National Library of Energy BETA

Sample records for technology development program

  1. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  2. Clean Technology Evaluation & Workforce Development Program

    SciTech Connect (OSTI)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  4. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  5. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  6. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  7. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  8. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    programmanagement.pdf More Documents & Publications Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies...

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  16. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  17. Progress in The Lost Circulation Technology Development Program

    SciTech Connect (OSTI)

    Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

    1991-01-01

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

  18. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  19. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  20. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  1. A Technology Overview of the PowerChip Development Program

    E-Print Network [OSTI]

    Araghchini, Mohammad

    The PowerChip research program is developing technologies to radically improve the size, integration, and performance of power electronics operating at up to grid-scale voltages (e.g., up to 200V) and low-to-moderate power ...

  2. Flight Projects 2 Technology and Space Program Development 13

    E-Print Network [OSTI]

    are steadily approaching the goal of providing solar cell arrays at a cost com- petitive with other energy#12;Flight Projects 2 Technology and Space Program Development 13 Tracking and Data Acquisition 22, a future in which I feel we will provide unique services to the nation in the exploration of the solar

  3. Materials Development Program: Ceramic Technology Project bibliography, 1984--1992

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Ceramic Technology [for Advanced Heat Engines] Project was begun in 1983 to meet the ceramic materials needs of the companion DOE automotive engine program, the Advanced Gas Turbine (AGT) project, and the Heavy Duty Transport (low-heat-rejection, heavy-duty diesel) project. Goal is to develop an industry technology base for reliable and cost effective ceramics for applications in advanced automotive gas turbine and diesel engines. Research areas were identified following extensive input from industry and academia. Majority of research is done by industry (60%); work is also done at colleges and universities, in-house, and at other national laboratories and government agencies. In the beginning, reliability of ceramic components was the key issue. The reliability issues have largely been met and, at the present time, cost is the driving issue, especially in light of the highly cost-sensitive automotive market. Emphasis of the program has now been shifted toward developing cost-effective ceramic components for high-performance engines in the near-term. This bibliography is a compilation of publications done in conjunction with the Ceramic Technology Project since its beginning. Citations were obtained from reports done by participants in the project. We have tried to limit citations to those published and easily located. The end date of 1992 was selected.

  4. Homeland Security Science, Technology, Engineering, Mathematics Career Development Program Report

    SciTech Connect (OSTI)

    Bryson, Kathleen H.

    2009-11-06

    Report including the background, reserach and recommendations to expand the current DHS HS-STEM Career Development Program.

  5. Building technological capability within satellite programs in developing countries

    E-Print Network [OSTI]

    Wood, Danielle Renee

    2012-01-01

    Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

  6. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  7. To continue the development of WISER's globally recognized program in Clean Coal Technology at Illinois

    E-Print Network [OSTI]

    Heller, Barbara

    Vision To continue the development of WISER's globally recognized program in Clean Coal Technology renewable energy. Goal The goals of the WISER Clean Coal Technology Program are to: · Obtain the optimum stream Strengths The strengths of the WISER Clean Coal Technology program include a strong

  8. Geothermal Technology Development Program. Annual progress report, October 1983-September 1984

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1985-08-01

    This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

  9. Fourth annual report to Congress on the Automotive Technology Development Program

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Program implementation and management are described. The status of conventional power-train technology is described with respect to uniform charge reciprocating Otto engine, stratified charge reciprocating Otto engine, rotary Otto engine, diesel engine, and transmissions. The three tasks of the Automotive Technology Development Program are discussed as follows; automotive gas turbine project, automotive Stirling engine development project, and the heavy duty transport technology project.

  10. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts conducted within the Carbon Capture program include development of advanced solvents, sorbents, and membranes for both the Post- and Pre-Combustion Technology Areas...

  11. Yucca Mountain Project - Science & Technology Radionuclide Absorbers Development Program Overview

    SciTech Connect (OSTI)

    Hong-Nian Jow; R.C. Moore; K.B. Helean; S. Mattigod; M. Hochella; A.R. Felmy; J. Liu; K. Rosso; G. Fryxell; J. Krumhansl; Y. Wang

    2005-01-14

    The proposed Yucca Mountain repository is anticipated to be the first facility for long-term disposal of commercial spent nuclear fuel and high-level radioactive waste in the United States. The facility, located in the southern Nevada desert, is currently in the planning stages with initial exploratory excavations completed. It is an underground facility mined into the tuffaceous volcanic rocks that sit above the local water table. The focus of the work described in this paper is the development of radionuclide absorbers or ''getter'' materials for neptunium (Np), iodine (I), and technetium (Tc) for potential deployment in the repository. ''Getter'' materials retard the migration of radionuclides through sorption, reduction, or other chemical and physical processes, thereby slowing or preventing the release and transport of radionuclides. An overview of the objectives and approaches utilized in this work with respect to materials selection and modeling of ion ''getters'' is presented. The benefits of the ''getter'' development program to the United States Department of Energy (US DOE) are outlined.

  12. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    with the data suppliers prompting collaboration on performance and analyses important for technology assessment. Results will also be highlighted for different applications via...

  13. Industrial Technologies Program ORNL-developed cast nickel aluminide rolls

    E-Print Network [OSTI]

    strength and oxidation resistance. · · · · Metal Infusion Surface Treatment (MIST) (2006)--a process for infusing up to 51 elements into metal and alloy surfaces, MIST lengthens the life of metalworking technology and the deployment of industrial wireless technologies. #12;Nanomanufacturing Metal Infusion

  14. Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation. FY 1993 Program Summary

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    DOE has set a goal to clean up its complex and to bring all sites into compliance with applicable environmental regulations. This initiative is slated for completion by the year 2019. Four years ago there was no coordinated plan for identifying or cleaning these contaminated sites. Since 1989, DOE`s Office of Environmental Restoration and Waste Management has invested time, money, and manpower to establish a wide range of programs to meet this immense challenge. DOE is responsible for waste management and clean up of more than 100 contaminated installations in 36 states and territories. This includes 3,700 sites: over 26,000 acres, with hazardous or radioactive contaminated surface or groundwater, soil, or structures; over 26,000 acres requiring remediation, with the number growing as new sites are defined; 500 surplus facilities awaiting decontamination and decommissioning and approximately 5,000 peripheral properties (residences, businesses) that have soil contaminated with uranium tailings.

  15. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits27, 2012Geothermal Technologies

  16. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits27, 2012Geothermal TechnologiesDemonstration Plan:

  17. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits27, 2012Geothermal TechnologiesDemonstration

  18. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal Technologies OfficeOctober 1,

  19. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal Technologies OfficeOctober

  20. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal Technologies

  1. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal TechnologiesDemonstration Plan:

  2. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal TechnologiesDemonstration

  3. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration Plan: Program

  4. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  5. Research and development separation technology: The DOE Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This brochure summarizes the Office of Industrial Programs' RandD efforts in the advancement of separation technology. The purpose of this brochure is to provide interested parties with information on federal industrial energy conservation activities in separation technology. The brochure is comprised of the following sections: Separation Technology, summarizes the current state of separation technology and its uses. Potential Energy Savings, discusses the potential for industrial energy conservation through the implementation of advanced separation processes. Office of Industrial Programs' RandD Efforts in Separation Technology Development, describes the separation RandD projects conducted by IP. RandD Data Base, lists contractor, principal investigator, and location of each separation-related RandD effort sponsored by IP.

  6. Third annual report to Congress on the automotive technology development program

    SciTech Connect (OSTI)

    Not Available

    1982-03-01

    The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

  7. Hydropower Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-10-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  8. Office of Technology Development`s Research, Development, Demonstration, Testing and Evaluation Mid-Year Program Review. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document presents brief summaries of waste management, remedial action, decommissioning/decontamination, and waste processing programs and issues currently being developed at Department of Energy Facilities.

  9. Building Technologies Program: Planned Program Activities for 2008-2012

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Complete Multi-Year Program Plan 2008 includes all sections - overview, research and development, standards, technology validation, portfolio management, appendices.

  10. Methodology for technology selection for Department of Defense research and development programs

    E-Print Network [OSTI]

    Nair, Michael L. (Michael Lawrie), 1979-

    2011-01-01

    In recent years, many of the Department of Defense's major acquisition programs have experienced significant budget overruns and schedule delays. Closer examination of these programs reveals that in many cases, technologies ...

  11. FY 1994 program summary: Office of Technology Development, Office of Research and Development, Office of Demonstration, Testing, and Evaluation

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The US Department of Energy (DOE) Office of Environmental Management, formerly the Office of Environmental Restoration and Waste Management (EM), was established in November 1989 as the first step toward correcting contamination problems resulting from nearly 50 years of nuclear weapons production and fuel processing activities. EM consolidates several DOE organizations previously responsible for the handling, treatment, and disposition of radioactive and hazardous waste. Within EM, the Office of Technology Development (OTD/EM-50) is responsible for developing technologies to meet DOE`s goal for environmental restoration. OTD manages an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT and E) for environmental cleanup, waste management, and related technologies. The program is designed to resolve major technical issues, to rapidly advanced beyond current technologies for environmental restoration and waste management operations, and to expedite compliance with applicable environmental laws and regulations. This report summarizes Fiscal Year 1994 (FY94) programmatic information, accomplishments, and planned activities relevant to the individual activities within OTD`s RDDT and E.

  12. About the Building Technologies Program

    SciTech Connect (OSTI)

    2011-12-15

    The Building Technologies Program (BTP) actively pursues the research, development, and adoption of technologies and strategies that advance the energy efficiency of U.S. commercial and residential buildings.

  13. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  14. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    none,

    2009-02-01

    This 2008 Multi-Year Research, Development, and Demonstration Program Plan covers the 2009-2015 period with program activities to 2025.

  15. Building Technologies Program Key Activities

    SciTech Connect (OSTI)

    2011-12-15

    The Building Technologies Program (BTP) employs a balanced approach to making buildings more energy efficient. The three pillars of our program, research and development (R&D), market stimulation, and building and equipment standards, help meet our strategic vision.

  16. Advanced research and technology development fossil energy materials program. Quarterly progress report for the period ending September 30, 1981

    SciTech Connect (OSTI)

    Bradley, R.A.

    1981-12-01

    This is the fourth combined quarterly progress report for those projects that are part of the Advanced Research and Technology Development Fossil Energy Materials Program. The objective is to conduct a program of research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Work performed on the program generally falls into the Applied Research and Exploratory Development categories as defined in the DOE Technology Base Review, although basic research and engineering development are also conducted. A substantial portion of the work on the AR and TD Fossil Energy Materials Program is performed by participating cntractor organizations. All subcontractor work is monitored by Program staff members at ORNL and Argonne National Laboratory. This report is organized in accordance with a work breakdown structure defined in the AR and TD Fossil Energy Materials Program Plan for FY 1981 in which projects are organized according to fossil energy technologies. We hope this series of AR and TD Fossil Energy Materials Program quarterly progress reports will aid in the dissemination of information developed on the program.

  17. Predictive Technology Development and Crash Energy Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Predictive Technology Development and Crash Energy Management Predictive Technology Development and Crash Energy Management 2009 DOE Hydrogen Program and Vehicle Technologies...

  18. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009...

  19. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  20. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    None

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  1. Coated Conductor Technology Development

    E-Print Network [OSTI]

    Coated Conductor Technology Development Roadmap Priority Research & Development Activities Leading for Electric Systems Program Prepared by: Energetics, Incorporated #12;Coated Conductor Development Roadmap of high-quality, low-cost coated conductors that will lead to industrial-scale commercial manufacturing

  2. Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. [comps.

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  3. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  4. Technology in education: A guidebook for developing a science and math education support program

    SciTech Connect (OSTI)

    Wagner, C.L.

    1992-09-01

    Education is vital to survival and success in an increasingly technical world, and the quality of education is the responsibility of everyone students, teachers, parents, industry, and government. Any technical organization wanting to contribute to that success through its local education system can do so easily and effectively through careful planning. This report details that planning process and includes methods to (1) identify the interests, strengths, and resources of the technical organization; (2) identify the needs of the local education system; (3) interface with local school system administration, principals, and teachers; and (4) develop a unique plan to match the organization`s strengths and resources with the needs of the school system. Following these ``getting started`` activities is the actual program that the Engineering Technology Division implemented in a local elementary school, including the curriculum, topics, and actual lesson plans used by technical personnel in the classroom. Finally, there are enrichment activities for teachers and students, suggestions for measuring the success of an education support program, and an overview of student responses to questions about the overall program.

  5. Technology in education: A guidebook for developing a science and math education support program

    SciTech Connect (OSTI)

    Wagner, C.L.

    1992-09-01

    Education is vital to survival and success in an increasingly technical world, and the quality of education is the responsibility of everyone students, teachers, parents, industry, and government. Any technical organization wanting to contribute to that success through its local education system can do so easily and effectively through careful planning. This report details that planning process and includes methods to (1) identify the interests, strengths, and resources of the technical organization; (2) identify the needs of the local education system; (3) interface with local school system administration, principals, and teachers; and (4) develop a unique plan to match the organization's strengths and resources with the needs of the school system. Following these getting started'' activities is the actual program that the Engineering Technology Division implemented in a local elementary school, including the curriculum, topics, and actual lesson plans used by technical personnel in the classroom. Finally, there are enrichment activities for teachers and students, suggestions for measuring the success of an education support program, and an overview of student responses to questions about the overall program.

  6. IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou

    E-Print Network [OSTI]

    Abdou, Mohamed

    chamber technology testing program in NIF involoving: criteria for evaluation to testing in ignition facility serves a critical role in chamber R&D test plans in order to reduce the risks for chamber technology testing in NIF might not be achievable because its integrated performance is evaluated

  7. Program Development

    SciTech Connect (OSTI)

    Atencio, Julian J.

    2014-05-01

    This presentation covers how to go about developing a human reliability program. In particular, it touches on conceptual thinking, raising awareness in an organization, the actions that go into developing a plan. It emphasizes evaluating all positions, eliminating positions from the pool due to mitigating factors, and keeping the process transparent. It lists components of the process and objectives in process development. It also touches on the role of leadership and the necessity for audit.

  8. Nuclear Technology Programs

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-10-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  9. Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  10. Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

    SciTech Connect (OSTI)

    Jon P. Christophersen; Ira Bloom; Edward V. Thomas; Kevin L. Gering; Gary L. Henriksen; Vincent S. Battaglia; David Howell

    2006-07-01

    The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.

  11. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-05-01

    Objective of DOE`s Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  12. Publications of the Fossil Energy Advanced Research and Technology Development Materials Program, April 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-01-01

    Objective of DOE's Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications, with focus on longer-term needs. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. Scope of the program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. Research conducted on the Program is divided among the following areas: (1) ceramics, (2) new alloys, (3) corrosion research, and (4) program development and technology transfer. This bibliography covers the period of April 1, 1992, through March 31, 1993, and is a supplement to previous bibliographies in this series. The publications listed are limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles.

