National Library of Energy BETA

Sample records for technology deployment renewable

  1. IEA Renewable Energy Technology Deployment | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Technology Deployment Jump to: navigation, search Name IEA Renewable Energy Technology Deployment AgencyCompany Organization International Energy Agency -...

  2. NREL: Technology Deployment - California's Alternative and Renewable Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Vehicle Technology Program California's Alternative and Renewable Fuel and Vehicle Technology Program NREL supports the California Energy Commission (CEC) in the planning, implementation, and evaluation of California's Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), created by Assembly Bill 118 in 2007. Under this statute, CEC works to develop and deploy alternative and renewable transportation fuel and vehicle technologies-including electricity, natural gas,

  3. Deployment Effects of Marin Renewable Energy Technologies

    SciTech Connect (OSTI)

    Brian Polagye; Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) an early, small commercial deployment, and (3) a large commercial scale plant. For the three technologies and scales at the selected site, this results in a total of nine deployment scenarios outlined in the report.

  4. NREL: Technology Deployment - Renewable Energy Project Helps Tribe Reduce

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Footprint by 20,000 Tons Renewable Energy Project Helps Tribe Reduce Carbon Footprint by 20,000 Tons News DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community Publications Advancing Energy Development in Indian Country Renewable Energy Development in Indian Country: A Handbook for Tribes Sponsors U.S. DOE Office of Energy Efficiency & Renewable Energy Key Partners Forest County Potawatomi Tribe Contact Sarah Booth, 303-275-4383 A photo of a

  5. Deployment Effects of Marine Renewable Energy Technologies: Wave Energy Scenarios

    SciTech Connect (OSTI)

    Mirko Previsic

    2010-06-17

    Given proper care in siting, design, deployment, operation and maintenance, wave energy conversion could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that, due to a lack of technical certainty, many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood,. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based assessment to the emerging hydrokinetic technology sector in order to evaluate the potential impact of these technologies on the marine environment and navigation constraints. The project’s scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios capture variations in technical approaches and deployment scales to properly identify and characterize environmental effects and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential range of technical attributes and potential effects of these emerging technologies and focus all stakeholders on the critical issues that need to be addressed. By identifying and addressing navigational and environmental concerns in the early stages of the industry’s development, serious mistakes that could potentially derail industry-wide development can be avoided. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industry’s development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory issues (Pacific Energy Ventures) and navigational issues (PCCI). The results of this study are structured into three reports: (1) Wave power scenario description (2) Tidal power scenario description (3) Framework for Identifying Key Environmental Concerns This is the first report in the sequence and describes the results of conceptual feasibility studies of wave power plants deployed in Humboldt County, California and Oahu, Hawaii. These two sites contain many of the same competing stakeholder interactions identified at other wave power sites in the U.S. and serve as representative case studies. Wave power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize potential effects, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informed the process of selecting representative wave power devices. The selection criteria requires that devices are at an advanced stage of development to reduce technical uncertainties, and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. Table 1 summarizes the selected wave power technologies. A number of other developers are also at an advanced stage of development, but are not directly mentioned here. Many environmental effects will largely scale with the size of the wave power plant. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nominally represent (1) a small pilot deployment, (2) a small commercial deployment, and (3) a large commercial scale plant. It is important to understand that the purpose of this study was to establish baseline scenarios based on basic device data that was provided to use by the manufacturer for illustrative purposes only.

  6. NREL: Technology Deployment - Renewable Energy Development Prospers in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Downturn Renewable Energy Development Prospers in Economic Downturn News Expired Treasury Renewable Energy Subsidy Created as Many as 75,000 Green Jobs, $44 Billion in Economic Output Publications Financing U.S. Renewable Energy Projects Through Public Capital Vehicles: Qualitative and Quantitative Benefits Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603 Treasury Grant Program Sponsors U.S. Department of Treasury American

  7. NREL: Technology Deployment - REopt Renewable Energy Planning and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization REopt Renewable Energy Planning and Optimization Solar Screenings for Universities In support of the U. S. Department of Energy's SunShot initiative, NREL is offering technical assistance to universities seeking to go solar. NREL will provide no-cost technical assistance through REopt modeling and implementation support. Learn more about solar screenings and implementation assistance for universities. NREL's REopt energy planning platform can help you understand the optimal mix

  8. Workshop Proceedings on Financing the Development and Deployment of Renewable Energy Technologies

    SciTech Connect (OSTI)

    1995-05-16

    The Working Party on Renewable Energy (REWP) of the International Energy Agency (IEA) organized a two-day seminar on the role of financing organizations in the development and deployment of renewable energy (RE). The World Bank (WB) and the US Department of Energy (USDOE) hosted the workshop. Delegates were mainly senior government representatives from the 23 IEA member countries, whose responsibilities are related to all or most of the renewable sources of energy. In addition, representatives of the European Union, United Nations, trade organizations, utilities and industries and the WB attended the meeting. The workshop was recognized as an important first step in a dialog required between the parties involved in the development of RE technology, project preparation and the financing of RE. It was also recognized that much more is required--particularly in terms of increased collaboration and coordination, and innovative financing--for RE to enter the market at an accelerated pace, and that other parties (for example from the private sector and recipient countries) need to have increased involvement in future initiatives.

  9. Community Renewable Energy Deployment Briefing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Deployment Briefing June 9, 2010 Steve Lindenberg Senior Advisor, Renewable ... 95% of Greensburg, KS, driving the 1500 residents from their homes and local jobs. ...

  10. Technology Deployment Case Studies

    Broader source: Energy.gov [DOE]

    Find technology deployment case studies below. Click on each individual project link to see the full case study. You can also view a map of technology deployment case studies.

  11. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration & Market Transformation Platform Tim Theiss, ORNL Bob McCormick, NREL Jeongwoo Han, ANL Increasing Biofuel Deployment through Renewable Super Premium 2015 Bioenergy Technologies Office Peer Review March 23, 2015 2 | Bioenergy Technologies Office Project Goals are Aligned with DMT & BETO Goals 2025 CAFE Standards (U.S. EPA and U.S. NHTSA standards) FUEL ECONOMY STANDARDS 70% NO x & PM, 85% NMOG < 10 ppm sulfur in gasoline (U.S. EPA Tier 3 regulations) EMISSIONS

  12. NREL: Technology Deployment - Integrated Deployment Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated...

  13. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  14. Community Renewable Energy Deployment: Haxtun Wind Project |...

    Open Energy Info (EERE)

    Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project AgencyCompany Organization US Department of Energy Focus Area...

  15. Community Renewable Energy Deployment: Forest County Potawatomi...

    Open Energy Info (EERE)

    Forest County Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe AgencyCompany Organization US Department of...

  16. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  17. PNNL Technology Planning and Deployment Group | Open Energy Informatio...

    Open Energy Info (EERE)

    in delivering projects ranging from research and development to field deployment Renewable energy assessments, impacts, and feasibility analyses Technology Adaptation,...

  18. Technology Deployment | Department of Energy

    Energy Savers [EERE]

    Deployment Technology Deployment The Federal Energy Management Program (FEMP) provides the federal government and commercial buildings sector with unbiased information about energy- and water-efficient technologies available for deployment. FEMP identifies technologies that: Have a high potential for energy savings Offer cost benefits Are commercially available for deployment. Get Started Start identifying technologies that enhance energy efficiency in buildings by: Searching for technologies

  19. Community Renewable Energy Deployment: City of Montpelier Project...

    Open Energy Info (EERE)

    Community Renewable Energy Deployment: City of Montpelier Project Jump to: navigation, search Name Community Renewable Energy Deployment: City of Montpelier Project AgencyCompany...

  20. BioRenewable Deployment Consortium Symposium

    Broader source: Energy.gov [DOE]

    The Fall 2015 Bioenergy Deployment Consortium Symposium will be held September 29–30, 2015 in Ottawa, Canada, and will discuss the deployment of advanced biofuels and biochemical technologies. Bioenergy Technologies Office Director Jonathan Male will be giving a keynote address at the symposium, and Technology Manager Elliott Levine will be in attendance.

  1. NREL: Technology Deployment - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Deployment Home Project Development Project Technical Assistance Market Acceleration Success Stories Staff Models & Tools News Did you find what you needed? Yes 1 No 0

  2. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  3. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  4. Technology Deployment Case Studies | Department of Energy

    Office of Environmental Management (EM)

    Deployment Technology Deployment Case Studies Technology Deployment Case Studies These case studies describe evaluations of energy-efficient technologies being used in federal...

  5. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  6. SMUD Community Renewable Energy Deployment Final Report

    SciTech Connect (OSTI)

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco; Ave, Kathleen

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implemented under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.

  7. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  8. NREL: Technology Deployment - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects will create and test a power-to-gas concept that uses electricity from renewable sources to make carbon-free hydrogen gas. March 31, 2015 Industry-backed Best...

  9. Strategic Planning for Renewable Energy Deployment: REopt | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Strategic Planning for Renewable Energy Deployment: REopt Strategic Planning for Renewable Energy Deployment: REopt January 7, 2016 1:30PM to 2:30PM EST Learn how to develop a strategic approach to enterprise-wide renewable energy deployment, including systematic approaches to meet agency-wide strategic sustainability goals. This update offers a special focus on the Renewable Energy Optimization Tool (REopt) as an expert service available through the Federal Energy Management Program.

  10. Partnering with China to Promote Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Partnering with China to Promote Renewable Energy Deployment Partnering with China to Promote Renewable Energy Deployment June 4, 2015 - 10:15am Addthis David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, delivers keynote remarks at the fourth U.S.-China Renewable Energy Industries Forum in Washington, D.C. | <em>Photo by Josh Harmon</em> David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy, delivers keynote

  11. Technology Deployment Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Case Studies Technology Deployment Case Studies Technology Deployment Case Studies Find efficient technologies and products for federal applications on the Federal Energy Management Program website. View All Maps Addthis

  12. NREL: Technology Deployment Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Deployment Photo of a man with a blue hard hat on installing instrumentation on an 80 meter meteorological tower used to measure the wind resource in Bangladesh. With support from NREL, developing countries are realizing the benefits of Low Emission Development Strategies. Full story. More success stories. NREL provides market expertise and tools to governments, utilities, tribes, and industry to implement clean energy solutions. Learn how NREL's integrated technology deployment

  13. Grid Engineering for Accelerated Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Photovoltaics » Grid Engineering for Accelerated Renewable Energy Deployment Grid Engineering for Accelerated Renewable Energy Deployment GEARED-color-250x70.jpg The SunShot Grid Engineering for Accelerated Renewable Energy Deployment (GEARED) program supports increased power system research, development, and analytical capacity while simultaneously growing the expertise of electric utility sector professionals for high penetrations of solar and other distributed energy

  14. Strategies to Finance Large-Scale Deployment of Renewable Energy...

    Open Energy Info (EERE)

    to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  15. NREL: Technology Deployment - Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new

  16. Technology Deployment List | Open Energy Information

    Open Energy Info (EERE)

    technologiesmatrix.htmlcat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List1 Identify emerging-and...

  17. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  18. Community Renewable Energy Deployment: University of California...

    Open Energy Info (EERE)

    at Davis Project AgencyCompany Organization US Department of Energy Focus Area Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Other, Renewable Energy,...

  19. DOE Supports Renewable Energy Deployment Projects for Forest County

    Office of Environmental Management (EM)

    Potawatomi Community | Department of Energy Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community July 21, 2014 - 12:03pm Addthis Anaerobic digesters reduce pollution and generate electricity in Milwaukee. | Image from Forest County Potawatomi Community Anaerobic digesters reduce pollution and generate electricity in Milwaukee. | Image from Forest County Potawatomi

  20. Renewable Energy Deployment Projects for Forest County Potawatomi Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Energy Deployment Projects for Forest County Potawatomi Community Renewable Energy Deployment Projects for Forest County Potawatomi Community Rooftop PV installation on the Forest County Potawatomi Tribe administration building in Milwaukee, Wisconsin. Rooftop PV installation on the Forest County Potawatomi Tribe administration building in Milwaukee, Wisconsin. Photo from Forest County Potawatomi Community Anaerobic digesters reduce pollution and generate electricity

  1. NREL: Technology Deployment - Project Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development By employing our project development models, NREL offers a broad range of advisory services that are based off commercial practices and support the entire project development process to help reduce the risks associated with energy efficiency and renewable energy projects. This includes policy and regulatory analysis, financing alternatives, project management, proposal reviews, and project risk and technology assessments. Policy and Regulatory Analysis NREL analyzes federal

  2. NREL: Technology Deployment - Tool Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Development Use NREL's models and tools to prioritize opportunities and analyze the energy savings and economics of energy efficiency, advanced transportation, and renewable energy projects. NREL develops geographic tools, interactive calculators, market and metrics databases, and mobile applications to help inform sustainable energy projects and prepare the market for emerging technologies. Geographic Tools Drawing from rich datasets, NREL builds tools that deliver interactive mapping

  3. NREL: Technology Deployment - Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of renewable energy resource data, maps, and tools Renewable Energy Technologies Geothermal Prospector Examine, distribute, and analyze geothermal resources and identify...

  4. Transportation Deployment (Brochure), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ers, and government agencies all turn to the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. ...

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  6. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  7. Demonstrating and Deploying Integrated Retrofit Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and...

  8. NREL: Technology Deployment - Market Impact Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact is NREL's Technology Deployment newsletter that reports on the impact NREL's is making toward a clean energy future by working with industry and government agencies to...

  9. Impact Evaluation Framework for Technology Deployment Programs...

    Broader source: Energy.gov (indexed) [DOE]

    framework for evaluating the retrospective impact of technology deployment programs impactframeworktechdeploy2007overview.pdf More Documents & Publications 2001 FEMP Customer...

  10. renewable energy technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    renewable energy technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. General Renewable Energy Technology Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Renewable Energy Technology Resources General Renewable Energy Technology Resources Below are general resources for Tribes on renewable energy technologies. Developing ...

  12. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  13. NREL: Technology Deployment - Electric Utility Assistance and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities to help further the integration of renewable energy and energy efficiency technologies into the electric grid. Distributed Generation Interconnection Collaborative The...

  14. Pascua Yaqui Tribe Renewable Energy Development and Deployment Feasibility Study

    SciTech Connect (OSTI)

    Arvayo, Maria

    2014-05-30

    In 2012, PYT was awarded a grant from the Department of Energy Tribal Energy Program to conduct a Renewable Energy Development and Deployment Feasibility Study that would define the technical and economic viability of renewable energy on tribal lands. Red Mountain Energy Partners (RMEP) was hired by PYT to complete the study. Through this study, Red Mountain concluded that there are viable opportunities for solar at Tortuga Ranch, the Casino del Sol and a third site near the Justice Center on Camino de Oeste.

  15. Alaska Village Electric Cooperative (AVEC) - Deploying Renewables in Alaska

    Office of Environmental Management (EM)

    Deploying Renewables in Remote Alaskan Communities By Meera Kohler Alaska Village Electric Cooperative U.S. Dept. of Energy Program Review Denver, CO November 17, 2008 New turbines in Hooper Bay Who is AVEC? * 53 villages * 22,000 population - Would be the 4 th largest city in Alaska after Anchorage, Fairbanks and Juneau * 44% of Village Alaska population * Anvik (smallest) 101 * Hooper Bay (largest) 1,124 * Average population 420 * Anchorage 277,498 * 94% Alaska Native #2 Alaska Vs. Lower Forty

  16. Pascua Yaqui Tribe - Renewable Energy Development and Deployment Feasibility Study

    Energy Savers [EERE]

    Pascua Yaqui Tribe Renewable Energy Development and Deployment Feasibility Study 2012 Pascua Yaqui Tribe * The Pascua Yaqui Tribe has a total enrollment of approximately 18,000. * A small reservaLon with 4,000 residents is located in SW Tucson, Arizona. Many members reside in several recognized communiLes in the Tucson and Phoenix area. History Ancestral Yaquis resided in Sonora, Mexico. Hundreds of years of transmigraLon established permanent communiLes throughout Southern Arizona. History * In

  17. Fact Sheet: Accelerating the Deployment of EERE Technologies in South

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Africa | Department of Energy Fact Sheet: Accelerating the Deployment of EERE Technologies in South Africa Fact Sheet: Accelerating the Deployment of EERE Technologies in South Africa In 2010, the Deputy Secretary of the U.S. Department of Energy and the Energy Minister of the Republic of South Africa (RSA) launched the U.S. - RSA Energy Dialogue to facilitate cooperation in a number of areas, including energy efficiency and renewable energy. In support of the U.S. - RSA Energy Dialogue, the

  18. Massachusetts Technology Collaborative - Renewable Energy Trust...

    Open Energy Info (EERE)

    - Renewable Energy Trust Jump to: navigation, search Logo: Massachusetts Technology Collaborative - Renewable Energy Trust Name: Massachusetts Technology Collaborative...

  19. NREL: Technology Deployment - Climate Action Planning Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Technology Deployment Climate Action Planning Tool Technology Deployment - Climate Action Planning Tool NREL's Climate Action Planning Tool provides a quick, basic estimate of how various technology options can contribute to an overall climate action plan for your research campus. Use the tool to identify which options will lead to the most significant reductions in consumption of fossil fuels and in turn meet greenhouse gas reduction goals. Follow these four steps: Gather baseline energy

  20. State perspectives on clean coal technology deployment

    SciTech Connect (OSTI)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  1. Technology Deployment Annual Report 2010

    SciTech Connect (OSTI)

    Keith Arterburn

    2010-12-01

    This report is a catalog of selected INL technology transfer and commercialization transactions during FY-2010.

  2. Impact Evaluation Framework for Technology Deployment Programs 2007 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Framework for Technology Deployment Programs 2007 Impact Evaluation Framework for Technology Deployment Programs 2007 Impact Evaluation Framework for Technology Deployment Programs: An approach for quantifying retrospective energy savings, clean energy advances, and market effects. PDF icon Impact Evaluation Framework for Technology Deployment Programs More Documents & Publications Impact Evaluation Framework for Technology Deployment Programs: An Overview and

  3. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J.

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  4. Technology Deployment Annual Report 2009

    SciTech Connect (OSTI)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  5. New Online Tools Showcase Efficient Technologies and Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Online Tools Showcase Efficient Technologies and Deployment Case Studies New Online Tools Showcase Efficient Technologies and Deployment Case Studies September 29, 2015 -...

  6. Roadmap Prioritizes Barriers to the Deployment of Wind Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments ...

  7. EERE Success Story-Columbia Power Technologies, Inc. Deploys...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy EERE Success Story-Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, ...

  8. Synchrophasor Technologies and their Deployment in the Recovery...

    Energy Savers [EERE]

    Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid...

  9. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Alternative Fuels Research and Deployment Vehicle Technologies Office: Alternative Fuels Research and Deployment School buses in Oyster Bay, Long ...

  10. Federal Technology Deployment Pilot: Exterior Solid State Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility...

