedure indeed yields a very precise IR length by performing large-scale NCSM calculations for $^{6}$Li. We apply our result and perform accurate IR extrapolations for bound states of $^{4}$He, $^{6}$He, $^{6}$Li, $^{7}$Li. We also attempt to extrapolate NCSM results for $^{10}$B and $^{16}$O with bare interactions from chiral effective field theory over tens of MeV.
Nano-scaled graphene platelets with a high length-to-width aspect ratio
Zhamu, Aruna (Centerville, OH); Guo, Jiusheng (Centerville, OH); Jang, Bor Z. (Centerville, OH)
2010-09-07
This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.
Horizon of quantum black holes in various dimensions
Casadio, Roberto; Giugno, Andrea; Mureika, Jonas
2015-01-01
We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general $(1+D)$-dimensional space-time, for $D>3$ and including the $D=1$ case. We find that the probability $P_{\\rm BH} $ that such objects are (quantum) black holes behaves similarly to the probability in the $(3+1)$ framework for $D> 3$. In fact, for $D\\ge 3$, the probability increases towards unity as the mass grows above the relevant $D$-dimensional Planck scale $m_D$, the faster the larger $D$. In contrast, for $D=1$, we find the probability is comparably larger for smaller masses, but $P_{\\rm BH} < 0.5$, suggesting that such lower dimensional black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and for all cases find a minimum length scale $L_D...
Human dimensions in cyber operations research and development priorities.
Forsythe, James Chris; Silva, Austin Ray; Stevens-Adams, Susan Marie; Bradshaw, Jeffrey
2012-11-01
Within cyber security, the human element represents one of the greatest untapped opportunities for increasing the effectiveness of network defenses. However, there has been little research to understand the human dimension in cyber operations. To better understand the needs and priorities for research and development to address these issues, a workshop was conducted August 28-29, 2012 in Washington DC. A synthesis was developed that captured the key issues and associated research questions. Research and development needs were identified that fell into three parallel paths: (1) human factors analysis and scientific studies to establish foundational knowledge concerning factors underlying the performance of cyber defenders; (2) development of models that capture key processes that mediate interactions between defenders, users, adversaries and the public; and (3) development of a multi-purpose test environment for conducting controlled experiments that enables systems and human performance measurement. These research and development investments would transform cyber operations from an art to a science, enabling systems solutions to be engineered to address a range of situations. Organizations would be able to move beyond the current state where key decisions (e.g. personnel assignment) are made on a largely ad hoc basis to a state in which there exist institutionalized processes for assuring the right people are doing the right jobs in the right way. These developments lay the groundwork for emergence of a professional class of cyber defenders with defined roles and career progressions, with higher levels of personnel commitment and retention. Finally, the operational impact would be evident in improved performance, accompanied by a shift to a more proactive response in which defenders have the capacity to exert greater control over the cyber battlespace.
Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla; Sam Scott
2008-11-21
The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkage of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results
Determination of the length and compass orientation of hydraulic fractures by pulse testing
Manohar, Madan Mohan
1984-01-01
S3HAIDVHi OIlflVHOAH i0 NOIlVIN3IHO SSVHWOO QNV HlBN31 3Wl iO NOIlVNIWH3l30 DETERMINATION OF THE LENGTH AND COMPASS ORIENTATION OF HYDRAULIC FRACTURES BY PULSE TESTING A Thesis by MADAN MOHAN MANOHAR Approved as to Style and Content by: Wi... liam J. Lee (Ch ai rman of Commi t tee ) Le a M. Je Member) Richard A. Morse (Member) D. Yon Gonten ( d of Department) December 1984 ABSTRACT Determination of the Length and Compass Drientat1on of Hydraulic Fractures by Pulse Testing...
Huang, David M.; Chandler, David
2000-04-01
The Lum-Chandler-Weeks theory of hydrophobicity [J. Phys. Chem. 103, 4570 (1999)] is applied to treat the temperature dependence of hydrophobic solvation in water. The application illustrates how the temperature dependence for hydrophobic surfaces extending less than 1nm differs significantly from that for surfaces extending more than 1nm. The latter is the result of water depletion, a collective effect, that appears at length scales of 1nm and larger. Due to the contrasting behaviors at small and large length scales, hydrophobicity by itself can explain the variable behavior of protein folding.