  13. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  14. February 2000 Advanced Technology Program

    E-Print Network [OSTI]

    of Standards and Technology (NIST) is a cost-sharing program designed to partner the federal governmentFebruary 2000 Advanced Technology Program Information Infrastructure for Healthcare Focused Program: A Brief History ADADVANCEDANCED TECHNOLOGY PRTECHNOLOGY PROGRAMOGRAM NISTIR 6477 National Institute

  15. ECH Technology Development

    SciTech Connect (OSTI)

    Temkin, Richard

    2014-12-24

    Electron Cyclotron Heating (ECH) is needed for plasma heating, current drive, plasma stability control, and other applications in fusion energy sciences research. The program of fusion energy sciences supported by U. S. DOE, Office of Science, Fusion Energy Sciences relies on the development of ECH technology to meet the needs of several plasma devices working at the frontier of fusion energy sciences research. The largest operating ECH system in the world is at DIII-D, consisting of six 1 MW, 110 GHz gyrotrons capable of ten second pulsed operation, plus two newer gyrotrons. The ECH Technology Development research program investigated the options for upgrading the DIII-D 110 GHz ECH system. Options included extending present-day 1 MW technology to 1.3 – 1.5 MW power levels or developing an entirely new approach to achieve up to 2 MW of power per gyrotron. The research consisted of theoretical research and designs conducted by Communication and Power Industries of Palo Alto, CA working with MIT. Results of the study would be validated in a later phase by research on short pulse length gyrotrons at MIT and long pulse / cw gyrotrons in industry. This research follows a highly successful program of development that has led to the highly reliable, six megawatt ECH system at the DIII-D tokamak. Eventually, gyrotrons at the 1.5 megawatt to multi-megawatt power level will be needed for heating and current drive in large scale plasmas including ITER and DEMO.

  16. Technology Assistance Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

  17. Office of Technology Development`s Research, Development, Demonstration, Testing and Evaluation Mid-Year Program Review. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This document, Volume 2, presents brief summaries of programs being investigated at USDOE sites for waste processing, remedial action, underground storage tank remediation, and robotic applications in waste management.

  18. Robotics crosscutting program: Technology summary

    SciTech Connect (OSTI)

    1996-08-01

    The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies became evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.

  19. Pollution Prevention Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy (DOE) has established a national Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) Program for pollution prevention and waste minimization at its production plants During FY89/90 the Office of Environmental Restoration and Waste Management (EM), through the Office of Technology Development (OTD), established comprehensive, pollution prevention technical support programs to demonstrate new, environmentally-conscious technology for production processes. The RDDT&E program now entails collaborative efforts across DOE. The Pollution Prevention Program is currently supporting three major activities: The DOE/US Air Force Memorandum of Understanding Program is a collaborative effort to utilize the combined resources of DOE and the Department of Defense, eliminate duplication of effort in developing technologies, and to facilitate technology solutions aimed at reducing waste through process modification, material substitution or recycling. The Waste Component Recycle, Treatment and Disposal Integrated Demonstration (WeDID) will develop recycle, treatment, and disposal processes and associated technologies for use in the dismantlement of non-nuclear weapons components, to support US arms treaties and policies. This program will focus on meeting all security and regulatory requirements (with additional benefit to the commercial electronics industry). The Environmentally Conscious Manufacturing Integrated Demonstration (ECMID) will effectively implement ECM technologies that address both the needs of the DOE Complex and US electronics industry, and encourage strong interaction between DOE and US industry. The ECMID will also develop life cycle analysis tools that will aid decisionmakers in selecting the optimum process based on the tradeoffs between cost an environmental impact.

  20. Technology Innovation Program Advisory Board

    E-Print Network [OSTI]

    Technology Innovation Program Advisory Board 2011 Annual Report of the #12;#12;i 2011 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program March 2012 #12;ii For Information regarding the Technology

  1. Office of Technology Development FY 1993 program summary: Office of Research and Development, Office of Demonstration, Testing and Evaluation. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs are discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.

  2. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

  3. Marine & Hydrokinetic Technologies, Wind and Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and evaluate various technology types. Technology Development, Testing & Deployment Water Power Program projects support the marine and hydro- kinetic technology industry in its...

  4. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Program Funding Opportunities

    SciTech Connect (OSTI)

    2011-12-13

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) provides funding opportunities for advanced vehicle technology projects that are aimed at removing technical and cost barriers. Much of the funding available to the Vehicle Technologies Program is distributed to private firms, educational institutions, nonprofit organizations, state and local governments, Native American organizations, and individuals, through competitive solicitations. DOE is strongly committed to partnerships to help ensure the eventual market acceptance of the technologies being developed. New solicitations are announced regularly.

  6. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  7. Geothermal Technologies Program Overview - Peer Review Program

    SciTech Connect (OSTI)

    Milliken, JoAnn

    2011-06-06

    This Geothermal Technologies Program presentation was delivered on June 6, 2011 at a Program Peer Review meeting. It contains annual budget, Recovery Act, funding opportunities, upcoming program activities, and more.

  8. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect (OSTI)

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  9. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  10. Fossil Energy Advanced Research and Technology Development (AR TD) Materials Program semiannual progress report for the period ending September 30, 1991

    SciTech Connect (OSTI)

    Judkins, R.R.; Cole, N.C. (comps.)

    1992-04-01

    The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

  11. An examination of the extent and endurance of a technology-based staff development program on the epistemological, ontological, and methodological beliefs of high school chemistry teachers 

    E-Print Network [OSTI]

    Harper, Deena San

    2009-05-15

    The purpose of this qualitative, narrative study was to examine the extent and endurance of influence a technology-based professional development program had on the epistemological, ontological, and methodological beliefs ...

  12. Technology Entrepreneurship Program Real-world practice with real-world technologies

    E-Print Network [OSTI]

    Technology Entrepreneurship Program Real-world practice with real-world technologies What it's all about Pacific Northwest National Laboratory's (PNNL) Technology Entrepreneurship Program (TEP) provides university students with access to PNNL-developed available technologies. Laboratory staff work

  13. Emerging Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilofEnergy 1Emerging Technologies Program Pat

  14. Overview of U. S. Department of Energy Program in Industrial Energy Conservation Technology Development 

    E-Print Network [OSTI]

    Massey, R. G.

    1980-01-01

    The primary responsibility for Federal industrial energy conservation is in the Office of Industrial Programs which reports to the Assistant Secretary for Conservation and Solar Energy. The objectives of the Federal program are to: achieve maximum...

  15. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  16. Digital Technology and Culture Program

    E-Print Network [OSTI]

    Collins, Gary S.

    Digital Technology and Culture Program College of Arts and Sciences Degree Options Bachelor of Arts in Digital Technology and Culture Minors Digital Technology and Culture Program Strengths · Demonstrate competency with technology for designing and distributing digital works in various mediums. · Demonstrate

  17. AISI/DOE Technology Roadmap Program: Development of Cost-effective, Energy-efficient Steel Framing

    SciTech Connect (OSTI)

    Nader R. Elhajj

    2003-01-06

    Steel members in wall construction form a thermal bridge that interrupts the insulation layer of a wall. This causes higher rate of heat transfer by conduction through the wall framing than through other parts of the wall. One method to reduce the thermal bridging effect is to provide a break, such as insulating sheathing. A thermally efficient slit-web and stud was developed in this program to mitigate the conductivity of steel. The thermal performance of the slit-web stud was evaluated at Oak Ridge National Laboratory using hotbox testing. The thermal test results showed that the prototype slit-web stud performed 17% better than the solid-web stud, using R-13 fiber glass batts with exterior OSB sheathing and interior drywall. The structural behavior of this slit-web stud was evaluated in axial, bending, shear, shearwall, and stub-column tests. Test results indicated that the slitweb stud performed similarly or better than the solid-web stud in most structural performance characteristics investigated. Thus, the prototype slit-web stud has been shown to be thermally efficient, economiexecy viable, structurally sound, easily manufactured and usable in a range of residential installations.

  18. Overview of Evaluation Methods for R&D Programs: A Directory of Evaluation Methods Relevant to Technology Development Programs

    SciTech Connect (OSTI)

    Ruegg, R.; Jordan, G B.

    2007-03-01

    This document provides guidance for evaluators who conduct impact assessments to determine the “realized” economic benefits and costs, energy, environmental benefits, and other impacts of the Office of Energy Efficiency and Renewable Energy’s (EERE) R&D programs. The focus of this Guide is on realized outcomes or impacts of R&D programs actually experienced by American citizens, industry, and others.

  19. Business Development Executive (BDE) Program

    SciTech Connect (OSTI)

    Rice, E.J. "Woody"; Frederick, W. James

    2005-12-05

    The IPST BDE (Institute of Paper Science and Technology Business Development Executive) program was initiated in 1997 to make the paper industry better aware of the new manufacturing technologies being developed at IPST for the U.S. pulp and paper industry's use. In April 2000, the BDE program management and the 20 BDEs, all retired senior level industry manufacturing and research executives, were asked by Ms. Denise Swink of OIT at DOE to take the added responsibility of bringing DOE developed energy conservation technology to the paper industry. This project was funded by a DOE grant of $950,000.

  20. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits27, 2012Geothermal Program 2009-2015 with program

  1. Riverside Public Utilities- Energy Efficiency Technology Grant Program

    Broader source: Energy.gov [DOE]

    Riverside Public Utilities (RPU) offers two Energy Technology Grant Programs to help foster the development of innovative solutions to energy problems.  The Custom Energy Technology Grant is...

  2. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments

    SciTech Connect (OSTI)

    2010-12-01

    Fact sheet describing the Vehicle Technologies Program integrated portfolio of advanced vehicle and fuel research, development, demonstration, and deployment activities.

  3. Advanced Integrated Systems Technology Development

    E-Print Network [OSTI]

    2013-01-01

    Renewable Energy Technologies Transportation Advanced Integrated Systems Technology Development is the final report for the Advanced Integrated Systems Technology Development project (

  4. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  5. Post-Shred Materials Recovery Technology Development and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shred Materials Recovery Technology Development and Demonstration Post-Shred Materials Recovery Technology Development and Demonstration 2009 DOE Hydrogen Program and Vehicle...

  6. Solar Energy Technologies Program Newsletter - July 2009

    SciTech Connect (OSTI)

    2009-07-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  7. Solar Energy Technologies Program Newsletter - September 2009

    SciTech Connect (OSTI)

    2009-10-01

    This quarterly newsletter is intended for participants and stakeholders in the DOE Solar Program. The content includes features on technology development, market transformation, and policy analysis for solar. Highlights include solar industry updates, DOE funding opportunity announcements and awards, and national laboratory technology developments.

  8. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    2009-10-01

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  9. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    NONE

    2006-09-15

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  10. Technology Transfer Ombudsman Program | Department of Energy

    Office of Environmental Management (EM)

    Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

  11. Technology Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopment Technology Development OE supports a

  12. Thin polymer icemaker development and test program. Final report on technology

    SciTech Connect (OSTI)

    Leigh, R.W.

    1991-08-01

    We have constructed and tested a small device to produce ice in ice/water mixtures using a cold fluid as the heat sink. The device is a flexible heat exchanger constructed from a thin film of a suitable polymer. When filled with circulating liquid coolant the heat exchanger consists of an inflated series of parallel tubes; ice forms on the outside in complementary half cylinders. When the circulation is cut off, gravity drains the coolant and the static head of the water bath crushes the tubes, freeing them from the ice which floats to the surface. Brine circulation is then re-started and the cycle begins again. Here we report recent testing of this device: it makes ice readily under water and easily sheds the semi-cylinders of ice over many cycles of operation. It produces ice at a rate of 10 kg/m{sup 2}-hour. It offers substantial benefits in simplicity and reliability over mechanical harvester ice making systems, and the potential for significant improvements in energy efficiency compared to systems which use a re-heat cycle to harvest the ice. A reliable method of leak detection has been developed. The device should be of substantial value to systems where efficiency and reliability are at a premium, such as slush ice for district cooling.

  13. Clean Coal Technology Demonstration Program: Program update 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  14. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in...

  15. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quality. As a component of that effort, the CCRP-administered by the Office of Clean Coal and implemented by the National Energy Technology Laboratory (NETL)-is engaged in...

  16. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  17. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  18. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research, Development and Demonstration Plan Page 4 - 1 4.0 Systems Analysis The Fuel Cell Technologies Program (FCT Program) conducts a coordinated, comprehensive effort in...

  20. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  1. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-19

    This Order establishes training and certification requirements and career development programs under the Acquisition Career Development (ACD) Program for DOE and NNSA acquisition workforce. The acquisition workforce includes contracting, purchasing, personal property management, program management, Contracting Officers and Contracting Officer Representatives. The ACD Program implements the Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the objectives of Executive Order (E.O.) 129231, Federal Procurement Reform, dated 10-13-1994. This order cancels DOE O 361.1, Acquisition Career Development Program, dated 11-10-99, AND Acquisition Letter 2003-05, Personal Property Management Career Development, Training, and Certification Program, dated 9-10-03. Cancels DOE O 361.1 Chg 2. Canceled by DOE O 361.1B.

  2. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development *

  3. Transaction Costs, Information Technology and Development

    E-Print Network [OSTI]

    Singh, Nirvikar

    2004-01-01

    Transaction Costs, Information Technology and Development 1.Transaction Costs, Information Technology and DevelopmentTransaction Costs, Information Technology and Development

  4. Graduate Program Game Research Intro Game Technology

    E-Print Network [OSTI]

    Volk, Anja Fleischer

    1032015 1 Graduate Program Game Research Intro Game Technology Remco Veltkamp 16 February 2015 Technology · incl. interaction computing & media technology Software Systems · incl. software technology of Science (BSc) · Computer Science · Game Technology · Information Science Master of Science (MSc

  5. Networking and Information Technology Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Research and Development (NITRD) Program, as required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of...

  6. Global Nuclear Energy Partnership Technology Development Plan

    SciTech Connect (OSTI)

    David J. Hill

    2007-07-01

    This plan describes the GNEP Technology Demonstration Program (GNEP-TDP). It has been prepared to guide the development of integrated plans and budgets for realizing the domestic portion of the GNEP vision as well as providing the basis for developing international cooperation. Beginning with the GNEP overall goals, it describes the basic technical objectives for each element of the program, summarizes the technology status and identifies the areas of greatest technical risk. On this basis a proposed technology demonstration program is described that can deliver the required information for a Secretarial decision in the summer of 2008 and support construction of facilities.

  7. Biomass Program 2007 Accomplishments - Other Technologies

    SciTech Connect (OSTI)

    none,

    2009-10-28

    This document details the accomplishments of the Biomass Program Biodiesel and Other Technologies Platform in 2007.