  11. NREL: Technology Deployment - Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project

  12. Bioenergy Technologies Office (BETO) Announces Renewable Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement ...

  13. NREL: Technology Deployment - New DG Collaborative Brings Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    installation labor remain stubbornly high and pose barriers to wide scale photovoltaic (PV) deployment. Building off 2012 and 2013 National Renewable Energy Laboratory (NREL)...

  14. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  15. National Renewable Energy Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Renewable Energy Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Renewable Energy ...

  16. NREL: Technology Deployment - State and Local Governments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State and Local Governments Technology Deployment NREL provides analysis, outreach, training, and technical assistance to state and local government leaders as part of its mission to transfer knowledge and innovation to solve the nation's energy challenges. The goal of this work is to support informed decision making with credible, technology-neutral, accessible, and timely resources. NREL technical experts provide: Disaster resiliency and recovery support Financial policy analysis Program,

  17. NREL: Technology Deployment - Wind Energy Deployment and Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformation Wind Energy Deployment and Market Transformation NREL experts have a broad range of wind energy deployment and market transformation capabilities spanning more than 20 years of direct experience that help stakeholders understand and accelerate wind energy deployment in both the United States and internationally. Because NREL is a Federally Funded Research and Development Center, we undertake projects that fall outside of the services typically provided by high-end wind

  18. Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects

    Broader source: Energy.gov [DOE]

    Describes the DOE Community Renewable Energy Deployment program, which used funding from the American Recovery and Reinvestment Act of 2009 to promote investment in clean energy solutions and...

  19. NREL: Technology Deployment - Solar Deployment and Market Transformati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses...

  20. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  1. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Materials Science and Engineering Designated Technology Deployment Center Materials Science and Engineering Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. The MSE is comprised of several laboratories, each providing unique

  2. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  3. Technology Deployment Featured Case Studies | Department of Energy

    Energy Savers [EERE]

    Deployment » Technology Deployment Featured Case Studies Technology Deployment Featured Case Studies These case studies feature evaluations of energy-efficient technologies being used in federal applications. See additional technology deployment case studies. Photo of men working on a boiler. Boiler Combustion Control and Monitoring System: The Department of Defense Environmental Security Technology Certification Program tested a boiler combustion control and monitoring system installed on a 25

  4. Renewable Energy Technologies Financial Model (RET Finance) ...

    Open Energy Info (EERE)

    Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy...

  5. Financial Assistance Funding Opportunity Announcement: Renewable Energy Development and Deployment in Indian Country

    Energy Savers [EERE]

    FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U.S. Department of Energy Energy Efficiency and Renewable Energy Golden Field Office Renewable Energy Development and Deployment in Indian Country Topic Area 1: Feasibility Study Topic Area 2: Development (Pre-construction) Activities Topic Area 3: Deployment (Construction) of Renewable Energy Power Projects Funding Opportunity Announcement Number: DE-FOA-0000424 Announcement Type: Initial CFDA Number: 81.087 Issue Date: January 18, 2011

  6. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am ...

  7. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  8. New Online Tools Showcase Efficient Technologies and Deployment Case

    Office of Environmental Management (EM)

    Studies | Department of Energy Online Tools Showcase Efficient Technologies and Deployment Case Studies New Online Tools Showcase Efficient Technologies and Deployment Case Studies September 29, 2015 - 12:49pm Addthis New Online Tools Showcase Efficient Technologies and Deployment Case Studies The Federal Energy Management Program (FEMP) released two new online tools to help agencies choose energy- and water-efficient technologies and products for deployment in federal facilities. Now

  9. NREL: Technology Deployment - Climate Neutral Research Campuses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Neutral Research Campuses Technology Deployment Four photos in a row across the top of the page. The first photo shows the profile of a wind turbine at dusk; the second of two women in white laboratory coats and glasses observing a piece of equipment; the third of a blue car moving downhill with a red rock in the background; the fourth of a walkway to a sandstone building that has a silver tower in the front and a silver walkway into the second story. Climate Neutral Research Campuses

  10. Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments | Department of Energy Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments Roadmap Prioritizes Barriers to the Deployment of Wind Technology in Built Environments January 10, 2013 - 3:04pm Addthis This is an excerpt from the Fourth Quarter 2012 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently published a Built-Environment Wind Turbine Roadmap that outlines a

  11. Technology Deployment Annual Report 2014 December

    SciTech Connect (OSTI)

    Arterburn, George K.

    2014-12-01

    This report is a summary of key Technology Deployment activities and achievements for 2014, including intellectual property, granted copyrights, royalties, license agreements, CRADAs, WFOs and Technology-Based Economic Development. Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In our multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational instiutitons throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  12. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially availablebiomass, geothermal, hydropower, solar PV, CSP, and wind-powered systemsare included in the modeling analysis. Some of these renewable technologiessuch as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomassare relatively mature and well-characterized. Other renewable technologiessuch as fixed-bottom offshore wind, solar PV, and solar CSPare at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  13. Impact Evaluation Framework for Technology Deployment Programs: An Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Example | Department of Energy Impact Evaluation Framework for Technology Deployment Programs: An Overview and Example Impact Evaluation Framework for Technology Deployment Programs: An Overview and Example A framework for evaluating the retrospective impact of technology deployment programs PDF icon impact_framework_tech_deploy_2007_overview.pdf More Documents & Publications 2001 FEMP Customer Survey Report (Summary Report) 2001 FEMP Customer Survey Report (Main Report) 2001 FEMP

  14. Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions Trieu Mai, Wesley Cole, Eric Lantz, Cara Marcy, and Benjamin Sigrin National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65571 February 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory

  15. Technology Deployment Annual Report 2013 December

    SciTech Connect (OSTI)

    N /A

    2014-01-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. INL employees also work cooperatively with researchers and technical staff from the university and industrial sectors to further develop emerging technologies. In a multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Office of Technology Deployment. However, the accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  16. Outdoor Solid-State Lighting Technology Deployment | Department of Energy

    Energy Savers [EERE]

    Products & Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment Solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The Federal Energy Management Program (FEMP) Outdoor SSL Initiative offers a unique opportunity for the Federal sector to lead large-scale imple-mentation

  17. Financial Institution Partnership Program - Commercial Technology Renewable

    Office of Environmental Management (EM)

    Energy Generation Projects Issued: October 7, 2009 | Department of Energy Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 PDF icon Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 PDF icon Fixed Rate Agreement

  18. Challenges with SMUD’s Community Renewable Energy Project Deployment

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Community Renewable Energy Success Stories Webinar series presentation by Elaine Sison-Lebrilla, Sacramento Municipal Utility District (SMUD) on technical challenges confronting local solar energy programs in California.

  19. Introduction to Renewable Energy Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Renewable Energy Technology A YEAR-LONG SCIENCE & TECHNOLOGY COURSE by Matthew A. Brown Lakewood High School Lakewood, CO Lakewood High School Red Rocks Community College Smart Energy Living Alliance Metro Denver WIRED Initiative Introduction Page i-i Revision date: 6/1/08 This curriculum is a partnership between: Lakewood High School Matthew Brown, maabrown@jeffco.k12.co.us Suzanne McClung, smcclung@jeffco.k12.co.us 9700 W. 8th Ave., Lakewood, CO 80215 303.982.7096

  20. Technology Demonstration and Deployment Overview - 2015 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration and Deployment Overview - 2015 BTO Peer Review Technology Demonstration and Deployment Overview - 2015 BTO Peer Review Presenter: Amy Jiron, U.S. Department of Energy View the Presentation PDF icon Technology Demonstration and Deployment Overview - 2015 BTO Peer Review More Documents & Publications Better Buildings Alliance Tech Team Impact Framework - 2014 BTO Peer Review Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review

  1. Solterra Renewable Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Solterra is a technology development firm focused on thin-film quantum dot solar cells. References: Solterra Renewable Technologies Inc.1 This article is...

  2. Renewable Energy Technology Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Conference Renewable Energy Technology Conference October 16, 2012 - 11:47am Addthis October 16, 2012 Washington, D.C. OMNI Shoreham Hotel The Office of Indian Energy sponsored a pre-conference session at the Renewable Energy Technology Conference (RETECH) held October 16, 2012, which brought together government, tribal, and industry renewable energy leaders to explore best practices, public-private partnerships to support and encourage energy infrastructure

  3. NREL: Technology Deployment - Disaster Resiliency and Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disaster recovery and rebuilding opportunities to: Incorporate energy efficiency, water and fuel conservation, sustainability, and renewable energy measures into disaster...

  4. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment K. Moriarty National Renewable Energy Laboratory M. Kass and T. Theiss Oak Ridge National Laboratory Technical Report NREL/TP-5400-61684 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  5. Demonstrating and Deploying Integrated Retrofit Technologies and Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - 2014 BTO Peer Review | Department of Energy Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy

  6. Federal Technology Deployment Pilot: Exterior Solid State Lighting |

    Office of Environmental Management (EM)

    Department of Energy Technology Deployment Pilot: Exterior Solid State Lighting Federal Technology Deployment Pilot: Exterior Solid State Lighting Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-provides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project. PDF icon fupwg_fall11_mccullough.pdf More Documents & Publications FEMP Exterior

  7. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant

    Office of Environmental Management (EM)

    Field Workers | Department of Energy Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC)

  8. Real Options Valuation of U.S. Federal Renewable Energy Research,Development, Demonstration, and Deployment

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Wiser, Ryan H.

    2005-03-01

    Benefits analysis of US Federal government funded research, development, demonstration, and deployment (RD3) programs for renewable energy (RE) technology improvement typically employs a deterministic forecast of the cost and performance of renewable and nonrenewable fuels. The benefits estimate for a program derives from the difference between two forecasts, with and without the RD3 in place. The deficiencies of the current approach are threefold: (1) it does not consider uncertainty in the cost of non-renewable energy (NRE), and the option or insurance value of deploying RE if and when NRE costs rise; (2) it does not consider the ability of the RD3 manager to adjust the RD3 effort to suit the evolving state of the world, and the option value of this flexibility; and (3) it does not consider the underlying technical risk associated with RD3, and the impact of that risk on the programs optimal level of RD3 effort. In this paper, a rudimentary approach to determining the option value of publicly funded RE RD3 is developed. The approach seeks to tackle the first deficiency noted above by providing an estimate of the options benefit of an RE RD3 program in a future with uncertain NRE costs.While limited by severe assumptions, a computable lattice of options values reveals the economic intuition underlying the decision-making process. An illustrative example indicates how options expose both the insurance and timing values inherent in a simplified RE RD3 program that coarsely approximates the aggregation of current Federal RE RD3.This paper also discusses the severe limitations of this initial approach, and identifies needed model improvements before the approach can adequately respond to the RE RD3 analysis challenge.

  9. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  11. Guidance for Deployment of Mobile Technologies for Nuclear Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guidance for Deployment of Mobile Technologies for Nuclear PowerPlant Field Workers ... for the purpose of improving human performance and plant status control (PSC) for ...

  12. Immediate Deployment of Waste Energy Technologies at Multiple Sites

    SciTech Connect (OSTI)

    2011-12-01

    Factsheet overviewing project that will deploy industrial technologies to more efficiently recover and reuse water and steam at pulp and paper facilities.

  13. DOE, NREL Help DoD Enhance Energy Security (Fact Sheet), Integrated Deployment: Military, Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE, NREL Help DoD Enhance Energy Security The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are helping the U.S. government, including the U.S. Department of Defense (DoD), deploy large-scale energy efficiency measures and renewable energy technologies to reduce costs, increase energy security, and meet federal mandates. As the largest energy consumer within the U.S. federal government, DoD has long recognized the strategic impor- tance of energy to its

  14. NREL: Technology Deployment - Solar Technical Assistance Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Program Technical Assistance Requested: Assistance on renewable energy regulatory considerations and financing options to inform net-positive solar energy community initiative. ...

  15. EERE Technology Commercialization and Deployment Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Deployment Fund (TCDF) *Entrepreneur in Residence (EIR) The EERE ... u n d s a n d m e n t o r s E I R The Entrepreneur in Residence (EIR) program will bring ...

  16. NREL: Technology Deployment - Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist

  17. NREL: Technology Deployment - Alaska Native Village Benefits from NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Assistance with Strategic Energy Planning Alaska Native Village Benefits from NREL Technical Assistance with Strategic Energy Planning News Rampart Proactively Addresses Expansion Challenges with Strategic Energy Planning DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community Publications Advancing Energy Development in Indian Country Renewable Energy Development in Indian Country: A Handbook for Tribes Advancing Next-Generation Energy in Indian

  18. Renewable Energy Technologies for Rural Electrification - The...

    Open Energy Info (EERE)

    Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies for Rural Electrification - The Role of the Private Sector AgencyCompany...

  19. Renewable Technologies Inc RTI | Open Energy Information

    Open Energy Info (EERE)

    search Name: Renewable Technologies Inc (RTI) Place: California Zip: 95685 Product: Photovoltaic systems design, engineering and installation firm, with several registered...

  20. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  1. Marine Renewable Technologies | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Marine Renewable Technologies Address: 319 Business Lane Suite 1000 Ashland VA 23005 Place: Ashland Zip: 23005 Region: United States...

  2. Renewable Energy Technology Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Name: Renewable Energy Technology Center Place: Hamburg, Hamburg, Germany Zip: D-22335 Sector: Wind energy Product: RETC, a JV formed which will...

  3. Technology Deployment Annual Report 2013 December (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technology Deployment Annual Report 2013 December Citation Details In-Document Search Title: Technology Deployment Annual Report 2013 December Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and

  4. Vehicle Technologies Office: Alternative Fuels Research and Deployment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Alternative Fuels Research and Deployment Vehicle Technologies Office: Alternative Fuels Research and Deployment School buses in Oyster Bay, Long Island, filling up at a natural gas station. These buses were part of a project supported by the Vehicle Technologies Office through Clean Cities. School buses in Oyster Bay, Long Island, filling up at a natural gas station. These buses were part of a project supported by the Vehicle Technologies

  5. NREL: Technology Deployment - Technical Assistance for Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Islands NREL provides technical assistance to help islands reduce dependence on fossil fuels and increase energy security by implementing energy efficiency measures and leveraging indigenous renewable resources. Hawaii NREL Helps Design LEED Platinum Affordable Housing U.S. Virgin Islands Landmark Solar Deal Completed with NREL Support This tailored technical assistance includes: Establishing baseline energy use Measuring available renewable resources Assessing the viability of various energy

  6. NREL: Technology Deployment - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 November 27, 2007 NREL Sponsors Energy Analysis Forum on Carbon Policy Design The National Renewable Energy Laboratory (NREL) held its fifth Energy Analysis Forum, "Analytic Insights into Carbon Policy Design and the Implications for Energy Efficiency and Renewable Energy," in Golden, Colorado, on November 27-28. September 14, 2007 NREL Receives Presidential Award for Federal Energy Management SEAAC staff members Nancy Carlisle and Otto Van Geet have been selected to receive one of

  7. Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This fact sheet describes the U.S. Department of Energy's Community Renewable Energy Deployment (CommRE) program, which is a more than $20 million effort funded through the American Recovery and Reinvestment Act of 2009, to promote investment in clean energy solutions and provide real-life examples for other local governments, campuses, and small utilities to replicate. Five community-based renewable energy projects received funding from DOE through the CommRE and their progress is detailed.

  8. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires an understanding of the underlying solar resource. Under a bilateral partnership between the United States and India-the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory has updated Indian solar data and maps using data provided by the Ministry of New and Renewable Energy (MNRE) and the National

  9. An Integrated Risk Framework for Gigawatt-scale Deployments of Renewable Energy: The U.S. Wind Energy Case

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable wind energy requires a new way of evaluating potential environmental and human impacts. This paper explores an integrated risk framework for renewable wind energy siting decisionmaking.

  10. Report on Synchrophasor Technologies and Their Deployment in Recovery Act

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Now Available | Department of Energy Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid

  11. NREL: Technology Deployment - DGIC Interconnection Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DGIC Interconnection Insights The Distributed Generation Interconnection Collaborative (DGIC) Insights provide answers to questions posed by DGIC participants, deliver timely updates on pressing interconnection issues, and disseminates analysis findings to inform decision making and planning. Utility Owned Roof Top Solar March 2016 by Kristen Ardani, National Renewable Energy Laboratory (NREL) These leaders are pioneering utility-owned rooftop solar programs to broaden the reach of solar PV

  12. NREL: Technology Deployment - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 30, 2011 Hawai'i Interactive Maps Website Showcases Renewable Energy Projects NREL worked with the state's Department of Business, Economic Development & Tourism to develop an interactive maps website that highlights more than 40 clean energy projects. December 30, 2011 Largest Wind Farm in Alaska Moving Forward The 11-turbine, commercial-scale wind farm now under construction on Fire Island-three miles west of Anchorage, Alaska-is the product of many organizations' efforts,

  13. NREL: Technology Deployment - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 December 11, 2014 NREL Compares State Solar Policies to Determine Equation for Solar Market Success Analysts at the Energy Department's National Renewable Energy Laboratory (NREL) have used statistical analyses and detailed case studies to better understand why solar market policies in certain states are more successful. Their findings indicate that while no standard formula for solar implementation exists, a combination of foundational policies and localized strategies can increase solar

  14. NREL: Technology Deployment - Project Development Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) State & Local Energy Data Enter a city and state or zip code in the State and

  15. Combined Heat & Power Technology Overview and Federal Sector Deployment

    Broader source: Energy.gov [DOE]

    Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

  16. Making Vehicle Technology Deployment Scenarios More Robust

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Synchrophasor Technologies and their Deployment in the Recovery Act Smart

    Energy Savers [EERE]

    Grid Programs (August 2013) | Department of Energy Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) The American Recovery and Reinvestment Act of 2009 provided $4.5 billion for the Smart Grid Investment Grant (SGIG), Smart Grid Demonstration Program (SGDP), and other DOE smart grid programs. These programs provided grants to the electric

  18. Integrated Risk Framework for Gigawatt-Scale Deployments of Renewable Energy: The U.S. Wind Energy Case; October 2009

    SciTech Connect (OSTI)

    Ram, B.

    2010-04-01

    Assessing the potential environmental and human effects of deploying renewable energy on private and public lands, along our coasts, on the Outer Continental Shelf (OCS), and in the Great Lakes requires a new way of evaluating potential environmental and human impacts. The author argues that deployment of renewables requires a framework risk paradigm that underpins effective future siting decisions and public policies.

  19. NREL: Technology Deployment - Technical Assistance for Tribes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    federal agencies, non-profits, and intertribal organizations to provide resources and direct assistance that support clean energy technology delivery and connect motivated...

  20. Transportation Energy Futures Series: Vehicle Technology Deployment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... which the Internet allows reports of technology problems to ... (CAFE) standards for 2011-2016 and 2016-2025 will serve as ... Diesel infrastructure primarily involves refinery ...

  1. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect (OSTI)

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  2. The Status of Renewable Hydrogen and Energy Station Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations The Status of Renewable Hydrogen and Energy Station Technologies and Policy...