Precision Measurement of the n-3He Incoherent Scattering Length Using Neutron Interferometry
M. G. Huber; M. Arif; T. C. Black; W. C. Chen; T. R. Gentile; D. S. Hussey; D. Pushin; F. E. Wietfeldt; L. Yang
2009-05-12
We report the first measurement of the low-energy neutron-$^3$He incoherent scattering length using neutron interferometry: $b_i' = (-2.512\\pm 0.012{statistical}\\pm0.014{systematic})$ fm. This is in good agreement with a recent calculation using the AV18+3N potential. The neutron-$^3$He scattering lengths are important for testing and developing nuclear potential models that include three nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.
Adam J. Mullavey; Bram J. J. Slagmolen; John Miller; Matthew Evans; Peter Fritschel; Daniel Sigg; Sam J. Waldman; Daniel A. Shaddock; David E. McClelland
2011-12-14
Residual motion of the arm cavity mirrors is expected to prove one of the principal impediments to systematic lock acquisition in advanced gravitational-wave interferometers. We present a technique which overcomes this problem by employing auxiliary lasers at twice the fundamental measurement frequency to pre-stabilise the arm cavities' lengths. Applying this approach, we reduce the apparent length noise of a 1.3 m long, independently suspended Fabry-Perot cavity to 30 pm rms and successfully transfer longitudinal control of the system from the auxiliary laser to the measurement laser.
Minimal Length and the Existence of Some Infinitesimal Quantities in Quantum Theory and Gravity
A. E. Shalyt-Margolin
2014-12-10
In this work it is demonstrated that, provided a theory involves a minimal length, this theory must be free from such infinitesimal quantities as infinitely small variations in surface of the holographic screen, its volume, and entropy. The corresponding infinitesimal quantities in this case must be replaced by the "minimal variations possible" -- finite quantities dependent on the existent energies. As a result, the initial low-energy theory (quantum theory or general relativity) inevitably must be replaced by a minimal-length theory that gives very close results but operates with absolutely other mathematical apparatus.
Effect of core length on laboratory displacement of oil by CO? in sandstone
Chan, Kenneth Yun-Kwong
1974-01-01
EXPECT OP CORE LENGTH ON LABORATORY DISPLACEMENT OP OIL BY C02 IN SANDSTONE A Thesis by KENNETH YUN KWONG CHAN Submitted to the Graduate College of Texas khM University in partial fulfillment of the requirement for the degree of MASTER OP... SCIENCE August 1974 Major Subject: Petroleum Engineering EPACT OP CORE LENGTH ON LABORATORY DISPLACEMENT Oy OIL BY COR IN SANDSTONE A Thesis by KENNETH YUN KWONG CHAN Approved as to style and content by: a an o omm ee ea o Department ember Mem...
Kuligowski, Bob
Science & Technology RoadmapScience & Technology Roadmap #12;03/24/20063:03 PMSOCD Science & Technology Roadmap 2 TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................................19 4 ROADMAPS AND LINKAGES
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.
2014-11-20
Suppression of magnetization and effective filament diameter (deff) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state modelmore »was used to extract the 12-T deff from magnetization data for comparison. Twisting the samples reduced deff by a factor of 1.5-3. The deff was shown to increase both with L and Lp. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter ?2, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The deff was substantially reduced with Lp. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.« less
Myers, C. S.; Susner, M. A.; Miao, H.; Huang, Y.; Sumption, M. D.; Collings, E. W.