  8. Building Technologies Program Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGET AT-A-GLANCE Buildings use more than 70% of Renewable

  9. Graphite Technology Development Plan

    SciTech Connect (OSTI)

    W. Windes; T. Burchell; M.Carroll

    2010-10-01

    The Next Generation Nuclear Plant (NGNP) will be a helium-cooled High Temperature Gas Reactor (HTGR) with a large graphite core. Graphite physically contains the fuel and comprises the majority of the core volume. Graphite has been used effectively as a structural and moderator material in both research and commercial high-temperature gas-cooled reactors. This development has resulted in graphite being established as a viable structural material for HTGRs. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermomechanical design of the structural graphite in NGNP is based. This Technology Development Plan outlines the research and development (R&D) activities and associated rationale necessary to qualify nuclear grade graphite for use within the NGNP reactor.

  10. Technology Assistance Program Growing technology-based business with free service

    E-Print Network [OSTI]

    Technology Assistance Program Growing technology-based business with free service Economic Development Is your small, technology-based business faced with a specific challenge, but lacking scientist or engineer help your company? If the answer is yes, the Technology Assistance Program (TAP

  11. Emerging Technologies Program Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Emerging Technologies Program Overview - 2013 BTO...

  12. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  13. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    SciTech Connect (OSTI)

    Christina B. Behr-Andres

    2001-10-01

    The objective of the Environmental Technologies Acceptance (ETA) Program at the Energy & Environmental Research Center (EERC) is to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As a result of contract changes approved by National Energy Technology Laboratory (NETL) representatives to incorporate activities previously conducted under another NETL agreement, there are now an additional task and an expansion of activities within the stated scope of work of the ETA program. As shown in Table 1, this cooperative agreement, funded by NETL (No. DE-FC26-00NT40840), consists of four tasks: Technology Selection, Technology Development, Technology Verification, and System Engineering. As currently conceived, ETA will address the needs of as many technologies as appropriate under its current 3-year term. There are currently four technical subtasks: Long-Term Stewardship Initiative at the Mound Plant Site; Photocatalysis of Mercury-Contaminated Water; Subcritical Water Treatment of PCB and Metal-Contaminated Paint Waste; and Vegetative Covers for Low-Level Waste Repositories. This report covers activities during the second six months of the three-year ETA program.

  14. SRNL LDRD - Developed Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein1-0845*RV6 Commercial value of4Developed Technologies

  15. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology GATE: Energy Efficient Vehicles for Sustainable Mobility...

  16. OE Power Systems Engineering Research & Development Program Partnershi...

    Office of Environmental Management (EM)

    Protection Directorate to coordinate infrastructure security development; the Hydrogen, Fuel Cells & Infrastructure Technology Program and the Industrial and Buildings...

  17. Heavy Vehicle Technologies Program Retrospective and Outlook

    SciTech Connect (OSTI)

    James J. Eberhardt

    1999-04-10

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions.

  18. Sandia Energy - Conventional Water Power: Technology Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Technology Development Conventional Water Power: Technology...

  19. Graduate Program Game Research Intro Game Technology

    E-Print Network [OSTI]

    Volk, Anja Fleischer

    2962014 1 Graduate Program Game Research Intro Game Technology 16 June 2014 Artificial Intelligence (AI) · incl. intelligent agents, data mining, & decision support systems Interaction Technology · incl. interaction computing & media technology Software Systems · incl. software technology & software production

  20. Development of MP3 Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of MP3 Technologies Impact of Basic Research on Innovation - Edited excerpts from American Competitiveness Initiative, February 2006...

  1. Sun Academic Developer Program

    E-Print Network [OSTI]

    Davenport, James

    Sun Academic Developer Program Kim Jones Vice President Government, Education & Health Care Sun Microsystems, Inc. FY08 Campus Ambassador Programme Your Name Here Sun Microsystems, Inc. #12;2 FY08 Campus Ambassador Programme #12;3 Sun Academic Developer Initiative On-Campus Events and Contests Open Source

  2. NETL Coal to Hydrogen Program National Energy Technology Laboratory

    E-Print Network [OSTI]

    /Hydrogen Production CCPI Technology Demonstrations (50/50) · Clear Skies · Reduced Carbon Intensity Clean CoalNETL Coal to Hydrogen Program National Energy Technology Laboratory Hydrogen Separation Laurel, MD Nov. 2007 8 Office of Fossil Energy Coal RD&D Program Core R&D Technology Development

  3. Developing the Business of Technology

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    -a-Company Find-a-Company vs. #12;Business Model What Combination of Business Activities? Research ProductDeveloping the Business of Technology #12;Developing the Business of Technology Universities Business Development Year 1 Year 2 Year 3 Year 4 Product Development Business Development Naïve Planning

  4. Technology Transfer Ombudsman Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report15 MeetingDevelopment Technology Development

  5. Clean Coal Technology Demonstration Program. Program update 1995

    SciTech Connect (OSTI)

    1996-04-01

    This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

  6. Geothermal Technologies Program Annual Peer Review Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review presentation by Doug Hollett, Program Manager, Geothermal Technologies Program gtp2012peerreviewdhollett.pdf More Documents & Publications Stanford Geothermal...

  7. Information Technology Tools for Multifamily Building Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Program Multifamily Low-Income Peer Exchange Call: Information Technology Tools for Multifamily Building Programs, Call Slides and Discussion Summary, March 15, 2012. Call Slides...

  8. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Hydrogen Codes &

    E-Print Network [OSTI]

    safety standard as a regulation. 30 1Q, 2004With industry and code officials, develop templates and NFPA to develop first-order continuing education for code officials. 3 Date (FY Technologies Program Hydrogen Codes & Standards #12;Hydrogen Codes & Standards: Goal & Objectives Goal

  9. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-06-13

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Change 2 approved 06-13-03. Cancels DOE O 361.1 Chg 1. Canceled by DOE O 361.1A.

  10. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Cancels DOE O 361.1. Canceled by DOE O 361.1 Chg 2.

  11. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    SciTech Connect (OSTI)

    Vohra, Yogesh, K.

    2009-10-28

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductors under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.

  12. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  13. Solar Energy Technologies Program: Market Transformation

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram

  14. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A.P.Evans; K.E. Redinger; M.J. Holmes

    1998-04-01

    The objective of the Advanced Emissions Control Development Program (AECDP) is to develop practical, cost-effective strategies for reducing the emissions of air toxics from coal-fired boilers. Ideally, the project aim is to effectively control air toxic emissions through the use of conventional flue gas cleanup equipment such as electrostatic precipitators (ESPS), fabric filters (baghouse), and wet flue gas desulfurization. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate and hydrogen chloride. Following the construction and evaluation of a representative air toxics test facility in Phase I, Phase II focused on the evaluation of mercury and several other air toxics emissions. The AECDP is jointly funded by the United States Department of Energy's Federal Energy Technology Center (DOE), the Ohio Coal Development Office within the Ohio Department of Development (oCDO), and Babcock& Wilcox-a McDermott company (B&W).

  15. Arts Technology Program Program Advisor: Mrs. Nevon Bruschke

    E-Print Network [OSTI]

    Capecchi, Mario R.

    in an interdisciplinary environment with the visual arts and with technology. The student plans a course of studyArts Technology Program Program Advisor: Mrs. Nevon Bruschke 161 ART 801-581-8677 n.bruschke@utah.edu www.art.utah.edu Minor. Interdisciplinary minor in Arts and Technology Certificate. Arts Technology

  16. ELECTRIC INFRASTRUCTURE TECHNOLOGY, TRAINING, AND ASSESSMENT PROGRAM

    SciTech Connect (OSTI)

    TREMEL, CHARLES L

    2007-06-28

    The objective of this Electric Infrastructure Technology, Training and Assessment Program was to enhance the reliability of electricity delivery through engineering integration of real-time technologies for wide-area applications enabling timely monitoring and management of grid operations. The technologies developed, integrated, tested and demonstrated will be incorporated into grid operations to assist in the implementation of performance-based protection/preventive measures into the existing electric utility infrastructure. This proactive approach will provide benefits of reduced cost and improved reliability over the typical schedule-based and as needed maintenance programs currently performed by utilities. Historically, utilities have relied on maintenance and inspection programs to diagnose equipment failures and have used the limited circuit isolation devices, such as distribution main circuit breakers to identify abnormal system performance. With respect to reliable problem identification, customer calls to utility service centers are often the sole means for utilities to identify problem occurrences and determine restoration methodologies. Furthermore, monitoring and control functions of equipment and circuits are lacking; thus preventing timely detection and response to customer outages. Finally, the two-way flow of real-time system information is deficient, depriving decision makers of key information required to effectively manage and control current electric grid demands to provide reliable customer service in abnormal situations. This Program focused on advancing technologies and the engineering integration required to incorporate them into the electric grid operations to enhance electrical system reliability and reduce utility operating costs.

  17. Rocky Flats Compliance Program; Technology summary

    SciTech Connect (OSTI)

    1994-02-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) (OTD) as an element of Environmental Restoration and Waste Management (EM) in November 1989. The primary objective of the Office of Technology Development, Rocky Flats Compliance Program (RFCP), is to develop altemative treatment technologies for mixed low-level waste (wastes containing both hazardous and radioactive components) to use in bringing the Rocky Flats Plant (RFP) into compliance with Federal and state regulations and agreements. Approximately 48,000 cubic feet of untreated low-level mixed waste, for which treatment has not been specified, are stored at the RFP. The cleanup of the Rocky Flats site is driven by agreements between DOE, the Environmental Protection Agency (EPA), and the Colorado Department of Health (CDH). Under these agreements, a Comprehensive Treatment and Management Plan (CTMP) was drafted to outline the mechanisms by which RFP will achieve compliance with the regulations and agreements. This document describes DOE`s strategy to treat low-level mixed waste to meet Land Disposal Restrictions and sets specific milestones related to the regulatory aspects of technology development. These milestones detail schedules for the development of technologies to treat all of the mixed wastes at the RFP. Under the Federal Facilities Compliance Act (FFCA), the CTMP has been incorporated into Rocky Flats Plant Conceptual Site Treatment Plan (CSTP). The CSTP will become the Rocky Flats Plant site Treatment Plan in 1995 and will supersede the CTMP.

  18. 2015 Building Technologies Office Program Peer Review Report...

    Office of Environmental Management (EM)

    Building Technologies Office Program Peer Review Report 2015 Building Technologies Office Program Peer Review Report The 2015 Building Technologies Office Program Peer Review...

  19. 2014 Building Technologies Office Program Peer Review Report...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Building Technologies Office Program Peer Review Report 2014 Building Technologies Office Program Peer Review Report The 2014 Building Technologies Office Program Peer Review...

  20. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

  1. Clean Coal Technology Demonstration Program: Program Update 1999

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2000-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  2. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2001-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  3. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  4. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  5. Safeguards and Security Technology Development Directory. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

  6. Vehicle Technologies Office Merit Review 2014: Development and...

    Broader source: Energy.gov (indexed) [DOE]

    Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and demonstration of...

  7. Panel Views 'Big Step Increase' in Technology Development as...

    Energy Savers [EERE]

    from EM leadership's charge - how to enhance innovation and exploit the state of the art - was the topic of the EM Technology Development Program discussion. EM Senior...

  8. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-10

    The Order implements the Department's Acquisition Career Development program, mandatory for professionals in the GS-1102 and 1105 occupational procurement series, as well as others with significant procurement responsibilities. The Order also ensures that members of the acquisition workforce are aware of and adhere to the mandatory training and certification requirements. Cancels Acquisition Letter 98-06. Canceled by DOE O 361.1 Chg 1.

  9. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  10. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    SciTech Connect (OSTI)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for production resistance spot welding (RSW). The necessary downslope times (2-10s) are prohibited by the welding rates currently used today (up to 60 welds/s). Based on the observations made in this study, spike tempering appears to be the best compromise of microstructural improvement and short cycle time. It is recommended that future work be focused on exploring the robustness of this approach, and its applicability for a wider range of steels.

  11. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies...

  12. Program development fund: FY 1987

    SciTech Connect (OSTI)

    Not Available

    1989-03-01

    It is the objective of the Fund to encourage innovative research to maintain the Laboratory's position at the forefront of science. Funds are used to explore new ideas and concepts that may potentially develop into new directions of research for the Laboratory and that are consistent with the major needs, overall goals, and mission of the Laboratory and the DOE. The types of projects eligible for support from PDF include: work in forefront areas of science and technology for the primary purpose of enriching Laboratory research and development capabilities; advanced study of new hypotheses, new experimental concepts, or innovative approaches to energy problems; experiments directed toward ''proof of principle'' or early determination of the utility of a new concept; and conception, design analyses, and development of experimental devices, instruments, or components. This report is a review of these research programs.

  13. Clean Coal Technology Programs: Program Update 2003 (Volume 1)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  14. ADVANCED SORBENT DEVELOPMENT PROGRAM

    SciTech Connect (OSTI)

    Unknown

    1998-06-16

    The overall objective of this program was to develop regenerable sorbents for use in the temperature range of 343 to 538 C (650 to 1000 F) to remove hydrogen sulfide (H{sub 2}S) from coal-derived fuel gases in a fluidized-bed reactor. The goal was to develop sorbents that are capable of reducing the H{sub 2}S level in the fuel gas to less than 20 ppmv in the specified temperature range and pressures in the range of 1 to 20 atmospheres, with chemical characteristics that permit cyclic regeneration over many cycles without a drastic loss of activity, as well as physical characteristics that are compatible with the fluidized bed application.

  15. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  16. Clean coal technology: Export finance programs

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

  17. Compressed Air Storage Strategies; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Technologies Program Suggested Actions * Review the plant's compressed air demand patterns to determine whether storage would be beneficial. * Examine the compressed...

  18. Furnace Pressure Controllers; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 * September 2005 Industrial Technologies Program Furnace Pressure Controllers Furnace draft, or negative pres- sure, is created in fuel-fired furnaces when high temperature gases...

  19. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  20. 2015 Middle School Summer Engineering Technology Program

    E-Print Network [OSTI]

    Fernandez, Eduardo

    2015 Middle School Summer Engineering Technology Program Fundamentals of Engineering Coordinator · Promotion of critical thinking through engineering activities · Team building and competitive activities

  1. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  2. Bioenergy Technologies Office Program Management Review

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office will be hosting its biennial Program Management Peer Review on June 25, 2015 at the Walter E. Washington Convention Center.

  3. Geothermal Technologies Program Fiscal Year 2013 Budget Request Presentation

    SciTech Connect (OSTI)

    DOE

    2012-03-13

    Geothermal Technologies Program fiscal year 2103 budget request presentation by Doug Hollett, Program Manager.

  4. Immobilization needs and technology programs

    SciTech Connect (OSTI)

    Gray, L.W.; Kan, T.; Shaw, H.; Armantrout, G.