  3. Introduction to Renewable Energy Technologies | Open Energy Informatio...

    Open Energy Info (EERE)

    Renewable Energy Technologies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Introduction to Renewable Energy Technologies AgencyCompany Organization: United States...

  4. NREL: Technology Deployment - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Archives - 2013 December 31, 2013 NREL Electrode Innovation Poised to Shake Up the Lithium-Ion Battery Industry NREL's groundbreaking manufacturing process uses a special kind of carbon nanotube to increase the volume of active material that can be stored within an electrode. November 12, 2013 Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th NREL's Amber LED technology, when combined with red, green and blue LEDs, produces a broad-spectrum white light more

  5. Deploying American-Made Clean Energy Technologies in South Africa |

    Office of Environmental Management (EM)

    Department of Energy Deploying American-Made Clean Energy Technologies in South Africa Deploying American-Made Clean Energy Technologies in South Africa June 26, 2014 - 10:50am Addthis A worker paints a rooftop with reflective paint in the !Khies municipality in Northern Cape, South Africa. | Photo by Mothusi Guy of PEER Africa A worker paints a rooftop with reflective paint in the !Khies municipality in Northern Cape, South Africa. | Photo by Mothusi Guy of PEER Africa Cori Sue Morris

  6. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  7. Renewable Energy Technologies for Federal Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Federal Projects Renewable Energy Technologies for Federal Projects Renewable energy technologies (from left to right): geothermal, hydropower, wind, concentrating solar power, and biomass. Renewable energy technologies (from left to right): geothermal, hydropower, wind, concentrating solar power, and biomass. The renewable energy technologies listed here align with the Energy Policy Act of 2005, which defines renewable energy as "electric energy generated from solar, wind,

  8. Renewable Energy Technology Opportunities: Responding to Global Energy Challenges (Presentation)

    SciTech Connect (OSTI)

    Arvizu, D.

    2007-01-23

    Presentation by Dr. Dan Arvizu of the National Renewable Energy Laboratory (NREL) to the Clean-Tech Investors Summit on January 23, 2007 overviews renewable energy technology opportunities.

  9. Volunteers Leading Technology, A Case Study: Chewonki Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, A Case Study: Chewonki Renewable Hydrogen Project This presentation by Paul Faulstich focuses on the Chewonki Renewable Hydrogen Project. PDF icon...

  10. Renewable Technology Ventures Ltd RTVL | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Sector: Renewable Energy Product: Renewable Technology Ventures Limited (RTVL), a joint venture between SSE and The Weir Group, is investing in the development of a tidal...

  11. Pakistan Council for Renewable Energy Technologies PCRET | Open...

    Open Energy Info (EERE)

    Islamabad, Pakistan Sector: Renewable Energy Product: Nodal agency under Ministry of Science and Technology that focuses on research and development for renewable energy...

  12. Evaluating Solar Resource Data Obtained from Multiple Radiometers Deployed at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Andreas, A.; Wilcox, S.; Stoffel, T.

    2014-09-01

    Solar radiation resource measurements from radiometers are used to predict and evaluate the performance of photovoltaic and concentrating solar power systems, validate satellite-based models for estimating solar resources, and advance research in solar forecasting and climate change. This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances (GHI) and direct normal irradiances (DNI). These include pyranometers, pyrheliometers, rotating shadowband irradiometers, and a pyranometer with a shading ring deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory (SRRL). The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference GHI and DNI.

  13. Renewable Energy Technologies - Geothermal Energy

    Energy Savers [EERE]

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  14. Federal Renewable Energy Projects and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Projects and Technologies Federal Renewable Energy Projects and Technologies By 2025, 30% of the electricity consumed by the federal government is to come from renewable energy sources. In fiscal year 2014, federal renewable electricity consumption was 8.76%, or 4,796,149 megawatt hours, of its total electricity consumption. By 2025, 30% of the electricity consumed by the federal government is to come from renewable energy sources. In fiscal year 2014, federal renewable

  15. Clean coal technology deployment: From today into the next millennium

    SciTech Connect (OSTI)

    Papay, L.T.; Trocki, L.K.; McKinsey, R.R.

    1997-12-31

    The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

  16. Federal Renewable Energy Project Potential by Technology | Department of

    Office of Environmental Management (EM)

    Energy Potential by Technology Federal Renewable Energy Project Potential by Technology Federal renewable energy projects vary by technology and region and align with key market drivers, including renewable energy resource strength, utility rates, and local incentives. One way a federal agency can approach its 30% by 2025 renewable energy target is by examining its inventory of real property, calculating energy use and cost at each site, and obtaining and interpreting local renewable energy

  17. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  18. Demonstrating & Deploying Integrated Retrofit Technologies & Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrating & Deploying Integrated Retrofit Technologies & Solutions 2014 Building Technologies Office Peer Review Mark B. Stutman, MS, CEM, LEED AP O&M mbstutman@engr.psu.edu Consortium for Building Energy Innovation Project Summary Timeline: Start date: 1 February 2012 Planned end date: 30 April 2015 Key Milestones 1. Q1 2012 initial testbed established 2. Q2-Q4 2012 additional test beds developed 3. Q2 2013 screened new pool of candidate buildings 4. Q4 2013 begin facilitated

  19. CBEI - Demonstrating & Deploying Integrated Retrofit Technologies & Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrating & Deploying Integrated Retrofit Technologies & Solutions 2015 Building Technologies Office Peer Review Mark B. Stutman, MS, CEM, LEED AP O&M mbstutman@engr.psu.edu Consortium for Building Energy Innovation Project Summary Timeline: Start date: 1 February 2012 (BP2) Planned end date: 30 April 2016 (BP5) Key Milestones 1. Q1 2012 (BP2) initial testbed established 2. 2012-2013 (BP2 & BP3) additional test beds established 3. Q3 2014 occupy and begin documenting

  20. NREL: Technology Deployment - Strategy and Implementation Group, Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications Center Strategy and Implementation Group, Integrated Applications Center The Strategy and Implementation group provides strategic energy solutions through thoughtful planning and practical know-how to produce groundbreaking results. Through a unique combination of skills including broad technical knowledge across multiple renewable energy and energy efficiency technologies, a deep understanding of markets and policies, and the ability to work collaboratively with customers and

  1. FEMP Offers New Training Series on Renewable Energy Technologies |

    Energy Savers [EERE]

    Department of Energy Series on Renewable Energy Technologies FEMP Offers New Training Series on Renewable Energy Technologies January 21, 2015 - 2:56pm Addthis The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) presents an updated series of training courses focused on Renewable Energy Technology Applications for federal sites. Renewable energy technologies can help federal sites meet agency goals and legislative mandates, improve energy security, and reduce

  2. FEMP Offers New Training Series on Renewable Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the grid. By completing the series, participants will learn to: Understand geographicclimate considerations, renewable energy technology capabilities and constraints, and...

  3. Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008)

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

  4. Federal Renewable Energy Projects and Technologies Contacts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Projects and Technologies Contacts Federal Renewable Energy Projects and Technologies Contacts For more information about federal renewable energy projects, contact: Contact Organization Specialty Rachel Shepherd 202-586-9209 Federal Energy Management Program Renewable energy program lead David McAndrew 202-586-7722 Federal Energy Management Program Renewable power purchasing program lead Doug Dahle 303-384-7513 National Renewable Energy Laboratory Project financing Chandra Shah

  5. Strategies for the Commercialization & Deployment of GHG Intensity-Reducing Technologies & Practices

    Broader source: Energy.gov [DOE]

    This report looks at the best methods of commercializing and deploying energy technologies that reduce greenhouse gas intensity.

  6. General Renewable Energy Technology Module | Open Energy Information

    Open Energy Info (EERE)

    Technology Module Jump to: navigation, search Tool Summary LAUNCH TOOL Name: General Renewable Energy Technology Module AgencyCompany Organization: World Bank Sector: Energy...

  7. Renewable Energy Technology Costs and Drivers | Open Energy Informatio...

    Open Energy Info (EERE)

    Technology Costs and Drivers Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technology Costs and Drivers AgencyCompany Organization: National...

  8. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

  9. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect (OSTI)

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  10. Keweenaw Bay Indian Community Presentation - Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands

    Office of Environmental Management (EM)

    Community PRESENTATION Assessing the Feasibility of Renewable Energy Development and Energy Efficiency Deployment on Tribal Lands November 18, 2009 Gregg Nominelli, J.D. Economic Developer BACKGROUND INFORMATION  U.S. Department of Justice  Tribal Council formed Committee for Alternative & Renewable Energy  Council for Energy Resource Tribes  Targeted Wind Power Development & Energy Efficiency U.S. Department of Justice  Weed & Seed Program  Community Capacity

  11. Economic Impact of Large-Scale Deployment of Offshore Marine and Hydrokinetic Technology in Oregon Coastal Counties

    SciTech Connect (OSTI)

    Jimenez, T.; Tegen, S.; Beiter, P.

    2015-03-01

    To begin understanding the potential economic impacts of large-scale WEC technology, the Bureau of Ocean Energy Management (BOEM) commissioned the National Renewable Energy Laboratory (NREL) to conduct an economic impact analysis of largescale WEC deployment for Oregon coastal counties. This report follows a previously published report by BOEM and NREL on the jobs and economic impacts of WEC technology for the entire state (Jimenez and Tegen 2015). As in Jimenez and Tegen (2015), this analysis examined two deployment scenarios in the 2026-2045 timeframe: the first scenario assumed 13,000 megawatts (MW) of WEC technology deployed during the analysis period, and the second assumed 18,000 MW of WEC technology deployed by 2045. Both scenarios require major technology and cost improvements in the WEC devices. The study is on very large-scale deployment so readers can examine and discuss the potential of a successful and very large WEC industry. The 13,000-MW is used as the basis for the county analysis as it is the smaller of the two scenarios. Sensitivity studies examined the effects of a robust in-state WEC supply chain. The region of analysis is comprised of the seven coastal counties in Oregon—Clatsop, Coos, Curry, Douglas, Lane, Lincoln, and Tillamook—so estimates of jobs and other economic impacts are specific to this coastal county area.

  12. Commercialization and Deployment at NREL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation to STEAB Commercialization and Deployment at NREL Casey Porto, Senior Vice President, Commercialization and Deployment June 8, 2011 National Renewable Energy Laboratory Innovation for Our Energy Future Outreach, Planning, and Analysis B. Garrett Sr. Vice President Science and Technology D. Christensen Dep. Lab. Director / CRO Operations W. Glover Dep. Lab. Director / COO Commercialization and Deployment C. Porto Sr. Vice President National Renewable Energy Laboratory D. Arvizu

  13. Federal Renewable Energy Projects and Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    By 2025, 30% of the electricity consumed by the federal government is to come from renewable energy sources. In fiscal year 2014, federal renewable electricity consumption was...

  14. Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am Addthis In preparation for a full-scale bay/ocean demonstration and with EERE support, Columbia Power Technologies, Inc. (CPT) deployed an intermediate-scale wave energy converter to demonstrate and validate its direct drive wave energy Buoy technology, which extracts energy from passing waves.

  15. EERE Success Story-Columbia Power Technologies, Inc. Deploys its Direct

    Office of Environmental Management (EM)

    Drive Wave Energy Buoy | Department of Energy Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy EERE Success Story-Columbia Power Technologies, Inc. Deploys its Direct Drive Wave Energy Buoy April 9, 2013 - 12:00am Addthis In preparation for a full-scale bay/ocean demonstration and with EERE support, Columbia Power Technologies, Inc. (CPT) deployed an intermediate-scale wave energy converter to demonstrate and validate its direct drive wave energy Buoy technology,

  16. MHK Technologies/New Knowledge Wind and Wave Renewable Mobile...

    Open Energy Info (EERE)

    New Knowledge Wind and Wave Renewable Mobile Wind and Wave Power Plant Platform < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage New Knowledge...

  17. Energy Efficiency and Renewable Energy Science and Technology Policy Fellowships

    Broader source: Energy.gov [DOE]

    The Energy Efficiency and Renewable Energy (EERE) Science and Technology Policy (STP) Fellowships serve as a next step in the educational and professional development of scientists and engineers...

  18. NREL Controllable Grid Interface for Testing of Renewable Energy Technologies

    SciTech Connect (OSTI)

    Gevorgian, Vahan; Wallen, Robb; McDade, Mark; Shirazi, Mari; Lundstrom, Blake

    2015-11-05

    This presentation provides a high-level overview of NREL's multi-megawatt testing facilities and capabilities for the grid integration of renewable technologies.

  19. Technological Institute of Renewable Energy ITER | Open Energy...

    Open Energy Info (EERE)

    to: navigation, search Name: Technological Institute of Renewable Energy (ITER) Place: Santa Cruz de Tenerife, Spain Zip: 38611 Sector: Solar, Wind energy Product: Spain-based,...

  20. Army Awards 20 Additional Contracts for Renewable Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    awarded another 20 base contracts to companies for renewable energy-related technologies. ... to be developed by the approved companies, and involve no Army or Department of ...

  1. Vehicle Technologies Office Merit Review 2014: PEV Integration with Renewables

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV...

  2. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  3. Commercialization and Deployment at NREL: Advancing Renewable Energy and Energy Efficiency at Speed and Scale

    SciTech Connect (OSTI)

    Not Available

    2011-05-11

    A White Paper overview of NREL's commercialization and deployment activities, requested by the chair of the State Energy Advisory Board.

  4. Technology Demonstration and Deployment Overview - 2015 BTO Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Better Buildings Alliance Tech Team Impact Framework - 2014 BTO Peer Review Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review Lighting Energy ...

  5. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  6. Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project This presentation by Paul Faulstich focuses on the Chewonki Renewable Hydrogen Project. PDF icon education_presentation_faulstich.pdf More Documents & Publications EIS-0073: Final Environmental Impact Statement EIS-0063: Final Environmental Impact Statement EIS-0063: Draft Environmental Impact

  7. Leading the Nation in Clean Energy Deployment | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. PDF icon idoverview.pdf...

  8. Solar PV Deployment through Renewable Energy Tariff: An Option for Key Account Customers

    Broader source: Energy.gov [DOE]

    Renewable energy tariffs, a new program and rate option being offered by some utilities to large customers, are quickly attracting attention in the renewable energy world as a way to do this. These tariffs allow a high energy usage customer to pay a slight premium in order to obtain all or a portion of their electricity from renewable sources.

  9. ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 ALSO: Smart Technologies Revolutionize Drilling Techniques Renewable Energy Technologies In Mexico A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 3, NO. 1 DEVELOPING THE ENERGY RESOURCES FOR A NEW ERA S A N D I A T E C H N O L O G Y ON THE COVER: Sandia National Laboratories program

  10. NREL: News - Technology Review Honors National Renewable Energy Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer as One of the World's Top Young Innovators Technology Review Honors National Renewable Energy Lab Engineer as One of the World's Top Young Innovators Cover Art for State of Innovation Technology Magazine Golden, Colo., May 20, 2002 The U.S. Department of Energy's National Renewable Energy Laboratory today announced that Matt Keyser, an engineer in the Center for Transportation Technologies and Systems, has been chosen as one of the world's 100 Top Young Innovators by Technology

  11. Study plan for critical renewable energy storage technology (CREST)

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Now is the time to plan to integrate significant quantities of distributed renewable energy into the electricity grid. Concerns about climate change, the adoption of state-level renewable portfolio standards and incentives, and accelerated cost reductions are driving steep growth in U.S. renewable energy technologies. The number of distributed solar photovoltaic (PV) installations and wind farms are growing rapidly. The potential for concentrated solar power (CSP) also continues to grow. As renewable energy technologies mature, they can provide a significant share of our nations electricity requirements.

  12. NREL: Technology Deployment - Net Zero Energy and Energy Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Federal Energy Management Program U.S. DOE Integrated Deployment Program U.S. DoD Energy Conservation Investment Program Key Partners Marine Corps Air Station Miramar ...

  13. Green Racing: Accelerating the Use of Advanced Technologies & Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Developing Market Acceptance | Department of Energy Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance Green Racing: Accelerating the Use of Advanced Technologies & Renewable Fuels, Developing Market Acceptance 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss033_jehlik_2010_p.pdf More Documents & Publications Green Racing

  14. Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement (FOA) | Department of Energy (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) Bioenergy Technologies Office (BETO) Announces Renewable Carbon Fiber Funding Opportunity Announcement (FOA) February 4, 2014 - 12:00am Addthis BETO's mission within the Office of Energy Efficiency and Renewable Energy (EERE) is to develop and transform biomass resources into commercially viable, high-performance biofuels, bioproducts, and biopower

  15. NREL: Technology Deployment - FEMA Engages NREL in Hurricane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inclusion of renewable energy and energy efficiency into the planning process. Photo of a beach home ripped from its foundation. The home is tilted back and sand covers the...

  16. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  17. NREL Helps Apply Renewable Energy and Energy Efficiency Technologies Worldwide (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The National Renewable Energy Laboratory (NREL) applies its technical expertise and capabilities to promote the use of renewable energy (RE) and energy efficiency (EE) technologies throughout the world. NREL's international work spans our full range of capabilities, which include three primary areas of expertise: 1. Analysis - NREL provides technology-neutral information, global and regional assessments and decision tools, and expert advice. 2. Research and Development - NREL conducts collaborative research and development (R&D) and shares methods and results with leading research institutions throughout the world. 3. Deployment/Commercialization - NREL teams with private industry, other countries, and international institutions to invest in RE and EE technologies. This fact sheet highlights NREL's international multilateral partnerships, bilateral partnerships, climate and environmental initiatives, and energy assessments and resources.

  18. Factors relevant to utility integration of intermittent renewable technologies

    SciTech Connect (OSTI)

    Wan, Yih-huei; Parsons, B.K.

    1993-08-01

    This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

  19. Deployment & Market Transformation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

  20. NREL: Technology Deployment - Success Stories from Developing Countries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstrate Impacts of Low Emission Development Strategies Success Stories from Developing Countries Demonstrate Impacts of Low Emission Development Strategies News EC-LEDS Highlights Renewable Energy Resource Data at COP21 Vietnam Makes Strides to Lower Emissions Thru Green Building Code, High-Performance Buildings Colombia Makes Major Strides in Low Emission Development Payments for Forest Environmental Services in Vietnam Preserves Forests, Engages Communities Presidential Engagement on

  1. NREL: Technology Deployment - Disaster Resiliency and Recovery Example

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project: New Orleans, Louisiana Orleans, Louisiana Image of a house under construction. NREL helped the city of New Orleans rebuild efficiently after Hurricane Katrina. In August 2005, Hurricane Katrina flooded 80% of New Orleans, Louisiana, causing $89.6 billion in damage. Three weeks later, the city was flooded again by Hurricane Rita. NREL, with funding from the U.S. Department of Energy (DOE), provided technical assistance to help the city incorporate energy efficiency and renewable

  2. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  3. Report: U.S. Military Accelerates Deployment of Clean Energy Technologies

    Broader source: Energy.gov [DOE]

    Deployment of clean energy technologies is accelerating across military installations operated by the U.S. Department of Defense, according to a report released by The Pew Charitable Trusts.