2014-11-20
Suppression of magnetization and effective filament diameter (d_{eff}) with twisting was investigated for a series of recent Bi2212 strands manufactured by Oxford Superconducting Technologies. We measured magnetization as a function of field (out to 14 T), at 5.1 K, of twisted and nontwisted 37 × 18 double restack design strands. The samples were helical coils 5-6 mm in height and approximately 5 mm in diameter. The strand diameter was 0.8 mm. The magnetization of samples having twist pitches of 25.4, 12.7, and 6.35 mm were examined and compared to nontwisted samples of the same filament configuration. The critical state model was used to extract the 12-T d_{eff} from magnetization data for comparison. Twisting the samples reduced d_{eff} by a factor of 1.5-3. The d_{eff} was shown to increase both with L and L_{p}. Mathematical expressions, based upon the anisotropic continuum model, were fit to the data, and a parameter ?_{2}, which quantifies the electrical connectivity perpendicular to the filament axis, was extracted. The bundle-to-bundle connectivity along the radial axis was found to be approximately 0.2%. The d_{eff} was substantially reduced with L_{p}. In addition, the importance of understanding sample length dependence for quantitative measurements is discussed.
Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.
1997-03-01
One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.
Graz University of Technology Institute for Software Technology
Graz University of Technology Institute for Software Technology Birgit Vogtenhuber Problem Analysis.054, 3 VU Birgit Vogtenhuber Institute for Software Technology Graz University of Technology email: bvogt of Technology Institute for Software Technology Birgit Vogtenhuber Problem Analysis and Complexity Theory, 716
Adam Merkling Major: Information Technology
Hamburger, Peter
#12;Adam Merkling Major: Information Technology Position: Student System Administrator Employed Technology Position: User Technology Services Student Technician Employed Since: February 2011 #12;Gabi Mosquera Major: Electrical/Computer Engineering Position: User Technology Services Student Technician
Image credit: Dreamstime Technology for
through development of superconducting magnet technology. Without that research today's high- resolutionImage credit: Dreamstime Technology for research saves lives Technology developed to advance STFC in particle physics technology not only supported important experiments at CERN but pioneered early
Not Available
1994-01-01
This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.
ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)
Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler
2005-12-01
The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry.
Reactor Technology | Nuclear Science | ORNL
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Reactor Technology Advanced Reactor Concepts Advanced Instrumentation & Controls Light Water Reactor Sustainability Safety and Regulatory Technology Small Modular Reactors Nuclear...
Rodrigo Alonso; Elizabeth E. Jenkins; Aneesh V. Manohar; Michael Trott
2015-07-27
We calculate the gauge terms of the one-loop anomalous dimension matrix for the dimension-six operators of the Standard Model effective field theory (SM EFT). Combining these results with our previous results for the $\\lambda$ and Yukawa coupling terms completes the calculation of the one-loop anomalous dimension matrix for the dimension-six operators. There are 1350 $CP$-even and $1149$ $CP$-odd parameters in the dimension-six Lagrangian for 3 generations, and our results give the entire $2499 \\times 2499$ anomalous dimension matrix. We discuss how the renormalization of the dimension-six operators, and the additional renormalization of the dimension $d \\le 4$ terms of the SM Lagrangian due to dimension-six operators, lays the groundwork for future precision studies of the SM EFT aimed at constraining the effects of new physics through precision measurements at the electroweak scale. As some sample applications, we discuss some aspects of the full RGE improved result for essential processes such as $gg \\to h$, $h \\to \\gamma \\gamma$ and $h \\to Z \\gamma$, for Higgs couplings to fermions, for the precision electroweak parameters $S$ and $T$, and for the operators that modify important processes in precision electroweak phenomenology, such as the three-body Higgs boson decay $h \\rightarrow Z \\, \\ell^+ \\, \\ell^-$ and triple gauge boson couplings. We discuss how the renormalization group improved results can be used to study the flavor problem in the SM EFT, and to test the minimal flavor violation (MFV) hypothesis. We briefly discuss the renormalization effects on the dipole coefficient $C_{e\\gamma}$ which contributes to $\\mu \\to e \\gamma$ and to the muon and electron magnetic and electric dipole moments.
Geothermal innovative technologies catalog
Kenkeremath, D.
1988-09-01
The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.