    1995-12-11

    In the aftermath of the Cold War, the US and Russia agreed to large reductions in nuclear weapons. To aid in the selection of long-term management options, DOE has undertaken a multifaceted study to select options for storage and disposition of plutonium in keeping with US policy that plutonium must be subjected to the highest standards of safety, security, and accountability. One alternative being considered is immobilization. To arrive at a suitable immobilization form, we first reviewed published information on high-level waste immobilization technologies and identified 72 possible plutonium immobilization forms to be prescreened. Surviving forms were further screened using multi-attribute utility analysis to determine the most promising technology families. Promising immobilization families were further evaluated to identify chemical, engineering, environmental, safety, and health problems that remain to be solved prior to making technical decisions as to the viability of using the form for long- term disposition of plutonium. From this evaluation, a detailed research and development plan has been developed to provide answers to these remaining questions.

  5. Development and Implementation of Degree Programs in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt035ting2011p.pdf More Documents & Publications Development and Implementation of Degree...

  6. Vehicle Technologies Program Awards and Patents

    SciTech Connect (OSTI)

    2011-12-13

    Award-winning technologies and processes are hallmarks of the programs funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and industrial partners. Awards, patents, and other recognition validate the products of research undertaken as part of the Vehicle Technologies Program.

  7. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species, hydrogen chloride and hydrogen fluoride.

  8. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    M. J. Holmes

    1998-12-03

    McDermott Technology, Inc. (MTI) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using the Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and hydrogen chloride and hydrogen fluoride.

  9. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  10. Fuel Cell Technologies Program Newsletter

    SciTech Connect (OSTI)

    2012-04-26

    This monthly newsletter highlights program news, funding opportunities, workshops, events, and recent publications.

  11. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  12. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  13. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy...

  14. HTGR generic technology program. Semiannual report ending March 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the first half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an MEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbine and process heat plants.

  15. AFCI Safeguards Enhancement Study: Technology Development Roadmap

    SciTech Connect (OSTI)

    Smith, Leon E.; Dougan, A.; Tobin, Stephen; Cipiti, B.; Ehinger, Michael H.; Bakel, A. J.; Bean, Robert; Grate, Jay W.; Santi, P.; Bryan, Steven; Kinlaw, M. T.; Schwantes, Jon M.; Burr, Tom; Lehn, Scott A.; Tolk, K.; Chichester, David; Menlove, H.; Vo, D.; Duckworth, Douglas C.; Merkle, P.; Wang, T. F.; Duran, F.; Nakae, L.; Warren, Glen A.; Friedrich, S.; Rabin, M.

    2008-12-31

    The Advanced Fuel Cycle Initiative (AFCI) Safeguards Campaign aims to develop safeguards technologies and processes that will significantly reduce the risk of proliferation in the U.S. nuclear fuel cycle of tomorrow. The Safeguards Enhancement Study was chartered with identifying promising research and development (R&D) directions over timescales both near-term and long-term, and under safeguards oversight both domestic and international. This technology development roadmap documents recognized gaps and needs in the safeguarding of nuclear fuel cycles, and outlines corresponding performance targets for each of those needs. Drawing on the collective expertise of technologists and user-representatives, a list of over 30 technologies that have the potential to meet those needs was developed, along with brief summaries of each candidate technology. Each summary describes the potential impact of that technology, key research questions to be addressed, and prospective development milestones that could lead to a definitive viability or performance assessment. Important programmatic linkages between U.S. agencies and offices are also described, reflecting the emergence of several safeguards R&D programs in the U.S. and the reinvigoration of nuclear fuel cycles across the globe.

  16. Pompano subsea development -- Testing program

    SciTech Connect (OSTI)

    Nelson, R.; Berger, R.; Tyer, C.

    1996-12-31

    System reliability is essential for the economic success of any subsea oil and gas development. Testing programs can be developed to prove system reliability while still adhering to cost and schedule constraints. This paper describes a three-tiered equipment testing program that was employed for the Pompano Phase 2 subsea system. Program objectives, test descriptions, procedure development and test execution are discussed in detail. Lessons learned throughout the tests are also presented.

  17. Technology and Engineering Development Facility | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology & Engineering Development Facility September 25, 2013 A week ago, the Office of Project Assessment held a review of the TEDF (Technology and Engineering Development...

  18. DIesel Emission Control Technology Developments | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DIesel Emission Control Technology Developments DIesel Emission Control Technology Developments 2005deerandreoni.pdf More Documents & Publications Cleaning Up Diesel Engines...

  19. Poster on Subsurface Technology & Engineering Research, Development...

    Office of Environmental Management (EM)

    Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) Poster on Subsurface Technology & Engineering Research, Development, and...

  20. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development Merit Review This document is a summary of the evaluation and comments provided by the...

  1. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

  2. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  3. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  4. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  5. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect (OSTI)

    Doherty, M.P.

    1993-05-01

    This paper presents the status of technology program planning to develop those Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies with significant development heritage: ion electric propulsion and the SP-100 space nuclear power technologies. Detailed plans are presented for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  6. Advanced Thermionic Technology Program: summary report. Volume 2. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-10-01

    This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This Program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. 30 refs., 83 figs.

  7. Building Technologies Program Planning Summary

    Energy Savers [EERE]

    of commercially available but underutilized technologies, lighting controls, expert lighting design, and integrated systems. * Through the EnergySmart Schools subprogram, BTP...

  8. ENERGY TECHNOLOGY AND SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Chen, Yang-Yuan

    ENERGY TECHNOLOGY AND SUSTAINABLE DEVELOPMENT #12; 1 9/8 2 9/15 3 9/22 LED : 4 9/29 5 10 Boyle Published : OXFORD 2004 2. Renewable Energy : Its physics, engineering, environmental impacts, economics & planning 3rd edition · Editor: Bent Sorensen Published : ELSEVIER 2004 3. Sustainable

  9. Geothermal Technologies Program 2011 Peer Review Report

    SciTech Connect (OSTI)

    Hollett, Douglas; Stillman, Greg

    2011-06-01

    On June 6-10, 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (GTP or the Program) conducted its annual program peer review in Bethesda, Maryland. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the program and is a forum for feedback and recommendations on future program planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the Program and to assess progress made against stated objectives.

  10. MFRC Training Development & Delivery Program - Bloodstain & Toxicology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRC Training Development & Delivery Program - Bloodstain & Toxicology DESCRIPTION: The Midwest Forensics Resource Center (MFRC) Training Development and Delivery Program increases...

  11. Technology development life cycle processes.

    SciTech Connect (OSTI)

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  12. Technology development productivity : case studies in technology transition

    E-Print Network [OSTI]

    Taplett, Amanda Kingston

    2007-01-01

    Development of new technology is critical to the growth and success of technology-driven companies. New technology is generated in a number of ways, one of the most important being the company's own internal research and ...

  13. Appendix J - GPRA06 vehicle technologies program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target market for the Office of FreedomCAR and Vehicle Technologies (FCVT) program include light vehicles (cars and light trucks) and heavy vehicles (trucks more than 10,000 pounds Gross Vehicle Weight).

  14. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  15. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating the performance and...

  16. Technology development activities supporting tank waste remediation

    SciTech Connect (OSTI)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  17. Vehicle Technologies Program Educational Activities

    SciTech Connect (OSTI)

    2011-12-13

    Description of educational activities including: EcoCAR2: Plugging In to the Future, EcoCAR: The NeXt Challenge, Green Racing, Automotive X Prize, Graduate Technology Automotive Education (GATE), and Hydrogen Education.

  18. Bioenergy Feedstock Development Program Status Report

    SciTech Connect (OSTI)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  19. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  20. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  1. Technology development needs summary, FY 1995

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Historic activities of DOE during the period of nuclear weapons development, and disposal practices of that time, resulted in the discharge of chemical and radioactive materials to the environment at many DOE facilities and sites. DOE has now focused a major technical effort on mitigating the effects of those discharges through an environmental restoration program. Since this could lead to prohibitive costs if conventional technology is applied for remedial action, a national program will be initiated to develop and demonstrate faster, better, cheaper, and safer means of restoring the DOE sites to conditions that will meet state and federal environment regulations. Key elements of the initiative are the Integrated Programs and Integrated Demonstrations, which work together to identify possible solutions to major environmental problems. Needed statements are given for the following programs: mixed waste landfill, uranium in soils, VOC-arid, decontamination and decommissioning of facilities, buried waste, characterization/monitoring/sensor technology, mixed waste, in situ remediation, efficient separations/processing, minimum additive waste stabilization, supercritical water oxidation. A section on how to get involved is included.

  2. DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels and Lubricants DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants Merit review of DOE Vehicle Technologies Program research efforts...

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  5. Conventional Hydropower Technologies, Wind And Water Power Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US...

  6. Fusion Nuclear Science and Technology Program - Status and Plans...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research Fusion Nuclear Science and Technology Program - Status and Plans for Tritium Research...

  7. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating...

    Office of Scientific and Technical Information (OSTI)

    AISDOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet Citation Details In-Document Search Title: AISDOE Technology Roadmap Program: Strip...

  8. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  9. 2015 Middle School Summer Engineering Technology Program

    E-Print Network [OSTI]

    Fernandez, Eduardo

    2015 Middle School Summer Engineering Technology Program Lego Robot Coordinator: Ali Zilouchian, Ph of the course, students will be placed into teams. Through the course of the week each team will design, build, and program a Lego sumo-bot. On the last day of the course, each team's robot will compete in the Sumo

  10. Water Power Program: Marine and Hydrokinetic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  11. Portfolio evaluation of advanced coal technology : research, development, and demonstration

    E-Print Network [OSTI]

    Naga-Jones, Ayaka

    2005-01-01

    This paper evaluates the advanced coal technology research, development and demonstration programs at the U.S. Department of Energy since the 1970s. The evaluation is conducted from a portfolio point of view and derives ...

  12. Geothermal Technologies Program 2012 Peer Review Presentation by Doug Hollett

    SciTech Connect (OSTI)

    Geothermal Technologies Program

    2012-05-07

    Geothermal Technologies Program 2012 Peer Review slide presentation by Doug Hollett, Program Manager, on May 7, 2012.

  13. Appropriate Technology Small Grants Program evaluation. Volume II

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    The scope of this study included the selection of a random sample of 90 Appropriate Technology grant projects for review, which would ensure an overall, objective analysis of the Program. In addition, the statement of work requested that a non-random selection of 20 grantees be developed. The non-random projects would be illustrated through case studies and would include examples of some of the Program's most successful projects. The study was to provide the Department with data to be used in preparing a report to Congress and the President containing the following: (1) an assessment of how well the Program achieved its objectives; (2) an assessment of how well the Program stimulated the overall use of appropriate technologies in various markets; (3) an overall energy savings impact of the Appropriate Technology Program, as well as other direct and indirect Program impacts including new technologies, products, devices, businesses, jobs, etc., developed as a result of the Program; (4) case studies of the 20 most successful grants and their actual or potential individual energy savings and other direct and indirect impacts; and (5) an identification and analyses of the factors that contributed to successful and unsuccessful grants, with recommendations for improvement of other similar governmental and non-governmental programs.

  14. Research & Development Roadmap: Emerging Water Heating Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue...

  15. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies 2011 Annual Merit Review Results Report - Power Electronics and Electrical Machines Technologies DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

  16. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  17. Geothermal Technologies Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy Geothermal Technologies Office Releases

  18. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  19. PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant

    E-Print Network [OSTI]

    PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

  20. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Cell Technologies

  1. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  2. Appendix I - GPRA06 solar energy technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This appendix provides detailed information on the assumptions and methods employed to estimate the benefits of EERE’s Solar Energy Technologies Program. The benefits analysis for the Solar Program utilized both NEMS and MARKAL as the analytical tools for estimating the Program’s benefits. As will be discussed below, a number of assumptions and structural modifications to the models were made in order to represent the suite of solar technologies funded by the program as accurately as possible (Photovoltaics, Concentrating Solar Power and Solar Water Heating). Many of the assumptions used in the FY06 analysis are the same as or similar to those employed in the FY05 analysis; however, two key changes are important to highlight up-front. First, the AEO2004 analysis used a new set of reference case assumptions with respect to photovoltaic technology cost reductions. The new sets of reference case assumptions are very similar to the Solar Program’s targets for PV. This shift in assumptions necessitated developing a new approach for estimating the baseline (i.e., no program) input assumptions for PV. Second, the FY06 analysis included CSP technology benefits – CSP benefits were not included in the FY05 analysis.

  3. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  4. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01

    Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

  5. Geothermal Technologies Program FY 2012 Budget Request Briefing

    SciTech Connect (OSTI)

    JoAnn Milliken, GTP

    2011-03-08

    Geothermal Technologies Program fiscal year 2012 budget request PowerPoint presentation, March 8, 2011.

  6. Nuclear electric propulsion for planetary science missions: NASA technology program planning

    SciTech Connect (OSTI)

    Doherty, M.P. (NASA Lewis Research Center, 21000 Brookpark Rd., Cleveland, Ohio 44135 (United States))

    1993-01-10

    This paper presents the status of technology program planning to achieve readiness of Nuclear Electric Propulsion technologies needed to meet the advanced propulsion system requirements for planetary science missions in the next century. The technology program planning is based upon technologies of significant maturity: ion electric propulsion and the SP-100 space nulcear power technologies. Detailed plans are presented herein for the required ion electric propulsion technology development and demonstration. Closer coordination between space nuclear power and space electric propulsion technology programs is a necessity as technology plans are being further refined in light of NEP concept definition and possible early NEP flight activities.

  7. Project Management Career Development Program | Department of...

    Office of Environmental Management (EM)

    You are here Home Operational Management Certifications and Professional Development Project Management Career Development Program Project Management Career Development...

  8. US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing

    E-Print Network [OSTI]

    Lee, Dongwon

    US DOE Sponsored Graduate Automotive Technology Education (GATE) Program at Penn State Emphasizing in the automotive industry and academia. Develop relationships between GATE students, faculty, employers

  9. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov FUEL CELL TECHNOLOGIES PROGRAM DOD-DOE Workshop: Shipboard APUs Overview 3292011 Dr. Sunita Satyapal Program Manager F l C ll T h l i P Fuel Cell Technologies Program U.S....

  10. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect (OSTI)

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  11. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect (OSTI)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  12. Waste Processing Annual Technology Development Report 2007

    Office of Environmental Management (EM)

    Development Report 2007 SRNS-STI-2008-00040 United States Department of Energy Waste Processing Annual Technology Development Report 2007 Prepared and edited by S. R. Bush...