  4. Energy Efficiency and Renewable Energy Technologies for Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Technologies for Alaska Day 1 Bethel, Dillingham & Juneau March 23 to April 1, 2015 EERE TECHNOLOGY SUMMARY 2 Technology Videos 3 DOE's Energy Efficiency and Renewable Energy (EERE) Technology Videos: EERE video library: http://energy.gov/eere/videos. 4 ENERGY EFFICIENCY FIRST 4 Community-Scale Consumption and Savings Potential * Homes and commercial buildings consume 41% of U.S. energy * The average Alaskan Native Village spends $5,500 annually on energy costs, 10 to 20% of which is

  5. NREL: Technology Deployment - Cities-LEAP Energy Profile Tool Includes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Data on More than 23,400 U.S. Cities Cities-LEAP Energy Profile Tool Includes Energy Data on More than 23,400 U.S. Cities News NREL Report Examines Energy Use in Cities and Proposes Next Steps for Energy Innovation Publications Citi-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities Sponsors DOE's Energy Office of Energy Efficiency and Renewable Energy Policy and Analysis Office Related Stories Hawaii's First Net-Zero Energy

  6. PNNL Technology Planning and Deployment Group | Open Energy Informatio...

    Open Energy Info (EERE)

    decisions Life-Cycle Analysis - energy costs and consumption, economic options and new technology impacts Marketing Definition, outreach plans and materials Next generation...

  7. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  8. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    sources- such as biomass, geothermal, solar, water, and wind-to provide sustainable energy. These technologies also have the potential to strengthen a municipality's energy...

  9. Open Access Transmission and Renewable Energy Technologies

    SciTech Connect (OSTI)

    Porter, K.

    1996-09-01

    In April 1996, the Federal Regulatory Commission (PERC) approved Orders 888 and 889 and released a draft rule for public comment on capacity reservation tariffs (CRTs). Order No. 888 requires electric utilities to file transmission tariffs that would allow transmission access to third parties who want to conduct wholesale transactions, and Order No. 889 requires transmission-owning utilities to set up open access, same-time information systems (OASIS), using commercial software and Internet protocols. This paper discusses these Orders in detail, as well as some of the issues before FERC with implications for renewables, which include: transmission pricing; transmission terms and conditions; reassignment of transmission capacity; defining state and FERC jurisdiction over transmission and distribution; the pricing of ancillary services; and the adoption and implementation of independent system operators.

  10. Innovative Energy Storage Technologies Enabling More Renewable Power |

    Office of Environmental Management (EM)

    Department of Energy Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity

  11. Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    Broader source: Energy.gov [DOE]

    Analysts may develop scenarios of the deployment of new vehicle technologies for a variety of reasons, ranging from pure thought exercises for hypothesizing about the future, to careful examinations of the possible outcomes of future policies or trends in technology, to examination of the feasibility of broad goals of reducing greenhouse gases and/or oil use. To establish a scenario's plausibility, analysts will seek to make their underlying assumptions clear and to "reality check" the story they tell about technology development and deployment in the marketplace. This report examines two aspects of "reality checking"—(1) whether the timing of the vehicle deployment envisioned by the scenarios corresponds to recognized limits to technology development and market penetration and (2) whether the investments that must be made for the scenario to unfold seem viable from the perspective of the investment community.

  12. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect (OSTI)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  13. National Renewable Energy Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal NREL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Renewable Energy Laboratory Technologies

  14. DOE Assistance in Target Setting and Strategic Planning for Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Deployment RFI | Department of Energy DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI January 13, 2016 5:00PM EST The U.S. Department of Energy released a request for information (RFI) to include renewable energy deployment, including solar, wind, hydropower, and geothermal technologies, into state and regional entities strategic plans. Learn more

  15. Impact Evaluation Framework for Technology Deployment Programs: An Overview and Example

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview and Example John H. Reed Innovologie LLC Gretchen Jordan Sandia National Laboratories Edward Vine Lawrence Berkeley National Laboratory July 2007 IMPACT EVALUATION FRAMEWORK FOR TECHNOLOGY DEPLOYMENT PROGRAMS An ap pro ach fo r q u anti fyi ng ret ro sp ect ive en erg y savin gs, cl ean en erg y ad van ces, an d m ark et eff ect s Introduction and Background The document briefly describes a framework for evaluating the "ret- rospective" impact of technology deployment

  16. Stochastic Integration of Renewable Energy Technologies Based on Polynomial Expa

    Energy Science and Technology Software Center (OSTI)

    2009-12-31

    The software can be used to determine how different intermittent renewable energy technologies interact when supplying an electrical load to a building. By taking defined capacity factors for various time periods and the rated power for different technologies, the software calculates the percentage of the time the power system involving multiple technologies is in a certain state, i.e. the possible combinations and the percent of time each occurs. The user is able to determine howmore » much power would be purchased from a utility and how much would be returned.« less

  17. Demonstrating and Deploying Integrated Retrofit Technologies and Solutions- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Mark Stutman, Consortium for Building Energy Innovation The Penn State Consortium for Building Energy Innovation focuses on the development, demonstration, and deployment of energy-saving technologies and solutions that can achieve 50% energy reduction in small- and medium-sized commercial buildings (SMSCBs).

  18. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Experimental analysis and modeling FCTO Webinar Josh Eichman, PhD

  19. Emerging Renewable Technologies Prepared by RE Vision Consulting, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic Methodology for the Evaluation of Emerging Renewable Technologies Prepared by RE Vision Consulting, LLC October 2011 Document Prepared for DOE by: RE Vision Consulting, LLC www.re-vision.net Project Manager: Mirko Previsic Email Address: mirko@re-vision.net © Copyright 2011 RE Vision Consulting, LLC, All Rights Reserved DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES This document was prepared by the organizations named below as an account of work sponsored or cosponsored by the

  20. Energy Efficiency, Renewable Energy and Advanced Transmission and Distribution Technologies Issued: July 29, 2009

    Broader source: Energy.gov [DOE]

    Federal Loan Guarantees For Projects That Employ Innovative Energy Efficiency, Renewable Energy, And Advanced Transmission And Distribution Technologies

  1. Offshore Code Comparison Collaboration (OC3) for IEA Wind Task 23 Offshore Wind Technology and Deployment

    SciTech Connect (OSTI)

    Jonkman, J.; Musial, W.

    2010-12-01

    This final report for IEA Wind Task 23, Offshore Wind Energy Technology and Deployment, is made up of two separate reports, Subtask 1: Experience with Critical Deployment Issues and Subtask 2: Offshore Code Comparison Collaborative (OC3). Subtask 1 discusses ecological issues and regulation, electrical system integration, external conditions, and key conclusions for Subtask 1. Subtask 2 included here, is the larger of the two volumes and contains five chapters that cover background information and objectives of Subtask 2 and results from each of the four phases of the project.

  2. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  3. Strategies for the Commercialization and Deployment of Greenhouse Gas Intensity-Reducing Technologies and Practices

    SciTech Connect (OSTI)

    Committee on Climate Change Science and Technology Integration

    2009-01-01

    New technologies will be a critical component--perhaps the critical component--of our efforts to tackle the related challenges of energy security, climate change, and air pollution, all the while maintaining a strong economy. But just developing new technologies is not enough. Our ability to accelerate the market penetration of clean energy, enabling, and other climate-related technologies will have a determining impact on our ability to slow, stop, and reverse the growth in greenhouse gas (GHG) emissions. Title XVI, Subtitle A, of the Energy Policy Act of 2005 (EPAct 2005) directs the Administration to report on its strategy to promote the commercialization and deployment (C&D) of GHG intensity-reducing technologies and practices. The Act also requests the Administration to prepare an inventory of climate-friendly technologies suitable for deployment and to identify the barriers and commercial risks facing advanced technologies. Because these issues are related, they are integrated here within a single report that we, representing the Committee on Climate Change Science and Technology Integration (CCCSTI), are pleased to provide the President, the Congress, and the public. Over the past eight years, the Administration of President George W. Bush has pursued a series of policies and measures aimed at encouraging the development and deployment of advanced technologies to reduce GHG emissions. This report highlights these policies and measures, discusses the barriers to each, and integrates them within a larger body of other extant policy. Taken together, more than 300 policies and measures described in this document may be viewed in conjunction with the U.S. Climate Change Technology Program's (CCTP's) Strategic Plan, published in September 2006, which focuses primarily on the role of advanced technology and associated research and development (R&D) for mitigating GHG emissions. The CCTP, a multi-agency technology planning and coordination program, initiated by President Bush, and subsequently authorized in EPAct2005, is responsible for preparing this report on behalf CCCSTI. This report systematically examines the market readiness of key technologies important to meeting climate change mitigation goals. It assesses the barriers and business risks impeding their progress and greater market application. Importantly, by documenting the hundreds of Federal policies, programs, regulations, incentives, and other activities that are in effect and operating today to address these barriers, it provides a broad context for evaluating the adequacy of current policy and the potential need, if any, for additional measures that might be undertaken by government or industry. Finally, it draws conclusions about the current situation, identifies gaps and opportunities, and suggests analytical principles that should be applied to assess and formulate policies and measures to accelerate the commercialization and deployment of these technologies.

  4. Algorithm for Accounting for the Interactions of Multiple Renewable Energy Technologies in Estimation of Annual Performance

    Energy Science and Technology Software Center (OSTI)

    2007-12-31

    The algorithm accounts for interactions between technologies in determining the annual energy performance of multiple renewable energy technologies at a subject site.

  5. Dynamic partnership: A new approach to EM technology commercialization and deployment

    SciTech Connect (OSTI)

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1996-12-31

    The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the {open_quotes}valley of death,{close_quotes} the general term for barriers to demonstration, commercialization, and deployment. The Energy & Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD&C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed {open_quotes}Dynamic Partnership,{close_quotes} and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs.

  6. Economic Incentives for Cybersecurity: Using Economics to Design Technologies Ready for Deployment

    SciTech Connect (OSTI)

    Vishik, Claire; Sheldon, Frederick T; Ott, David

    2013-01-01

    Cybersecurity practice lags behind cyber technology achievements. Solutions designed to address many problems may and do exist but frequently cannot be broadly deployed due to economic constraints. Whereas security economics focuses on the cost/benefit analysis and supply/demand, we believe that more sophisticated theoretical approaches, such as economic modeling, rarely utilized, would derive greater societal benefits. Unfortunately, today technologists pursuing interesting and elegant solutions have little knowledge of the feasibility for broad deployment of their results and cannot anticipate the influences of other technologies, existing infrastructure, and technology evolution, nor bring the solutions lifecycle into the equation. Additionally, potentially viable solutions are not adopted because the risk perceptions by potential providers and users far outweighs the economic incentives to support introduction/adoption of new best practices and technologies that are not well enough defined. In some cases, there is no alignment with redominant and future business models as well as regulatory and policy requirements. This paper provides an overview of the economics of security, reviewing work that helped to define economic models for the Internet economy from the 1990s. We bring forward examples of potential use of theoretical economics in defining metrics for emerging technology areas, positioning infrastructure investment, and building real-time response capability as part of software development. These diverse examples help us understand the gaps in current research. Filling these gaps will be instrumental for defining viable economic incentives, economic policies, regulations as well as early-stage technology development approaches, that can speed up commercialization and deployment of new technologies in cybersecurity.

  7. SHARING AND DEPLOYING INNOVATIVE INFORMATION TECHNOLOGY SOLUTIONS TO MANAGE WASTE ACROSS THE DOE COMPLEX

    SciTech Connect (OSTI)

    Crolley, R.; Thompson, M.

    2011-01-31

    There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges and in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.

  8. Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers

    SciTech Connect (OSTI)

    Heather D. Medema; Ronald K. Farris

    2012-09-01

    This report is a guidance document prepared for the benefit of commercial nuclear power plants (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making, planning, and preparation of a business case.

  9. Renewable energy technologies and its adaptation in an urban environment

    SciTech Connect (OSTI)

    Thampi, K. Ravindranathan Byrne, Owen Surolia, Praveen K.

    2014-01-28

    This general article is based on the inaugural talk delivered at the opening of OMTAT 2013 conference. It notes that the integration of renewable energy sources into living and transport sectors presents a daunting task, still. In spite of the fact that the earth and its atmosphere continually receive 1.7 10{sup 17} watts of radiation from the sun, in the portfolio of sustainable and environment friendly energy options, which is about 16% of the worlds energy consumption and mostly met by biomass, only a paltry 0.04% is accredited to solar. First and second generation solar cells offer mature technologies for applications. The most important difficulty with regards to integration with structures is not only the additional cost, but also the lack of sufficient knowledge in managing the available energy smartly and efficiently. The incorporation of PV as a part of building fabric greatly reduces the overall costs compared with retrofitting. BIPV (Building Integrated photovoltaic) is a critical technology for establishing aesthetically pleasing solar structures. Infusing PV and building elements is greatly simplified with some of the second generation thin film technologies now manufactured as flexible panels. The same holds true for 3{sup rd} generation technologies under development such as, and dye- and quantum dot- sensitized solar cells. Additionally, these technologies offer transparent or translucent solar cells for incorporation into windows and skylights. This review deals with the present state of solar cell technologies suitable for BIPV and the status of BIPV applications and its future prospects.

  10. NREL analysis finds tax credit extensions can impact renewable energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployment and electric sector CO2 emissions - News Releases | NREL analysis finds tax credit extensions can impact renewable energy deployment and electric sector CO2 emissions February 22, 2016 The Energy Department's National Renewable Energy Laboratory (NREL) today released new analysis exploring the potential impact of recently extended federal tax credits on the deployment of renewable generation technologies and related U.S. electric sector carbon dioxide (CO2) emissions. The report,

  11. New Small Hydropower Technology to be Deployed in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Opsahl, Egil; Gordon, Jim; Bishop, Norm

    2012-01-01

    Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated to DOE and published by ORNL.

  12. Tribes Provide Input on 10-Year Plan for Renewable Energy in...

    Broader source: Energy.gov (indexed) [DOE]

    energy project deployment through federal efforts, including the START Program Leverage science and innovative technologies in renewable energy. Read the DOE news release....

  13. Reactor Technology Options Study for Near-Term Deployment of GNEP Grid-Appropriate Reactors

    SciTech Connect (OSTI)

    Ingersoll, Daniel T; Poore III, Willis P

    2007-09-01

    World energy demand is projected to significantly increase over the coming decades. The International Energy Agency projects that electricity demand will increase 50% by 2015 and double by 2030, with most of the increase coming in developing countries as they experience double-digit rates of economic growth and seek to improve their standards of living. Energy is the necessary driver for human development, and the demand for energy in these countries will be met using whatever production technologies are available. Recognizing this inevitable energy demand and its implications for the United States, the U.S. National Security Strategy has proposed the Global Nuclear Energy Partnership (GNEP) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. This initiative will help provide reliable, emission-free energy with less of the waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. These new technologies will make possible a dramatic expansion of safe, clean nuclear energy to help meet the growing global energy demand. In other words, GNEP seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy without increasing the risk of nuclear weapon proliferation. This global expansion of nuclear power is strategically important to the United States for several reasons, including the following: (1) National security, by reducing the competition and potential for conflict over increasingly scarce fossil energy resources; (2) Economic security, by helping maintain stable prices for nonrenewable resources such as oil, gas, and coal; (3) Environmental security, by replacing or off-setting large-scale burning of greenhouse gas-emitting fuels for electricity production; and (4) Regaining technical leadership, through deployment of innovative U.S. technology-based reactors. Fully meeting the GNEP vision may require the deployment of thousands of reactors during the next century in dozens of countries, many of which are in the developing world where nuclear energy is not used currently. Such a large-scale deployment will have significant implications related to both fuel supply and spent fuel/waste management, both domestically and worldwide. Consequently, GNEP must address the development and demonstration of proliferation-resistant technologies to ensure both a safe and sustainable nuclear fuel cycle, and reactor designs that are appropriate for the range of needs across the global community. The focus of this report is the latter need, that is, the development and demonstration of proliferation-resistant reactors that are well matched to the needs and capabilities of developing countries.

  14. New Set of Computational Tools and Models Expected to Help Enable Rapid Development and Deployment of Carbon Capture Technologies

    Broader source: Energy.gov [DOE]

    An eagerly anticipated suite of 21 computational tools and models to help enable rapid development and deployment of new carbon capture technologies is now available from the Carbon Capture Simulation Initiative.

  15. Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Systems | Department of Energy Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon university_of_nevada_peer2013.pdf More Documents & Publications Guide to Developing Air-Cooled Lithium

  16. The Status of Renewable Hydrogen and Energy Station Technologies and Policy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recommendations | Department of Energy The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations This presentation by Tim Lipman on the status of renewable hydrogen and energy station technologies was prepared for the Public Fuel Cell Alliance and the Clean Energy States Alliance. PDF icon education_presentation_lipman.pdf More Documents & Publications Hydrogen

  17. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  18. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. NREL: Technology Deployment - NREL Teams With ComEd on Microgrid-Integrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Solution to Get More Solar on the Grid NREL Teams With ComEd on Microgrid-Integrated Storage Solution to Get More Solar on the Grid February 22, 2016 Effectively integrating large amounts of renewable energy such as solar photovoltaics (PV) onto the electric grid requires finding ways to manage the inherent variability of the resource. That's where energy storage technologies like batteries come in-when integrated into PV systems, storage can allow solar to power homes and businesses

  20. ``White Land``...new Russian closed-cycle nuclear technology for global deployment

    SciTech Connect (OSTI)

    Bowman, C.D.

    1996-07-01

    A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

  1. Deployment Requirements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contamination Workshop Deployment Requirements William Buttner National Renewable Energy Laboratory Hydrogen Safety Codes and Stands Group DOE Hydrogen Contamination Workshop Troy, Michigan June 13, 2014 THIS PRESENTATION DOES NOT CONTAIN ANY PROPRIETARY, CONFIDENTIAL OR OTHERWISE RESTRICTED INFORMATION 2 Outline of talk * SAE 2719 Requirements and the HCD Detector * Application Scenarios - Discreet vs. "real-time" - Centralized vs. On-site * Sensor Performance Parameters -

  2. Opportunities for renewable energy technologies in water supply in developing country villages

    SciTech Connect (OSTI)

    Niewoehner, J.; Larson, R.; Azrag, E.; Hailu, T.; Horner, J.; VanArsdale, P.

    1997-03-01

    This report provides the National Renewable Energy Laboratory (NREL) with information on village water supply programs in developing countries. The information is intended to help NREL develop renewable energy technologies for water supply and treatment that can be implemented, operated, and maintained by villagers. The report is also useful to manufacturers and suppliers in the renewable energy community in that it describes a methodology for introducing technologies to rural villages in developing countries.