The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications
Paris-Sud XI, Université de
2008/05/09 The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications Guo-Niu HAN ABSTRACT. -- The paper is devoted to the derivation of the expan- sion formula function for t-cores. Several applications are derived, including the "marked hook formula". 1
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE ( NEW SH#1 REGION + Hg POOL LENGTH)
McDonald, Kirk
IDS120j WITHOUT RESISTIVE MAGNETS MODIFYING Hg MODULE ( NEW SH#1 REGION + Hg POOL LENGTH) Nicholas CRYO#1 WAS DECIDED DURING THE LAST MEETING AND AN EXTENSION OF THE Hg POOL UPSTREAM UP TO ~ - 100 cm FROM SIMULATIONS WITH MODIFIED Hg POOL AND SH#1 REGION
Lecture 01 -Supplement: Examples of Modeling ## age elevation length mass sex
Rotella, Jay J.
.87701 9.21 5.3e-11 *** ## age 1.50580 0.05214 28.88 .93 9.2e-11 *** ## age 1.50638 0.05306 28.39 Lecture 01 - Supplement: Examples of Modeling Approaches A dataset head(d) ## age elevation length
Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput
Bunde, David
models. Immediate dispatching is a natural model, for example when distributing incoming requestsDispatching Equal-length Jobs to Parallel Machines to Maximize Throughput David P. Bunde1 and a scheduler's goal is to maximize the number of completed jobs (Pm | rj, pj = p | P 1 - Uj). This problem has
Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput
Goldwasser, Michael
Dispatching Equal-length Jobs to Parallel Machines to Maximize Throughput David P. Bunde1 and deadlines and a scheduler's goal is to maximize the number of completed jobs (Pm | rj, pj = p | P 1 - Uj dispatching is motivated by multiprocessor settings where incoming requests to a server farm or computer
Transmission Delay Analysis with Finite Coding Length in Wireless Cooperative Networks
Leung, Kin K.
Transmission Delay Analysis with Finite Coding Length in Wireless Cooperative Networks Zhengguo the impact of cooperative transmission on the routing decision for wireless ad-hoc networks, where a routing on transmission delay for wireless cooperative networks by using a simple multi-user detection scheme, called
Minimum Description Length Model Selection Criteria for Generalized Linear Models Mark Hansen
Yu, Bin
of simulations for logistic regression illustrate that mixture MDL can ``bridge'' AIC and BIC in the sense. By viewing statistical modeling as a means of generating descriptions of observed data, the MDL framework (cf for a probability distribution Q on A. An integervalued function L corresponds to the code length of a binary
SINGLE SHOT ELECTRON-BEAM BUNCH LENGTH MEASUREMENTS , G.M.H. Knippels
Strathclyde, University of
SINGLE SHOT ELECTRON-BEAM BUNCH LENGTH MEASUREMENTS G. Berden , G.M.H. Knippels , D. Oepts, A- nostics. Of these diagnostics, electo-optic detection of the electric field of electron bunches offers of the electron beam. The probe laser beam is linearly polarized and passes through the ZnTe crystal parallel
Length-scale competition for the sine-Gordon kink in a random environment J. Garnier*
Garnier, Josselin
Length-scale competition for the sine-Gordon kink in a random environment J. Garnier* Laboratoire This paper deals with the transmission of a kink in a random medium described by a randomly perturbed sine by a constructed radiative Green's func- tion. This work was further extended to give analytical rep- resentation
Relevant Length Scale of Barchan Dunes Pascal Hersen, Stephane Douady, and Bruno Andreotti
Relevant Length Scale of Barchan Dunes Pascal Hersen, SteÂ´phane Douady, and Bruno Andreotti 1 barchan dunes under water: some sand is put on a tray moving periodically and asymmetrically in a water tank, and barchans rapidly form. We measure basic morphological and dynamical properties of these dunes
Impact of Ethanol on Benzene Plume Lengths: Microbial and Modeling Studies
Alvarez, Pedro J.
plume lengths in subsurface environments following accidental spills of ethanol-blended gasoline. Two, 8% of all the gasoline sold in the United States contained ethanol. By 1998, ethanol-blended fuels. As a result, the use of ethanol-blended gasoline is expected to in- crease in the United States over the next
Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays
Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.
2005-08-30
By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.
Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis
Domgmo-Momo, Gilles; /Towson U. /SLAC
2012-09-05
The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.