  13. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect (OSTI)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  14. FUEL CELL TECHNOLOGIES PROGRAM Small Business

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

  15. FUEL CELL TECHNOLOGIES PROGRAM Small Business

    E-Print Network [OSTI]

    FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Fuel up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation compression at fueling stations. However in the short term, EHCs can be used to compress hydro

  16. Building Technologies Program Vision, Mission, and Goals

    SciTech Connect (OSTI)

    2011-12-15

    The Vision, Mission, and Goals of the Building Technologies Program (BTP) focus on short term energy efficiency outcomes such as improved economic environment, enhanced comfort, and affordability that collectively benefit our nation. Long-term goals focus on helping secure our nation's energy independence.

  17. 2015 Middle School Summer Engineering Technology Program

    E-Print Network [OSTI]

    Fernandez, Eduardo

    arm in a competition Wednesday Ocean Energy : Current, Tidal, and Wave Energy · Design a wave and wind energy harvesting surface vehicle · Tour of Ocean Energy lab · Build a wind and wave energy harvesting2015 Middle School Summer Engineering Technology Program Introduction to Ocean Engineering FAU Sea

  18. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  19. Nationwide: Southeast Propane Autogas Development Program Brings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the...

  20. Bioremediation Education Science and Technology (BEST) Program Annual Report 1999

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2000-07-01

    The Bioremediation, Education, Science and Technology (BEST) partnership provides a sustainable and contemporary approach to developing new bioremedial technologies for US Department of Defense (DoD) priority contaminants while increasing the representation of underrepresented minorities and women in an exciting new biotechnical field. This comprehensive and innovative bioremediation education program provides under-represented groups with a cross-disciplinary bioremediation cirruculum and financial support, coupled with relevant training experiences at advanced research laboratories and field sites. These programs are designed to provide a stream of highly trained minority and women professionals to meet national environmental needs.

  1. Advanced Electric Traction System Technology Development

    SciTech Connect (OSTI)

    Anderson, Iver

    2011-01-14

    As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

  2. U.S. Department of Energy's Industrial Technologies Program and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Brown, S. A.

    2011-01-01

    The U.S. Department of Energy's Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy...

  3. Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

  4. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  5. Rethinking the design paradigm for university technology projects in international development

    E-Print Network [OSTI]

    Lesniewski, Victor Adam

    2015-01-01

    Since the appropriate technology movement of the 1970s, technology and engineering from developed countries have played a role in international development. In recent years, universities have created graduate-level programs ...

  6. Developing Effluent Analysis Technologies to Support Nonproliferation Initiatives, Arms Control and Nonproliferation Technologies, Third quarter 1995

    SciTech Connect (OSTI)

    Schubert, S A; Staehle, G; Alonzo, G M [eds.] [eds.

    1995-01-01

    This issue provides an overview of the Effluent Research Program of the DOE Office of Research and Development, highlighting a number of representative projects within this program in support of nonproliferation initiatives. Technologies reported include portable instruments for on-site inspections, standoff detectors, fieldable, real-time instruments, field collection techniques, and ultrasensitive laboratory techniques.

  7. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  8. DOE Releases Climate Change Technology Program Strategic Plan...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate Change Technology Program (CCTP) Strategic Plan, which details measures to accelerate...

  9. Vehicle Technologies Office Merit Review 2013: KIVA Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Fuel Cell Technologies Program Overview DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation...

  11. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2012...

  12. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    3 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace057koeberlein2013...

  13. Office of Building Technology, State and Community Programs Strategic Plan

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    This is the strategic plan for the Building Technology Program in 1998. This describes trends in the BTP program and projects goals for the future.

  14. Vehicle Technologies Office Merit Review 2015: SuperTruck Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review 2015: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office...

  15. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  16. Bringing you a prosperous future where energy is clean, abundant, reliable and affordable Industrial Technologies Program

    E-Print Network [OSTI]

    Beckermann, Christoph

    Industrial Technologies Program U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and stresses that develop during the heating and quenching processes. The proposed project will develop Technologies Program A Strong Energy Portfolio for a Strong America Energy efficiency and clean, renewable

  17. Building technologies program. 1995 annual report

    SciTech Connect (OSTI)

    Selkowitz, S.E.

    1996-05-01

    The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

  18. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  19. Long-Term Stewardship Program Science and Technology Requirements

    SciTech Connect (OSTI)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  20. Technology Development and Field Trials of EGS Drilling Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

  1. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Office of Environmental Management (EM)

    Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the Multi-Year...

  2. History of nuclear technology development in Japan

    SciTech Connect (OSTI)

    Yamashita, Kiyonobu

    2015-04-29

    Nuclear technology development in Japan has been carried out based on the Atomic Energy Basic Act brought into effect in 1955. The nuclear technology development is limited to peaceful purposes and made in a principle to assure their safety. Now, the technologies for research reactors radiation application and nuclear power plants are delivered to developing countries. First of all, safety measures of nuclear power plants (NPPs) will be enhanced based on lesson learned from TEPCO Fukushima Daiichi NPS accident.

  3. Wind Energy Career Development Program

    SciTech Connect (OSTI)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  4. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

    2007-03-01

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

  5. Native American Training Program in Petroleum Technology

    SciTech Connect (OSTI)

    Ho, Winifred M.; Kokesh, Judith H.

    1999-04-27

    This report outlines a comprehensive training program for members of Native American tribes whose lands have oil and gas resources. The program has two components: short courses and internships. Programs are proposed for: (1) adult tribes representatives who are responsible for managing tribal mineral holdings, setting policy, or who work in the oil and gas industry; (2) graduate and undergraduate college students who are tribal members and are studying in the appropriate fields; and (3) high school and middle school teachers, science teachers. Materials and program models already have been developed for some components of the projects. The plan is a coordinated, comprehensive effort to use existing resources to accomplish its goals. Partnerships will be established with the tribes, the BIA, tribal organizations, other government agencies, and the private sector to implement the program.

  6. Advanced Diesel Engine and Aftertreatment Technology Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development for Tier 2 Emissions 2003 DEER Conference Presentation: Detroit Diesel Corporation 2003deerbolton1.pdf More Documents & Publications Attaining Tier...

  7. Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  8. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  9. Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  10. Development of Pollution Prevention Technologies

    SciTech Connect (OSTI)

    Polle, Juergen; Sanchez-Delgado, Roberto

    2013-12-30

    This project investigated technologies that may reduce environmental pollution. This was a basic research/educational project addressing two major areas: A. In the algae research project, newly isolated strains of microalgae were investigated for feedstock production to address the production of renewable fuels. An existing collection of microalgae was screened for lipid composition to determine strains with superior composition of biofuel molecules. As many microalgae store triacylglycerides in so-called oil bodies, selected candidate strains identified from the first screen that accumulate oil bodies were selected for further biochemical analysis, because almost nothing was known about the biochemistry of these oil bodies. Understanding sequestration of triacylglycerides in intracellular storage compartments is essential to developing better strains for achieving high oil productivities by microalgae. At the onset of the project there was almost no information available on how to obtain detailed profiles of lipids from strains of microalgae. Our research developed analytical methods to determine the lipid profiles of novel microalgal strains. The project was embedded into other ongoing microalgal projects in the Polle laboratory. The project benefited the public, because students were trained in cell cultivation and in the operation of state-of-the-art analytical equipment. In addition, students at Brooklyn College were introduced into the concept of a systems biology approach to study algal biofuels production. B. A series of new nanostructured catalysts were synthesized, and characterized by a variety of physical and chemical methods. Our catalyst design leads to active nanostructures comprising small metal particles in intimate contact with strongly basic sites provided by the supports, which include poly(4-vinylpyridine), magnesium oxide, functionalized multi-walled carbon nanotubes, and graphene oxide. The new materials display a good potential as catalysts for reactions of relevance to the manufacture of cleaner fossil fuels and biodiesel, and to hydrogen storage in organic liquids. Specifically the catalysts are highly active in the hydrogenation of aromatic and heteroaromatic components of fossil fuels, the reduction of unsaturated C=C bonds in biodiesel, and the dehydrogenation of nitrogen heterocycles. In the course of our studies we identified a novel dual-site substrate-dependent hydrogenation mechanism that explains the activity and selectivity data obtained and the resistance of the new catalysts to poisoning. These results represent an important advance in basic catalytic science, regarding design and synthesis and reaction mechanisms. Additionally, this project allowed the enhancement of the laboratory facilities in the Chemistry Department of Brooklyn College for catalysis and energy research, and served as an excellent vehicle for the training of several young researchers at the undergraduate, graduate and postdoctoral level, to join the national scientific workforce.

  11. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  12. Technology Transfer: Observations from the TIPSTER Text Program

    E-Print Network [OSTI]

    Some Technology Transfer: Observations from the TIPSTER Text Program Dr. Sarah M. Taylor Office. Introduction Technology Transfer has been an important part of the TIPSTER Text Program from the beginning stated as a reason for the emphasis on technology transfer in the TIPSTER Program, nonetheless I think

  13. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  14. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  15. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  16. Trends Affecting Building Control System Development: Trends in Energy Management Technology

    E-Print Network [OSTI]

    Collins, Ted; Parker, Steven A.; Webster, Tom

    2002-01-01

    Peak Demand with Energy Management Control Systems. ” WCDSR-of Energy’s Federal Energy Management Program (FEMP) isBCS) Development Trends in energy management technology

  17. Rutgers Business School Master of Information Technology Program Learning Goals

    E-Print Network [OSTI]

    Rutgers Business School Master of Information Technology Program Learning Goals 1. Communication Skills Learning Goal Students graduating with a Master of Information Technology degree will be able relatively complex ideas in an understandable manner. 2. Information Technology Knowledge Learning Goal

  18. Department of Humanities Program in Technology and the Humanities

    E-Print Network [OSTI]

    ; ethics in the professions; history of art and architecture; humanizing technology; information seek- ingHumanities Department of Humanities Program in Technology and the Humanities Siegel Hall 218 3301 S' Graduate Program in Technology and Humanities prepares students for careers in emerging forms of technology

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. Understanding technology development processes theory & practice

    E-Print Network [OSTI]

    Oswald, W. Andrew (William Andrew)

    2013-01-01

    Technology development is hard for management to understand and hard for practitioners to explain, however it is an essential component of innovation. While there are standard and predictable processes for product development, ...

  2. Taiwan International Graduate Program Sustainable Chemical Science and Technology

    E-Print Network [OSTI]

    Taiwan International Graduate Program Sustainable Chemical Science and Technology Taiwan International Graduate Program (TIGP) Academia Sinica has established the Taiwan International Graduate Program (TIGP) in collaboration with a consortium of several key research universities in Taiwan. The purpose

  3. REGISTRATION-CONNECTED LIGHTING SYSTEMS AND TECHNOLOGY DEVELOPMENT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REGISTRATION-CONNECTED LIGHTING SYSTEMS AND TECHNOLOGY DEVELOPMENT WORKSHOPS REGISTRATION-CONNECTED LIGHTING SYSTEMS AND TECHNOLOGY DEVELOPMENT WORKSHOPS REGISTRATIONCONNECTE...

  4. Program summary for the Civilian Reactor Development Program

    SciTech Connect (OSTI)

    None

    1982-07-01

    This Civilian Reactor Development Program document has the prime purpose of summarizing the technical programs supported by the FY 1983 budget request. This section provides a statement of the overall program objectives and a general program overview. Section II presents the technical programs in a format intended to show logical technical interrelationships, and does not necessarily follow the structure of the formal budget presentation. Section III presents the technical organization and management structure of the program.

  5. Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

  6. Advanced Emission Control Development Program.

    SciTech Connect (OSTI)

    Evans, A.P.

    1997-12-31

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  7. Advanced Emissions Control Development Program

    SciTech Connect (OSTI)

    A. P. Evans

    1998-12-03

    Babcock & Wilcox (B&W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W?s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  8. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  9. IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    Describes the impacts in energy savings and environmental pollution reduction of the Industrial Technologies Program's commercialized and emerging technologies for CY2009.

  10. 2012 DOE Vehicle Technologies Program Annual Merit Review

    SciTech Connect (OSTI)

    2012-10-26

    The 2012 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting was held May 14-18, 2012 in Crystal City, Virginia. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Program: a total of 309 individual activities were reviewed for Vehicle Technologies, by a total of 189 reviewers. A total of 1,473 individual review responses were received for the technical reviews.

  11. RESEARCH, DEVELOPMENT, AND EXPERIMENTAL TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2002-07-01

    A temporary installation of Transtek's in-mine communications system in the Lake Lynn mine was used in the mine rescue training programs offered by NIOSH in April and May 2002. We developed and implemented a software program that permits point-to-point data transmission through our in-mine system. We also developed a wireless data transceiver for use in a PLC (programmed logic controller) to remotely control long-wall mining equipment.

  12. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  13. Low-level waste management program and interim waste operations technologies

    SciTech Connect (OSTI)

    Mezga, L.J.

    1983-01-01

    The Department of Energy currently supports an integrated technology development and transfer program aimed at ensuring that the technology necessary for the safe management and disposal of LLW by the commercial and defense sectors is available. The program focuses on five technical areas: (1) corrective measures technology, (2) improved shallow land burial technology, (3) greater confinement disposal technology, (4) model development and validation, and (5) treatment methods for problem wastes. The results of activities in these areas are reported in the open literature and the Proceedings of the LLWMP Annual Participants Information Meeting.

  14. Office of Industrial Technologies: Summary of program results

    SciTech Connect (OSTI)

    1999-01-01

    Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

  15. 1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program

    E-Print Network [OSTI]

    Act Projects · Budget · Key Publications Agenda: DOE Fuel Cell Technologies Program #12;3 | Fuel Cell of H2 produced annually > 1200 miles of H2 pipelines Fuel Cells for Stationary Power, Auxiliary Power for jobs, manufacturing, deployments (e.g. South Africa) Significant increase in MW shipped by non

  16. Status of the DOE Battery and Electrochemical Technology Program V

    SciTech Connect (OSTI)

    Roberts, R.

    1985-06-01

    The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

  17. Accelerator technology program. Progress report, July-December 1980

    SciTech Connect (OSTI)

    Knapp, E.A.; Jameson, R.A. (comp.)

    1982-01-01

    The activities of Los Alamos National Laboratory's Accelerator Technology Division are discussed. This report covers the last six months of calendar 1980 and is organized around the Division's major projects. These projects reflect a wide variety of applications and sponsors. The major technological innovations promoted by the Pion Generator for Medical Irradiation (PIGMI) program have been developed; accelerator technologies relevant to the design of a medically practical PIGMI have been identified. A new group in AT Division deals with microwave and magnet studies; we describe the status of some of their projects. We discuss the prototype gyrocon, which has been completed, and the development of the radio-frequency quadrupole linear accelerator, which continues to stimulate interest for many possible applications. One section of this report briefly describes the results of a design study for an electron beam ion source that is ideally suited as an injector for a heavy ion linac; another section reports on a turbine engine test facility that will expose operating turbine engines to simulated maneuver forces. In other sections we discuss various activities: the Fusion Materials Irradiation Test program, the free-electron laser program, the racetrack microtron project, the Proton Storage ring, and H/sup -/ ion sources and injectors.