  3. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  4. Cost of Renewable Energy Technology Options | Open Energy Information

    Open Energy Info (EERE)

    available for the following renewable energy sources: biomass, geothermal, concentrated solar, photovoltaics and wind power. References Retrieved from "http:en.openei.orgw...

  5. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  6. Pricing Programs Spur Growth of Renewable Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL) identifies key factors for ensuring the success of "green pricing" programs and ranks programs nationwide for their relative effectiveness. ...

  7. Leading the Nation in Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

  8. Renewable

    Office of Scientific and Technical Information (OSTI)

    and Sustainable Energy V v y Jo ur na l Renewable Electronic structural and electroch em ical properties of lithium zircon a tes and their capabilities of C 0 2 capture: A first-principles density-functional theory and phonon d y n am ics approach Yuhua Duan Citation: J. Renewable Sustainable Energy 3, 013102 (2011); doi: 10.1063/1.3529427 View online: http://dx.doi.Org/10.1063/1.3529427 View Table of Contents: http://jrse.aip.Org/resource/1/JRSEBH/v3/i1 Published by the American Institute of

  9. Automotive Deployment Option Projection Tool (ADOPT) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Deployment Option Projection Tool (ADOPT) Model (National Renewable Energy Laboratory) Objectives Estimate the petroleum use impacts of alternative technologies and policies. Estimate future vehicle market share based on infrastructure constraints, consumer preferences, and vehicle attributes. Analyze policy options by considering factors such as vehicle incentives and energy prices. Key Attributes & Strengths The model validates in many relevant dimensions with historical vehicle

  10. Energy Department Selects 11 Tribal Communities to Deploy Energy Efficiency and Renewable Energy Technologies

    Broader source: Energy.gov [DOE]

    Projects provide Indian Tribes and Alaska Native villages clean energy options that will reduce fossil fuel use and save money.

  11. Smith Newton Vehicle Performance Evaluation Cumulative; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  12. Renewable Electricity Generation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories Renewable Electricity Generation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into more affordable, effective, and deployable renewable energy sources make it possible to use these technologies in more ways each day. Learn how EERE's investments in geothermal, solar, water, and wind energy translate into more efficient, affordable

  13. The Status of Renewable Hydrogen and Energy Station Technologies and Policy Recommendations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Transportation Studies * University of California, Berkeley The Status of Renewable Hydrogen and The Status of Renewable Hydrogen and " " Energy Station Energy Station " " Technologies and Policy Technologies and Policy Recommendations Recommendations May 10, 2006 May 10, 2006 Prepared for the Public Fuel Cell Alliance Prepared for the Public Fuel Cell Alliance and the Clean Energy States Alliance and the Clean Energy States Alliance Tim Lipman, PhD Tim Lipman, PhD

  14. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  15. EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center’s Offshore Marine Hydrokinetic Technology Testing Project, Florida

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

  16. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.; Karas, Joseph F.; Nathan, Mayda

    2011-10-06

    This project examines renewable energy deployment in the United States using a version of the GCAM integrated assessment model with detailed a representation of renewables, the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sectoral detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long-distance transmission. We find that renewable generation levels grow over the century in all scenarios. As expected, renewable generation increases with lower renewable technology costs, more stringent climate policy, and if alternative low-carbon technology are not available. The availability of long distance transmission lowers policy costs and changes the renewable generation mix.

  17. Renewable Energy Technology Resource Maps for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC Open Energy Information - Facilitating access, use, and contribution of worldwide energy data and information (OpenEI.org) Debbie Brodt-Giles Open Government Summit January 25, 2012 NREL/PIX 17613 National Renewable Energy Laboratory Innovation for Our Energy Future Overview - Opportunity for shared energy information - Strategic direction - Alignment with the White House Open Government Initiative - Collaborative approach - Linked open data standards - Features and unique attributes -

  18. NREL’s Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    The National Renewable Energy Laboratory's (NREL) controllable grid interface (CGI) test system at the National Wind Technology Center (NWTC) is one of two user facilities at NREL capable of testing and analyzing the integration of megawatt-scale renewable energy systems. The CGI specializes in testing of multimegawatt-scale wind and photovoltaic (PV) technologies as well as energy storage devices, transformers, control and protection equipment at medium-voltage levels, allowing the determination of the grid impacts of the tested technology.

  19. NREL: Technology Deployment - U.S. Bureau of Land Management Looks to NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Geothermal Technical Support U.S. Bureau of Land Management Looks to NREL for Geothermal Technical Support March 2, 2016 The National Renewable Energy Laboratory (NREL) has entered into an interagency agreement with the U.S. Department of the Interior's Bureau of Land Management (BLM) to provide technical support and assistance in the development of renewable energy from geothermal resources on public lands. This agreement represents an expansion of NREL's existing and developing

  20. Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

  1. Army Awards 20 Additional Contracts for Renewable Energy Technologies

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers awarded another 20 contracts to companies for biomass energy, solar energy, and wind energy technologies.

  2. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect (OSTI)

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  3. U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) routinely estimates the technical potential of specific renewable electricity generation technologies. These are technology-specific estimates of energy generation potential based on renewable resource availability and quality, technical system performance, topographic limitations, environmental, and land-use constraints only. The estimates do not consider (in most cases) economic or market constraints, and therefore do not represent a level of renewable generation that might actually be deployed. Technical potential estimates for six different renewable energy technologies were calculated by NREL, and methods and results for several other renewable technologies from previously published reports are also presented.

  4. NREL: Regional Energy Deployment System (ReEDS) Model - Model Description

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Qualitative Model Description The Regional Energy Deployment System (ReEDS) is a long-term capacity-expansion model for the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States. Developed by the National Renewable Energy Laboratory's (NREL's) Strategic Energy Analysis Center (SEAC) with support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, ReEDS is designed to analyze critical issues

  5. Government policy and market penetration opportunities for US renewable energy technology in India and Pakistan

    SciTech Connect (OSTI)

    Sathaye, J.; Weingart, J.M.

    1988-01-01

    Some US renewable energy industries are now looking abroad, especially to the rapidly developing Asia-Pacific region, in order to increase sales and expand markets. The developing world appears in principle to be an important market for renewable energy technologies. These international markets have proven extremely difficult to penetrate, and the US competitive position is threatened by strong, well-organized, government-supported competition from Japan and Western Europe. For example, US photovoltaic manufacturers held 80% of the world PV market in 1980; today their market share is down to 35%. Less developed countries (LDCs) present a potentially significant but highly elusive market for renewable energy technologies. This market may develop for three major reasons; the shortage of electricity supply and the high cost of grid extension to rural areas, the high cost of oil imports and the scarcity of light oil products, and the gradual replacement of traditional fuels with modern ones. The focus of this report is on the policies and attitudes of national and regional governments in India and Pakistan towards renewable energy technology and how these policies and attitudes affect the potential for penetration of these markets by US industry. We have attempted to provide some useful insight into the actual market environment in India and Pakistan rather than just report on official laws, regulations, and policies. The report also examines the economics of technologies in comparison with more traditional sources of energy. It concentrates primarily on technologies, such as photovoltaics and wind electric systems, that would benefit from foreign participation, but also identifies potential market opportunities for advanced solar desalination and other renewable energy technologies. 31 refs.

  6. Renewable Energy 101 (Presentation)

    SciTech Connect (OSTI)

    Walker, A.

    2012-03-01

    Presentation given at the 2012 Department of Homeland Security Renewable Energy Roundtable as an introduction to renewable technologies and applications.

  7. Proceedings of the Conference on Industry Partnerships to Deploy Environmental Technology

    SciTech Connect (OSTI)

    1996-01-01

    Three goals were accomplished at the meeting: review of the latest environmental and waste-management technologies being developed under FETC sponsorship; addressing the accomplishments in, and barriers affecting, private-sector development of these technologies; and laying the groundwork for future technology development initiatives and opportunities.

  8. Volunteers Leading Technology, A Case Study: Chewonki Renewable Hydrogen Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    l j l l i j Volunteers Leading Technology A Case Study: Chewonk Renewab e Hydrogen Pro ect Pau Fau st ch, Pro ect Manager � j i � li � i � l � l � Agenda Pro ect Overv ew Accomp shments Fund ng Vo unteer Labor Acknow edgements What's Next j � i l i i i i � i lly i i fi i l i l Di i i i i � i i i l i i i l i i i i i i l l i Pro ect Overview: Goals St mu ate and support ex st ng Ma ne bus nesses, Create strateg ca mportant connect ons among rms nvo ved n the Renewab e Energy and

  9. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  10. Renewable Electricity Use by the U.S. Information and Communication Technology (ICT) Industry

    SciTech Connect (OSTI)

    Miller, John; Bird, Lori; Heeter, Jenny; Gorham, Bethany

    2015-07-20

    The information and communication technology (ICT) sector continues to witness rapid growth and uptake of ICT equipment and services at both the national and global levels. The electricity consumption associated with this expansion is substantial, although recent adoptions of cloudcomputing services, co-location data centers, and other less energy-intensive equipment and operations have likely reduced the rate of growth in this sector. This paper is intended to aggregate existing ICT industry data and research to provide an initial look at electricity use, current and future renewable electricity acquisition, as well as serve as a benchmark for future growth and trends in ICT industry renewable electricity consumption.

  11. DOE Assistance in Target Setting and Strategic Planning for Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment RFI DOE Assistance in Target Setting and Strategic Planning for Renewable Energy Deployment ...

  12. Regional Energy Deployment System (ReEDS)

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.; Mai, T.; Mowers, M.; Uriarte, C.; Blair, N.; Heimiller, D.; Martinez, A.

    2011-12-01

    The Regional Energy Deployment System (ReEDS) is a deterministic optimization model of the deployment of electric power generation technologies and transmission infrastructure throughout the contiguous United States into the future. The model, developed by the National Renewable Energy Laboratory's Strategic Energy Analysis Center, is designed to analyze the critical energy issues in the electric sector, especially with respect to potential energy policies, such as clean energy and renewable energy standards or carbon restrictions. ReEDS provides a detailed treatment of electricity-generating and electrical storage technologies and specifically addresses a variety of issues related to renewable energy technologies, including accessibility and cost of transmission, regional quality of renewable resources, seasonal and diurnal generation profiles, variability of wind and solar power, and the influence of variability on the reliability of the electrical grid. ReEDS addresses these issues through a highly discretized regional structure, explicit statistical treatment of the variability in wind and solar output over time, and consideration of ancillary services' requirements and costs.

  13. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, Adam

    2013-07-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  14. Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies

    SciTech Connect (OSTI)

    Burgess, R.; Buttner, W.; Riykin, C.

    2011-12-01

    The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

  15. Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico

    SciTech Connect (OSTI)

    Corbus, D.; Martinez, M.; Rodriguez, L.; Mark, J.

    1994-08-01

    Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

  16. A Proposed Methodology to Determine the Leverage Impacts of Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment Programs 2008 | Department of Energy A Proposed Methodology to Determine the Leverage Impacts of Technology Deployment Programs 2008 A Proposed Methodology to Determine the Leverage Impacts of Technology Deployment Programs 2008 This report contains a proposed methodology to determine the leverage impacts of technology deployment programs for the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. PDF icon Proposed Methodology Report More Documents &

  17. Smith Newton Vehicle Performance Evaluation -- Gen 2 -- Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  18. Navistar eStar Vehicle Performance Evaluation 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  19. Navistar eStar Vehicle Performance Evaluation 4th Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  20. Navistar eStar Vehicle Performance Evaluation - 4th Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  1. Smith Newton Vehicle Performance Evaluation 2nd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  2. Navistar eStar Vehicle Performance Evaluation 3rd Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  3. Smith Newton Vehicle Performance Evaluation 1st Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  4. Navistar eStar Vehicle Performance Evaluation - Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country. This cumulative report covers the period through the third quarter of 2013.

  5. Smith Newton Vehicle Performance Evaluation - 3rd Quarter 2013; Vehicle Technologies Office (VTO), Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2013-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  6. Navistar eStar Vehicle Performance Evaluation - 1st Quarter 2014; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    Ragatz, A.

    2014-04-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  7. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL/PR-5400-64420 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Analytic Methods for Benchmarking Hydrogen and Fuel Cell Technologies 227 th ECS Meeting, Chicago, Illinois Marc Melaina, Genevieve Saur, Todd Ramsden, Joshua Eichman May 28, 2015 2 Presentation Overview: Four Metrics Analysis projects focus on low-carbon and economic transportation and stationary fuel cell

  8. US Renewable Futures in the GCAM

    SciTech Connect (OSTI)

    Smith, S.J.; Mizrahi, A.H.; Karas, J.F.; Nathan, M.

    2011-10-01

    This report examines renewable energy deployment in the United States using a version of the Global Change Assessment Model (GCAM) with a detailed representation of renewables; the GCAM-RE. Electricity generation was modeled in four generation segments and 12-subregions. This level of regional and sector detail allows a more explicit representation of renewable energy generation. Wind, solar thermal power, and central solar PV plants are implemented in explicit resource classes with new intermittency parameterizations appropriate for each technology. A scenario analysis examines a range of assumptions for technology characteristics, climate policy, and long distance transmission.

  9. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  10. North American SynchroPhasor Initiative (NASPI) Technical Report- Synchrophasor Technology and Renewables Integration

    Broader source: Energy.gov [DOE]

    This technical report was developed in June 2012 by the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American Electric Reliability Corporation, academics, and the U.S. Department of Energy, to advance and accelerate the development and use of synchrophasor technology for grid reliability and efficiency. The material was produced for a renewables integration workshop, one of a series of NASPI technical workshops intended to educate and document the stakeholder community on the state of the art for key synchrophasor technology issues.

  11. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  12. Carbon sequestration technology roadmap and program plan: ensuring the fossil energy systems through the successful deployment of carbon capture and storage technologies

    SciTech Connect (OSTI)

    2007-04-15

    The overall goal of the Carbon Sequestration Program is to develop, by 2012, fossil fuel conversion systems that achieve 90 percent CO{sub 2} capture with 99 percent storage permanence at less than a 10 percent increase in the cost of energy services. This document describes the Technology Roadmap and Program Plan that will guide the Carbon Sequestration Program in 2007 and beyond. An overview of the Program and the key accomplishments in its 10-year history are presented as well as the challenges confronting deployment and successful commercialization of carbon sequestration technologies. The research pathways that will be used to achieve Program goals and information on key contacts and web links related to the Program are included. 23 figs., 2 tabs.

  13. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act: Vehicle & Infrastructure Deployment Clean Cities Recovery Act: Vehicle & Infrastructure Deployment 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

  14. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect (OSTI)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  15. NREL and Sandia National Laboratories (SNL) Support of Ocean Renewable Power Company's TidGen™ Power System Technology Readiness Advancement Initiative Project

    SciTech Connect (OSTI)

    LiVecchi, Al

    2015-05-07

    This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In funding provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.

  16. Renewables-Friendly Grid Development Strategies: Experience...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetrations of variable renewable electricity. China is actively contributing to this body of experience given the rapid growth in renewable electricity deployment there, while...

  17. Outlook for renewable energy technologies: Assessment of international programs and policies

    SciTech Connect (OSTI)

    Branstetter, L.J.; Vidal, R.C.; Bruch, V.L.; Zurn, R.

    1995-02-01

    The report presents an evaluation of worldwide research efforts in three specific renewable energy technologies, with a view towards future United States (US) energy security, environmental factors, and industrial competitiveness. The overall energy technology priorities of foreign governments and industry leaders, as well as the motivating factors for these priorities, are identified and evaluated from both technological and policy perspectives. The specific technologies of interest are wind, solar thermal, and solar photovoltaics (PV). These program areas, as well as the overall energy policies of Denmark, France, Germany, Italy, the United Kingdom (UK), Japan, Russia, and the European Community as a whole are described. The present and likely future picture for worldwide technological leadership in these technologies-is portrayed. The report is meant to help in forecasting challenges to US preeminence in the various technology areas, particularly over the next ten years, and to help guide US policy-makers as they try to identify specific actions which would help to retain and/or expand the US leadership position.

  18. The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD |

    Energy Savers [EERE]

    Department of Energy The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD The broader goal of the RPS is to achieve various benefits associated with renewable energy. These benefits relate to the environment, resource diversity, technology advancement, and in-state economic development. PDF icon THE THE RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD More Documents & Publications Reference Manual and

  19. Vehicle Technologies Office: Deployment

    Broader source: Energy.gov [DOE]

    Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce...

  20. NREL: Technology Deployment - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Manager, Sheila Hayter Section Manager, Andrea Watson See entire group. Project Development and Finance Group Manager, Adam Warren Section Manager, Sam Booth See entire ...

  1. Vehicle Technologies Program - Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil

    SciTech Connect (OSTI)

    2011-08-01

    R&D drives innovation while lowering technology costs, which then enables the private sector to accelerate clean technology deployment. Along with R&D, DOE's Vehicles Technologies Program deploys clean, efficient vehicle technologies and renewable fuels, which reduce U.S. demand for petroleum products.

  2. DOE Announces Webinars on Deployment of Clean Energy on Indian Lands, the

    Office of Environmental Management (EM)

    Distributed Wind Industry, and More | Department of Energy Deployment of Clean Energy on Indian Lands, the Distributed Wind Industry, and More DOE Announces Webinars on Deployment of Clean Energy on Indian Lands, the Distributed Wind Industry, and More September 15, 2015 - 6:18pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free;

  3. FY 2009 National Renewable Energy Laboratory (NREL) Annual Report: A Year of Energy Transformation

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This FY2009 Annual Report surveys the National Renewable Energy Laboratory's (NREL) accomplishments in renewable energy and energy efficiency research and development, commercialization and deployment of technologies, and strategic energy analysis. It offers NREL's vision and progress in building a clean, sustainable research campus and reports on community involvement.

  4. Deployment Commitments | Department of Energy

    Office of Environmental Management (EM)

    Solar Energy in the United States » Deployment Commitments Deployment Commitments Deployment Commitments Solar energy has become affordable and accessible for a growing number of American families and businesses. Supported by historic investments in research, development, and deployment, the price of solar technologies has decreased rapidly over the past several years. And since President Obama took office, the U.S. solar market has experienced rapid growth. Last year was a record-breaking year

  5. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  6. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals: The Case of the Lieberman-Warner Climate Security Act of 2007 (S.2191)

    SciTech Connect (OSTI)

    Showalter, S.; Wood, F.; Vimmerstedt, L.