  18. Cast Metals Coalition Technology Transfer and Program Management Final Report

    SciTech Connect (OSTI)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

  19. Polymer OLED White Light Development Program

    SciTech Connect (OSTI)

    Homer Antoniadis; Vi-En Choong; Stelios Choulis; Brian Cumpston; Rahul Gupta; Mathew Mathai; Michael Moyer; Franky So

    2005-12-19

    OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the major polymer material suppliers to develop the polymer emissive technology. M&D was successful in demonstrating a 7-8 lm/W white light source which was based on fluorescent materials. However, it became apparent that the major gains in efficiency could only be made if phosphorescent materials were utilized. Thus, in order to improve the performance of the resulting devices, the focus of the project shifted towards development of solution-processable phosphorescent light emitting diodes (PHOLEDs) and device architectures. The result is a higher efficiency than the outlined project milestone.

  20. Pellet Fueling Technology Development S. K. Combs

    E-Print Network [OSTI]

    Pellet Fueling Technology Development S. K. Combs Fusion Energy Division, Oak Ridge National/10/00 Pellet Sizes Are Relevant for Fueling Applications on Any Present Experimental Fusion Device and Future pellet injector technology ¥ Hydrogen properties ¥ Ice/pellet formation techniques ¥ Acceleration

  1. Clean Coal Technology Programs: Completed Projects (Volume 2)

    SciTech Connect (OSTI)

    Assistant Secretary for Fossil Energy

    2003-12-01

    Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  2. Technological development and innovation : selected policy implications

    E-Print Network [OSTI]

    Benson, Christopher Lee

    2012-01-01

    Technological development is one of the main drivers in economic progress throughout the world and is strongly linked to the creation of new industries, jobs, and wealth. This thesis attempts to better understand how a ...

  3. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three...

  4. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  5. Renewable Energy Development Grant Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Oregon Department of Energy (ODOE) offers competitive grants to renewable energy projects as part of ODOE's Energy Incentives Program.  ODOE created this competitive grant program in 2011, an...

  6. Fuel Cell Technologies Program FY 2013 Budget Request Rollout...

    Broader source: Energy.gov (indexed) [DOE]

    Satyapal at the FY 2013 Budget Request Rollout on February 14, 2012, in Washington, D.C. Fuel Cell Technologies Program FY 2013 Budget Request More Documents & Publications...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels and Lubricants 2011 Annual Merit Review Results Report - Advanced Combustion Engine...

  8. Cummins SuperTruck Program - Technology and System Level Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and System Level Demonstration of Highly...

  9. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8...

  10. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  11. Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

  12. Solar Energy Technologies Program Newsletter-March 2009

    SciTech Connect (OSTI)

    2009-03-03

    The March 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, and upcoming events.

  13. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

  14. Fusion Nuclear Science and Technology Program - Status and plans...

    Office of Environmental Management (EM)

    plans for tritium research Fusion Nuclear Science and Technology Program - Status and plans for tritium research Presentation from the 35th Tritium Focus Group Meeting held in...

  15. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishmen...

    Office of Environmental Management (EM)

    Program (VTP) vtpgoals-strategies-accomp.pdf More Documents & Publications Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Materials Technologies:...

  16. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APUs - Fuel Cell Commercial Outlook Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Presented at the DOE-DOD Shipboard APU Workshop...

  17. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Energy Savers [EERE]

    November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the...

  18. Energy Conservation Aspect of Energy Systems Technology Education Program 

    E-Print Network [OSTI]

    McBride, R. B.

    1982-01-01

    The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

  19. Nuclear technology programs; Semiannual progress report, October 1989--March 1990

    SciTech Connect (OSTI)

    Harmon, J.E.

    1992-01-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  20. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. (ed.)

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

  1. Nuclear Technology Programs semiannual progress report, October 1990--March 1991

    SciTech Connect (OSTI)

    NONE

    1992-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  2. Nuclear Technology Programs semiannual progress report, April-- September 1990

    SciTech Connect (OSTI)

    Harmon, J.E. [ed.

    1992-06-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  3. Nuclear technology programs. Semiannual progress report, April--September 1991

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

  4. Nuclear Technology Programs semiannual progress report, October 1988--March 1989

    SciTech Connect (OSTI)

    Harmon, J.E.

    1990-12-01

    This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

  5. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect (OSTI)

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy?s (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program?s fourth solicitation.

  6. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  7. The translation of media technology skills to community mobilization in youth programs

    E-Print Network [OSTI]

    Kim, Linda A. (Linda Anne), 1981-

    2004-01-01

    Media is an important part of the political process, and alternative media is especially valuable for community organizing. Youth media programs can play a great role in the development of media technology as a community-building ...

  8. 2013 Building Technologies Office Program Peer Review Report

    SciTech Connect (OSTI)

    none,

    2013-11-01

    The 2013 Building Technologies Office Program Peer Review Report summarizes the results of the 2013 Building Technologies Office (BTO) peer review, which was held in Washington, D.C., on April 2–4, 2013. The review was attended by over 300 participants and included presentations on 59 BTO-funded projects: 29 from BTO’s Emerging Technologies Program, 20 from the Commercial Buildings Integration Program, 6 from the Residential Buildings Integration Program, and 4 from the Building Energy Codes Program. This report summarizes the scores and comments provided by the independent reviewers for each project.

  9. DOE Solar Energy Technologies Program FY 2005 Annual Report

    SciTech Connect (OSTI)

    Sutula, Raymond A.

    2006-03-01

    The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the program for fiscal year 2005. In particular, the report describes R&D performed by the Program’s national laboratories and university and industry partners.

  10. Accelerator technology program. Progress report, January-December 1979

    SciTech Connect (OSTI)

    Knapp, E.A.; Jameson, R.A.

    1980-11-01

    The activities of Los Alamos Scientific Laboratory's (LASL) Accelerator Technology (AT) Division during the calendar year 1979 are highlighted, with references to more detailed reports. This report is organized around the major projects of the Division, reflecting a wide variety of applications and sponsors. The first section covers the Fusion Materials Irradiation Test program, a collaborative effort with the Hanford Engineering Development Laboratory; the second section summarizes progress on the Proton Storage Ring to be built between LAMPF and the LASL Pulsed Neutron Research facility. A new project that achieved considerable momentum during the year is described next - the free-electron laser studies; the following section discusses the status of the Pion Generator for Medical Irradiation program. Next, two more new programs, the racetrack microtron being developed jointly by AT-Division and the National Bureau of Standards and the radio-frequency (rf) accelerator development for heavy ion fusion, are outlined. Development activities on a new type of high-power, high-efficiency rf amplifier called the gyrocon are then reported, and the final sections cover development of H/sup -/ ion sources and injectors, and linear accelerator instrumentation and beam dynamics.

  11. Environmental development plan for transportation programs: FY80 update

    SciTech Connect (OSTI)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  12. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    SciTech Connect (OSTI)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

  13. Advanced ignition and propulsion technology program

    SciTech Connect (OSTI)

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  14. Eugene Monaco Professional Development Program

    E-Print Network [OSTI]

    Linsley, Braddock K.

    awarded nearly $323 million to 462 grantees and trained or retrained over 150,000 health care workers inception, the program has awarded nearly $323 million to 462 grantees and trained or retrained over 150

  15. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    PROJECT STAFF

    2001-09-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility.

  16. Solar Technology Validation Project - Utah State Energy Program (Met Station): Cooperative Research and Development Final Report, CRADA Number CRD-09-367-09

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  17. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  18. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  19. Fossil Energy-Developed Fuel Cell Technology Being Adapted by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for...

  20. Vortex Hydro Energy Develops Transformational Technology to Harness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water Currents Vortex Hydro Energy Develops Transformational Technology to Harness Energy from Water...

  1. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Energy Savers [EERE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  2. July 15, 2014 SEAB Task Force Meeting on Technology Development...

    Energy Savers [EERE]

    Task Force Meeting on Technology Development for Environmental Management July 15, 2014 SEAB Task Force Meeting on Technology Development for Environmental Management July 15,...

  3. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm Addthis Funding: Up...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Environmental Management (EM)

    Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel Cell...

  6. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Environmental Management (EM)

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Hydrogen and Fuel Cell Technologies Research, Development, and...

  7. A Technology Roadmap for Strategic Development of Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner...

  8. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  9. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    SciTech Connect (OSTI)

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  10. Appendix F: GPRA05 Geothermal Technologies Program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). Estimating the GPRA benefits involves projecting the market share for these technologies based on their economic and environmental characteristics.

  11. DOE Solar Energy Technologies Program FY 2006 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2007-07-01

    The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  12. DOE Solar Energy Technologies Program: FY 2004 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2005-10-01

    The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  13. DOE Solar Energy Technologies Program 2007 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

  14. Vehicle Technologies Office Merit Review 2015: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  15. Vehicle Technologies Office Merit Review 2014: Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low-Pressure Drop Systems to Reduce Engine Fuel Consumption

    Broader source: Energy.gov [DOE]

    Presentation given by Filter Sensing Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  16. Fueling Program Review May 2000 LRB 1 Fueling Technology

    E-Print Network [OSTI]

    Fueling Program Review May 2000 LRB 1 Fueling Technology Applied to Plasma Experiments presented.C. Jernigan, S.L.Milora Oak Ridge National Laboratory VLT Fueling Program Review May 10, 2000 #12;Fueling Program Review May 2000 LRB 2 Overview Historical overview of pellet fueling for magnetic fusion Pellet

  17. HTGR Generic Technology Program. Semiannual report for the period ending September 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    This document reports the technical accomplishments on the HTGR Generic Technology Program at General Atomic during the second half of FY-80. It covers a period when the design direction of the National HTGR Program is in the process of an overall review. The HTGR Generic Technology Program activities have continued so as to provide the basic technology required for all HTGR applications. The activities include the need to develop an LEU fuel and the need to qualify materials and components for the higher temperatures of the gas turbines and process heat plants.

  18. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  19. Outsourcing Development: The State, Entrepreneurship, and Information Technologies in India

    E-Print Network [OSTI]

    Sanders, Seth

    Outsourcing Development: The State, Entrepreneurship, and Information Technologies in India, Entrepreneurship, and Information Technologies in India Copyright 2008 By Renee Kuriyan #12;1 Abstract Outsourcing Development: The State, Entrepreneurship, and Information Technologies in India By Renee Kuriyan Doctor

  20. Continuation of Crosscutting Technology Development at Cast

    SciTech Connect (OSTI)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  1. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  2. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  3. Spivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002.

    E-Print Network [OSTI]

    ) at the National Institute of Standards and Technology (NIST) is a cost-sharing program designed to partnerSpivack, Richard. "Advanced Technology Program Information Infrastructure for Healthcare Focused Program" The Future of Health Technology. ed. Renata Bushko. IOS Press, 2002. Advanced Technology Program

  4. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    SciTech Connect (OSTI)

    Kinoshita, Kim

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  5. Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  6. Vehicle Technologies Office Merit Review 2014: Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development and...

  7. Vehicle Technologies Office Merit Review 2015: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  8. Vehicle Technologies Office Merit Review 2014: Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Caterpillar at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  9. Vehicle Technologies Office Merit Review 2015: Development of Advanced High-Performance Batteries for 12V Start Stop Vehicle Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Maxwell at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of advanced high...

  10. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  11. Vehicle Technologies Office Merit Review 2015: Development and Update of Long-Term Energy and GHG Emission Macroeconomic Accounting Tool

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and...

  12. History of the Development of NERVA Nuclear Rocket Engine Technology

    SciTech Connect (OSTI)

    David L. Black

    2000-06-04

    During the 17 yr between 1955 and 1972, the Atomic Energy Commission (AEC), the U.S. Air Force (USAF), and the National Aeronautics and Space Administration (NASA) collaborated on an effort to develop a nuclear rocket engine. Based on studies conducted in 1946, the concept selected was a fully enriched uranium-filled, graphite-moderated, beryllium-reflected reactor, cooled by a monopropellant, hydrogen. The program, known as Rover, was centered at Los Alamos Scientific Laboratory (LASL), funded jointly by the AEC and the USAF, with the intent of designing a rocket engine for long-range ballistic missiles. Other nuclear rocket concepts were studied during these years, such as cermet and gas cores, but are not reviewed herein. Even thought the program went through the termination phase in a very short time, the technology may still be fully recoverable/retrievable to the state of its prior technological readiness in a reasonably short time. Documents; drawings; and technical, purchasing, manufacturing, and materials specifications were all stored for ease of retrieval. If the U.S. space program were to discover a need/mission for this engine, its 1972 'pencils down' status could be updated for the technology developments of the past 28 yr for flight demonstration in 8 or fewer years. Depending on today's performance requirements, temperatures and pressures could be increased and weight decreased considerably.

  13. AISI/DOE Technology Roadmap Program: Development of an O2-Enriched Furnace System for Reduced CO2 and NOx Emissions For the Steel Industry

    SciTech Connect (OSTI)

    Edward W. Grandmaison; David J. Poirier; Eric Boyd

    2003-01-20

    An oxygen-enriched furnace system for reduced CO2 and NOx emission has been developed. The furnace geometry, with a sidewall-mounted burner, was similar to configurations commonly encountered in a steel reheat furnace. The effect of stack oxygen concentration, oxygen enrichment level and air infiltration on fuel savings/CO2 reduction, NOx emissions and scale formation were investigated. The firing rate required to maintain the furnace temperature at 1100 C decreased linearly with increasing oxygen enrichment. At full oxygen enrichment a reduction of 40-45% in the firing rate was required to maintain furnace temperature. NOx emissions were relatively constant at oxygen enrichment levels below 60% and decreased concentration at all oxygen enrichment levels. Air infiltration also had an effect on NOx levels leading to emissions similar to those observed with no air infiltration but with similar stack oxygen concentrations. At high oxygen enrichment levels, there was a larger variation in the refractory surface-temperature on the roof and blind sidewall of the furnace. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations and oxygen enrichment levels at 1100 degree C. The steel grade had the largest effect on scaling properties examined in this work. The stack oxygen concentration and the oxygen enrichment level had much smaller effects on the scaling properties.

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  15. Vehicle Technologies Program Government Performance and Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stock were attributed to individual VTO technology areas, which included batteries and electric drives, advanced combustion engines, fuels and lubricants, materials (i.e.,...

  16. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  17. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  18. New Program Development & Launch

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets16 (next20, 2008 Next3,4,04,5,797Program

  19. Biodiesel Basics (Fact Sheet), Vehicle Technologies Program ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program (VTP) Fact sheet providing questions and answers on the use of biodiesel as an alternative vehicle fuel. 47504.pdf More Documents & Publications BiodieselFuelManagemen...

  20. Developments in ITM oxygen technology for IGCC

    SciTech Connect (OSTI)

    Stein, V.E.E.; Richards, R.E.

    1999-07-01

    In partnership with the U.S. Department of Energy (DOE), an Air Products-led team (with Ceramatec, Eltron Research, McDermott Technology, NREC, Texaco, the Pennsylvania State University, and the University of Pennsylvania) is developing a new technology for air separation - Ion Transport Membrane Oxygen - based on the use of mixed-conducting ceramic membranes that have both electronic and oxygen ionic conductivity when operated at high temperature, typically 800 to 900 C. Under the influence of an oxygen partial-pressure driving force, the ITM Oxygen process achieves a high-purity, high-flux separation of oxygen from a compressed-air stream. By integrating the energy-rich, oxygen-depleted, non-permeate stream with a gas turbine system, the ITM Oxygen process becomes a co-producer of high-purity oxygen, power, and steam. Under a recent CRADA entitled ``Ion Transport Membranes (ITM) for Oxygen-Blown IGCC Systems and Indirect Coal Liquefaction,'' Air Products and DOE completed an initial quantification of the benefits of an ITM Oxygen-integrated IGCC facility. Compared to the cryogenic oxygen base case, the ITM Oxygen technology can potentially: reduce total installed costs by 7%; improve thermal efficiency for the integrated IGCC system by about 3%, leading to further decreases in carbon dioxide and sulfur emissions; and reduce the cost of generated electric power by more than 6%. The ITM Oxygen development project will proceed in three phases. Phase 1, which commenced under a DOE Cooperative Agreement in October 1998, is a 3-year effort focusing on construction of a technology development unit (TDU) for process concept validation tests at a capacity of 0.1 ton-per-day (TPD) oxygen. To accomplish this objective, the Air Products team will address relevant technical challenges in ITM Oxygen materials, engineering, membrane module development, and performance testing. During Phase 1 the team will also verify the economic prospects for integrating ITM Oxygen technology with IGCC and other advanced power generation systems. After at least one intermediate scaleup, Phase 2 and 3 activities will culminate with scaleup to a 25- to 50-TPD pre-commercial demonstration unit, fully integrated with a gas turbine. Meeting these challenges of developing cost-effective fabrication techniques for ITM Oxygen devices, and successfully integrating them with commercially available gas turbine engines, is key to bringing ITM Oxygen technology to the marketplace.

  1. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  2. Report of the SEAB Task Force on Technology Development for Environmental Management

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Technology Development for Environmental Management. The Task Force was charged with assessing the value of a renewed EM science and technology development effort and how such a program would be structured.

  3. Laboratory directed research and development program, FY 1996

    SciTech Connect (OSTI)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  5. The Office of Technology Development technical reports. A bibliography

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The US Department of Energy`s Office of Technology Development (OTD) within the Office of Environmental Management was established in 1989 to conduct an aggressive national program of applied research, development, demonstration, testing, and evaluation (RDDT&E) for innovative environmental cleanup solutions that are safer and more time- and cost-effective than those currently available. In many cases, the development of new technology presents the best hope for ensuring a substantive reduction in risk to the environment and improved worker/public safety within realistic financial constraints. Five major remediation and waste management problem areas have been identified to date within the DOE weapons complex; Contaminant Plume Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation; Landfill Stabilization; and Facility Transitioning, Decommissioning, and Final Disposition. New technologies to address these problem areas are demonstrated to the point that they are proven to work and that they can be transferred to the private sector end-users. This bibliography contains information on scientific and technical reports sponsored by the Office of Environmental Management from its inception in 1989 through June 1994. Future issues contain reports from Technology Development activities and will be published biannually.

  6. The 1986-93 Clean Coal Technology Program | Department of Energy

    Energy Savers [EERE]

    1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry...

  7. Program Development Tools and Infrastructures

    SciTech Connect (OSTI)

    Schulz, M

    2012-03-12

    Exascale class machines will exhibit a new level of complexity: they will feature an unprecedented number of cores and threads, will most likely be heterogeneous and deeply hierarchical, and offer a range of new hardware techniques (such as speculative threading, transactional memory, programmable prefetching, and programmable accelerators), which all have to be utilized for an application to realize the full potential of the machine. Additionally, users will be faced with less memory per core, fixed total power budgets, and sharply reduced MTBFs. At the same time, it is expected that the complexity of applications will rise sharply for exascale systems, both to implement new science possible at exascale and to exploit the new hardware features necessary to achieve exascale performance. This is particularly true for many of the NNSA codes, which are large and often highly complex integrated simulation codes that push the limits of everything in the system including language features. To overcome these limitations and to enable users to reach exascale performance, users will expect a new generation of tools that address the bottlenecks of exascale machines, that work seamlessly with the (set of) programming models on the target machines, that scale with the machine, that provide automatic analysis capabilities, and that are flexible and modular enough to overcome the complexities and changing demands of the exascale architectures. Further, any tool must be robust enough to handle the complexity of large integrated codes while keeping the user's learning curve low. With the ASC program, in particular the CSSE (Computational Systems and Software Engineering) and CCE (Common Compute Environment) projects, we are working towards a new generation of tools that fulfill these requirements and that provide our users as well as the larger HPC community with the necessary tools, techniques, and methodologies required to make exascale performance a reality.

  8. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Hydrogen and Fuel Cell Manufacturing R&D activities (N. Garland, DOE) 9:20 DOE's Industrial Technologies Program Manufacturing Activities (L. Christodoulou, DOE) 9:30...

  9. Successful Oil and Gas Technology Transfer Program Extended to 2015

    Broader source: Energy.gov [DOE]

    The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy.

  10. DOE Solar Energy Technologies Program: Overview and Highlights

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

  11. EIS-0146: Programmatic for Clean Coal Technology Demonstration Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

  12. Solar Energy Technologies Program Newsletter - First Quarter 2010

    SciTech Connect (OSTI)

    2010-04-22

    The first quarter 2010 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  13. Solar Energy Technologies Program Newsletter - Fourth Quarter 2009

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2009-12-31

    The Fourth Quarter 2009 edition of the Solar Energy Technologies Program newsletter summarizes the activities for the past three months, funding opportunities, highlights from the national labs, and upcoming events.

  14. NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-05-01

    The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

  15. High Technology School-to-Work Program at Argonne

    ScienceCinema (OSTI)

    None

    2013-04-19

    Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

  16. Vehicle Technologies Office Merit Review 2015: Development of High-Performance Cast Crankshafts

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Caterpillar at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of high-performance...

  17. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  18. Vehicle Technologies Office Merit Review 2014: Development of SiC Large Tapered Crystal Growth

    Broader source: Energy.gov [DOE]

    Presentation given by NASA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of SiC large tapered crystal...

  19. Vehicle Technologies Office Merit Review 2015: Development of a PHEV Battery

    Broader source: Energy.gov [DOE]

    Presentation given by Xerion Advanced Battery Corp. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  20. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  1. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  2. Vehicle Technologies Office Merit Review 2014: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by CD-Adapco at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  3. Vehicle Technologies Office Merit Review 2014: Process Development and Scale-up of Advanced Cathode Materials

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about process development and scale...

  4. Moving granular-bed filter development program. Topical report

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.; Lippert, T.E.

    1994-04-01

    Advanced, coal-based, power plants, such as IGCC and Advanced-PFBC, are currently nearing commercial demonstration. These power plant technologies require hot gas filtration as part of their gas cleaning trains. Ceramic barrier filters are the major filter candidates being developed for these hot gas cleaning applications. While ceramic barrier filters achieve high levels of particle removal, concerns exist for their reliability and operability in these applications. An alternative hot gas filtration technology is the moving granular bed filter. An advanced, moving granular bed filter has been conceived, and early development activities performed by the Westinghouse Electric Corporation, Science and Technology Center. This document reports on the Base Contract tasks performed to resolve the barrier technical issues for this technology. The concept, the Standleg Moving Granular Bed Filter (SMGBF) has a concurrent downward, gas and bed media flow configuration that results in simplified features and improved scaleup feasibility compared to alternative designs. Two modes of bed media operation were assessed in the program: once-through using pelletized power plant waste as bed media, and recycle of bed media via standleg and pneumatic transport techniques. Cold Model testing; high-temperature, high-pressure testing; and pelletization testing using advanced power plant wastes, have been conducted in the program. A commercial, economic assessment of the SMGBF technology was performed for IGCC and Advanced-PFBC applications. The evaluation shows that the barrier technical issues can be resolved, and that the technology is potentially competitive with ceramic barrier filters.

  5. Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998

    SciTech Connect (OSTI)

    Kinoshita, K. (editor)

    1999-06-01

    The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

  6. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  7. Geothermal Energy Research Development and Demonstration Program

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

  8. Manpower development for new nuclear energy programs

    E-Print Network [OSTI]

    Verma, Aditi

    2012-01-01

    In the spring of 2012, nine countries were seriously considering embarking on nuclear energy programs, either having signed contracts with reactor vendors or having made investments for the development of infrastructure ...

  9. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  10. New Director to lead Technology Development and Commercialization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Director to lead Technology Development and Commercialization division April 2, 2015 Tweet EmailPrint Suresh Sunderrajan has been appointed Director of Argonne's Technology...

  11. An historical perspective of the NERVA nuclear rocket engine technology program. Final Report

    SciTech Connect (OSTI)

    Robbins, W.H.; Finger, H.B.

    1991-07-01

    Nuclear rocket research and development was initiated in the United States in 1955 and is still being pursued to a limited extent. The major technology emphasis occurred in the decade of the 1960s and was primarily associated with the Rover/NERVA Program where the technology for a nuclear rocket engine system for space application was developed and demonstrated. The NERVA (Nuclear Engine for Rocket Vehicle Application) technology developed twenty years ago provides a comprehensive and viable propulsion technology base that can be applied and will prove to be valuable for application to the NASA Space Exploration Initiative (SEI). This paper, which is historical in scope, provides an overview of the conduct of the NERVA Engine Program, its organization and management, development philosophy, the engine configuration, and significant accomplishments.

  12. Medically relevant ElectroNeedle technology development.

    SciTech Connect (OSTI)

    Schmidt, Carrie Frances; Thomas, Michael Loren; McClain, Jaime L.; Harper, Jason C.; Achyuthan, Komandoor E.; Ten Eyck, Gregory A.

    2008-11-01

    ElectroNeedles technology was developed as part of an earlier Grand Challenge effort on Bio-Micro Fuel Cell project. During this earlier work, the fabrication of the ElectroNeedles was accomplished along with proof-of-concept work on several electrochemically active analytes such as glucose, quinone and ferricyanide. Additionally, earlier work demonstrated technology potential in the field of immunosensors by specifically detecting Troponin, a cardiac biomarker. The current work focused upon fabrication process reproducibility of the ElectroNeedles and then using the devices to sensitively detect p-cresol, a biomarker for kidney failure or nephrotoxicity. Valuable lessons were learned regarding fabrication assurance and quality. The detection of p-cresol was accomplished by electrochemistry as well as using fluorescence to benchmark ElectroNeedles performance. Results from these studies will serve as a guide for the future fabrication processes involving ElectroNeedles as well as provide the groundwork necessary to expand technology applications. One paper has been accepted for publication acknowledging LDRD funding (K. E. Achyuthan et al, Comb. Chem. & HTS, 2008). We are exploring the scope for a second paper describing the applications potential of this technology.

  13. Science and Technology Roadmap Cooperative Research Program (CoRP)

    E-Print Network [OSTI]

    Kuligowski, Bob

    Science and Technology Roadmap Cooperative Research Program (CoRP) National Oceanic and Atmospheric.3.2 The Global Precipitation Climatology Project 5. SCIENCE AND TECHNOLOGY ROADMAP 6. PERFORMANCE TARGETS 6RP research capabilities are described along with a science roadmap for the next decade. This science

  14. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. Technology Validation Introduction In

  16. Vehicle Technologies Office Merit Review 2014: Development and...

    Energy Savers [EERE]

    Tool Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  17. 1 | Fuel Cell Technologies Program eere.energy.gov US DOE Non-Metallic Materials

    E-Print Network [OSTI]

    1 | Fuel Cell Technologies Program eere.energy.gov US DOE Non-Metallic Materials Meeting Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/17/2012 #12;2 | Fuel Cell Technologies Program eere.energy.gov Overview

  18. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  19. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  20. 2009 DOE Vehicle Technologies Program Annual Merit Review

    SciTech Connect (OSTI)

    none,

    2009-10-01

    Annual Merit Review and Peer Evaluation Meeting to review the FY2008 accomplishments and FY2009 plans for the Vehicle Technologies Program, and provide an opportunity for industry, government, and academic to give inputs to DOE on the Program with a structured and formal methodology.

  1. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1994-09-01

    The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  2. Compressed air energy storage technology program. Annual report for 1979

    SciTech Connect (OSTI)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  3. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  4. FUEL CELL TECHNOLOGIES PROGRAM Project Summary

    E-Print Network [OSTI]

    Center, Omaha, Nebraska Primary Objective Reliable primary power supply Incumbent Technology Grid and Manufacturer Primary power to four rotary UPS units provided by four UTC Power PC25C phosphoric acid fuel cells rated at 200 kW, for a total capacity of 800 kW. Total system including fuel cells and rotary UPS units

  5. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  6. Development of Pellet Technologies for Plasma Fueling

    SciTech Connect (OSTI)

    Kapralov, V.G.; Kuteev, B.V.; Baranov, G.A.

    2005-01-15

    This contribution presents recent results of pellet technologies development for plasma fuelling in magnetic confinement machines with open or closed magnetic configuration. The current status of ITV7 pellet injector for GOL3 multimirror linear machine, PGS2.2 pellet guide system of ITV4 in-situ pellet injector for TUMAN- 3M tokamak and ITV5 centrifuge pellet injector for Globus-M spherical tokamak is reported. New results on modeling of tangential pellet injection into TUMAN-3M tokamak are discussed as well.

  7. Composite Technology Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunityLtdDevelopment Jump to:

  8. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  9. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  10. Batch drilling program cuts time, costs for Liuhua development

    SciTech Connect (OSTI)

    Gray, G.E.; Hall, K.H.; Mu, H.C.

    1996-08-12

    The efficiency of batch drilling operations and the appropriate use of technology, teamwork, and thorough planning helped cut several days off the time to drill each of 10 subsea wells for the Liuhua 11-1 development project in the South China Sea. The overall development program calls for drilling and completing 20 subsea horizontal wells. The rig-of-opportunity phase was the initial phase of this development and used a contract rig to establish the subsea wellhead array and initiate drilling of the development wells. The wellhead array was the first critical step. It was the foundation for the building block construction process used to create Liuhua`s subsea production system on the seabed. The paper discusses conductor operations, batch drilling operations, surface hole section, intermediate and production hole sections, the ten wells, application of technology, and overall results.