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  7. Energy Efficiency and Renewable Energy Research, Development, and Deployment in Meeting Greenhouse Gas Mitigation Goals. The Case of the Lieberman-Warner Climate Security Act of 2007 (S. 2191)

    SciTech Connect (OSTI)

    Showalter, Sharon

    2010-06-01

    The U.S. federal government is considering actions to reduce greenhouse gas emissions. Renewable energy and energy efficiency technologies could help reduce greenhouse gas emissions, so the cost of these technologies could significantly influence the overall cost of meeting greenhouse gas limits. This paper examines the potential benefit of reduced technology cost by analyzing the case of the Lieberman-Warner Climate Security Act of 2007 (S.2191). This act had a goal of reducing national carbon emissions in 2050 to levels 72 percent below 2006 emission levels. In April 2008, the U.S. Department of Energy, Energy Information Administration (EIA) published an analysis of the effects of S.2191 on the U.S. energy sector. This report presents a similar analysis: both analyses examined the impacts of S.2191, and both used versions of the National Energy Modeling System. The analysis reported here used modified technology assumptions to reflect U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program goals. The results show that achieving EERE program goals could reduce the cost of meeting greenhouse gas limits, reduce the cost of renewable electricity generation and biofuels, and reduce energy intensity.

  8. Biorenewable Deployment Consortium

    Broader source: Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  9. NREL: Regional Energy Deployment System (ReEDS) Model - Unique Value of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ReEDS Unique Value of ReEDS Spatial Resolution and Variability Consideration The Regional Energy Deployment System (ReEDS) model has singular capabilities that differentiate it from other models and that make it uniquely suitable for certain types of analyses. While ReEDS can model all types of power generators and fuels-coal, gas, nuclear, renewables-it was designed primarily to address considerations for integrating renewable electric technologies into the power grid. In particular, it was

  10. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  11. Renewable Electricity Futures Study. Executive Summary

    SciTech Connect (OSTI)

    Mai, T.; Sandor, D.; Wiser, R.; Schneider, T.

    2012-12-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  13. FEMP First Thursday Update Covers Strategies for Renewable Energy

    Energy Savers [EERE]

    Deployment | Department of Energy Strategies for Renewable Energy Deployment FEMP First Thursday Update Covers Strategies for Renewable Energy Deployment December 7, 2015 - 5:06pm Addthis FEMP First Thursday Update Covers Strategies for Renewable Energy Deployment The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) will present Strategic Portfolio Planning for Renewable Energy Deployment: REopt, a new First Thursday Update webinar on January 7, 2015, from 1:30 p.m.

  14. Request for Information: Demonstration and Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Request for Information: Demonstration and Deployment Strategies Request for Information: Demonstration and Deployment Strategies November 5, 2013 - 12:00am Addthis The Bioenergy Technologies Office seeks stakeholder feedback regarding bioenergy technology validation to accelerate the deployment of advanced biofuel, bioproducts, and biopower technologies. BETO is specifically interested in technologies that are ready for technology validation at a technology readiness

  15. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  16. Renewable Electricity Futures Study. Volume 1. Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Hand, M. M.; Baldwin, S.; DeMeo, E.; Reilly, J. M.; Mai, T.; Arent, D.; Porro, G.; Meshek, M.; Sandor, D.

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  17. Renewable Electricity Futures Study. Volume 1: Exploration of High-Penetration Renewable Electricity Futures

    SciTech Connect (OSTI)

    Mai, T.; Wiser, R.; Sandor, D.; Brinkman, G.; Heath, G.; Denholm, P.; Hostick, D.J.; Darghouth, N.; Schlosser, A.; Strzepek, K.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  18. High-Yield Feedstock and Biomass Conversion Technology for Renewable Energy and Economic Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Andrew Hashimoto University of Hawaii This presentation does not contain any proprietary, confidential, or otherwise restricted information Develop sustainable, renewable energy systems for Hawaii and the tropics through: * Biomass feedstocks that grow year-round. * Feedstock characteristics that impact conversion processes. * Renewable energy projects that reduce dependence on fossil fuels. * Impact of renewable energy projects on rural communities. This project addresses the BETO goal to

  19. Deploying Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Deploying Innovation With an integrated portfolio of R&D work, we leverage partnerships with top-tier industry, other federal agencies, and universities to build the best teams and ensure we are working on the most challenging problems relevant to the Laboratory's mission. Contact Richard P. Feynman Center for Innovation (505) 665-9090 Email The Feynman Center is a steward of the Laboratory's Intellectual Property (inventions and software). As competitors in a modern R&D

  20. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  1. Request for Information: Demonstration and Deployment Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    The Bioenergy Technologies Office seeks stakeholder feedback regarding bioenergy technology validation to accelerate the deployment of advanced biofuel, bioproducts, and biopower ...

  2. Section 406 Renewable Energy and Electric Transmission Loan Guarantee Program under ARRA

    Broader source: Energy.gov [DOE]

    A temporary program for rapid deployment of renewable energy and electric power transmission projects.

  3. Advancing System Flexibility for High Penetration Renewable Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    penetrations of variable renewable electricity. China is actively contributing to this body of experience given the rapid growth in renewable electricity deployment there, while...

  4. Senior Adviser Richard Kauffman to Host Live Chat on Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senior Adviser Richard Kauffman to Host Live Chat on Renewable Energy Innovation and Deployment Senior Adviser Richard Kauffman to Host Live Chat on Renewable Energy Innovation and...

  5. Senior Adviser Richard Kauffman to Host Live Chat on Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adviser Richard Kauffman to Host Live Chat on Renewable Energy Innovation and Deployment Senior Adviser Richard Kauffman to Host Live Chat on Renewable Energy Innovation and ...

  6. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

  7. Alaska's renewable energy potential.

    SciTech Connect (OSTI)

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  8. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  9. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  10. Information and Technology Services Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information and Technology Services Office Information and Technology Services Office The Information and Technology Services Office (ITSO) is an office within the Office of Business Operations that provides administrative support to the Office of Energy Efficiency and Renewable Energy (EERE). ITSO's mission is to provide a foundation of information technology and business management systems to support development and deployment of innovative energy efficiency and renewable energy technologies

  11. Nuclear Deployment Scorecards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 27, 2015 Quarterly Nuclear Deployment Scorecard - October 2015 News on Watts Bar 2 license, Calvert Cliffs and Callaway withdrawals. July 22, 2015 Quarterly Nuclear Deployment Scorecard - July 2015 News updates on Fermi 3, Watts Bar 2, and Calvert Cliffs 3 April 24, 2015 Quarterly Nuclear Deployment Scorecard - April 2015 Updates on V.C. Summer construction schedule, Watts Bar 2,

  12. Evaluation of Representative Smart Grid Investment Project Technologies: Demand Response

    SciTech Connect (OSTI)

    Fuller, Jason C.; Prakash Kumar, Nirupama; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of a limited number of demand response technologies and implementations deployed in the SGIG projects.

  13. DOE Announces up to $22 Million for Community Renewable Energy...

    Energy Savers [EERE]

    up to 22 Million for Community Renewable Energy Deployment DOE Announces up to 22 Million for Community Renewable Energy Deployment July 15, 2009 - 12:00am Addthis WASHINGTON, DC...

  14. Renewable Energy Feasibility Study

    Broader source: Energy.gov [DOE]

    After a Federal agency has identified probable technologies through the screening process, a detailed review of the feasibility and economic viability of each renewable energy technology, also...

  15. Assessing the Energy Impact of Connected and Automated Vehicle (CAV) Technologies (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing the Energy Impact of Connected and Automated Vehicle (CAV) Technologies SAE 2016 Government/Industry Meeting January 21, 2016 Jeff Gonder, Yuche Chen, Mike Lammert, Eric Wood Transportation and Hydrogen Systems Center (THSC) National Renewable Energy Laboratory (NREL) NREL/PR-5400-65743 2 Outline * Overall energy impact assessment * Example feature-level impacts * Real-world/off-cycle benefit calculation * On-going work by DOE and its national labs 3 "Bookending" CAV Energy

  16. Prestige Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Subsidiary of the Spanish Prestige hotel group, set up to invest in renewable technologies. References: Prestige Renewable Energy1 This article is a...

  17. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet), Transportation Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    front lines of national security, the Department of Defense (DOD) recognizes how adoption of renewable energy is vital to reducing dependence on foreign oil, addressing greenhouse gas emissions and maximizing resource utilization. NREL is working with DOD and the U.S. Army Corps of Engineers to specify a system that integrates solar photovoltaics, plug-in electric vehicles and a renewable energy management unit with a microgrid at Fort Carson, a large Army facility in Colorado. Through the

  18. Deploying Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to left and then through the flow cell. LANL spin-out Acoustic Cytometry Systems, LLC (ACS) licensed and commercialized a novel technology in flow cytometry that allowed...

  19. Renewable Energy Institute International REII | Open Energy Informatio...

    Open Energy Info (EERE)

    research, development, demonstration, and deployment programmes on renewable energy and alternative fuels in collaboration with government, industry, academia, institutes and...

  20. Webtrends Archives by Fiscal Year - Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment Webtrends Archives by Fiscal Year - Deployment From the EERE Web Statistics Archive: Corporate sites, Webtrends archives for the Deployment site for fiscal year 2011. Microsoft Office document icon Deployment FY11 Microsoft Office document icon Community Renewable Energy Deployment FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Commercialization Google Archives by Fiscal Year - Greensburg Webtrends Archives by Fiscal Year - Office of EERE

  1. Increasing Biofuel Deployment through Renewable Super Premium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * Require all new dispensers to be blender pumps (capable of RSP), vehicles are ... * Require all new dispensers to be blender pumps (capable of RSP), vehicles are ...

  2. Illinois Renewable Energy Conference 2015

    Broader source: Energy.gov [DOE]

    The Illinois Renewable Energy Conference will feature plenary speakers and breakout sessions in tracks on policy, technical information, and case studies for wind and other renewable technologies....

  3. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Green Leasing Deployment Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Leasing Deployment Portfolio 2014 Building Technologies Office Peer Review Deborah Cloutier, dcloutier@jdmgmt.com JDM Associates Project Summary Timeline: Start date: January 2013 Planned end date: December 2014 Key Milestones 1. First Steering Committee Meeting - July 2013 2. Launch of Green Lease Leaders - January 2014 3. Recognition Ceremony - May 2014 4. Inaugural Tenant Engagement Pilot Conference Call - Spring/Summer 2014 5. Green Leasing Tools and Resources - Summer, 2014 Target

  5. Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment

    Broader source: Energy.gov [DOE]

    Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

  6. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  7. Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable

  8. Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable

  9. Estimating Renewable Energy Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  10. April 29 Webinar to Focus on Energy Efficient Housing and Integrating Renewable Energy Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy, in partnership with Western Area Power Administration, will present the next Tribal Renewable Energy Series webinar, Energy Efficiency, Zero Energy Ready Homes, and Off-grid Hybrid Power Generation Systems, on Wednesday, April 29, 2015, from 11 a.m. to 12:30 p.m. Mountain time.

  11. National Clean Fleets Partnership (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2014 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Clean Cities Technical Response Service 800-254-6735 * technicalresponse@icfi.com To view this and other Clean Cities publications online, visit cleancities.energy.gov/publications. DOE/GO-102014-4312 * January

  12. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    SciTech Connect (OSTI)

    Naughton, Brian Thomas; Herges, Thomas

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  13. FEMP Renewable Energy Overview

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    This four-page overview describes how Federal agencies can contact the Department of Energy's Federal Energy Management Program (FEMP) to obtain assistance in acquiring renewable energy systems, renewable fuels, and renewable ("green") power for use in their facilities and vehicles. Renewable resources, technologies, and fuels are described, as well as Federal goals for using clean, sustainable renewable energy; the current goal is to supply 2.5% of the Federal Government's energy with renewable sources by 2005. Also included is a description of the resources and technologies themselves and associated benefits.

  14. NREL: Regional Energy Deployment System (ReEDS) Model - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The following are publications - including technical reports, journal articles, conference papers, and posters - focusing on the Regional Energy Deployment System (ReEDS) and Wind Deployment System (WinDS) models. 2016 Mai, Trieu, Wesley Cole, Eric Lantz, Cara Marcy, and Benjamin Sigrin. 2016. Impacts of Federal Tax Credit Extensions on Renewable Deployment and Power Sector Emissions. NREL/TP-6A20-65571. National Renewable Energy Laboratory (NREL), Golden, CO (US). Cole, Wesley,

  15. Hydropower Market Acceleration and Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower Market Acceleration and Deployment Hydropower significantly contributes to the nation's renewable energy portfolio. In fact, over the last decade, the United States obtained over 6% of its electricity from hydropower sources. As the largest source of renewable electricity in the United States, there remains vast untapped resource potential in hydropower. The Water Power Program works to do the following:

  16. Treatment Deployment Evaluation Tool

    SciTech Connect (OSTI)

    Rynearson, Michael Ardel; Plum, Martin Michael

    1999-08-01

    The U.S. Department of Energy (DOE) is responsible for the final disposition of legacy spent nuclear fuel (SNF). As a response, DOE's National Spent Nuclear Fuel Program (NSNFP) has been given the responsibility for the disposition of DOE -owned SNF. Many treatment technologies have been identified to treat some forms of SNF so that the resulting treated product is acceptable by the disposition site. One of these promising treatment processes is the electrometallurgical treatment (EMT) currently in development; a second is an Acid Wash Decladding process. The NSNFP has been tasked with identifying possible strategies for the deployment of these treatment processes in the event that the treatment path is deemed necessary. To support the siting studies of these strategies, economic evaluations are being performed to identify the least-cost deployment path. This model (tool) was developed to consider the full scope of costs, technical feasibility, process material disposition, and schedule attributes over the life of each deployment alternative. Using standard personal computer (PC) software, the model was developed as a comprehensive technology economic assessment tool using a Life-Cycle Cost (LCC) analysis methodology. Model development was planned as a systematic, iterative process of identifying and bounding the required activities to dispose of SNF. To support the evaluation process, activities are decomposed into lower level, easier to estimate activities. Sensitivity studies can then be performed on these activities, defining cost issues and testing results against the originally stated problem.

  17. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  18. Smith Newton Vehicle Performance Evaluation Cumulative; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    SciTech Connect (OSTI)

    2015-04-29

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles.

  19. Leading the Way to Energy Systems Research (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency research and development. From scientific discovery to accelerating market adoption, NREL deploys its deep technical expertise and unmatched breadth of capabilities to drive the transformation of our nation's energy systems. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry

  20. Indian Renewable Energy Status Report: Background Report for DIREC 2010

    SciTech Connect (OSTI)

    Arora, D. S.; Busche, S.; Cowlin, S.; Engelmeier, T.; Jaritz, J.; Milbrandt, A.; Wang, S.

    2010-10-01

    India has great potential to accelerate use of endowed renewable resources in powering its growing economy with a secure and affordable energy supply. The Government of India recognizes that development of local, renewable resources will be critical to ensure that India is able to meet both economic and environmental objectives and has supported the development of renewable energy through several policy actions. This paper describes the status of renewable energy in India as of DIREC 2010. It begins by describing the institutional framework guiding energy development in India, the main policy drivers impacting energy, and the major policy actions India has taken that impact renewable energy deployment. The paper presents estimates of potential for wind, solar, small hydro, and bioenergy and the deployment of each of these technologies to date in India. The potential for India to meet both large-scale generation needs and provide access to remote, unelectrified populations are covered. Finally, the enabling environment required to facilitate rapid scale of renewables is discussed, including issues of technology transfer and the status of financing in India.

  1. Biorenewable Deployment Consortium Spring Symposium

    Broader source: Energy.gov [DOE]

    The Biorenewable Deployment Consortium Spring Symposium will be held this year in downtown Charleston, South Carolina on March 30—31, 2016. Bioenergy Technologies Office Technology Manager Elliott Levine will be giving an update on the Office’s programs and recently announced solicitations and activities. The symposium will also include other federal agency updates and commercial progress panels, especially concerning sugar conversion processes.

  2. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  3. White House Highlights New DOE Measures to Advance Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployment and Increase Energy Efficiency | Department of Energy White House Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency White House Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency September 18, 2014 - 10:30am Addthis News Media Contact 202-586-4940 White House Highlights New DOE Measures to Advance Renewable Energy Deployment and Increase Energy Efficiency For more information, see the

  4. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    SciTech Connect (OSTI)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline of historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.

  5. Demonstration and Deployment Successes: Sapphire Integrated Algal

    Office of Environmental Management (EM)

    Biorefinery | Department of Energy Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc. PDF icon b13_moreno_ap-2.pdf More Documents & Publications Sapphire Energy, Inc. Demonstration-Scale Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and

  6. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  7. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 i Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

  8. Renewable energy annual 1996

    SciTech Connect (OSTI)

    1997-03-01

    This report presents summary data on renewable energy consumption, the status of each of the primary renewable technologies, a profile of each of the associated industries, an analysis of topical issues related to renewable energy, and information on renewable energy projects worldwide. It is the second in a series of annual reports on renewable energy. The renewable energy resources included in the report are biomass (wood and ethanol); municipal solid waste, including waste-to-energy and landfill gas; geothermal; wind; and solar energy, including solar thermal and photovoltaic. The report also includes various appendices and a glossary.

  9. Renewable Electricity Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by Midwest Research Institute * Battelle Renewable Electricity Overview Bobi Garrett Associate Director, Renewable Electricity Science & Technology 12 August 2008 State Energy Advisory Board 2 National Renewable Energy Laboratory Innovation for Our Energy Transforming Our Electricity System Create Smart Grid Two-Way Power Flow Higher Capacity High Reliability/Self Healing

  10. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  11. Autonomie Large Scale Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Scale Deployment Autonomie Large Scale Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss009_rousseau_2011_o.pdf More Documents & Publications Autonomie Plug&Play Software Architecture Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering Vehicle Technologies Office Merit Review 2014:

  12. Final Site-Wide Environmental Assessment of National Renewable Energy Laboratory's National Wind Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 31, 2002 DOE/EA 1378 FINDING OF NO SIGNIFICAflJT IMPACT For the NATIONAL WIND TECHNOLOGY CENTER Site Operations and Short-Term and Long-Term Improvement Programs Golden, Colorado AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The Department of Energy (DOE) conducted a Site-Wide Environmental Assessment (EA) of the National Wind Technology Center (NWTC) to evaluate potential impacts of site operations and short-term and long-term

  13. Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

    2011-04-18

    Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

  14. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    SciTech Connect (OSTI)

    Hashimoto, Andrew G.; Crow, Susan; DeBeryshe, Barbara; Ha, Richard; Jakeway, Lee; Khanal, Samir; Nakahata, Mae; Ogoshi, Richard; Shimizu, Erik; Stern, Ivette; Turano, Brian; Turn, Scott; Yanagida, John

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development Initiative. Renewable energy assessments included: biomass feedstocks currently being produced by Hawaiian Commercial & Sugar Co., and possibilities of producing methane from agricultural and livestock wastes and the potential of photovoltaic systems for irrigation pumping at HC&S. Finally, the impact of a micro-hydroelectric system on a small-farm economics and the local community was assessed.