  11. Laboratory Directed Research and Development Program FY98

    SciTech Connect (OSTI)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  12. Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the TO...

  13. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  14. Energy technology progress for sustainable development

    SciTech Connect (OSTI)

    Arvizu, D.E.; Drennen, T.E.

    1997-03-01

    Energy security is a fundamental part of a country`s national security. Access to affordable, environmentally sustainable energy is a stabilizing force and is in the world community`s best interest. The current global energy situation however is not sustainable and has many complicating factors. The primary goal for government energy policy should be to provide stability and predictability to the market. This paper differentiates between short-term and long-term issues and argues that although the options for addressing the short-term issues are limited, there is an opportunity to alter the course of long-term energy stability and predictability through research and technology development. While reliance on foreign oil in the short term can be consistent with short-term energy security goals, there are sufficient long-term issues associated with fossil fuel use, in particular, as to require a long-term role for the federal government in funding research. The longer term issues fall into three categories. First, oil resources are finite and there is increasing world dependence on a limited number of suppliers. Second, the world demographics are changing dramatically and the emerging industrialized nations will have greater supply needs. Third, increasing attention to the environmental impacts of energy production and use will limit supply options. In addition to this global view, some of the changes occurring in the US domestic energy picture have implications that will encourage energy efficiency and new technology development. The paper concludes that technological innovation has provided a great benefit in the past and can continue to do so in the future if it is both channels toward a sustainable energy future and if it is committed to, and invested in, as a deliberate long-term policy option.

  15. Energy Technology Program specialist | Department of Energy

    Office of Environmental Management (EM)

    Energys (EERE) mission is to create and sustain American leadership in the global transition to a clean energy economy through high-impact research, development, and...

  16. Developing optofluidic technology through the fusion of microfluidics and optics

    E-Print Network [OSTI]

    Yang, Changhuei

    Developing optofluidic technology through the fusion of microfluidics and optics Demetri Psaltis1 optical systems, whereas the implementation of optics through the microfluidic toolkit gives highly to implement optofluidic devices with recently developed microfluidic technologies that allow accurate control

  17. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    2009-01-18

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program (The Program). The analysis is a task by Princeton Energy Resources International, LLC, in support of the National Renewable Energy Laboratory on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE).

  18. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  19. Geothermal Technologies Program Peer Review Program June 6 -...

    Broader source: Energy.gov (indexed) [DOE]

    Review, highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplena...

  20. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  1. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  2. Tools for Nanotechnology Education Development Program

    SciTech Connect (OSTI)

    Dorothy Moore

    2010-09-27

    The overall focus of this project was the development of reusable, cost-effective educational modules for use with the table top scanning electron microscope (TTSEM). The goal of this project's outreach component was to increase students' exposure to the science and technology of nanoscience.

  3. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  4. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  5. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    E-Print Network [OSTI]

    Lippmann, M J

    1996-01-01

    Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

  6. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  7. NREL: Technology Transfer - Commercialization Assistance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS SeminarsNREL getsAssistance Program

  8. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  9. Information Technology Program/Project Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-01-20

    To close this policy gap the Office of the CIO (OCIO) proposes to develop a new order with departmental guidance on essential processes, documentation, and critical decision-points for IT projects.

  10. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of electricity from new hydrothermal development to 6 kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6 kWh by 2030. For more information, see this funding...

  11. Development Of Active Seismic Vector-Wavefield Imaging Technology...

    Open Energy Info (EERE)

    Development Of Active Seismic Vector-Wavefield Imaging Technology For Geothermal Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development...

  12. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect (OSTI)

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.

  13. US developments in technology for uranium enrichment

    SciTech Connect (OSTI)

    Wilcox, W.J. Jr.; McGill, R.M.

    1982-01-01

    The purpose of this paper is to review recent progress and the status of the work in the United States on that part of the fuel cycle concerned with uranium enrichment. The United States has one enrichment process, gaseous diffusion, which has been continuously operated in large-scale production for the past 37 years; another process, gas centrifugation, which is now in the construction phase; and three new processes, molecular laser isotope separation, atomic vapor laser isotope separation, plasma separation process, in which the US has also invested sizable research and development efforts over the last few years. The emphasis in this paper is on the technical aspects of the various processes, but the important economic factors which will define the technological mix which may be applied in the next two decades are also discussed.

  14. Research and Development Conference CIEE Program 1992

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    CIEE`s second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director`s discretionary research, and exploratory research will also be featured in this report.

  15. Research and Development Conference CIEE Program 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    CIEE's second annual Research and Development Conference will introduce you to some of the results achieved to date through CIEE-sponsored multiyear research performed in three programs: Building Energy Efficiency, Air Quality Impacts of Energy Efficiency, and End-Use Resource Planning. Results from scoping studies, Director's discretionary research, and exploratory research will also be featured in this report.

  16. RMES-520: Climate Change: Science, Technology and Sustainable Development RMES-520: Climate Change: Science, Technology and

    E-Print Network [OSTI]

    Farrell, Anthony P.

    RMES-520: Climate Change: Science, Technology and Sustainable Development 1 RMES-520: Climate Change: Science, Technology and Sustainable Development Dr. Hisham Zerriffi (hisham/108 Enrolment: Graduate Students (or advanced undergraduates with instructor approval) Course Site: http://blogs

  17. Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000

    SciTech Connect (OSTI)

    2000-09-01

    The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

  18. Curriculum and Program Development 177 Modeling and Problem Solving

    E-Print Network [OSTI]

    Peszynska, Malgorzata

    Curriculum and Program Development 177 Modeling and Problem Solving: Curriculum and Program of curriculum and program devel- opment that can promote the students' interest and growing experience" constrain inclusion of interdisciplinary mathematical modeling in curriculum and programs and require

  19. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  20. Technology Cooperation Agreement Pilot Project development-friendly greenhouse gas reduction, May 1999 update

    SciTech Connect (OSTI)

    Benioff, R.

    1999-05-11

    The Technology Cooperation Agreement Pilot Project (TCAPP) was launched by several U.S. Government agencies (USAID, EPA and DOE) in August 1997 to establish a model for climate change technology cooperation with developing and transition countries. TCAPP is currently facilitating voluntary partnerships between the governments of Brazil, China, Kazakhstan, Korea, Mexico, and the Philippines, the private sector, and the donor community on a common set of actions that will advance implementation of clean energy technologies. The six participating countries have been actively engaged in shaping this initiative along with international donors and the private sector. This program helps fulfill the US obligation to support technology transfer to developing countries under Article 4.5 of the United Nations Framework Convention on Climate Change. TCAPP also provides a mechanism to focus resources across international donor programs on the technology cooperation needs of developing and transition countries.

  1. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  2. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  3. NP-MHTGR Fuel Development Program Results

    SciTech Connect (OSTI)

    Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

    2002-10-01

    In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

  4. Tubular solid oxide fuel cell development program

    SciTech Connect (OSTI)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  5. OE Power Systems Engineering Research & Development Program Partnershi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission Power Systems Engineering Research and Development OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research &...

  6. Appropriate Technology Small Grants Program evaluation: case studies. Volume III

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    A non-random sample of the Appropriate Technology Program grantees was selected to ensure that the basic goals of the evaluation study were met. Case studies of selected outstanding projects could provide with respect to the Program dynamics associated with success. It was believed that the non-random case study approach would assist us in assessing which approaches have the potential to impact a reduction in our nation's use of non-renewal energy. From this group of projects, 20 projects were selected to highlight in a case study format which illustrates the various types of projects approaches the Program supported.

  7. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program

    E-Print Network [OSTI]

    California at Davis, University of

    1 California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program infrastructure awards ($83,467,422) b. Fuel standards development ($4,001,990) c. Demonstration projects ($8,489,590 was provided by the Energy Commission.) Total anticipated project match is $2.7 million. ABAG will contract

  8. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  9. SCHOOL OF SCIENCE & TECHNOLOGY HEALTH PROFESSIONS ADVISORY PROGRAM

    E-Print Network [OSTI]

    Ravikumar, B.

    SCHOOL OF SCIENCE & TECHNOLOGY HEALTH PROFESSIONS ADVISORY PROGRAM SCHEDULE FOR SSU STUDENTS PLANNING TO ENTER A HEALTH PROFESSIONS SCHOOL IN FALL 2016 All students planning to enter allopathic, or optometry schools in the Fall 2016 term and wish to be evaluated by the SSU Health Professions Advisory

  10. ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS

    E-Print Network [OSTI]

    Lozano-Nieto, Albert

    Storage -Energy can be stored in a capacitor to be released when desired Example: Defibrillator used1 ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS Instructor: Albert Lozano. electrolytic - Non-electrolytic: smaller values: nF, pF - Electrolytic: Chemical process to increase

  11. Invitation/Program Technology Watch Day on Future Biofuels

    E-Print Network [OSTI]

    Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

  12. Renee Gunderson, M.S. Program Director, B.S. Information and Communication Technologies

    E-Print Network [OSTI]

    Wu, Mingshen

    Renee Gunderson, M.S. Program Director, B.S. Information and Communication Technologies University of Wisconsin-Stout Apparel and Communications Technology Department Information Technology Management 206 centers, and virtualized environment security and auditing. Information technology government and industry

  13. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect (OSTI)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.

  14. Advanced Turbine Systems (ATS) program conceptual design and product development

    SciTech Connect (OSTI)

    1996-08-31

    Achieving the Advanced Turbine Systems (ATS) goals of 60% efficiency, single-digit NO{sub x}, and 10% electric power cost reduction imposes competing characteristics on the gas turbine system. Two basic technical issues arise from this. The turbine inlet temperature of the gas turbine must increase to achieve both efficiency and cost goals. However, higher temperatures move in the direction of increased NO{sub x} emission. Improved coatings and materials technologies along with creative combustor design can result in solutions to achieve the ultimate goal. GE`s view of the market, in conjunction with the industrial and utility objectives, requires the development of Advanced Gas Turbine Systems which encompass two potential products: a new aeroderivative combined-cycle system for the industrial market, and a combined-cycle system for the utility sector that is based on an advanced frame machine. The GE Advanced Gas Turbine Development program is focused on two specific products: (1) a 70 MW class industrial gas turbine based on the GE90 core technology utilizing an innovative air cooling methodology; (2) a 200 MW class utility gas turbine based on an advanced Ge heavy-duty machine utilizing advanced cooling and enhancement in component efficiency. Both of these activities required the identification and resolution of technical issues critical to achieving ATS goals. The emphasis for the industrial ATS was placed upon innovative cycle design and low emission combustion. The emphasis for the utility ATS was placed on developing a technology base for advanced turbine cooling, while utilizing demonstrated and planned improvements in low emission combustion. Significant overlap in the development programs will allow common technologies to be applied to both products. GE Power Systems is solely responsible for offering GE products for the industrial and utility markets.

  15. Advanced Turbine Systems Program industrial system concept development

    SciTech Connect (OSTI)

    Gates, S.

    1995-12-31

    Solar approached Phase II of ATS program with the goal of 50% thermal efficiency. An intercolled and recuperated gas turbine was identified as the ultimate system to meet this goal in a commercial gas turbine environment. With commercial input from detailed market studies and DOE`s ATS program, Solar redefined the company`s proposed ATS to fit both market and sponsor (DOE) requirements. Resulting optimized recuperated gas turbine will be developed in two sizes, 5 and 15 MWe. It will show a thermal efficiency of about 43%, a 23% improvement over current industrial gas turbines. Other ATS goals--emissions, RAMD (reliability, availability, maintainability, durability), cost of power--will be met or exceeded. During FY95, advanced development of key materials, combustion and component technologies proceeded to the point of acceptance for inclusion in ATS Phase III.

  16. Accelerator technology program. Progress report, July-December 1981

    SciTech Connect (OSTI)

    Knapp, E.A.; Jameson, R.A. (comps.)

    1982-08-01

    We report on the major projects of the Los Alamos National Laboratory's Accelerator Technology Division during the last 6 months of calendar year 1981. We have continued work on the radio-frequency quadrupole linear accelerator; we are doing studies of octupole focusing. We have completed the design study on an unusual electron-linear radiographic machine that could obtain x rays of turbine engines operating under simulated flight-maneuver conditions on a centrifuge. In September we completed the 5-y PIon Generator for Medical Irradiation (PIGMI) program to develop the concept and technology for an accelerator-based facility to treat cancer in a hospital environment. The design and construction package for the site, building, and utilities for the Fusion Materials Irradiation Test (FMIT) facility has been completed, and we have begun to concentrate on tests of the rf power equipment and on the design, procurement, and installation of the 2-MeV proto-type accelerator. The Proton Storage Ring project has continued to mature. The main effort on the racetrack microtron (RTM) has been on the design and construction of various components for the demonstration RTM. On the gyrocon radio-frequency generator project, the gyrocon was rebuilt with a new electron gun and new water-cooled gun-focus coil; these new components have performed well. We have initiated a project to produce a klystron analysis code that will be useful in reducing the electrical-energy demand for accelerators. A free-electron laser amplifier experiment to test the performance of a tapered wiggler at high optical power has been successfully completed.

  17. U.S. Department of Energy’s Industrial Technologies Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-05-20

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo-gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2010). From 1976-2009, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 10.0 quadrillion Btu, with a net cost savings of $61.82 billion.

  18. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2010-05-15

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2009). From 1976-2008, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 9.27 quadrillion Btu, with a net cost savings of $63.91 billion.

  19. U.S. Department of Energy’s Industrial Technology Program and Its Impacts

    SciTech Connect (OSTI)

    Weakley, Steven A.; Roop, Joseph M.

    2009-04-02

    The U.S. Department of Energy’s Industrial Technologies Program (ITP) has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. ITP has helped industry not only use energy and materials more efficiently but also improve environ-mental performance, product quality, and productivity. To help ITP determine the impacts of its pro-grams, Pacific Northwest National Laboratory (PNNL) periodically reviews and analyzes ITP pro-gram benefits. PNNL contacts vendors and users of ITP-sponsored technologies that have been commer-cialized, estimates the number of units that have penetrated the market, conducts engineering analyses to estimate energy savings from the new technolo¬gies, and estimates air pollution and carbon emission reductions. This paper discusses the results of PNNL’s most recent review (conducted in 2008). From 1976-2007, the commercialized technologies from ITP’s research and development programs and other activities have cumulatively saved 6.17 quadrillion Btu, with a net cost savings of $63.0 billion.

  20. Investigating successful implementation of technologies in Developing nations

    E-Print Network [OSTI]

    Hsieh, Edward F. (Edward Fang)

    2005-01-01

    A study was performed to determine possible factors that contribute to successful implementation of new technologies in developing nations. Engineers and other inventors have devoted great effort to Appropriate Technology ...