  15. NREL: Technology Deployment - Solar Decathlon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Decathlon Photo of a woman assembling the Team Alberta solar-powered house at the Solar Decathlon, with the U.S. Capitol Building in the background. Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. NREL has provided technical expertise for this U.S. Department of Energy (DOE) event since its conception in 1999. Considered one of DOE's most successful

  16. Renewable energy annual 1995

    SciTech Connect (OSTI)

    1995-12-01

    The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

  17. Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power

  18. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer Review Kristen Taddonio US Department of Energy Commercial Buildings Integration (CBI) Program Vision Commercial buildings are constructed, operated, renovated and transacted with energy performance in mind and net zero ready commercial buildings are common and cost-effective. Mission Accelerate voluntary uptake of significant energy performance improvements in existing and new commercial buildings by

  19. Annual Technology Baseline (Presentation and Supporting Data Set), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    slides. Excel spreadsheet accompanies this documentation and contains all input data and calculations illustrated on subsequent pages. All monetary values presented in 2013 U.S. dollars. 1 2 Preface This presentation is one of several products resulting from an initial effort to provide a consistent set of technology cost and performance data and to define a conceptual and consistent scenario framework that can be used in NREL's future analyses. The long-term objective of this effort is to

  20. National Clean Fleets Partnership (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    cleancities.energy.gov VEHICLE TECHNOLOGIES OFFICE National Clean Fleets Partnership Large fleets throughout the country are working hand-in-hand with the U.S. Department of Energy (DOE) to cut petroleum use through participation in Clean Cities' National Clean Fleets Partnership. This initiative engages private-sector leaders that agree to implement strategies to reduce their petroleum use. The partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum

  1. NREL's Controllable Grid Interface Saves Time and Resources, Improves Reliability of Renewable Energy Technologies (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers at the National Renewable Energy Laboratory (NREL) developed a controllable grid interface (CGI) test system that can significantly reduce certification testing time and costs. The CGI also provides system engineers with a better understanding of how wind turbines, photovoltaic (PV) inverters, and energy storage systems interact with the grid and react to grid disturbances. For the energy industry, this will save time and resources while minimizing integration issues, improve

  2. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  3. Sphere Renewable Energy Corp | Open Energy Information

    Open Energy Info (EERE)

    Sphere Renewable Energy Corp Jump to: navigation, search Name: Sphere Renewable Energy Corp Place: California Product: California-based polysilicon technology company which has...

  4. Using Smart Grids to Enhance Use of Energy-Efficiency and Renewable-Energy Technologies

    SciTech Connect (OSTI)

    Widergren, Steven E.; Paget, Maria L.; Secrest, Thomas J.; Balducci, Patrick J.; Orrell, Alice C.; Bloyd, Cary N.

    2011-05-10

    This report addresses the Asia-Pacific Economic Cooperation (APEC) organization’s desire to minimize the learning time required to understand the implications of smart-grid concepts so APEC members can advance their thinking in a timely manner and advance strategies regarding smart approaches that can help meet their environmental-sustainability and energy-efficiency policy goals. As significant investments are needed to grow and maintain the electricity infrastructure, consideration needs to be given to how information and communications technologies can be applied to electricity infrastructure decisions that not only meet traditional needs for basic service and reliability, but also provide the flexibility for a changing the mix of generation sources with sensitivity to environmental and societal impacts.

  5. Demonstration and Deployment Strategy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy Workshop, held in March 2014 at Argonne National Laboratory, looked at ways to expedite the market readiness of promising new technologies for advanced biofuels. Participants from industry, academia, national laboratories, government, and non-governmental organizations worked in parallel sessions focused on feedstocks,

  6. Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Coggeshall, C.

    2008-05-01

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

  7. Renewable Systems Interconnection: Executive Summary

    SciTech Connect (OSTI)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  8. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  9. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  11. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  12. FEMP First Thursday Update Covers Strategies for Renewable Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis FEMP First Thursday Update Covers Strategies for Renewable Energy Deployment The U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) will present ...

  13. Panel 2, Renewable Energy & Energy Efficiency Projects: Draft...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 years: Vogtle LPO Has Financed Deployment of Groundbreaking Projects 4 Draft Renewable Energy & Efficient Energy Projects Solicitation 5 Draft Solicitation Can Provide ...

  14. FEMP Helps Federal Facilities Develop Large-Scale Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    jobs, and advancing national goals for energy security. The guide describes the fundamentals of deploying financially attractive, large-scale renewable energy projects and...

  15. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  16. Demonstration and Deployment Strategy Workshop: Summary

    SciTech Connect (OSTI)

    none,

    2014-05-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 1213, 2014, at Argonne National Laboratory.

  17. Demonstration and Deployment Strategy Workshop: Summary

    Broader source: Energy.gov [DOE]

    This report is based on the proceedings of the U.S. DOE’s Bioenergy Technologies Office Demonstration and Deployment Strategy Workshop, held on March 12–13, 2014, at Argonne National Laboratory.

  18. Renewable Electricity: Insights for the Coming Decade

    SciTech Connect (OSTI)

    Stark, C.; Pless, J.; Logan, J.; Zhou, E.; Arent, D. J.

    2015-02-01

    A sophisticated set of renewable electricity (RE) generation technologies is now commercially available. Globally, RE captured approximately half of all capacity additions since 2011. The cost of RE is already competitive with fossil fuels in some areas around the world, and prices are anticipated to continue to decline over the next decade. RE options, led by wind and solar, are part of a suite of technologies and business solutions that are transforming electricity sectors around the world. Renewable deployment is expected to continue due to: increasingly competitive economics; favorable environmental characteristics such as low water use, and minimal local air pollution and greenhouse gas (GHG) emissions; complementary risk profiles when paired with natural gas generators; strong support from stakeholders. Despite this positive outlook for renewables, the collapse in global oil prices since mid-2014 and continued growth in natural gas supply in the United States--due to the development of low-cost shale gas--raise questions about the potential impacts of fossil fuel prices on RE. Today, oil plays a very minor role in the electricity sectors of most countries, so direct impacts on RE are likely to be minimal (except where natural gas prices are indexed on oil). Natural gas and RE generating options appear to be more serious competitors than oil and renewables. Low gas prices raise the hurdle for RE to be cost competitive. Additionally, although RE emits far less GHG than natural gas, both natural gas and RE offer the benefits of reducing carbon relative to coal and oil (see Section 4.1 for more detail on the GHG intensity of electricity technologies). However, many investors and decision makers are becoming aware of the complementary benefits of pairing natural gas and renewables to minimize risk of unstable fuel prices and maintain the reliability of electricity to the grid.

  19. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy The WIPP Site Holds Promise as an Ideal Source of Renewable Energy Encompassing 16 square miles of open Chihuahuan desert with abundant sunshine and minimal...

  20. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  1. Renewable Energy Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Integration Renewable Energy Integration Renewable Energy Integration focuses on incorporating renewable energy, distributed generation, energy storage, thermally activated technologies, and demand response into the electric distribution and transmission system. A systems approach is being used to conduct integration development and demonstrations to address technical, economic, regulatory, and institutional barriers for using renewable and distributed systems. In addition to

  2. AMF Deployment, Manacapuru, Brazil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Website Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press GOAMAZON Blog Images Contacts Kim Nitschke, AMF Operations Scot Martin, Principal Investigator AMF Deployment, Manacapuru, Brazil This view shows the location of the Manacapuru, Brazil, ARM Mobile Facility. Main site (T3): 3° 12'

  3. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Gijs de Boer, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is the temporary home of the third, and

  4. WINDExchange: Deployment Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Deployment Activities Recent years have seen major growth in wind energy, and deployment projections indicate this trend will continue for all parts of the wind industry, from small distributed and community wind projects to massive land-based and offshore utility-scale facilities. Record numbers of Americans see wind energy as an important contributor to a secure and clean energy

  5. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments Experiment Planning Proposal Science Plan, (PDF, 1,257K) Outreach Fact Sheets English Version...

  6. Offshore Wind Advanced Technology Demonstration Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Advanced Technology Demonstration Projects Offshore Wind Advanced Technology Demonstration Projects With roughly 80% of the U.S. electricity demand originating from coastal states, offshore wind is a crucial renewable resource to be incorporated in the country's clean energy mix. Designed to reduce the cost of offshore wind energy through the development and deployment of innovative technologies, the Department of Energy has selected three Offshore Wind Advanced Technology

  7. Renewable Heat NY

    Broader source: Energy.gov [DOE]

    NOTE: On August 2015, NYSERDA increased the incentive levels for technologies offered under the Renewable Heat NY program. In general, new incentives fund up to 45% of the total project cost, which...

  8. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. ...

  9. Renewal Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewal Individual Permit Renewal Application The Permit expires March 31, 2014 and existing permit conditions will be in effect until a new permit is issued. The Permittees submitted a renewal application to EPA on March 27, 2014. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Individual Permit Renewal Application February 10, 2015 NPDES Permit No. NM0030759, Supplemental Information for Permit Renewal Application

  10. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy IH2® Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and Horizons Session 2-C: Navigating Roadblocks on the Path to Advanced Biofuels Deployment Alan A. Del Paggio, Vice President of Upstream & Renewables, CRI Catalyst Company PDF icon b13_del_paggio_2-c.pdf More Documents & Publications Shell. The Evolution of Movement Continues Renewable Chemicals and Advanced

  11. NATIONAL RENEWABLE ENERGY LABORATORY Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NATIONAL RENEWABLE ENERGY LABORATORY Outline 3 * Water scarcity and resources in the US * Desalination technologies * "GDsalt" decision support tool * Project status and ...

  12. International Marine Renewable Energy Conference

    Broader source: Energy.gov [DOE]

    The International Marine Renewable Energy Conference (IMREC) offers researchers, technology developers, policy makers, NGOs, and industry representatives the opportunity to discuss financing...

  13. Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions

    SciTech Connect (OSTI)

    Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

    2013-04-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

  14. Sandia Energy - Sandia Wake-Imaging System Successfully Deployed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Modeling & Analysis Technical Highlights Wind News Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility Previous Next Sandia...

  15. Deployment Barriers to Distributed Wind Energy. Workshop Report

    SciTech Connect (OSTI)

    Ahlgrimm, Jim; Hartman, Liz; Barker, Bret; Fry, Chris; Meissner, John; Forsyth, Trudy; Baring-Gould, Ian; Newcomb, Charles

    2010-10-28

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  16. An Analytical Framework for Long Term Policy for Commercial Deployment...

    Open Energy Info (EERE)

    Analytical Framework for Long Term Policy for Commercial Deployment and Innovation in Carbon Capture and Sequestration Technology in the United States Jump to: navigation, search...

  17. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  18. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles Fact Sheet: Accelerating the...

  19. Projected Benefits of Federal Energy Efficiency and Renewable Energy Programs - FY 2005 FY 2050

    SciTech Connect (OSTI)

    None, None

    2004-05-01

    The Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy (DOE) leads the Federal Governments efforts to provide reliable, affordable, and environmentally sound energy for America, through its 11 research, development, demonstration, and deployment (RDD&D) programs. EERE invests in high-risk, high-value research and development (R&D) that, conducted in partnership with the private sector and other government agencies, accelerates the development and facilitates the deployment of advanced clean energy technologies and practices. EERE designs its RDD&D activities to improve the Nations readiness for addressing future energy needs.

  20. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  1. 2010 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The annual report is an important assessment of U.S. energy statistics for 2010, including renewable electricity, worldwide renewable energy development, clean energy investments, and data on specific technologies. The 2010 Renewable Energy Data Book is filled with information-packed charts and graphics, which allows users, from analysts to policymakers, to quickly understand and summarize trends in renewable energy -- both on a U.S. and global scale.

  2. 2011 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The annual report is an important assessment of U.S. energy statistics for 2011, including renewable electricity, worldwide renewable energy development, clean energy investments, and data on specific technologies. The 2011 Renewable Energy Data Book is filled with information-packed charts and graphics, which allows users, from analysts to policymakers, to quickly understand and summarize trends in renewable energy -- both on a U.S. and global scale.

  3. 2012 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The annual report is an important assessment of U.S. energy statistics for 2012, including renewable electricity, worldwide renewable energy development, clean energy investments, and data on specific technologies. The 2012 Renewable Energy Data Book is filled with information-packed charts and graphics, which allows users, from analysts to policymakers, to quickly understand and summarize trends in renewable energy -- both on a U.S. and global scale.

  4. 2013 Renewable Energy Data Book

    Broader source: Energy.gov [DOE]

    The annual report is an important assessment of U.S. energy statistics for 2013, including renewable electricity, worldwide renewable energy development, clean energy investments, and data on specific technologies. The 2013 Renewable Energy Data Book is filled with information-packed charts and graphics, which allows users, from analysts to policymakers, to quickly understand and summarize trends in renewable energy -- both on a U.S. and global scale.

  5. National Renewable Energy Laboratory (NREL): Hydrogen and Fuel Cell Capabilities Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory (NREL) Hydrogen and Fuel Cell Capabilities Overview 2014 Fuel Cell Seminar and Energy Exposition National Lab Showcase Keith Wipke, NREL Fuel Cell and Hydrogen Technologies Program Manager November 11, 2014 2 NREL Overview o Founded in 1977 o Location: Golden, Colorado o ~1,750 full-time staff o Full spectrum of RD&D, from basic science to deployment o Unique research and testing capabilities across multiple scales o Systems approach o Strong history of

  6. 2014 ESIF (Energy Systems Integration Facility) Annual Report (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESIF2014 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 3 THE ESIF ONE YEAR LATER - A SUCCESS STORY Our nation's energy systems are going through an important transition: while clean energy technologies continue to be advanced through research and development, they are also reaching deployment levels that are impacting how our energy systems function, particularly with

  7. Programs in Renewable Energy

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Our nation faces significant challenges as we enter the 1990s: securing a reliable supply of competitively priced energy, improving the quality of our environment, and increasing our share of foreign markets for goods and services. The US Department of Energy's (DOE) Programs in Renewable Energy are working toward meeting these challenges by developing the technologies that make use of our nation's largest energy resource: renewable energy. The sunlight, wind biomass, flowing water, ocean energy, and geothermal energy that make up the renewable energy resource can be found throughout our nation. These resources can provide all the forms of energy our nation needs: liquid fuels, electricity, and heating and cooling. Renewable energy meets about 10% of our need for these forms of energy today, yet the potential contribution is many times greater. DOE's Programs in Renewable Energy are working side-by-side with American industry to develop the technologies that convert renewable energy resources into practical, cost-competitive energy. After a decade of progress in research, several of these technologies are poised to make large contributions during the 1990s and beyond. This booklet provides an overview of the renewable energy programs and their plans for FY 1990. Sources of additional information are listed at the back of the booklet. 48 figs., 4 tabs.

  8. NREL: Wind Research - Market Acceleration and Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration and Deployment Three participants in the Collegiate Wind Competition work on computer components of a small wind turbine. Photo by U.S. Department of Energy NREL's market acceleration and deployment team provides accurate information that articulates the potential impacts and benefits of wind and water power technologies to state and local communities. In addition, NREL's WINDExchange team focuses its outreach efforts on education, rural economic development, public power

  9. Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States

    SciTech Connect (OSTI)

    Wiser, Ryan; Barbose, Galen; Holt, Edward

    2010-10-01

    Among the available options for encouraging the increased deployment of renewable electricity, renewables portfolio standards (RPS) have become increasingly popular. The RPS is a relatively new policy mechanism, however, and experience with its use is only beginning to emerge. One key concern that has been voiced is whether RPS policies will offer adequate support to a wide range of renewable energy technologies and applications or whether, alternatively, RPS programs will favor a small number of the currently least-cost forms of renewable energy. This report documents the design of and early experience with state-level RPS programs in the United States that have been specifically tailored to encourage a wider diversity of renewable energy technologies, and solar energy in particular. As shown here, state-level RPS programs specifically designed to support solar have already proven to be an important, albeit somewhat modest, driver for solar energy deployment, and those impacts are projected to continue to build in the coming years. State experience in supporting solar energy with RPS programs is mixed, however, and full compliance with existing requirements has not been achieved. The comparative experiences described herein highlight the opportunities and challenges of applying an RPS to specifically support solar energy, as well as the importance of policy design details to ensuring that program goals are achieved.

  10. Contacts for Integrating Renewable Energy into Federal Construction Projects

    Broader source: Energy.gov [DOE]

    Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

  11. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    SciTech Connect (OSTI)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  12. Advancing Technology Readiness: Wave Energy Testing and Demonstration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Readiness: Wave Energy Testing and Demonstration Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2 scale device off the coast of Oregon. This

  13. EERE Success Story-Advancing Technology Readiness: Wave Energy Testing

    Office of Environmental Management (EM)

    and Demonstration | Department of Energy Technology Readiness: Wave Energy Testing and Demonstration EERE Success Story-Advancing Technology Readiness: Wave Energy Testing and Demonstration March 6, 2014 - 1:23pm Addthis Northwest Energy Innovations, in partnership with the Northwest National Marine Renewable Energy Center (NNMREC), verified the functionality of the Wave Energy Technology - New Zealand (WET-NZ) device through wave tank testing and controlled open-sea deployment of a 1:2

  14. State Policy Options for Renewable Energy | Department of Energy

    Energy Savers [EERE]

    Policy Options for Renewable Energy State Policy Options for Renewable Energy Matthew H. Brown Energy Program Director National Conference of State Legislatures. September 2003 PDF icon State Policy Options for Renewable Energy More Documents & Publications The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD 2013 Wind Technologies Market Report 2014 Wind Technologies Market Report

  15. Renewable Energy & Energy Efficiency Projects Loan Guarantee...

    Broader source: Energy.gov (indexed) [DOE]

    Co-Lending 14 LPO Will Consider All Eligible Projects Under Title XVII Renewable Energy Projects Innovative Technology Eligible projects must utilize an innovative technology...

  16. Website Reveals Early Lessons in Electric Vehicle Deployment - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Website Reveals Early Lessons in Electric Vehicle Deployment New web page is an online blueprint for community leaders February 22, 2011 Cities and states have new blueprints to follow as they prepare for the arrival of plug-in electric vehicles. The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) just released a convenient online collection of case studies in electric vehicle deployment. The case studies detail the early experiences of four U.S.

  17. Solar Technology Validation Project - Iberdrola Renewables, Inc.: Cooperative Research and Development Final Report, CRADA Number CRD-08-298-3

    SciTech Connect (OSTI)

    Wilcox, S.

    2013-08-01

    Under this Agreement, NREL will work with Participant to improve concentrating solar power system performance characterizations. This work includes, but is not limited to, research and development of methods for acquiring renewable resource characterization information using site-specific measurements of solar radiation and meteorological conditions; collecting system performance data; and developing tools for improving the design, installation, operation, and maintenance of solar energy conversion systems. This work will be conducted at NREL and Participant facilities.

  18. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    SciTech Connect (OSTI)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  19. 2008 Annual Merit Review Results Summary - 15. Deployment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 5. Deployment 2008 Annual Merit Review Results Summary - 15. Deployment DOE Vehicle Technologies Annual Merit Review PDF icon 2008_merit_review_15.pdf More Documents & Publications 2008 Annual Merit Review Results Summary - 10. Fuels Technologies 2008 Annual Merit Review Results Summary - 5. Advanced Power Electronics 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation

  20. Chicago Area Alternative Fuels Deployment Project (CAAFDP) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt061_ti_bingham_2012_o.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project (CAAFDP) Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

  1. Remote Systems Design & Deployment

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

    2009-08-28

    The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

  2. AMF Deployment, Hyytiala, Finland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finland Hyytiälä Deployment AMF Home Hyytiälä Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment Operations Baseline Instruments and Data Plots at the Archive BAECC Instruments AMF2 Management and Operations Outreach News & Press BAECC Blog Backgrounder (PDF, 1.5MB) Poster (JPEG, 1.3MB) Education Flyer (English) (PDF, 1.3MB) Education Flyer (Finnish) (PDF, 1.3MB) Images Contacts Nicki Hickmon, AMF Operations Tuukka Petäjä, Principal Investigator AMF

  3. Restoring Equilibrium to Natural Gas Markets: Can Renewable Energy Help?

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2005-01-01

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy technologies identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) can hedge natural gas price risk in more than one way, but a recent report by Berkeley Lab evaluates one such benefit in detail: by displacing gas-fired electricity generation, RE reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE. The Berkeley Lab report summarizes recent modeling studies that have evaluated the impact of RE deployment on gas prices, reviews the reasonableness of the results of these studies in light of economic theory and other research, and develops a simple tool that can be used to evaluate the impact of RE on gas prices without relying on a complex national energy model.

  4. Alternative Site Technology Deployment-Monitoring System for the U-3ax/bl Disposal Unit at the Nevada Test Site

    SciTech Connect (OSTI)

    Dixon, J.M.; Levitt, D.G.; Rawlinson, S.E.

    2001-02-01

    In December 2000, a performance monitoring facility was constructed adjacent to the U-3ax/bl mixed waste disposal unit at the Nevada Test Site (NTS). Recent studies conducted in the arid southwestern United States suggest that a vegetated monolayer evapotranspiration (ET) closure cover may be more effective at isolating waste than traditional Resource Conservation and Recovery Act (RCRA) multi-layered designs. The monitoring system deployed next to the U-3ax/bl disposal unit consists of eight drainage lysimeters with three surface treatments: two are left bare; two are revegetated with native species; two are being allowed to revegetate with invader species; and two are reserved for future studies. Soil used in each lysimeter is native alluvium taken from the same location as the soil used for the cover material on U-3ax/bl. The lysimeters were constructed so that any drainage to the bottom can be collected and measured. To provide a detailed evaluation of the cover performance, an ar ray of 16 sensors was installed in each lysimeter to measure soil water content, soil water potential, and soil temperature. Revegetation of the U-3ax/bl closure cover establishes a stable plant community that maximizes water loss through transpiration while at the same time, reduces water and wind erosion and ultimately restores the disposal unit to its surrounding Great Basin Desert environment.

  5. Marine & Hydrokinetic Technologies, Wind and Water Power Program (WWPP) (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environ- mentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  6. DOE Announces Webinars on Deployment of Clean Energy on Indian...

    Office of Environmental Management (EM)

    the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. ...

  7. A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report

    SciTech Connect (OSTI)

    Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

    2009-06-03

    With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

  8. High Octane Fuels Can Make Better Use of Renewable Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Breakout Session 1C-Fostering Technology Adoption I: Building the Market for Renewables with High Octane ...

  9. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and roadmap development to identify and prioritize component, subsystem and system testing that will lead to prototype demonstration.

  10. Market and Policy Barriers for Energy Storage Deployment

    Broader source: Energy.gov [DOE]

    Electric energy storage technologies can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, cross-cutting barriers and technology barriers.

  11. Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable

  12. Secretary Chu Announces More Than $20.5 million for Community Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Deployment Projects | Department of Energy Than $20.5 million for Community Renewable Energy Deployment Projects Secretary Chu Announces More Than $20.5 million for Community Renewable Energy Deployment Projects January 21, 2010 - 12:00am Addthis Washington, DC- U.S. Department of Energy Secretary Steven Chu announced today the selection of five projects to receive more than $20.5 million from the American Recovery and Reinvestment Act to support deployment of community-based

  13. Renewable Energy: Ready to Meet Its Promise?

    SciTech Connect (OSTI)

    Bull, S. R.; Billman, L. L.

    1999-01-01

    This paper will briefly review the technical status, cost, and applications of major renewable energy technologies in 1998, and also discuss some of the socioeconomic impacts of wide-scale adoption of renewables.

  14. Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings

    SciTech Connect (OSTI)

    Kroposki, B.; Werner, M.; Spikes, A.; Komomua, C.

    2013-01-01

    This report summarizes the workshop entitled: Integrated Deployment and the Energy Systems Integration Facility. In anticipation of the opening of the ESIF, NREL held the workshop August 21-23, 2012 and invited participants from utilities, government, industry, and academia to discuss renewable integration challenges and discover new ways to meet them by taking advantage of the ESIF's capabilities.

  15. Structural Materials Challenges in the Deployment of Hydrogen Pipelines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structural Materials Challenges in the Deployment of Hydrogen Pipelines Brian Somerday Hydrogen and Metallurgy Science Department Sandia National Laboratories, Livermore, CA Hydrogen Transmission and Distribution Workshop National Renewable Energy Laboratory, Golden, Colorado Feb. 25-26, 2014 Two principal materials-related challenges for steel hydrogen pipelines: reliability and cost * Prominent reliability issue is potential for hydrogen embrittlement - No hydrogen embrittlement-related

  16. Market Acceleration & Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceleration & Deployment - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  17. The role of renewable energy in climate stabilization: results from the EMF 27 scenarios

    SciTech Connect (OSTI)

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine V.; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-10-15

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; howeverwith the exception of low temperature heatthere is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)which can serve as substitutes in low-carbon power supplyare available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

  18. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" held on August 19, 2014. PDF icon Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Webinar Slides More

  19. Hawkeye Renewables formerly Midwest Renewables | Open Energy...

    Open Energy Info (EERE)

    (formerly Midwest Renewables) Place: Iowa Falls, Iowa Zip: 50126 Product: Midwest bioethanol producer References: Hawkeye Renewables (formerly Midwest Renewables)1 This...

  20. Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review Presentation: Kristen Taddonio, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Commercial Building Demonstration and Deployment activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and

  1. World's First Fuel Cell Cargo Trucks Deployed at Memphis International

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airport | Department of Energy Fuel Cell Cargo Trucks Deployed at Memphis International Airport World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport June 25, 2015 - 1:57pm Addthis World's First Fuel Cell Cargo Trucks Deployed at Memphis International Airport Thanks to R&D funding from the Energy Department's Fuel Cell Technologies Office (FCTO), the Federal Express Hub at the Memphis International Airport in Tennessee has a new 15-vehicle fleet of hydrogen fuel

  2. Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar,

  3. NREL Releases Analysis of Renewable Electricity Standards - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Releases Analysis of Renewable Electricity Standards May 18, 2009 The U.S. Department of Energy's National Renewable Energy Laboratory has completed a study comparing three proposed national renewable electricity standards, also known as renewable portfolio standards. To assess the potential impacts of the three proposed standards on the U.S. electricity sector, a team of senior NREL energy analysts used the Laboratory's Regional Energy Deployment System, a detailed least-cost

  4. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  5. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  6. Pathway to Fuel Cell Deployment--The 3rd Party Transaction: A Vehicle to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation | Department of Energy to Fuel Cell Deployment--The 3rd Party Transaction: A Vehicle to Implementation Pathway to Fuel Cell Deployment--The 3rd Party Transaction: A Vehicle to Implementation Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_damberger.pdf More Documents & Publications Biogas Markets and Federal Policy Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at

  7. New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies New DOE-NASCAR Partnership Revs Deployment of Pollution Reducing Technologies September 11, 2013 - 4:44pm Addthis Dr. Michael Knotek, Deputy Undersecretary for Science and Energy at the Energy Department, delivers remarks at the NASCAR Green Summit in Chicago, where the DOE-NASCAR MOU was announced. | Photo courtesy of NASCAR. Dr. Michael Knotek, Deputy Undersecretary for Science and

  8. Energy Department Awards $45 Million to Deploy Advanced Transportation

    Office of Environmental Management (EM)

    Technologies | Department of Energy 45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that

  9. CSP Heat Integration for Baseload Renewable Energy Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation The integration of CSP systems with fossil-based facilities is expected to deliver solar-generated electricity at a lower levelized cost of energy than standalone CSP ...

  10. DOE Supports Renewable Energy Deployment Projects for Forest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the facility utilize a diverse source of organic feedstocks, including liquid food processing byproducts from dairy, beverage, food, and meat processing operations in the region. ...

  11. Renewable Energy Deployment Projects for Forest County Potawatomi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the facility utilize a diverse source of organic feedstocks, including liquid food processing byproducts from dairy, beverage, food, and meat processing operations in the region. ...

  12. NREL Technology Partnerships: Fiscal Year 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 New Partnership Agreements 696 Active Partnership Agreements 136 Unique New Partners 480 Unique Active Partners $33M in New Partnership Agreements Value WORKING WITH US NREL accelerates the commercialization of energy efficiency and renewable energy technologies by facilitating partnerships and licensing opportunities. We invite organizations, researchers, and professionals from around the world to partner with us on research, development, and deployment projects and to use our research

  13. Creating Coalitions to Accelerate Clean Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TTC Creates and Manages Emerging Energy Technology Coalitions to: 1. Help companies engage with each other and with stakeholders to: * Remove market barriers * Address business opportunities * Have a voice in government policy * Obtain research and deployment funding 2. Mainstream adoption of new clean and renewable products and business services since 1986 3 Our Current Clients 4 Catalyzing Change for Clean Energy Headquarters 1211 Connecticut Ave NW Suite 600 Washington, DC 20036-5802 United

  14. EU Energy Renewables Ltd now part of DeWind | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Previously a subsidiary of EU Energy plc focused on researching renewable energy technologies, until acquisition by Composite Technology...

  15. Development of Methodologies for Technology Deployment for Advanced Outage Control Centers that Improve Outage Coordination, Problem Resolution and Outage Risk Management

    SciTech Connect (OSTI)

    Shawn St. Germain; Ronald Farris; Heather Medeman

    2013-09-01

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S. will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.

  16. Marine & Hydrokinetic Technologies (Fact Sheet), Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to promote the development and deployment of these new tech- nologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renew- able, emissions-free resource to generate environmentally sustainable and cost-effective electricity. The program's research and development efforts fall under two categories: Technology Development and Market Acceleration. Technology Development The

  17. Solar Deployment and Policy

    Gasoline and Diesel Fuel Update (EIA)

    Solar Deployment and Policy Justin Baca Director of Research Solar Energy Industries Association About SEIA * Founded in 1974 * U.S. National Trade Association for Solar Energy * 1,000 member companies from around the world * Members from across 50 states * Largest companies in the world as well as small installers * Our Mission: Build a strong solar industry to power America * Our Goal: 10 gigawatts (GW) of annual installed solar capacity in the U.S. by 2015 July 18, 2014 © 2014 Solar Energy

  18. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  19. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt073_vss_carleson_2011_o.pdf More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  20. Jobs and Renewable Energy Project

    SciTech Connect (OSTI)

    Sterzinger, George

    2006-12-19

    Early in 2002, REPP developed the Jobs Calculator, a tool that calculates the number of direct jobs resulting from renewable energy development under RPS (Renewable Portfolio Standard) legislation or other programs to accelerate renewable energy development. The calculator is based on a survey of current industry practices to assess the number and type of jobs that will result from the enactment of a RPS. This project built upon and significantly enhanced the initial Jobs Calculator model by (1) expanding the survey to include other renewable technologies (the original model was limited to wind, solar PV and biomass co-firing technologies); (2) more precisely calculating the economic development benefits related to renewable energy development; (3) completing and regularly updating the survey of the commercially active renewable energy firms to determine kinds and number of jobs directly created; and (4) developing and implementing a technology to locate where the economic activity related to each type of renewable technology is likely to occur. REPP worked directly with groups in the State of Nevada to interpret the results and develop policies to capture as much of the economic benefits as possible for the state through technology selection, training program options, and outreach to manufacturing groups.

  1. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  2. Market and policy barriers to energy storage deployment : a study for the energy storage systems program.

    SciTech Connect (OSTI)

    Bhatnagar, Dhruv; Currier, Aileen B.; Hernandez, Jacquelynne; Ma, Ookie; Kirby, Brendan

    2013-09-01

    Electric energy storage technologies have recently been in the spotlight, discussed as essential grid assets that can provide services to increase the reliability and resiliency of the grid, including furthering the integration of variable renewable energy resources. Though they can provide numerous grid services, there are a number of factors that restrict their current deployment. The most significant barrier to deployment is high capital costs, though several recent deployments indicate that capital costs are decreasing and energy storage may be the preferred economic alternative in certain situations. However, a number of other market and regulatory barriers persist, limiting further deployment. These barriers can be categorized into regulatory barriers, market (economic) barriers, utility and developer business model barriers, crosscutting barriers and technology barriers. This report, through interviews with stakeholders and review of regulatory filings in four regions roughly representative of the United States, identifies the key barriers restricting further energy storage development in the country. The report also includes a discussion of possible solutions to address these barriers and a review of initiatives around the country at the federal, regional and state levels that are addressing some of these issues. Energy storage could have a key role to play in the future grid, but market and regulatory issues have to be addressed to allow storage resources open market access and compensation for the services they are capable of providing. Progress has been made in this effort, but much remains to be done and will require continued engagement from regulators, policy makers, market operators, utilities, developers and manufacturers.

  3. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary

  4. Renewable Diesel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Renewable Diesel Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_cornforth.pdf More Documents & Publications Renewable Diesel Fuels: Status of Technology and R&D Needs Biodiesel Progress: ASTM Specifications and 2nd Generation Biodiesel Recent Research to Address

  5. Renewable Energy Data Book | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Data Book Renewable Energy Data Book The yearly editions of the Renewable Energy Data Book, as posted on the U.S. Department of Energy website. 2014 Edition 2013 Edition 2012 Edition 2011 Edition 2010 Edition 2009 Edition 2008 Edition More Documents & Publications Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data

  6. Offshore Renewable Energy R&D (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the offshore renewable energy R&D efforts at NREL's NWTC. As the United States increases its efforts to tap the domestic energy sources needed to diversify its energy portfolio and secure its energy supply, more attention is being focused on the rich renewable resources located offshore. Offshore renewable energy sources include offshore wind, waves, tidal currents, ocean and river currents, and ocean thermal gradients. According to a report published by the National Renewable Energy Laboratory (NREL) in 2010,1 U.S. offshore wind resources have a gross potential generating capacity four times greater than the nation's present electric capacity, and the Electric Power Research Institute estimates that the nation's ocean energy resources could ultimately supply at least 10% of its electric supply. For more than 30 years, NREL has advanced the science of renewable energy while building the capabilities to guide rapid deployment of commercial applications. Since 1993, NREL's National Wind Technology Center (NWTC) has been the nation's premier wind energy research facility, specializing in the advancement of wind technologies that range in size from a kilowatt to several megawatts. For more than 8 years, the NWTC has been an international leader in the field of offshore floating wind system analysis. Today, researchers at the NWTC are taking their decades of experience and extensive capabilities and applying them to help industry develop cost-effective hydrokinetic systems that convert the kinetic energy in water to provide power for our nation's heavily populated coastal regions. The center's capabilities and experience cover a wide spectrum of wind and water energy engineering disciplines, including atmospheric and ocean fluid mechanics, aerodynamics; aeroacoustics, hydrodynamics, structural dynamics, control systems, electrical systems, and testing.

  7. Property:Deployment Date | Open Energy Information

    Open Energy Info (EERE)

    Deployment Date Jump to: navigation, search Property Name Deployment Date Property Type String Retrieved from "http:en.openei.orgwindex.php?titleProperty:DeploymentDate&oldid...

  8. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Study Eastern Renewable Generation Integration Study The Eastern Renewable Generation Integration Study (ERGIS) is a multi-year U.S. Department of Energy-funded research project designed to simulate operations of the largest power system in the world with high penetrations of wind and solar generation. The study will inform critical questions on how system operations could be impacted by various wind and solar deployment strategies and operational paradigms. It is the first study

  9. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  10. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    2007-03-01

    This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

  11. First Look at Renewable Energy Options

    Broader source: Energy.gov [DOE]

    Project planners should conduct a preliminary review of project energy needs and opportunities when considering renewable energy technologies. This makes energy an integral part of the project,...

  12. Renewable Microgrid STEM Education & Colonias Outreach Program...

    Office of Scientific and Technical Information (OSTI)

    Title: Renewable Microgrid STEM Education & Colonias Outreach Program To provide Science, Technology, Engineering, and Math (STEM) outreach and education to secondary students to ...

  13. Algasol Renewables SL | Open Energy Information

    Open Energy Info (EERE)

    Newly started technology firm that will seek to use the photosynthetic capabilities of algae to generate renewable energy and other products. Coordinates: 39.613529, 2.91156...

  14. Mandatory Renewable Energy Educational Materials | Department...

    Broader source: Energy.gov (indexed) [DOE]

    or longer, the utility must provide the customer with information about on-site renewable energy and distributed-generation (DG) technology alternatives. The information must be...

  15. Chinese Renewable Energy Industries Association CREIA | Open...

    Open Energy Info (EERE)

    Product: CREIA promotes the adoption of advanced technologies among renewable energy enterprises in China and actively develops capacity for the rapid industrialisation of the...

  16. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  17. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  18. Land and Resource Management Issues Relevant to Deploying In...

    Office of Scientific and Technical Information (OSTI)

    Title: Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies Utah is home to oil shale resources containing roughly 1.3 trillion barrels of oil ...

  19. SunShot Catalyst Innovators Take on Software Challenges to Deploy Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Across America | Department of Energy Catalyst Innovators Take on Software Challenges to Deploy Solar Technology Across America SunShot Catalyst Innovators Take on Software Challenges to Deploy Solar Technology Across America February 20, 2015 - 12:15pm Addthis SunShot Catalyst Innovators Take on Software Challenges to Deploy Solar Technology Across America Dr. Elaine Ulrich Dr. Elaine Ulrich Balance of Systems/Soft Costs Program Manager Last week, the Energy Department launched a

  20. Renewable Energy Opportunity Assessment

    SciTech Connect (OSTI)

    Hancock, E.; Mas, C.

    1998-11-13

    Presently, the US EPA is constructing a new complex at Research Triangle Park, North Carolina to consolidate its research operations in the Raleigh-Durham area. The National Computer Center (NCC) is currently in the design process and is planned for construction as partof this complex. Implementation of the new technologies can be planned as part of the normal construction process, and full credit for elimination of the conventional technologies can be taken. Several renewable technologies are specified in the current plans for the buildings. The objective of this study is to identify measures that are likely to be both technically and economically feasible.